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Abstract 15 

The Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) has been coupled with 16 

Vapor-Liquid Equilibrium (VLE) calculations in a density-based solver of the Navier-Stokes 17 

equations to perform multicomponent two-phase simulations of Diesel injections at high-18 

pressure conditions. This molecular-based EoS requires three empirically determined but well-19 

known parameters to model the properties of a specific component, and thus, there is no need 20 

for extensive model calibration, as is typically the case when the NIST (REFPROP) library is 21 

utilised. PC-SAFT can handle flexibly the thermodynamic properties of multi-component 22 

mixtures for which the NIST (REFPROP) library supports only limited component 23 

combinations. Moreover, complex hydrocarbon mixtures can be modelled as a single pseudo-24 

component knowing its number averaged molecular weight (MW) and hydrogen-to-carbon 25 

(HN/CN) ratio. Published molecular dynamic simulations have been utilised to demonstrate 26 

that the developed algorithm properly captures the VLE interface at high-pressure conditions. 27 

Several advection test cases and shock tube problems were performed to validate the numerical 28 

framework using analytical and exact solutions. Additionally, two-dimensional simulations of 29 

n-dodecane and Diesel injections into nitrogen are included to demonstrate the 30 

multidimensional, multispecies and multiphase capability of the numerical framework. 31 

 32 

Keywords: Subcritical, PC-SAFT EoS, Diesel Fuel Injection  33 

 34 

Nomenclature 35 

List of abbreviations  36 

AAD   Average Absolute Deviation  37 

CFD  Computational Fluid Dynamics 38 

CFL  Courant–Friedrichs–Lewy  39 

CPA   Cubic Plus Association 40 

ECN   Engine Combustion Network  41 

ENO  Essentially Non-Oscillatory 42 

EoS  Equation of State 43 

FC  Fully Conservative 44 

GC   Group Contribution 45 
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HLLC  Harten-Lax-van Leer-Contact 46 

HN/CN  Hydrogen-to-Carbon Ratio 47 

LES  Large Eddy Simulation  48 

MW   Number Averaged Molecular Weight  49 

N-S  Navier-Stokes 50 

PNAs   Poly-Nuclear Aromatics 51 

PR  Peng-Robinson 52 

PC-SAFT  Perturbed Chain Statistical Associating Fluid Theory 53 

QC  Quasi-Conservative  54 

RK2  Second-order Runge–Kutta 55 

SAFT-BACK  Boublik-Alder-Chen-Kreglewshi 56 

SRK  Soave-Redlich-Kwong 57 

SSP-RK3 Third-order strong-stability-preserving Runge–Kutta 58 

TPn flash           Isothermal-Isobaric Flash  59 

TVD   Total Variation Diminishing 60 

TPD  Tangent Plane Distance 61 

VLE  Vapor-Liquid Equilibrium 62 

WENO  Weighted Essentially Non-Oscillatory 63 

 64 

List of Symbols 65 

�̃�𝑟𝑒𝑠 Reduced Helmholtz free energy [-] 66 

𝑐 Sound speed [m s-1]  67 

𝑑 Temperature-dependent segment diameter [Å] 68 

𝑒  Internal energy [J mol-1] 69 

ℎ  Enthalpy [J mol-1] 70 

𝑔 Gibbs energy [J mol-1] 71 

𝐼 Integrals of the perturbation theory [-] 72 

𝑘𝑏 Boltzmann constant [J K-1] 73 

𝑚 Number of segments per chain [-] 74 

�̄� Mean segment number in the system [-] 75 

𝑀𝑀  Molecular weight [g/mol] 76 

𝑁𝐴  Avogadro’s number [mol-1] 77 

𝑝 Pressure [Pa] 78 

𝑝𝑐  Critical pressure [Pa]  79 

𝑅 Gas constant [J mol-1 K-1] 80 

𝑇 Temperature [K] 81 

𝑇𝑐  Critical temperature [K] 82 

𝑥𝑖 Mole fraction of component i [-] 83 

𝑤  Acentric factor [-] 84 

𝑍 Compressibility factor [-] 85 

 86 

Greek Letters  87 

𝛽  Overall fraction of vapour phase [-] 88 

𝜀 Depth of pair potential [J] 89 

𝜂 Packing fraction [-] 90 

𝜌 Density [kg/m3] 91 

𝜌𝑚 Total number density of molecules [1/Å3] 92 
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𝜎𝑑 Segment diameter [Å] 93 

𝜃  Vapour volume fraction [-] 94 

𝜑  Fugacity coefficient [-] 95 

𝜇  Chemical potential [J mol-1] 96 

 97 

Superscripts 98 

𝐸𝑄        Equilibrium 99 

𝑑𝑖𝑠𝑝 Contribution due to dispersive attraction 100 

ℎ𝑐 Residual contribution of hard-chain system 101 

ℎ𝑠 Residual contribution of hard-sphere system 102 

𝑖𝑑 Ideal gas contribution 103 

 104 

1. Introduction 105 

This research is focused on improving the thermodynamic models employed to 106 

simulate fuel mixing at elevated pressures. To correctly model the combustion in Diesel engines 107 

one needs to characterise the atomisation and mixing of sprays. However, even nowadays these 108 

processes are not completely understood. According to the experiments performed by several 109 

authors [1]–[5], supercritical mixing exists at pressures near or slightly higher than the critical 110 

pressure of the liquid fuel. [6], [7] stated that the convection-diffusion phenomena described by 111 

the Navier-Stokes equations governs Diesel engine conditions. More recently, in [8] it was 112 

determined  that the surface tension remains in effect at the gas–liquid interfaces in ambient 113 

conditions slightly above the critical point of the fuel. However, at higher pressure and 114 

temperature conditions the surface tension diminishes, as expected for supercritical fuel–air 115 

mixtures. Diesel engine operation conditions are considered to be in the diffused controlled 116 

mixing regime. In a following study [9], the authors carried out systematic measurements using 117 

high-speed long-distance microscopy  for three single-component fuels (n-heptane, n-118 

dodecane, n-hexadecane) injected into gas (89.71% N2, 6.52% CO2 and 3.77% H2O) at elevated 119 

temperatures (700–1200 K) and pressures (2–11 MPa). The classical evaporation/diffusive 120 

mixing boundaries were moved towards higher pressures and temperatures placing Diesel 121 

engines conditions in the classical evaporation regime. In [10] the evaporation of n-alkane fuels 122 

into nitrogen was investigated at different pressure and temperature conditions carrying out 123 

molecular dynamic simulations. The aim of this work was to understand how the transition 124 

from classical two-phase evaporation to one- phase diffusion-controlled mixing takes place. 125 

Two regimes are identified: (1) subcritical evaporation where a distinctive interface exists 126 

separating the liquid core and the ambient gases; and (2) supercritical evaporation where 127 

initially the liquid has a surface tension that decreases rapidly and vanishes. In the supercritical 128 

evaporation regime, the evaporation rate increases and reaches a maximum after which there is 129 

a transition to the supercritical stage. The results obtained have a high degree of agreement 130 

against the experimental results obtained by [9].  131 

Numerous simulations of Diesel sprays in the literature exist, which employ 132 

Lagrangian methods considering a sharp gas-liquid interface which evolve according to 133 

primary and secondary breakup models and evaporation [11]–[13]. However, this configuration 134 

presents some limitations to accurately capture dense flow regimes near the nozzle where the 135 

liquid fuels disintegrate into ligaments that then form droplets. Moreover, they are sensitive to 136 

calibration parameters. In [14], [15] an Eulerian density-based methodology was used to model 137 

the primary atomisation of the injected liquid  accounting for compressibility effects associated 138 

with the high-pressure and injection velocity. A single-phase dense-gas approach was combined 139 
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with the Peng-Robinson (PR) EoS. However, n-dodecane/nitrogen mixtures are a TYPE IV 140 

mixture, which means that the critical temperature of the mixture is higher than the lower 141 

critical temperature of the components and lower than then the higher critical temperature of 142 

the compounds. On the other hand, the critical pressure is higher than the critical pressure of 143 

the components. Considering that the pressures that can be found in the combustion chamber 144 

of Diesel engines are lower than the critical pressure of some nitrogen/fuel mixtures, the VLE 145 

state must be included in the simulation. In [16], [17] a multi-species two-phase model for 146 

Eulerian large-eddy simulations (LES) was developed. A thermodynamic solver that can 147 

compute the properties of a homogenous mixture in supercritical or subcritical states was 148 

employed. The LES including VLE thermodynamics of the so-called Spray A benchmark case 149 

of the Engine Combustion Network (ECN) performed by [16] shows a high degree of 150 

agreement against the available experimental data. Although according to [9], [10] the Spray A 151 

ambient conditions (900K, 6MPa) fall in the classic evaporation regime, the authors of  [16] 152 

justified the use of a diffuse interface due to the high Weber number and low Stokes number. 153 

The authors pointed out the issues of employing cubic EoS for modelling hydrocarbon 154 

properties at temperatures found inside the injection system [18]–[20]. In [16], due to the 8.6% 155 

error when compared to NIST (REFPROP) in the density prediction of n-dodecane at 363K, it 156 

was necessary to increase the injection velocity to match the mass-flow measurement leading 157 

to an error in the predicted velocity of 50 m/s. These problems could be overcome by applying 158 

SAFT models. 159 

The SAFT EoS is based on the perturbation theory, as extensively studied in [21]–[24]. 160 

This EoS was developed by [25], [26] applying Wertheim’s theory and extending it to mixtures. 161 

Each molecule of the mixture is decomposed into spherical segments of equal size forming a 162 

repulsive, hard sphere reference fluid. The attractive interactions between segments are 163 

included in the model as well as the segment-segment energy needed to form a chain between 164 

the hard-sphere fluid segments. If the segments exhibit associative interactions such as 165 

hydrogen bonding, a term for this interaction is also included. Among the different variants of 166 

the SAFT model, the PC-SAFT is the one implemented here. In this model, hard chains are 167 

used as the reference fluid instead of hard spheres. While the SAFT EoS computes segment-168 

segment attractive interactions, the PC-SAFT EoS computes chain-chain interactions, which 169 

improves the thermodynamic description of chain-like, fluid mixtures [27]. This molecular-170 

based EoS only requires three empirically determined parameters (when the association term is 171 

neglected) to model the properties of a specific component without the need for extensive model 172 

calibration. Several publications have highlighted the advantages of the SAFT variants with 173 

respect to cubic EoS. [28] shows how the PC-SAFT model presents better results than cubic 174 

EoS predicting gas phase compressibility factors and oil phase compressibility. For example, 175 

Average Absolute Deviation (AAD) of the gas compressibility factors in the range P=0-1000 176 

bar and T= 0-250 °C for nC6 are 0.0144 for PC-SAFT, 0.0479 for SRK (applying the Peneloux 177 

volume correction) and 0.0425 for PR (applying the Peneloux volume correction). For nC5, they 178 

are 0.0127, 0.0529 and 0.0296 respectively. [29] indicated that the PC-SAFT EoS shows a 179 

superior performance to the Cubic Plus Association (CPA) EoS in correlating second order 180 

derivative properties, such as speed of sound, dP/dV and dP/dT derivatives, heat capacities and 181 

the Joule–Thomson coefficient in the alkanes investigated. The CPA model presents a 182 

diverging behaviour in the speed of sound attributed to the wrong description of the dP/dV 183 

derivative. Similarly, [30] points out the superiority of the SAFT-BACK (Boublik-Alder-Chen-184 

Kreglewshi) model over the PR EOS. The SAFT-BACK EoS shows reasonable results for the 185 

speed of sound in the vapor and liquid phases (AAD% = 2.3%, 2.1%, and 1.8% for methane, 186 

ethane, and propane, respectively). However, the results obtained by PR EOS are only similar 187 
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to measured data at low pressure conditions. The predicted values at high density ranges present 188 

an AAD% for methane, ethane, and propane of 28.6%, 14.7%, and 61.2%, respectively. 189 

Moreover, in [31] it was shown how cubic EoS predict a linear increase of the Z factor 190 

(compressibility factor) with pressure, while the PC-SAFT EoS presents pressure dependence.  191 

