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Supplementary Materials Online 
 

1. Experiment-level statistical analysis 
 

Value information. In all four experiments, we manipulated whether value information was 
present or absent during sampling. Table S1 contains the key non-hierarchical frequentist statistics for 
each experiment. Note that for Experiments 3 and 4 the estimates are based on the trials from the no-
salience condition, since these trials are most similar to those in Experiments 1 and 2.  

Comparing the first three columns of Table S11, we see that the proportion of risky choices was 
larger in the Value-Ignorance condition than in the Standard condition for all experiments, with 
estimates of effect sizes varying from 0.12 to 0.69. Columns 4 and 5 contain the t statistics and 
associated one-sided p-values for each between-subjects comparison of the two sampling conditions. 
The difference was statistically significant in just one experiment, using a type I error rate of 0.05.  
 
Table S1. Descriptive and inferential statistics comparing the Standard and Value-Ignorance conditions in 

each of the four experiments. Note that for Experiment 3 and 4, only the data from No-Salience 

conditions are used.  

Experiment 
Proportion of Risky Choices 

Effect Size t (df) p (one-tailed) 
Standard Value-ignorance 

1 0.42 0.45 0.12 0.52 (78) 0.30 
2 0.42 0.50 0.36 1.61 (78) 0.06 
3 0.27 0.45 0.69 3.14 (72) 0.001 
4 0.36 0.42 0.25 1.19 (87) 0.12 

 
Salience. In Experiments 3 and 4, for Type 1 (best-outcome salient) problems (see Section 2 for 

an analysis of Type 2 problems) we also manipulated whether the rare reward was highlighted (Salience 
vs. No-Salience). This manipulation was crossed with the sampling manipulation (Standard vs. Value-
Ignorance), and Table S2 presents the key descriptive statistics, as well as inferential statistics resulting 
from submitting risky choice proportions to a 2 (sampling) x 2 (salience) between-subjects analysis of 
variance (ANOVA). In Experiment 3, we see evidence for both main effects of sampling and salience. 
Though the interaction between salience and sampling was not significant, the cell means suggest that 
highlighting rare rewards in the Standard condition encouraged more risky choices (M = 0.43 vs. M = 
0.27). However, the effect of salience was minimal in Experiment 4.  
 
  

                                                 

 

1 Note that the numbers in Tables S1, S2, and S3 are raw means. In the main article we plot median and central 
95% of the posterior distribution of the population-level mean of the proportion of risky choices, thus the numbers 
in the table are not directly comparable to those in the figures in the main article. 
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Table S2. Descriptive and inferential statistics for Type 1 (Best-Outcome Salient) problems in 

Experiments 3 and 4.  

 Proportion of Risky Choices     

Exp 
No-Salience Salience Sampling Salience Interaction 

df 
Standard 

Value-
Ignorance 

Standard 
Value-

Ignorance 
F p F p F p 

3 0.27 0.45 0.43 0.45 6.38 0.01 4.06 0.05 2.28 0.13 144 
4 0.36 0.42 0.37 0.44 2.94 0.09 0.27 0.61 0.01 0.95 173 

 
 
2. Type 2 (Worst-Outcome Salient) analysis 
 

Our salience manipulation carried the risk of introducing a demand characteristic whereby 
participants were encouraged to choose the riskier option, regardless of which outcome was 
highlighted. Type 2 problems therefore served as