 In [19], the PC-SAFT was used to close the Navier-Stokes equations using both  a 192 

conservative and a quasi-conservative formulation, where the double flux model of  [32]–[34] 193 

was applied. It was observed how the conservative formulation generates spurious pressure 194 

oscillations while the quasi-conservative scheme presents an error in the energy conservation 195 

that produce an unphysical quick heat-up of the fuel. In [18], supercritical injections of Diesel 196 

fuel modelled as surrogates comprising four, five, eight and nine components were performed 197 

taking advantage of the capacity of the PC-SAFT EoS to flexibly handle the thermodynamic 198 

properties of multi-component mixtures. Simulations at affordable CPU times were carried out 199 

by reducing the number of times the PC-SAFT EoS is solved by computing the pressure and 200 

sonic fluid velocity in the cell centres and performing a reconstruction of these variables at each 201 

cell face. This technique was found to smooth-out the spurious pressure oscillations associated 202 

with conservative schemes when used along with real-fluid EoS. The novelty in this paper is to 203 

present a numerical framework that combines PC-SAFT and VLE calculations in a density-204 

based, fully conservative solver of the Navier-Stokes and energy conservation equations. VLE 205 

calculations allow to perform simulations where the fuel enters the combustion chamber at low 206 

temperatures (subcritical injections). Published molecular dynamic simulations have been 207 

employed to demonstrate that the algorithm properly captures the multicomponent VLE 208 

interface at high-pressure conditions. A purely predictive method that employs the PC-SAFT 209 

EoS for developing pseudo-components, which are defined to replicate the properties of 210 

complex hydrocarbon mixtures (e.g., diesel fuels), has been completed and validated to be used 211 

in CFD simulations. Then, complex hydrocarbon mixtures can be modelled as a single pseudo-212 

component knowing its MW and HN/CN ratio.  Advection test cases and shock tube problems 213 

were performed to validate the numerical framework. Two-dimensional simulations of planar 214 

Diesel jets are performed to demonstrate the capability of the developed methodology to model 215 

subcritical mixing at high-pressure conditions.  216 

 217 

2.  PC-SAFT Theory and Methodology 218 

In this section it is explained the numerical methodology employed to couple the Navier-Stokes 219 

equations, total energy equation, VLE calculations and PC-SAFT model in the same numerical 220 

framework. The results of the molecular model and VLE calculations were validated using the 221 

experimental results of [45], see Figure 1.  222 

 223 

2.a. CFD code 224 

The Navier-Stokes equations for a non-reacting multi-component mixture containing N species 225 

in a x-y 2D Cartesian system have been solved employing the finite volume method. Operator 226 

splitting as described in [35] is utilised to separate the hyperbolic and parabolic operators. The 227 

global time step is computed using the CFL (Courant-Friedrichs-Lewy) criterion of the 228 

hyperbolic part. A thermodynamic solver inspired by the work of [16] is employed to 229 

approximate the mixture thermophysical properties by performing PC-SAFT and VLE 230 

calculations. To compute the convective fluxes: the conservative variables, pressure and speed 231 

of sound are interpolated at the cell faces from cell centres using a fifth-order WENO (Weighted 232 

Essentially Non-Oscillatory) scheme [18]; the multicomponent HLLC (Harten-Lax-van Leer-233 

Contact) solver is applied to solve the Riemann problem [36]; and the temporal integration is 234 
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carried out using a second-order Runge–Kutta (RK2) method applying the filter presented in 235 

[18]. In the parabolic sub-step, linear interpolation is performed for computing the conservative 236 

variables, temperature and enthalpy on the cell faces from the corresponding values at the cell 237 

centres. The model developed by [37] is used to calculate the dynamic viscosity and the thermal 238 

conductivity. Figure 2 shows a schematic representation of the CFD code. See Appendix 1.  239 

 240 

 241 
Figure 1. Experimental [38]  and calculated pressure-composition phase diagram for the N2 (1) + 242 

C12H26 (2) system. Solid lines: PC-SAFT EoS with kij = 0.144 243 
 244 
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Figure 2. Schematic representation of the CFD code 246 
 247 

 248 

2.b. Diesel modelling 249 

Two approximations have been considered to model the properties of Diesel.  250 

 251 

 252 

 253 
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Multicomponent Diesel surrogates 254 

In [39] four Diesel surrogates have been proposed, divided into two types depending how close 255 

their composition is to real Diesel. The V0A and V0B are two low-accuracy surrogates while 256 

V1 and V2 are the two higher-accuracy surrogates. Their molar composition is summarized in 257 

Table 1. As pointed out in [40], the PC-SAFT EoS shows the highest degree of agreement with 258 

the experimental values in comparison with the results obtained  using the model developed at 259 

NIST [39], see Table 2.  260 

 261 

Pseudo-component method 262 

In [41] was developed a technique that defines a single pseudo-component to represent the 263 

compounds found in a hydrocarbon mixture. It only requires two mixture properties as inputs, 264 

the MW and HN/CN ratio. Here we briefly describe how to achieve the pseudo-component PC-265 

SAFT parameters needed in this study. The group contribution (GC) parameters of [42] are 266 

used to develop the correlations shown in Table 4 for n-alkanes and poly-nuclear aromatics 267 

(PNAs) that numerically bound the pseudo-component PC-SAFT parameter values. An 268 

averaging parameter, Z, is used to calculate the pseudo-component parameters using Eqs. 1-3. 269 

Eqs 4-7 show that Z is calculated using the mixture MW and HN/CN ratio, which can be 270 

directly calculated knowing the mixture components or can be obtained using elemental 271 

analysis for unknown mixtures. Considering that the PC-SAFT is implemented using loops that 272 

depend on the number of components solved, this method allows us to model complex 273 

hydrocarbon mixtures as one component, thus, reducing significantly the computational 274 

requirements of the simulation but with increasing its accuracy.  275 

 276 
Table 1. PC-SAFT pure component parameters [40], [42] 277 

Compound 𝑚 𝜎 (Å) 𝜀
𝑘⁄ (K) 

n-hexadecane   6.669 3.944 253.59 

n-octadecane 7.438 3.948 254.90 
n-eicosane 8.207 3.952 255.96 
heptamethylnonane 5.603 4.164 266.46 
2-methylheptadecane 7.374 3.959 254.83 
n-butylcyclohexane 3.682 4.036 282.41 
1,3,5-triisopropylcyclohexane 4.959 4.177 297.48 
trans-decalin 3.291 4.067 307.98 
perhydrophenanthrene 4.211 3.851 337.52 
1,2,4-trimethylbenzene 3.610 3.749 284.25 
1,3,5-triisopropylbenzene 5.178 4.029 296.68 
tetralin 3.088 3.996 337.46 
1-methylnaphthalene 3.422 3.901 337.14 

 278 

 279 
Table 2 Comparison between experimentally measured surrogate densities (kg/m3) at 293.15 K 280 

and 0.1 MPa with the NIST and PC-SAFT predictions 281 

Surrogate Experiment[39] NIST PC-SAFT 

V0A 818.0 809.1 814.9 

V0B 837.5 821.6 833.2 

V1 828.4 814.1 825.2 

V2 853.0 839.9 861.8 

 

 
   

 282 
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The methodology developed by [41] was validated for modelling density, isothermal 283 

compressibility and volumetric thermal expansion coefficient of hydrocarbon mixtures, jet and 284 

diesel fuels. However, the pseudo-component must correctly model the internal energy 285 

(employed in the conservation of the total energy equation) speed of sound (used to calculate 286 

the hyperbolic fluxes and time step), enthalpy (employed in the parabolic operator of the 287 

Navier-Stokes equations) and fugacity coefficients (to perform VLE calculations). Using the 288 

PC-SAFT, the internal energy, enthalpy and heat capacities at constant pressure and volume 289 

(needed to compute the speed of sound) are computed as the sum of ideal and residual 290 

contributions. The PC-SAFT pure component parameters obtained employing the method of 291 

[41] are used to calculate the residual contributions. The ideal enthalpy of each component is 292 

calculated by integrating the ideal heat capacity at constant pressure with respect to temperature 293 

[43]. The molar composition of the mixture is used to calculate the ideal enthalpy of the 294 

mixture. The ideal internal energy of the mixture is computed employing the ideal enthalpy of 295 

the mixture.  The ideal heat capacities at constant pressure of each component is computed 296 

employing the correlations published in [43]; then, molar fractions are used to compute the 297 

ideal heat capacity at constant pressure of the mixture, which is employed to calculate the ideal 298 

heat capacity at constant volume.  299 
 300 

Table 3. Molar composition for the four Diesel fuel surrogates (V0A, V0B, V1, V2) [39] 301 
Compound V0A V0B V1 V2 

n-hexadecane   27.8  - 2.70 - 

n-octadecane - 23.5 20.2 10.8 
n-eicosane - - - 0.80 
heptamethylnonane 36.3 27.0 29.2 - 
2-methylheptadecane - - - 7.3 
n-butylcyclohexane - - 5.10 19.1 
triisopropylcyclohexane - - - 11.0 
trans-decalin 14.8 - 5.50 - 
perhydrophenanthrene - - - 6.00 
1,2,4-trimethylbenzene - 12.5 7.5 - 
1,3,5-
triisopropylbenzene 

- - - 14.7 

tetralin - 20.9 15.4 16.4 
1-methylnaphthalene 21.1 16.1 14.4 13.9 

 302 

 303 

𝑚pseudo − component = (1 − 𝑍)𝑚n − alkane + 𝑍𝑚PNA        (1) 304 

 305 
(𝑚𝜎)pseudo − component = (1 − 𝑍)(𝑚𝜎)n − alkane + 𝑍(𝑚𝜎)𝑃𝑁𝐴                   (2) 306 

 308 

(𝜀
𝑘⁄ )

pseudo − component
= (1 − 𝑍)(𝜀

𝑘⁄ )
n − alkane

+ 𝑍(𝜀
𝑘⁄ )

PNA
     (3) 307 

 309 
 310 

𝑍 = {

DoUmixture
DoUPNA

,                  MWmixture < 178 g/mol

DoUmixture
10

,          MWmixture ≥ 178 g/mol
       (4) 311 

 312 
DoUPNA = 0.05993 × MW −  0.68158        (5)313 
     314 
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CNmixture =
MWmixture

12.01+1.01((HN CN⁄ )mixture)
         (6) 315 

 316 

DoUmixture =  
1

2
(2 × CNmixture + 2 − HNmixture)       (7) 317 

 318 

 319 
Table 4. PC-SAFT parameter correlations as a function of MW (g/mol) for n-alkanes and PNAs 320 

using the GC parameters of [42] 321 
 n-alkane PNA 

𝑚 0.0274MW + 0.4648 0.0163MW +  0.9256 

𝑚𝜎 (Å) 0.1092MW +  1.5677 0.0612MW +  3.5324 

𝜀
𝑘⁄ (K) exp(5.5811 − 10.2507/MW) exp(5.5657 − 8.6620/MW) 

 322 

 323 

2.c. Thermodynamic solver (PC-SAFT + VLE) 324 

The thermodynamic solver is employed to compute temperature, pressure, sound speed and 325 

enthalpy once the conservative variables have been updated. The inputs are the density, internal 326 

energy and mass fraction of the components. Three pure component parameters per compound 327 

(number of segments per chain, energy parameter and segment diameter) are specified for 328 

initialisation. Only an overview of the method is included in this section. 329 

 330 

Algorithm 331 

The algorithm is summarized in Figure 3. The main steps are: 332 

 333 

1) Filter. This step is employed to decrease the computational time by reducing VLE 334 
calculations. By checking the molar fractions of the components, it can be determined 335 
whether only one phase exists. Isobaric-adiabatic lines can be computed using the initial 336 
conditions of the case of interest (temperature in the chamber, temperature of the fuel and 337 
pressure in the combustion chamber) to determine the molar fractions at which VLE is not 338 
expected. For example, as we can see in Figure 4, by performing an injection of n-dodecane 339 
at 363K in a combustion chamber at 900K and 11MPa, the nitrogen mole fraction at which 340 
the fuel starts vaporizing is close to 0.15 and there is not liquid phase at nitrogen mole 341 
fractions higher than 0.95 . In this case, it would be safe to consider that any mixture with 342 
a nitrogen molar fraction lower than 0.05 (Limit A) and higher than 0.95 (Limit B) will 343 
not be in a VLE state. The reason of choosing a low Limit A is to consider the pressure 344 
variations along the simulation, which have an important effect on the stability of n-345 
dodecane / N2 mixtures.  346 
 347 

2) Stable state (one phase).  When knowing that the mixture is stable the molecular density 348 

of the mixture can be computed and used as an input to the PC-SAFT model. A Newton 349 

method is employed to compute the temperature that is needed to calculate the value of all 350 

other thermodynamic variables. The temperature dependent function used in the iterative 351 

method is the internal energy. The derivative of the internal energy with respect to the 352 

temperature at constant molecular density can be directly obtained as these are the 353 

independent variables of the PC-SAFT model. See Appendices 2 and 3.  354 

 355 
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Figure 3. Schematic representation of the thermodynamic solver 357 

 358 

 359 
Figure 4. Isobaric-adiabatic mixing lines (N2 + C12H26) at different pressures in the combustion 360 

chamber 361 
 362 

3) Unknown state. If the state of the mixture is unknown the density cannot be used as an 363 

input. The pressure and the temperature are iterated employing a multidimensional Newton 364 

method until the density and the internal energy obtained using the PC-SAFT + VLE 365 

calculations are the ones obtained from the conservative variables. For each P-T 366 

calculation a stability analysis is performed to determine if the mixture is stable. See 367 

Appendices 4 and 5. 368 

 369 

a. Mixture stable: The PC-SAFT model is solved. The reduced density is 370 

iterated until the computed pressure is the input pressure. 371 

 372 

b. Mixture unstable: The isothermal-isobaric flash problem (TPn flash) is 373 

solved and the properties of the fluid in a VLE state are computed.  374 

 375 

Stability analysis  376 

A mixture is stable at a specific T and P if the total Gibbs energy is at its global minimum. If 377 

an infinitesimal amount (𝛿𝑒) of a new phase of composition w is formed from a phase of 378 

composition z, the change in the Gibbs energy can be expressed as [44]:  379 

𝛿𝐺 = 𝛿𝑒 ∑ 𝑤𝑖(𝜇𝑖(𝒘) − 𝜇𝑖(𝒛))𝐶
𝑖=1           (8) 380 
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𝜇 being the chemical potential. 381 

 382 

A necessary condition for the stability of the phase of composition z is that 𝛿𝐺 is non-negative 383 

for any positive 𝛿𝑒 for any composition w. This is known as the tangent plane condition of 384 

Gibbs. 385 

∑ 𝑤𝑖(𝜇𝑖(𝒘) − 𝜇𝑖(𝒛))𝐶
𝑖=1 ≥ 0      ∀       w𝑖 ≥ 0      such that    ∑ 𝑤𝑖

𝐶
𝑖=1 = 1     (9) 386 

 387 

The Tangent Plane Distance (TPD) function [45] is employed to determine if a split into two 388 

phases decreases the Gibbs energy.  389 

𝑇𝑃𝐷(𝒘) = ∑ 𝑤𝑖(𝜇𝑖(𝒘) − 𝜇𝑖(𝒛))𝐶
𝑖=1             (10) 390 

The TPD function can be written in a dimensionless form employing the fugacity coefficient 391 

(𝜑): 392 

𝑡𝑝𝑑(𝑤𝑖) =
𝑇𝑃𝐷

𝑅𝑇
= ∑ 𝑤𝑖[𝑙𝑛𝜑𝑖( 𝒘) + 𝑙𝑛𝑤𝑖 −𝑑𝑖(𝒛)𝐶

𝑖=1 ]      (11) 393 

being 394 

𝑑𝑖(𝒛) = 𝑙𝑛𝜑𝑖( 𝒛) + 𝑙𝑛𝑧𝑖  395 

 396 

The mixture of composition z is considered stable if all the TPD local minima are non-negative.  397 

𝑡𝑝𝑑(𝒘) ≥ 0    ∀   w𝑖 ≥ 0       ∀       w𝑖 ≥ 0      such that    ∑ 𝑤𝑖
𝐶
𝑖=1 = 1               (12) 398 

 399 

The Successive Substitution Iteration (SSI) algorithm  ([16], [46]) (without the Newton 400 

method) has been employed to determine if the mixture is stable. See Appendix 6. 401 

 402 

TPn flash 403 

Once it is known that the mixture is in a VLE state, a multidimensional Newton iteration in T 404 

and P is performed until the internal energy and density of the liquid-gas mixture are the ones 405 

determined by the conservative variables. An isothermal-isobaric flash problem (known as TPn 406 

flash) is performed for each iteration. 407 

 408 

A necessary condition for equilibrium is that the chemical potential for each component is the 409 

same in the liquid and vapor phases. 410 

𝜇𝑖
𝐿 = 𝜇𝑖

𝑉           (13) 411 

or equivalently using the fugacities: 412 

𝑓𝑖
𝐿 = 𝑓𝑖

𝑉          (14) 413 

 414 

Employing the fugacity coefficients, this expression can be written as: 415 

𝐹𝑖 = 𝑙𝑛𝜑𝑣( 𝑇, 𝑝, 𝑦) − 𝑙𝑛𝜑𝑙( 𝑇, 𝑝, 𝑥) + 𝑙𝑛𝐾𝑖 = 0                   (15) 416 

where 417 

𝐾𝑖 =
𝑥𝑖

𝑦𝑖
=

𝜑𝑖,𝑙

𝜑𝑖,𝑣
          (16) 418 

 419 

A successive substitution method is employed to perform equilibrium calculations at specified 420 

temperature, pressure and overall composition to determine the liquid and vapor phases that 421 

satisfy eq.15 [16], [44]. See Appendix 7. 422 

 423 

 424 
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2.d. VLE interface 425 

 In [10], molecular dynamic simulations of three n-alkane fuels into nitrogen under 426 

various temperatures and pressures were performed to study the injection, evaporation and 427 

mixing processes of hydrocarbon fuels into a supercritical environment. The study was focused 428 

on understanding the transition from classical two-phase evaporation to one-phase diffusion-429 

controlled mixing. Using as threshold a dimensionless transition time (the time needed to transit 430 

from subcritical to supercritical respect to the liquid lifetime) of 0.35, the authors identified two 431 

regions on the P-T diagram, see Figure 5. Supercritical dominated: Due to the high critical 432 

pressures of TYPE IV mixtures, a VLE state is present at the beginning of the evaporation 433 

process. The temperature of the liquid core goes up until the VLE state disappears and only a 434 

diffusion-controlled mixing process exists. Subcritical dominated:  A clear interface exists 435 

between the liquid core and the ambient gases. Nitrogen is not able to diffuse into the liquid 436 

core (constant fuel mass fraction close to 1 during evaporation, see Figure 7). There is a gradual 437 

decrease of the density of the liquid core as the fuel is heated-up. The evaporation reaches a 438 

constant state with a constant liquid core. 439 

According to the classification presented by [10], the combustion chamber of a Diesel 440 

engine working at medium-high load operation conditions is in the supercritical dominated 441 

regime after the compression cycle, see Figure 5. At these ambient conditions, the nitrogen is 442 

able to rapidly diffuse into the liquid core indicating that the interface has a Knudsen-number 443 

low enough to fall within the fluid mechanic continuum domain [7]. At 20MPa, the molar 444 

fraction of nitrogen in the liquid core (before the transition to a diffusion-controlled mixing 445 

process) at 0.5ns is almost 20%, see Figure 6. Therefore, the heat-up of the liquid core is 446 

dominated by diffusion phenomena. This can be proven by showing how isobaric-adiabatic 447 

mixing lines can replicate the heat-up profiles obtained in the molecular simulations of [10]. 448 

The isobaric-adiabatic lines where computed using eq.17. Figure 7 clearly shows how this 449 

hypothesis is not applicable in the subcritical dominated regime where after 5 ns the N2 molar 450 

fraction in the liquid core has a constant value of 2%. 451 

 452 

ℎ𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 𝑦𝐶12𝐻26
ℎ𝐶12𝐻26

+ 𝑦𝑁2
ℎ𝑁2

 (17) 453 

𝑝 = 20𝑀𝑃𝑎        454 

being y the mass fraction. 455 

 456 

 The hypothesis employed in this paper is that the vaporization process at high-pressure 457 

Diesel fuel injections is located at the subcritical vaporization stage of the supercritical 458 

vaporization regime described by [10] without a transition to the diffusion-controlled mixing 459 

process. Being the convective forces much more dominant than the diffusion phenomena, N2-460 

n-dodecane mixing takes place in a time several orders of magnitude lower than the one 461 

observed in Figure 6 where only diffusion is present. Thus, the heat-up of the jet describes a 462 

single isobaric-adiabatic mixing line instead of multiple adiabatic lines at different times. This 463 

can be corroborated observing the results obtained by [15], [16] where the heat-up of the heat 464 

follows an isobaric-adiabatic mixing line constant in time solving both, convection and 465 

diffusion phenomena in their simulations. A diffuse interface method, which describe an 466 

adiabatic heat-up of the jet, must be applied during Diesel engine injection simulations at high-467 

pressure conditions (supercritical dominated regime) to properly characterize how the fuel 468 

vaporize.  469 

 470 
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 471 
Figure 5. Diesel engine compression cycles [15] and contours of dimensionless transition time on 472 

pressure-temperature diagram of n-dodecane [10]  473 

 474 

 475 
Figure 6. Development of gas–liquid interface shown on VLE diagram at 20 MPa [10], VLE 476 

experimental data [38] and isobaric-adiabatic mixing lines. 477 
 478 

3. Results 479 

The working fluids employed are the following: (i) n-dodecane, (ii) a mixture of n-octane, n-480 

dodecane and n-hexadecane; (iii) a pseudo-component that replicate the properties of the 481 

previous mixture; (iv) V0A Diesel, and (v) a pseudo-component that replicate the properties of 482 

the V0A Diesel.  483 

 484 

3.a Shock Tube Problems 485 

Shock Tube Problem 1 (One phase, one component) 486 

A shock tube problem is used to validate the numerical solution of the hyperbolic operator. The 487 

results are compared with an exact solution computed using the methodology described in [47].  488 
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N-dodecane is utilized as working fluid; the domain is x ϵ [-0.5, 0.5] m; 300 equally spaced 489 

cells were employed; wave transmissive boundary conditions are used in the left and right sides;  490 

the simulated time is 5 10-4s; the initial conditions in the left state are ρL=438kg/m3, pL= 30MPa, 491 

uL=0m/s; and in the right state are ρR=100kg/m3, pR=10MPa, uR=0m/s. Figure 8 shows how the 492 

density, temperature, velocity and pressure results agree with the exact solution. 493 

 494 

Shock Tube Problem 2 (One phase, multicomponent/pseudo-component) 495 

The working fluids employed are a mixture of n-octane, n-dodecane and n-hexadecane (Table 496 

5) and a pseudo-component that replicate the properties of the mixture (Table 6) [41]. Figure 9 497 

shows a comparison of the results obtained employing the multicomponent mixture and the 498 

results obtained by [41].  499 
 500 

 501 
Figure 7. Development of gas–liquid interface shown on VLE diagram at 1  MPa [10], VLE 502 

experimental data [38] and isobaric-adiabatic mixing line. 503 
 504 

The domain is x ϵ [-0.5, 0.5] m; 800 equally spaced cells were employed; wave transmissive 505 

boundary conditions are used in the left and right sides;  the simulated time is 5 10-4s; the initial 506 

conditions in the left state are ρL=438kg/m3, tL= 859.5K, uL=0m/s; and in the right state are 507 

ρR=100kg/m3, tR=1744K, uR=0m/s. Figure 10 presents the density, temperature, pressure, 508 

velocity, speed of sound and internal energy results. The pseudo-component results are the 509 

same as the multicomponent ones indicating that the methodology developed by [41] can be 510 

used to model complex hydrocarbon mixtures as a pseudo-component in CFD simulations that 511 

present one phase. 512 

 513 
 514 

Table 5. Molar composition of hydrocarbon mixture employed in Shock Tube Problem 2 [41] 515 

Compound 
Hydrocarbon mixture 
(Molar composition) 

n-hexadecane   0.232 
n-octane 0.460 
n-dodecane 0.232 

 516 
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Figure 8. Shock Tube Problem (C12H26). CFL = 0.5, u = 0 m/s, 300 cells, t=5 10-4 s. Comparisons 517 

of (a) density, (b) temperature, (c) velocity and (d) pressure profiles: exact solution and 518 
numerical solutions.  519 

 520 

  521 
Figure 9. Density predictions for the hydrocarbon mixture presented in Table 5. 522 

 523 

 524 

 525 
Table 6. PC-SAFT pure component parameters employed to model the pseudo-component 526 

employed in Shock Tube Problem 2 [41] 527 

Compound 𝑚 𝜎 (Å) 𝜀
𝑘⁄ (K) 

Pseudo-component 7.387 3.400 234.47 
 528 

 529 

(a) (b) 

(c) (d) 
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3.b Advection test cases 530 

The computational domain is x ϵ [-10-5, 10-5] m; the simulated time is 10-6s; the left initial 531 

conditions are fuel at p=11MPa, u=10.0m/s and t=362K; the right initial conditions are nitrogen 532 

at p=11MPa, u=10.0m/s and t=972K; a uniform grid spacing (100 cells) is applied; CFL is set 533 

to be 0.5; wave transmissive boundary conditions are implemented in the left and right sides of 534 

the computational domain; and a smooth initial interface is applied to reduce the initial start-up 535 

error [48]. When a diffuse interface method is employed, the interfaces are not sharp one-point 536 

jumps but smooth as they are resolved [48]. Thus, a smooth initial profile is a realistic initial 537 

condition. The initial interface was computed employing eq.18 [16] .  538 

 539 

𝑌𝐹𝑈𝐸𝐿 = 0.5 − 0.5𝑒𝑟𝑓{(𝑥1 + 0.25𝑙𝑟𝑒𝑓)/(0.01𝑙𝑟𝑒𝑓)}                 (18) 540 

 541 

The initialization of each cell located in the interface is performed knowing the pressure, 542 

enthalpy of the mixture (eq.17) and the molar fraction of the components.  543 

  

  

  
Figure 10. Shock Tube Problem 2. CFL = 0.5, 800 cells, t=5 10-4 s. Comparison of the (a) density, 544 
(b) temperature, (c) pressure, (d) x-velocity, (e) sonic fluid velocity, (f) internal energy using as 545 

working fluids are a mixture of n-octane, n-dodecane and n-hexadecane (Table 5) and a pseudo-546 
component that replicate the properties of the mixture (Table 6) [41]. 547 

(a) (b) 

(c) 

(d) 

(e) (f) 
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Advection test cases 1 (Two phases, n-dodecane/nitrogen) 548 

 Figure 11 shows the results of this advection test case where n-dodecane is employed 549 

as fuel. The binary interaction parameter applied is kij = 0.1446. The numerical framework 550 

perfectly captures the large density and temperature gradients present in this multicomponent- 551 

multiphase one-dimensional test case. Small spurious pressure oscillations appear in the 552 

solution. This problem is well known in multicomponent density based codes employing highly 553 

non-linear EoS [16], [19], [33]. Although the small oscillations in the pressure field could be 554 

avoided or reduced employing a QC formulation like the double flux model [32]–[34] or using 555 

a pressure evolution equation [16], [49], [50] instead of the total energy conservation equation 556 

, these schemes presents an error in the energy conservation that produce an unphysical quick 557 

heat-up of the fuel [16], [51]. The combination of VLE + PC-SAFT calculations allows to 558 

properly model: (1) the properties of n-dodecane at high density ranges where cubic models 559 

show large deviations in the sonic fluid velocity (used in density based CFD codes to compute 560 

the hyperbolic fluxes and time step [19]), temperature and internal energy; (2) and a correct 561 

(adiabatic) subcritical evaporation process in the interface (Section 2.d). 562 

  

  
Figure 11. Advection Test Case 1 (N2- C12H26), CFL = 0.5, u = 10 m/s, 100 cells. Results of 563 

(a) density, (b) temperature, (c) pressure and (d) VLE interface at 10-6s. 564 

 565 

Advection test case 2 (Two phases, V0A Diesel/ nitrogen, pseudo - V0A Diesel / nitrogen) 566 

Figure 12 shows the temperature, density, speed of sound and internal energy results of 567 

an advection test case that employs the multicomponent Diesel V0A and the pseudo-Diesel 568 

V0A (Table 7) as fuels.  The binary interaction parameter used between the nitrogen and the 569 

Diesel compounds or the pseudo-component is the same one used in the N2 / n-dodecane 570 

mixture (kij = 0.1446). The pseudo-component presents an error (using as reference the 571 

multicomponent Diesel results) of 1.6% in density, 3.7% in sonic fluid velocity and 5.5% in 572 

internal energy. However, the computational time required to solve the multicomponent V0A 573 

Diesel advection test case is 432% the time consumed by the pseudo-Diesel advection test case. 574 

The different computational requirements will be even bigger in multidimensional cases or 575 

(a) (b) 

(c) (d) 
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simulations where the hydrocarbon mixture presents more components (e.g., V0B, V1 and V2 576 

Diesel surrogates). In the case of the Diesel surrogate V0a, the equilibrium state of five 577 

components must be computed in each cell of the interface, see Figure 13. Using the 578 

methodology of [41], the number of working fluids is limited to 2 (pseudo-Diesel + N2).  579 

Figure 14 shows how the phase boundary from VLE at 11MPa is different if the 580 

multicomponent Diesel V0A or its pseudo-component are employed. The use of a pseudo-581 

component must not alter how the fuel is heat-up, especially in Diesel injection simulations 582 

where the temperature plays a significant role on determining the ignition time. Figure 15 583 

presents the results in the VLE interface of both working fluids (multicomponent mixture and 584 

pseudo-component). 585 

 586 

 587 
Table 7. Pseudo-component PC-SAFT parameters employed to model the pseudo-Diesel V0A 588 

using the correlations developed by utilizing the GC parameters of Tihic et al. [42] 589 

Compound 𝑚 𝜎 (Å) 𝜀
𝑘⁄ (K) 

Pseudo-component 5.436 3.908 256.700 

 590 

 591 

  

  
Figure 12. Advection Test Case 2 (N2- V0A/ pseudo-Diesel V0A), CFL = 0.5, u = 10 m/s, 592 

100 cells. Results of (a) density, (b) temperature, (c) speed of sound and (d) internal energy 593 
results at 10-6 s. 594 

 595 

(a) (b) 

(c) (d) 
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 596 
Figure 13. VLE Interface, Advection Test Case 2 (N2- V0A/ pseudo-Diesel V0A), CFL= 0.5, 597 

u = 10 m/s, 100 cells. Results of VLE interface at 10-6s. 598 

 599 
Figure 14. Advection Test Case 2 (N2- V0A/ pseudo-Diesel V0A). Results of VLE interface 600 

at 10-6s and phase boundaries from VLE at 11MPa. 601 

3.c Two-dimensional cases 602 

Planar two-dimensional injections of n-dodecane and a Diesel pseudo-component are 603 

presented to demonstrate the multidimensional capability of the numerical framework.  604 

N-dodecane jet 605 

  A structured mesh is applied with a uniform cell distribution; the domain used is 12mm 606 

× 6mm; 1,216,800 cells are employed; the parabolic sub-step is included into these simulations 607 

without sub-grid scale modelling for turbulence or heat/species diffusion; the CFL number is 608 

set at 0.5; the fifth-order WENO discretization scheme presented in [18] is used; transmissive 609 

boundary conditions are applied at the top, bottom and right boundaries while a wall condition 610 

is employed at the left boundary; a flat velocity profile is imposed at the inlet; the velocity of 611 
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the jet is 600 m/s; the diameter of the exit nozzle is 0.1mm; the case is initialized using a 612 

pressure in the chamber of 11 MPa; the temperature of the nitrogen is 973 K; and the 613 

temperature of the injected fuel is 363K. The binary interaction parameter applied is kij = 614 

0.1446. The loops where the hyperbolic fluxes, parabolic fluxes, update of conservative 615 

variables and thermodynamic solver are solved (see Figure 2) were paralleled employing 616 

OpenMP (24 physical cores where employed). Some instabilities were observed in the 617 

initialization as [16] reported. To solve this problem, a ramp is used to accelerate the fuel to 618 

600m/s. The jet is quickly heated-up from a compressed liquid state to gas and finally, to a 619 

supercritical state describing an isobaric-adiabatic mixing line, see Figure 16.  Figure 17 shows 620 

how the Kelvin Helmholtz instability and ligament-shaped structures are developed in the shear 621 

layer.  622 

 623 

  

  
Figure 15. Advection Test Case 2 (N2- V0A/ pseudo-Diesel V0A), CFL = 0.5, u = 10 m/s, 624 

100 cells. Results of (a) density, (b) temperature, (c) speed of sound and (d) internal energy 625 
results at 10-6 s. 626 

 627 

Diesel jet 628 

 The initial conditions and set-up of the simulation is the same as the n-dodecane jet. 629 

The binary interaction parameter applied is kij = 0.1446. Figure 18 shows the density, 630 

temperature and pressure at 3.19×10-5 s. Spurious pressure oscillations are not present in the 631 

pressure field despite the multicomponent nature of the simulations and large density gradients 632 

solved. The simulation present supersonic, transonic and subsonic regions due to the low values 633 

of the speed of sound present in the cells in a VLE state and the high jet velocity, see Figure 634 

18. Such a variety of Mach numbers in a simulation can introduce important stability issues 635 

However, stability problems were not observed. The computational time required to solve at 636 

3.3×10-5s was 91.7 hours. Most time is invested on solving the multidimensional Newton 637 

method of the cells that are in a VLE state. At these conditions, the derivatives of the Jacobian 638 

matrix are calculated numerically (Appendix 5). However, the developed methodology is fast 639 

(a) (b) 

(c) (d) 
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enough to perform simulations at affordable time scales. It should also be considered that the 640 

results are equivalent to a multicomponent injection of a Diesel surrogate of 4 components that 641 

vaporize when mixed with hot nitrogen.  642 

  643 

  644 
Figure 16. Scattered data of composition and temperature of the planar n-dodecane jet, 645 

dodecane-nitrogen phase boundary from VLE at 11MPa and isobaric-adiabatic mixing line. 646 
 647 

 648 

 649 

 650 
Figure 17. Density results of n-dodecane planar jet. 651 

4. Conclusions 652 

This paper presents a numerical framework that combines PC-SAFT and VLE calculations in 653 

a density-based, fully conservative solver of the Navier-Stokes and energy conservation 654 

equations to simulate fuel-air mixing at high-pressure conditions. This molecular-based EoS 655 

requires three empirically determined but well-known parameters to model the properties of a 656 

specific component, and thus, there is no need for extensive model calibration, as is typically 657 

the case when the NIST (REFPROP) library is utilised. PC-SAFT can flexibly handle the 658 

thermodynamic properties of multi-component mixtures for which the NIST (REFPROP) 659 

library supports only limited component combinations. Modelling multicomponent Diesel 660 
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surrogates, the PC-SAFT EoS shows the highest degree of agreement with experimental values 661 

in comparison with the results obtained using the model developed at NIST. Moreover, a purely 662 

predictive method that employs the PC-SAFT EoS for developing pseudo-components has been 663 

completed and validated to be used in CFD simulations. Complex hydrocarbon mixtures can 664 

be modelled as a single pseudo-component knowing its MW and HN/CN ratio. By employing 665 

pseudo-components, the simulation time is independent of the number of compounds present 666 

in the fuel and thus, allowing real fuel compositions to be utilised in CFD simulations. 667 

Advection test cases and shock tube problems were performed to validate the numerical 668 

framework using analytical and exact solutions. The two-dimensional simulations performed 669 

(subcritical injections of n-dodecane and Diesel into nitrogen) demonstrate the 670 

multidimensional, multispecies and multiphase capability of the algorithm and its high stability 671 

in simulations where all sonic regimes are present. 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

  686 
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Figure 18. CFL = 0.5, 1,216,800 cells. Results of the simulation of the V0A Diesel pseudo-687 
component jet at t = 3.19 x 10-5 s: (a) density, (b) temperature, (c) pressure and (d) Mach number. 688 
 689 

  690 

(a) 

(b) 

(d) 

(c) 
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Appendix 1 (CFD CODE) 691 

The Navier-Stokes equations for a non-reacting multi-component mixture containing N species 692 

in a x-y 2D Cartesian system are given by: 693 

 694 
𝜕𝑼

𝜕𝑡
+

𝜕𝑭

𝜕𝑥
+

𝜕𝑮

𝜕𝑦
=

𝜕𝑭𝑣

𝜕𝑥
+

𝜕𝑮𝑣

𝜕𝑦
                   (A.1) 695 

 696 

The vectors of A.1 are:  697 
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G  699 

where ρ is the fluid density, u and v are the velocity components, p is the pressure, E is the total 700 

energy, Ji is the mass diffusion flux of species i, σ is the deviatoric stress tensor and q is the 701 

diffusion heat flux vector.  702 

 703 

 Hyperbolic sub-step 704 

The multicomponent HLLC (Harten-Lax-van Leer-Contact) solver is applied to solve the 705 

Riemann problem [36]. The fluxes are computed as: 706 

 707 

L L

*L L L *L L L *HLLC

*R R R *R R * *R

R *R

0 S ,if

S ( ) S 0 S ,if

S ( ) S 0 S ,if

0 S ,if




= + −  
= 

= + −  
 

F

F F U U
F

F F U U

F

                           (A.3) 708 

where 𝑼∗ are the star states [36].  709 

 710 

The speed in the middle wave is: 711 

𝑆∗ =
𝑝𝑅−𝑝𝐿+𝜌𝐿𝑢𝐿(𝑆𝐿−𝑢𝐿)−𝜌𝑅𝑢𝑅(𝑆𝑅−𝑢𝑅)

𝜌𝐿(𝑆𝐿−𝑢𝐿)−𝜌𝑅(𝑆𝑅−𝑢𝑅)
                 (A.4) 712 

 713 

The left and right wave speeds are computed as: 714 

𝑆𝐿 = 𝑚𝑖𝑛( 𝑢𝐿 − 𝑎𝐿 , 𝑢𝑅 − 𝑎𝑅),  715 

𝑆𝑅 = 𝑚𝑎𝑥( 𝑢𝐿 + 𝑎𝐿 , 𝑢𝑅 + 𝑎𝑅)                  (A.5) 716 
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The conservative variables, pressure and speed of sound values needed to solve the 717 

Riemann problem are interpolated at the cell faces from cell centers using the fifth order 718 

reconstruction scheme described in [18]. This technique decreases the computational time and 719 

smooths-out the spurious pressure oscillations associated with fully conservative (FC) schemes 720 

employed along with real-fluid EoS.  721 

 722 

The temporal integration is carried out using a second-order Runge–Kutta (RK2) 723 

scheme (A.6) applying the filter presented in [18]. 724 

 725 

𝑼(1) = 𝑼𝑛 + 𝛥𝑡𝐻𝑥𝑦(𝑼𝑛),   726 

𝑼𝑛+1 =
1

2
𝑼𝑛 +

1

2
[𝑼(1) + 𝛥𝑡𝐻𝑥𝑦(𝑼(1))]                 (A.6) 727 

 728 

Parabolic sub-step 729 

The model developed by [37] is used to calculate the dynamic viscosity and the thermal 730 

conductivity. The viscous stress tensor is calculated as: 731 

 732 

𝜎𝑥𝑥 = 2𝜇𝑣
𝜕𝑢

𝜕𝑥
−

2

3
𝜇𝑣 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)  733 

𝜎𝑦𝑦 = 2𝜇𝑣
𝜕𝑣

𝜕𝑦
−

2

3
𝜇𝑣 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)  734 

𝜎𝑥𝑦 = 𝜎𝑦𝑥 = 𝜇𝑣 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)                  (A.7) 735 

 736 

where 𝜇𝑣 is the viscosity.  737 

 738 

The species mass diffusion flux of species i is calculated employing Fick’s law: 739 

𝐽𝑖 = 𝜌𝐷𝑖𝛻𝑌𝑖 − 𝑌𝑖 ∑ 𝜌𝐷𝑗
𝑁𝑐
𝑗=1 𝛻𝑌𝑗                  (A.8) 740 

where  741 

𝐷𝑖 =
(1−𝑧𝑖)

∑
𝑧𝑗

𝐷𝑖𝑗

𝑁𝑐
𝑗≠𝑖

                                  (A.9) 742 

being 𝐷 is the diffusion coefficient for the diffusion of the component i in the rest of the mixture 743 

[52].  744 

 745 

The heat flux vector is calculated as: 746 

𝒒 = −𝜆𝛻𝑇 − ∑ ℎ𝑖
𝑁
𝑖 𝐽𝑖       `          (A.10) 747 

where 𝜆 is the thermal conductivity and h is the enthalpy. 748 

 749 

  750 
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Appendix 2 (Thermodynamic solver for stable mixtures) 751 

The molecular density is computed using the density of the mixture. Once the molecular density 752 

is known a Newton method is employed to compute the temperature that is needed to calculate 753 

the value of all other thermodynamic variables. The temperature dependent function used in the 754 

iterative method is the internal energy. Initially a temperature value is assumed (for example 755 

the value of the temperature from the previous time RK sub-step or from the previous time step) 756 

to initialize the iteration process. In most cells, this value is close to the solution. 757 

 758 

( )           If abs (e(CS
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Figure A1. Schematic representation of the Algorithm 1 760 

 761 
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  763 
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Appendix 3 (Algorithm A) 764 

Inputs: Temperature, density, molar composition.  765 

Output: Pressure, sonic fluid velocity, internal energy, enthalpy, partial derivative of the 766 

internal energy respects the temperature at constant density. 767 

 768 
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Algorithm A 
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 769 

Figure A2. Schematic representation of the Algorithm A  770 

Steps  771 

1) Compute molecular density 772 

𝜌𝑚 = 𝜌(𝑘𝑔/𝑚3)*10-30*N𝐴/M𝑀*1000              (A.11) 773 

where 𝑁𝐴 is the Avogadro number and 𝑀𝑀 is the molecular weight of the mixture. 774 

 775 

2) Compute temperature-dependent segment diameter d of component i [53] 776 

𝑑𝑖 = 𝜎𝑑𝑖 [1 − 0.12 𝑒𝑥𝑝 (−3
𝜀𝑖

𝑘𝑇
)]              (A.12) 777 

where 𝑘 is the Boltzmann constant, 𝑇 is the temperature, 𝜀𝑖 is the depth of pair potential 778 

of the component and 𝜎𝑑𝑖 is the segment diameter. 779 

 780 

3) Compute mean segment number [53] 781 

 �̄� = ∑ 𝑥𝑖
𝑛𝑐
𝑖 𝑚𝑖                 (A.13) 782 

where 𝑚𝑖 is the number of segments per chain of the component i and 𝑥𝑖 is the mole 783 

fraction of component i. 784 

 785 

4) Compute radial distribution function of the hard-sphere fluid [53] 786 
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𝑔𝑖𝑗
ℎ𝑠 =

1

(1−𝜍3)
+ (

𝑑𝑖𝑑𝑗

𝑑𝑖+𝑑𝑗
)

3𝜍2

(1−𝜍3)2 + (
𝑑𝑖𝑑𝑗

𝑑𝑖+𝑑𝑗
)

2
3𝜍2

2

(1−𝜍3)3                        (A.14) 787 

where   788 

𝜍𝑛 =
𝜋

6
𝜌𝑚 ∑ 𝑥𝑖𝑖 𝑚𝑖𝑑𝑖

𝑛    𝑛 ∈ {0,1,2,3}                       (A.15) 789 

 790 

5) Compute contribution of the hard sphere to the compressibility factor [53] 791 

𝑍ℎ𝑠 =
𝜍3

(1−𝜍3)
+

3𝜍1𝜍2

𝜍0(1−𝜍3)2 +
3𝜍2

3−𝜍3𝜍2
3

𝜍0(1−𝜍3)3                         (A.16) 792 

 793 

6) Compute hard-chain contribution to the compressibility factor [53] 794 

𝑍ℎ𝑐 = �̄�𝑍ℎ𝑠 − ∑ 𝑥𝑖𝑖 (𝑚𝑖 − 1)(𝑔𝑖𝑖
ℎ𝑠)−1𝜌𝑚

𝜕𝑔𝑖𝑖
ℎ𝑠

𝜕𝜌𝑚
                                     (A.17) 795 

𝜌
𝜕𝑔𝑖𝑗

ℎ𝑠

𝜕𝜌
=

𝜁3

(1−𝜁3)2 + (
𝑑𝑖𝑑𝑗

𝑑𝑖+𝑑𝑗
) (

3𝜁2

(1−𝜁3)2 +
6𝜁2𝜁3

(1−𝜁3)3) + 796 

(
𝑑𝑖𝑑𝑗

𝑑𝑖+𝑑𝑗
)

2

(
4𝜁2

2

(1−𝜁3)3 +
6𝜁2

2𝜁3

(1−𝜁3)4)                          (A.18) 797 

 798 

7) Compute dispersion contribution to the compressibility factor [53] 799 

𝑍𝑑𝑖𝑠𝑝 = −2𝜋𝜌𝑚
𝜕(𝜂𝐼1)

𝜕𝜂
𝑚2𝜀𝜎𝑑

3 − 𝜋𝜌𝑚�̄� [𝐶1
𝜕(𝜂𝐼2)

𝜕𝜂
+ 𝐶2𝜂𝐼2] 𝑚2𝜀2𝜎𝑑

3          (A.19) 800 

 801 

𝐶1and  𝐶2 are defined as:  802 

𝐶1 = (1 + 𝑍ℎ𝑐 + 𝜌
𝜕𝑍ℎ𝑐

𝜕𝜌
)

−1

=  803 

(1 + 𝑚
8𝜂−8𝜂2

(1−𝜂)4 + (1 − 𝑚)
20𝜂−27𝜂2+12𝜂3−2𝜂4

[(1−𝜂)(2−𝜂)]2 )
−1

                        (A.20) 804 

 805 

𝐶2 =
𝜕𝐶1

𝜕𝜂
= −𝐶1

2 (𝑚
−4𝜂2+20𝜂+8

(1−𝜂)5 + (1 − 𝑚)
2𝜂3+12𝜂2−48𝜂+40

[(1−𝜂)(2−𝜂)]3 )               (A.21) 806 

 807 

The terms 𝑚2𝜀𝜎𝑑
3 and  𝑚2𝜀2𝜎𝑑

3 are defined as: 808 

𝑚2𝜀𝜎𝑑
3 = ∑ ∑ 𝑥𝑖

𝑛𝑐
𝑗

𝑛𝑐
𝑖 𝑥𝑗𝑚𝑖𝑚𝑗 (

𝜀𝑖𝑗

𝑘𝑇
) 𝜎𝑑,𝑖𝑗

3                        (A.22) 809 

𝑚2𝜀2𝜎𝑑
3 = ∑ ∑ 𝑥𝑖

𝑛𝑐
𝑗

𝑛𝑐
𝑖 𝑥𝑗𝑚𝑖𝑚𝑗 (

𝜀𝑖𝑗

𝑘𝑇
)

2
𝜎𝑑,𝑖𝑗

3              (A.23) 810 

The mixture parameters 𝜎𝑖𝑗 and  𝜀𝑖𝑗 ,which are defined for every pair of unlike 811 

segments, are modelled using a Berthelot-Lorentz combining rule. 812 

 813 

𝜎𝑖𝑗 =
1

2
(𝜎𝑖 + 𝜎𝑗)                (A.24)814 

 𝜀𝑖𝑗 = √𝜀𝑖𝜀𝑗(1 − 𝑘𝑖𝑗)                                        (A.25) 815 

 816 
𝜕(𝜂𝐼1)

𝜕𝜂
  and  

𝜕(𝜂𝐼2)

𝜕𝜂
 are expressed as: 817 

𝜕(𝜂𝐼1)

𝜕𝜂
= ∑ 𝑎𝑗

6
𝑗=0 (�̄�)(𝑗 + 1)𝜂𝑖               (A.26) 818 

𝜕(𝜂𝐼2)

𝜕𝜂
= ∑ 𝑏𝑗

6
𝑗=0 (�̄�)(𝑗 + 1)𝜂𝑖               (A.27)819 

    820 

The coefficients a and b depend on the chain length: 821 

𝑎𝑖(𝑚) = 𝑎0𝑖 +
𝑚−1

𝑚
𝑎1𝑖 +

𝑚−1

𝑚

𝑚−2

𝑚
𝑎2𝑖                         (A.28) 822 



  

29 
 

𝑏𝑖(𝑚) = 𝑏0𝑖 +
𝑚−1

𝑚
𝑏1𝑖 +

𝑚−1

𝑚

𝑚−2

𝑚
𝑏2𝑖                       (A.29) 823 

𝑎0𝑖, 𝑎1𝑖, 𝑎2𝑖, 𝑏0𝑖, 𝑏1𝑖, 𝑏2𝑖  are constants [53]. 824 

 825 

8) Compute compressibility factor [53] 826 

𝑍 = 1 + 𝑍ℎ𝑐 + 𝑍𝑑𝑖𝑠𝑝                (A.30) 827 

 828 

9) Compute pressure [53] 829 

𝑃 = 𝑍𝑘𝐵𝑇𝜌𝑚(1010)3                (A.31) 830 

 831 

10) Compute temperature derivative of the Helmholtz free energy residual 832 

contribution of the hard-sphere system [53] 833 

 834 

 (
𝜕�̃�ℎ𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

=
1

𝜍0
[

3(𝜍1,𝑇𝜍2+𝜍1𝜍2,𝑇)

(1−𝜍3)
+

3𝜍1𝜍2𝜍3,𝑇

(1−𝜍3)2 +
3𝜍2

2𝜍2,𝑇

𝜍3(1−𝜍3)2 +
𝜍2

3𝜍3,𝑇
(3𝜍3−1)

𝜍3
2(1−𝜍3)3 +

(
3𝜍2

2𝜍2,𝑇𝜍3−2𝜍2
3𝜍3,𝑇

𝜍3
3 ) 𝑙𝑛(1 − 𝜍3) + (𝜍0 −

𝜍2
3

𝜍3
2)

𝜍3,𝑇

(1−𝜍3)

] 835 

                           (A.32) 836 

with abbreviations for two temperature derivatives: 837 

𝜍𝑛,𝑇 =
𝜕𝜍𝑛

𝜕𝑇
=

𝜋

6
𝜌 ∑ 𝑥𝑖𝑖 𝑚𝑖𝑛𝑑𝑖,𝑇(𝑑𝑖)𝑛−1  𝑛 ∈ {0,1,2,3}                               (A.33) 838 

𝑑𝑖,𝑇 =
𝜕𝑑𝑖

𝜕𝑇
= 𝜎𝑖 (3

𝜀𝑖

𝑘𝑇2) [−0.12 𝑒𝑥𝑝 (−3
𝜀𝑖

𝑘𝑇
)]                      (A.34) 839 

 840 

11)  Compute temperature derivative of the Helmholtz free energy hard-chain 841 

reference contribution [53] 842 

 843 

(
𝜕�̃�ℎ𝑐

𝜕𝑇
)

𝜌,𝑥𝑖

= �̄� (
𝜕�̃�ℎ𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

− ∑ 𝑥𝑖𝑖 (𝑚𝑖 − 1)(𝑔𝑖𝑖
ℎ𝑠)−1 (

𝜕𝑔𝑖𝑖
ℎ𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

                    (A.35) 844 

 845 

The temperature derivative of the radial pair distribution function is: 846 

𝜕𝑔𝑖𝑖
ℎ𝑠

𝜕𝑇
=

𝜍3,𝑇

(1−𝜍3)2 + (
1

2
𝑑𝑖,𝑇)

𝜍2

(1−𝜍3)2 + (
1

2
𝑑𝑖) (

3𝜍2,𝑇

(1−𝜍3)2 +
6𝜍2𝜍3,𝑇

(1−𝜍3)3) +  847 

(
1

2
𝑑𝑖𝑑𝑖,𝑇)

2𝜍2
2

(1−𝜍3)3 + (
1

2
𝑑𝑖)

2
(

4𝜍2𝜍2,𝑇

(1−𝜍3)3 +
6𝜍2

2𝜍3,𝑇

(1−𝜍3)4 )                  (A.36) 848 

 849 

12) Compute temperature derivative of the Helmholtz free energy dispersive 850 

attraction [53] 851 

 852 

(
𝜕�̃�𝑑𝑖𝑠𝑝

𝜕𝑇
)

𝜌,𝑥𝑖

= −2𝜋𝜌 (
𝜕𝐼1

𝜕𝑇
−

𝐼1

𝜕𝑇
) 𝑚2𝜀𝜎𝑑

3 − 𝜋𝜌𝑚  853 

[
𝜕𝐶1

𝜕𝑇
𝐼2 + 𝐶1

𝜕𝐼2

𝜕𝑇
− 2𝐶1

𝐼2

𝑇
] 𝑚2𝜀2𝜎𝑑

3                       (A.37) 854 

with 855 

𝜕𝐼1

𝜕𝑇
= ∑ 𝑎𝑖(𝑚6

𝑖=0 )𝑖𝜍3,𝑇𝜂𝑖−1               (A.38) 856 

𝜕𝐼2

𝜕𝑇
= ∑ 𝑏𝑖(𝑚6

𝑖=0 )𝑖𝜍3,𝑇𝜂𝑖−1               (A.39) 857 
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𝜕𝐶1

𝜕𝑇
= 𝜍3,𝑇𝐶2                 (A.40) 858 

 859 

13) Compute temperature derivative of the Helmholtz free energy [53] 860 

 861 

(
𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

= (
𝜕�̃�ℎ𝑐

𝜕𝑇
)

𝜌,𝑥𝑖

+ (
𝜕�̃�𝑑𝑖𝑠𝑝

𝜕𝑇
)

𝜌,𝑥𝑖

                       (A.41) 862 

 863 

14) Compute the internal energy [54] 864 

The internal energy is estimated as the sum of the ideal internal energy and the residual 865 

internal energy [54]. 866 

𝑒𝑟𝑒𝑠

𝑅𝑇
= −𝑇 (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

                         (A.42) 867 

𝑒 = 𝑒𝑟𝑒𝑠 + 𝑒𝑖𝑑                 (A.43) 868 

 869 

15) Compute enthalpy [53]: 870 

It is computed as the sum of the ideal contribution (obtained by integrating the ideal 871 

heat capacity at constant pressure with respect to the temperature) and the residual 872 

enthalpy [53]. 873 

ℎ
𝑟𝑒𝑠

𝑅𝑇
= −𝑇 (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

+ (𝑍 − 1)                   (A.44) 874 

ℎ = ℎ
𝑟𝑒𝑠 + ℎ

𝑖𝑑
                 (A.45) 875 

 876 

16) Heat capacities [55] 877 

Heat capacities are computed as the sum of the ideal contribution [56] and the 878 

correction terms calculated with the PC-SAFT EoS [54]. where 𝐶𝑝 and 𝐶𝑣 are the heat 879 

capacities at constant pressure and volume respectively. 880 

𝐶𝑣 = 𝐶𝑣,𝑖𝑑 + 𝐶𝑣,𝑟𝑒𝑠                (A.46) 881 

𝐶𝑝 = 𝐶𝑝,𝑖𝑑 + 𝐶𝑝,𝑟𝑒𝑠                (A.47) 882 

𝐶𝑣
𝑟𝑒𝑠 = −𝑅𝑇 [2 (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

+ 𝑇 (
𝜕2�̃�𝑟𝑒𝑠

𝜕𝑇2 )
𝜌,𝑥𝑖

]             (A.48) 883 

𝐶𝑝
𝑟𝑒𝑠 = 𝐶𝑣

𝑟𝑒𝑠 + 𝑅
[𝜌𝑚𝑇(

𝜕2�̃�𝑟𝑒𝑠

𝜕𝜌𝑚𝜕𝑇
)

𝑥𝑖

+𝜌𝑚(
𝜕�̃�𝑟𝑒𝑠

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

+1]

[𝜌𝑚
2(

𝜕2�̃�𝑟𝑒𝑠

𝜕𝜌𝑚2 )
𝑇,𝑥𝑖

+2𝜌𝑚(
𝜕�̃�𝑟𝑒𝑠

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

+1]

2

                      (A.49) 884 

 885 

17) Speed of sound [55] 886 

The speed of sound is computed as: 887 

𝑐 = √
𝐶𝑝

𝐶𝑣
(

𝜕𝑃

𝜕𝜌𝑚
)

𝑇

                 (A.50) 888 

 889 

The derivatives needed to compute the speed of sound are: 890 

(
𝜕𝑃

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

= (
𝜕𝑃

𝜕𝜂
)

𝑇,𝑥𝑖

(
𝜕𝜂

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

                          (A.51) 891 
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(
𝜕𝜂

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

=
𝜋

6
(∑ 𝑥𝑖𝑚𝑖𝑑𝑖

3
𝑖 )                              (A.52) 892 

(
𝜕𝑃

𝜕𝜂
)

𝑇,𝑥𝑖

= 𝑘𝐵𝑇(1010)3 [𝜌𝑚 (
𝜕𝑍

𝜕𝜂
)

𝑇,𝑥𝑖

+ 𝑍 (
𝜕𝜌𝑚

𝜕𝜂
)

𝑇,𝑥𝑖

]             (A.53) 893 

(
𝜕𝜌𝑚

𝜕𝜂
)

𝑇,𝑥𝑖

=
6

𝜋
(∑ 𝑥𝑖𝑚𝑖𝑑𝑖

3
𝑖 )

−1
                          (A.54) 894 

(
𝜕𝑍

𝜕𝜂
)

𝑇,𝑥𝑖

can be found in [57].                (A.55) 895 

 896 

18) Compute derivative internal energy respect temperature at constant density [55] 897 

 898 

(
𝜕𝑒𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

= −𝑅𝑇 [2 (
𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

+ (
𝜕2�̃�𝑟𝑒𝑠

𝜕𝑇2 )
𝜌,𝑥𝑖

∗ 𝑇]                     (A.56) 899 

𝑑𝑒𝑖𝑑

𝑑𝑇
= 𝐶𝑣

𝑖𝑑                  (A.57) 900 

 901 

(
𝜕𝑒

𝜕𝑇
)

𝜌,𝑥𝑖

= (
𝜕𝑒𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

+
𝑑𝑒𝑖𝑑

𝑑𝑇
                          (A.58) 902 

 903 

19) Compute the new temperature using the Newton method 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 
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Appendix 4 (Thermodynamic solver for mixtures at an unknown state) 926 

The pressure and the temperature are iterated employing a multidimensional Newton method 927 

until the density and the internal energy obtained in the PC-SAFT are the ones obtained from 928 

the conservative variables. The initial values of the pressure and the temperature are the ones 929 

already stored in the cell that is being solved. 930 

 931 

( ) ( )

(P,T)

         If abs (e(CSV)-e(VLE) >0.001 .AND. abs (ρ(CSV)-ρ(VLE) >0.001 then

                 Perform Stabiblity Analisys (SSI)

           

A

!Multidimensional Ne

t

wton 

DO

         2 CONTINU

l

E

gori hm 2

      

Temperature, pressure, molar composition

, sonic fluid velocity, internal energy, enthalpy, 

                partia

      IF(STABLE = .TRUE.)

Inputs: 

Outputs:  Density

                          Algorithm B

 

l derivative of the internal energy respects

                the temperature at constant density 
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 932 
Figure A3. Schematic representation of the Algorithm 2 933 

 934 

 935 

 936 
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Appendix 5 (Algorithm B) 937 

Inputs: Temperature, pressure, molar composition.  938 

Output: Density, speed of sound, internal energy, enthalpy, fugacities, partial derivative of the 939 

internal energy respect the temperature at constant pressure, partial derivative of the internal 940 

energy respect the pressure at constant temperature, partial derivative of the density respects 941 

the temperature at constant pressure and partial derivative of the density respect the temperature 942 

at constant pressure. 943 

This algorithm is applied when the pressure and the temperature are iterated employing a 944 

multidimensional Newton method until the density and the internal energy computed are the 945 

ones obtained from the conservative variables.  946 

 947 

[
𝑝
𝑡

]
𝑛+1

= [
𝑝
𝑡

]
𝑛

− [𝑱−𝟏(𝑝, 𝑡)𝑛] [
𝜌(𝑝, 𝑡)𝑛

𝑒(𝑝, 𝑡)𝑛
]                        (A.59) 948 

 949 

where 950 

𝑱 = [

(
𝜕𝜌

𝜕𝑝
)

𝑡
(

𝜕𝜌

𝜕𝑡
)

𝑝

(
𝜕𝑒

𝜕𝑝
)

𝑡
(

𝜕𝑒

𝜕𝑡
)

𝑝

]                          (A.60) 951 

 952 

 953 

The independent variables of the PC-SAFT are the temperature and the density. Thus, it is 954 

necessary to perform the following transformations to obtain the partial derivatives needed for 955 

the multidimensional Newton method.  956 

 957 

(
𝜕𝜌

𝜕𝑝
)

𝑇
= (

𝜕𝑝

𝜕𝜌
)

𝑇

−1
         Reciprocity                        (A.61) 958 

(
𝜕𝜌

𝜕𝑡
)

𝑝
= − (

𝜕𝑝

𝜕𝑡
)

𝜌
(

𝜕𝑝

𝜕𝜌
)

𝑇

−1
          Chain rule                          (A.62) 959 

(
𝜕𝑒

𝜕𝑝
)

𝑇
= (

𝜕𝑒

𝜕𝜌
)

𝑇
(

𝜕𝑝

𝜕𝜌
)

𝑇

−1
          Chain rule                                    (A.63) 960 

(
𝜕𝑒

𝜕𝑡
)

𝑝
= (

𝜕𝑒

𝜕𝑡
)

𝜌
− (

𝜕𝑒

𝜕𝜌
)

𝑇
(

𝜕𝜌

𝜕𝑡
)

𝜌
(

𝜕𝑝

𝜕𝜌
)

𝑇

−1
           Triple product rule                                    (A.64) 961 

 962 

The partial derivatives needed then are: 963 

(
𝜕𝑝

𝜕𝑡
)

𝜌
, (

𝜕𝑝

𝜕𝜌
)

𝑇
, (

𝜕𝑒

𝜕𝜌
)

𝑇
, (

𝜕𝑒

𝜕𝑡
)

𝜌
  964 

 965 

Steps 966 

1) Compute temperature-dependent segment diameter d of component i (A.12) 967 

2) Compute mean segment number (A.13) 968 

3) Compute radial distribution function of the hard-sphere fluid (A.14) 969 

4) Reduce density iterative method 970 

a. 𝜼𝑰𝑵𝑰𝑻= 0.45 971 

b. Compute contribution of the hard sphere to the compressibility factor 972 

(A.16) 973 

c. Compute hard-chain contribution to the compressibility factor (A.17) 974 

 975 
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     1) Compute segment diameter of each component (A.12) 

     2) Compute mean segment number (A.13)  

     3) Compute radial distribution function of the hard sphere fluid (A.14)   

4
     

Algorithm B 
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     Compute hard sphere fluid contribution to the compressibility factor (A.16)    

     Compute hard chain contribution 

) Reduce density
 

iterative method

INIT

sys then



 
 
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 976 

( )

   

    15  Compute derivative of the dispersion contribution to the residual Helmholtz

    free energy respect the molar fraction of the components A.70

    16) Compute the chemical potentia

)

Algorithm B 

( )

( )

( )

l A.78

    17) Compute the fugacity coefficient A.79

    18) Compute the partial derivative of the pressure respect the density at constant temperature A.80

    19) Compute the partial derivative of the ( )

( )

pressure respect the temperature at constant density A.81

    20) Compute the partial derivative of the internal energy respect the temperature at contant density A.58

    21) Compute the partial deriva ( )

( )

tive of the internal energy respect the density at constant temperature A.84

    22) Compute the partial derivative of the density respect the pressure at constant temperature A.61

    23) Compute the pa ( )

( )

rtial derivative of the density respect the temperature at constant pressure A.62

    24) Compute the partial derivative of the internal energy respect the pressure at constant temperature A.63

    25) ( )Compute the partial derivative of the internal energy respect the temperature at constant pressure A.64
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Figure A4 Schematic representation of the Algorithm B 978 
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 980 
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d. Compute dispersion contribution to the compressibility factor (A.19) 981 

e. Compute compressibility factor (A.30) 982 

f. Compute pressure (A.31) 983 

g. Derivative of pressure respect reduce density  984 

 985 

(
𝜕𝑃

𝜕𝜂
) = [𝜌𝑚 (

𝜕𝑍

𝜕𝜂
) + 𝑍 (

𝜕𝜌𝑚

𝜕𝜂
)] (1010)3𝑍𝑘𝐵𝑇                         (A.65) 986 

 987 

h. Compute the new pressure using the Newton method 988 

5) Compute temperature derivative of the Helmholtz free energy residual 989 

contribution of the hard-sphere system (A.32) 990 

6) Compute temperature derivative of the hard-chain reference contribution to the 991 

residual Helmholtz free energy (A.35) 992 

7) Compute temperature derivative of the dispersion contribution to the residual 993 

Helmholtz free energy (A.37) 994 

8) Compute temperature derivative of the Helmholtz free energy (A.41) 995 

9) Compute the internal energy (A.43) 996 

10) Compute enthalpy (A.45) 997 

11) Compute heat capacities (A.46-47) 998 

12) Compute speed of sound (A.50) 999 

13) Compute the derivatives of the Helmholtz free energy residual contribution of the 1000 

hard-sphere system respect the molar fraction of the components. 1001 

 1002 

(
𝜕�̃�ℎ𝑠

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

= −
𝜁0,𝑥𝑘

𝜁0
�̃�ℎ𝑠 +

1

𝜁0
[

3(𝜁1,𝑥𝑘𝜁2+𝜁1𝜁2,𝑥𝑘)

(1−𝜁3)
+

3𝜁1𝜁2𝜁3,𝑥𝑘

(1−𝜁3)2 +
3𝜁2

2𝜁2,𝑥𝑘

𝜁3(1−𝜁3)2 +1003 

𝜁2
3𝜁3,𝑥𝑘(3𝜁3−1)

𝜁3
2(1−𝜁3)3

+ (
3𝜁2

2𝜁2,𝑥𝑘𝜁3−2𝜁2
3𝜁3,𝑥𝑘

𝜁3
3 − 𝜁0,𝑥𝑘) 𝑙𝑛( 1 − 𝜁3) + (𝜁0 −

𝜁2
3

𝜁3
2)

𝜁3,𝑥𝑘

(1−𝜁3)
]         (A.66) 1004 

 1005 

where 1006 

𝜁𝑛,𝑥𝑘 = (
𝜕𝜁𝑛

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

=
𝜋

6
𝜌𝑚𝑘(𝑑𝑘)𝑛                        (A.67) 1007 

 1008 

14) Compute the derivative of the hard-chain reference contribution to the residual 1009 

Helmholtz free energy respect the molar fraction of the components. 1010 

      (
𝜕�̃�ℎ𝑐

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

1011 

= 𝑚𝑘�̃�ℎ𝑠 + �̄� (
𝜕�̃�ℎ𝑠

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

− ∑ 𝑥𝑖

𝑖

(𝑚𝑖 − 1)(𝑔𝑖𝑖
ℎ𝑠)−1 (

𝜕𝑔𝑖𝑖
ℎ𝑠

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

 1012 

         (A.68) 1013 

where 1014 

 1015 

(
𝜕𝑔𝑖𝑗

ℎ𝑠

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

=
𝜁3,𝑥𝑘

(1 − 𝜁3)2
+ (

𝑑𝑖𝑑𝑗

𝑑𝑖 + 𝑑𝑗
) (

3𝜁2,𝑥𝑘

(1 − 𝜁3)2
+

6𝜁2𝜁3,𝑥𝑘

(1 − 𝜁3)3
)1017 

+ (
𝑑𝑖𝑑𝑗

𝑑𝑖 + 𝑑𝑗
)

2

(
4𝜁2𝜁2,𝑥𝑘

(1 − 𝜁3)3
+

6𝜁2
2𝜁3,𝑥𝑘

(1 − 𝜁3)4)                                        (A. 69) 1018 

 1016 
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15) Compute derivative of the dispersion contribution to the residual Helmholtz free 1019 

energy respect the molar fraction of the components. 1020 

 1021 

(
𝜕�̃�𝑑𝑖𝑠𝑝

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

= −2𝜋𝜌 [𝐼1,𝑥𝑘𝑚2𝜀𝜎3 + 𝐼1(𝑚2𝜀𝜎3)
𝑥𝑘] −  1022 

𝜋𝜌 {[𝑚𝑘𝐶1𝐼2 + 𝑚𝐶1,𝑥𝑘𝐼2 + 𝑚𝐶1𝐼2,𝑥𝑘]𝑚2𝜀𝜎3 +  1023 

𝑚𝐶1𝐼2(𝑚2𝜀𝜎3)
𝑥𝑘}                          (A.70) 1024 

 1025 

where 1026 

 1027 

  (𝑚2𝜀𝜎3)
𝑥𝑘

= 2𝑚𝑘 ∑ 𝑥𝑗𝑚𝑗 (
𝜀𝑘𝑗

𝑘𝑇
)𝑗 𝜎𝑘𝑗

3                (A.71) 1028 

(𝑚2𝜀2𝜎3)
𝑥𝑘

= 2𝑚𝑘 ∑ 𝑥𝑗𝑚𝑗 (
𝜀𝑘𝑗

𝑘𝑇
)𝑗

2
𝜎𝑘𝑗

3                            (A.72) 1029 

𝐶1,𝑥𝑘 = 𝐶2𝜁3,𝑥𝑘 − 𝐶1
2 [𝑚𝑘

8𝜂−2𝜂2

(1−𝜂)4 − 𝑚𝑘
20𝜂−27𝜂2+12𝜂3−2𝜂4

[(1−𝜂)(2−𝜂)]2 ]           (A.73) 1030 

𝐼1,𝑥𝑘 = ∑ [𝑎𝑖(�̄�)𝑖𝜁3,𝑥𝑘
6
𝑖=0 𝜂𝑖−1 + 𝑎𝑖,𝑥𝑘𝜂𝑖]              (A.74) 1031 

𝐼2,𝑥𝑘 = ∑ [𝑏𝑖(�̄�)𝑖𝜁3,𝑥𝑘
6
𝑖=0 𝜂𝑖−1 + 𝑏𝑖,𝑥𝑘𝜂𝑖]                     (A.75) 1032 

𝑎𝑖,𝑥𝑘 =
𝑚𝑘

𝑚
2 𝑎1𝑖 +

𝑚𝑘

𝑚
2 (3 −

4

𝑚
) 𝑎2𝑖               (A.76) 1033 

𝑏𝑖,𝑥𝑘 =
𝑚𝑘

𝑚
2 𝑏1𝑖 +

𝑚𝑘

𝑚
2 (3 −

4

𝑚
) 𝑏2𝑖                        (A.77) 1034 

 1035 

16) Compute the chemical potential. 1036 

𝜇𝑘
𝑟𝑒𝑠(𝑇,𝑣)

𝑘𝑇
= �̃�𝑟𝑒𝑠 + (𝑍 − 1) + (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑥𝑘
)

𝑇,𝑣,𝑥𝑖≠𝑗

− ∑ [𝑥𝑗 (
𝜕�̃�𝑟𝑒𝑠

𝜕𝑥𝑗
)

𝑇,𝑣,𝑥𝑖≠𝑗

]𝑁
𝑗=1           (A.78) 1037 

 1038 

17) Compute the fugacity coefficient. 1039 

𝑙𝑛𝜑𝑘 =
𝜇𝑘

𝑟𝑒𝑠(𝑇,𝑣)

𝑘𝑇
− 𝑙𝑛 𝑍                         (A.79) 1040 

 1041 

18)  Compute the partial derivative of the pressure respect the density at constant 1042 

temperature. 1043 

(
𝜕𝑃

𝜕𝜌𝑚
)

𝑇
= 𝑘𝐵𝑇(1010)3 [(

𝜕𝑍

𝜕𝜌𝑚
)

𝑡
𝜌𝑚 + 𝑍]             (A.80) 1044 

 1045 

19) Compute the partial derivative of the pressure respect the temperature at 1046 

constant density.  1047 

(
𝜕𝑃

𝜕𝑇
)

𝜌
= 𝑘𝐵(1010)3𝜌𝑚 [(

𝜕𝑍

𝜕𝑇
)

𝜌
𝑇 + 𝑍]                      (A.81) 1048 

 1049 

20) Compute the partial derivative of the inernal energy respect the temperature at 1050 

constant density (A.58) 1051 

21) Compute the partial derivative of the internal energy respect the density at 1052 

constant temperature. 1053 

 1054 

(
𝜕𝑒𝑟𝑒𝑠

𝜕𝜌𝑚
)

𝑇
= −𝑅𝑇2 (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑇𝜕𝜌𝑚
)

𝑇
                       (A.82) 1055 

 1056 
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𝑑𝑒𝑖𝑑

𝑑𝜌𝑚
= 0.0                  (A.83) 1057 

 1058 

(
𝜕𝑒

𝜕𝑇
)

𝜌,𝑥𝑖

= (
𝜕𝑒𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

                                            (A.84) 1059 

 1060 

22) Compute the partial derivative of the density respect the pressure at constant 1061 

tmeperature (A.61) 1062 

23) Compute the partial derivative of the density respect the temperature at constant 1063 

pressure (A.62) 1064 

24) Compute the partial derivative of the internal energy respect the pressure at 1065 

constant temperature (A.63) 1066 

25) Compute the partial derivative of the internal energy respect the temperature at 1067 

constant pressure (A.64) 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 

 1084 

 1085 

 1086 

 1087 

 1088 

 1089 

 1090 

 1091 

 1092 

 1093 

 1094 

 1095 

 1096 

  1097 
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Appendix 6 (Stability) 1098 

Input: Temperature, pressure and molar composition of the mixture. 1099 

Output: To know if the mixture is stable or not (one or two phases). 1100 

The Successive Substitution Iteration (SSI) algorithm  ([16], [46]) (without the Newton 1101 

method) has been employed. 1102 

 1103 

 N2 N2

1) IF (T > T  FUEL) THEN

           STABLE=1

           RETURN

    END IF

2) IF  (X  > C).AND.(X

v

 < D)  THEN

            STABLE=0

  

f

        T

3) Call Algorithm B  (obtain u i

  RE URN

 

g

   I

ac

END F

ty 

c

Stability

( )

( )

( )

alues)

        Inputs: Temperature, pressure, molar composition of the mixture

4) Calculate 

5) Wilcom´s correlation is used to initialize the K-values  

6) Calculaten   

7) D

( ) A.75

A.76

Y_init A.77-A.78

id z

i

SSI

k=1,ntrial       ! SSI ALGORITHM

 Y  = Y_init(k,i)

=1,nmax

  IF ( dY >ε ) TH

 

EN

      

O 

 DO j

Call A

 

lgorit

 

hm B 

Inputs: Tempera

 

ture, pressure,
 

    y_trial = Y /sum(Y)

           

          

            

 

   

i i

 

i i

i

y_trial

ln )

            Yn(i) exp ( ) ln

            dY  = Yn  - Y

            Y  = Yn

  ELSE

            TPD*(k) = 1. - sum(Y)

            GO TO 1

  END IF

molar composition 

Obtain fugacity values ( i

i i

i

i

d z









= −

-8

  

END DO

1 CONTINUE

IF (min(TPD*(k))< -10

      STABLE = FALSE

ELSE

     STABLE =TRUE 

END

D

 

 IF

EN  DO
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Figure A5 Schematic representation of the stability algorithm  1106 
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Steps 1107 

1) The mixture is stable if the temperature is higher than Tc Fuel (STABLE = 1) 1108 

Any mixture with a temperature higher than the fuel critical temperature will not be in 1109 

a VLE state (STABLE = 1). This kind of filters are applied to reduce the computational 1110 

time. 1111 

 1112 

2) The mixture is unstable if the nitrogen molar fraction is bigger than C and lower 1113 

than D (STABLE = 0) 1114 

The coefficients B and C are case dependent. For example, by performing an injection 1115 

of n-dodecane at 363K in a combustion chamber at 900K, the nitrogen mole fraction at 1116 

which the fuel starts vaporizing depends on the pressure in the combustion chamber. 1117 

Considering Diesel engines at high-load operation conditions (11MPa) it would be safe 1118 

to consider that any mixture with a nitrogen molar fraction bigger than 0.35 and lower 1119 

than 0.7 will be in a VLE state, see Figure 4.  1120 

 1121 

3) Call Algorithm B to obtain fugacity coefficient values 𝒍𝒏𝝋𝒊( 𝒛𝒊) 1122 

Inputs: Temperature, pressure, molar composition of the mixture 1123 

 1124 

4) Calculate 𝑑𝑖(𝑧) 1125 

𝑑𝑖(𝑧) = 𝑙𝑛𝜑𝑖( 𝑧𝑖) + 𝑙𝑛𝑧𝑖                        (A.85)1126 

      1127 

5) The Wilcom´s correlation is used to initialize the K-values  1128 

𝐾𝑖 =
𝑝𝑐𝑖

𝑝
𝑒𝑥𝑝 [5.37(1.0 + 𝑤𝑖) (1.0 −

𝑇𝑐𝑖

𝑇
)]              (A.86) 1129 

being 1130 

𝐾𝑖 =
𝑥𝑖

𝑦𝑖
  1131 

where 𝑝𝑐𝑖 is the critical pressure of the component i, 𝑇𝑐𝑖 is the critical temperature of 1132 

the component i, 𝑤𝑖 is the acentric factor of the component i. 1133 

 1134 

6) Calculate trial phases Y  (two trials) 1135 

 1136 

For the trial 1: 1137 

𝑌(1, 𝑐𝑜𝑚𝑝) = {

𝑧𝑖

𝐾𝑖
 (Liquid phase)

𝑧𝑖𝐾𝐼 (Vapor phase)
               (A.87) 1138 

 1139 

For the trial 2: 1140 

𝑌(2, 𝑐𝑜𝑚𝑝) = {

𝑧𝑖

𝐾𝑖3
    (Liquid phase)

𝑧𝑖𝐾𝐼

3
   (Vapor phase)

              (A.88) 1141 

 1142 

7) SSI-Algorithm described in Figure A5.  1143 

 1144 

 1145 

 1146 

 1147 

 1148 
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Appendix 7 (TPn Algorithm) 1149 

Input: Temperature, pressure and molar composition of the mixture. 1150 

Output: Density of the mixture, internal energy of the mixture, speed of sound of the mixture 1151 

and enthalpy of the mixture.  1152 

This algorithm is employed to to perform equilibrium calculations at specified temperature, 1153 

pressure and overall composition. A successive substitution method is employed [16], [44]. 1154 

 1155 

-

min ma

7

Wilcom´s correlation is used to initialize the K-values (A.86)

WHILE eps TPN <10  THEN

    

1) 

2) ( ( )

i

)

     !Rachford-Rice

          a) If the condit ons A.89-A.90 are met:

         β     0    β = ,   

TPN

( )

x

i min m

-7

ax

min max

(A.91-A.92)

                  Calculate (A.93

T

1

                  If  K >1 change β  and  β  

 

 β  and  β  

              

 

)

                 Ch

W    ( (

ange A.94

HILE eps Rachford-Rice ) >)  10  

ini

=

( )

( )

min max

 

HEN

Calculate (A.95-A.96)

Chang

                               

e limits A.97n

g(β), '( )   

                                β  a d  β  

                    Newton-Raphs

 

          9 

 

on

 

 A.

       

8

     

g 

( )( )Calculate 

New overall fraction of vapor phase (A.100-A.101)

                    Calculate liquid and vapour mole fractions (A.102-A.103)

   

               /

                                

neweps abs   = −

           b) If the conditions A.89-A.90 are not met:

                     Calculate liquid and vapour mole fractions (A.104-A.105)

              c) Call Algorithm B to obtain fugacity coefficients of the liquid and vapor phase

              d)  Objective function (A.106)

              e)  Calculate eps TPN

              f)  Update K-factors from fugacity coeffcients (A.107)

END

3) Calculate VLE proper

( )

ties                      
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  1156 

Figure A6 Schematic representation of the TPn algorithm  1157 

 1158 

1) The Wilcom´s correlation is used to initialize the K-values  (A.86) 1159 

       1160 

2) WHILE (eps(TPN)<10-7) THEN  1161 

 1162 

Solve Rachford-Rice 1163 

a.  Check conditions A.79-A.80 to know if there is a solution in the interval 1164 

𝛽[0,1]. If the conditions are met set 𝛽min=0,  𝛽max = 1. If not, go to step 1165 

2.b. 1166 

∑ 𝑧𝑖
𝐶
𝑖=1 𝐾𝑖 − 1 > 0               (A.89) 1167 

 1168 

1 − ∑
𝑧𝑖

𝐾𝑖

𝐶
𝑖=1 < 0                          (A.90)        1169 
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 1170 

• If 𝑲𝒊 > 𝟏then 1171 

𝜷min = 𝑚𝑎𝑥𝑖 [0,
𝐾𝑖𝑧𝑖−1

𝐾𝑖−1
]                 (A.91) 1172 

𝛽𝑚𝑎𝑥 = 𝑚𝑖𝑛𝑖 [1,
1−𝑧𝑖

1−𝐾𝑖
]                                          (A.92) 1173 

 1174 

• Calculate 𝛽𝑖𝑛𝑖 = 0.5(𝛽𝑚𝑖𝑛 + 𝛽𝑚𝑎𝑥)             (A.93) 1175 

 1176 

• Change limits  1177 

g(β
ini

) > 0 → β
min

= β
ini

,  1178 

g(β
ini

) < 0 → β
max

= β
ini

                           (A.94)  1179 

 1180 

• WHILE (eps( Rachford-Rice ) > 10-7) then  1181 

 1182 

o Calculate 𝑔(𝛽), 𝒈′(𝜷) 1183 

       𝑔(𝛽) = ∑ (𝑦𝑖
𝐶
𝑖=1 − 𝑥𝑖) = ∑

𝑧𝑖(𝐾𝑖−1)

1−𝛽+𝛽𝐾𝑖

𝐶
𝑖=1 = 0            (A.95) 1184 

       𝑔′(𝛽) = − ∑
𝑧𝑖(𝐾𝑖−1)2

(1−𝛽+𝛽𝐾𝑖)2
𝐶
𝑖=1 < 0             (A.96) 1185 

 1186 

o Change limits  1187 

       𝑔 > 0 → 𝛽𝑚𝑖𝑛 = 𝛽,  1188 

      𝑔 < 0 → 𝛽𝑚𝑎𝑥 = 𝛽                                                  (A.97) 1189 

 1190 

o Newton-Raphson  1191 

      𝛥𝛽 = −
𝑔(𝛽)

𝑑𝑔/𝑑𝛽
  1192 

      𝛽𝑛𝑒𝑤 = 𝛽 + 𝛥𝛽              (A.98) 1193 

 1194 

o Calculate eps 1195 

      𝑒𝑝𝑠 = 𝑎𝑏𝑠((𝛽𝑛𝑒𝑤 − 𝛽)/𝛽)                                 (A.99) 1196 

 1197 

o New overall fraction of vapor phase:   1198 

𝛽 = 𝛽𝑛𝑒𝑤 if 𝛽𝑛𝑒𝑤 is inside the interval [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥]           (A.100) 1199 

 1200 

o If it is not, it is calculated as: 1201 

      𝛽 = 0.5(𝛽𝑚𝑖𝑛 + 𝛽𝑚𝑎𝑥),   𝛽𝑚𝑖𝑛 < 𝛽𝑛𝑒𝑤 < 𝛽𝑚𝑎𝑥        (A.101) 1202 

 1203 

o Calculate liquid and vapour mole fractions 1204 

      𝑥𝑖 =
𝑧𝑖

1−𝛽+𝛽𝐾𝑖
             (A.102) 1205 

      𝑦𝑖 =
𝐾𝑖𝑧𝑖

1−𝛽+𝛽𝐾𝑖
            (A.103) 1206 

 1207 

b.  If the conditions A.89-A.90 are not met [58]: 1208 

If ∑ 𝒛𝒊 /𝑲𝒊 ≤ 𝟏 the liquid and vapour mole fractions are computed as: 1209 

𝛽 = 1 1210 

𝑥𝑖 = 𝑧𝑖/𝐾𝑖 1212 

𝑦𝑖 = 𝑧𝑖                        (A.104) 1211 
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   Normalization of 𝒙𝒊 1213 

 1214 

If ∑ 𝒛𝒊 𝑲𝒊 ≤ 𝟏 the liquid and vapour mole fractions are computed as: 1215 

𝛽 = 0  1216 

𝑥𝑖 = 𝑧𝑖  1217 

𝑦𝑖 = 𝑧𝑖 ∗ 𝐾𝑖              (A.105) 1218 

  Normalization of 𝒚𝒊 1219 

 1220 

c. Call Algorithm B to obtain fugacity coefficients of the liquid and vapor 1221 

phase 1222 

       Inputs: Temperature, pressure, molar composition of the liquid or vapor 1223 

 1224 

d. Objective function  1225 

       𝐹𝑖 = 𝑙𝑛𝜑𝑣( 𝑇, 𝑝, 𝑦) − 𝑙𝑛𝜑𝑙( 𝑇, 𝑝, 𝑥) + 𝑙𝑛𝐾𝑖 = 0                   (A.106) 1226 

 1227 

e. Calculate eps(TPN) 1228 

 1229 

f. Update K-factors from fugacity coeffcients 1230 

       𝐾𝑖 = 𝑒𝑥𝑝( 𝑙𝑛𝜑𝑙( 𝑇, 𝑝, 𝑥) − 𝑙𝑛𝜑𝑣( 𝑇, 𝑝, 𝑦))          (A.107) 1231 

 1232 

3) Compute VLE properties  1233 

 1234 

a. The phase fraction on mass (𝜷𝒎) basis is computed as:  1235 

   1236 

  𝛽𝑚 = 𝛽
𝑀𝑉(mixture molar mass in liquid phase)

𝑀𝑇(mixture molar mass)
                    (A.108) 1237 

 1238 

b. The equilibrium volume (𝒗𝑬𝑸) is computed as: 1239 

  𝑣𝐸𝑄 = 𝛽𝑚𝑣𝑣 + (1 − 𝛽𝑚)𝑣𝑙                              (A.109)1240 

              1241 

c. The equilibrium density is computed as:  1242 

  𝜌 =
1

𝑣𝐸𝑄
                        (A.110)         1243 

                     1244 

d. The equilibrium internal energy is computed as:  1245 

  𝑒 = 𝛽𝑚𝑒𝑣 + (1 − 𝛽𝑚)𝑒𝑙                    (A.111) 1246 

                                  1247 

e. The equilibrium enthalpy is computed as:  1248 

  ℎ = 𝛽𝑚ℎ𝑣 + (1 − 𝛽𝑚)ℎ𝑙                          (A.112)1249 

                 1250 

f. The speed of sound in the VLE state was computed using Wallis 1251 

formula:  1252 

  
1

𝜌𝑐𝑤𝑎𝑙𝑙𝑖𝑠
2 =

𝜃

𝜌𝑣𝑐𝑣
2 +

1−𝜃

𝜌𝑙𝑐𝑙
2                              (A.113)1253 

             1254 

  where the vapour volume fraction (𝜽) is computed as: 1255 

  𝜃 =
𝜌−𝜌𝑣

𝜌𝑣−𝜌𝑙
                      (A.114) 1256 
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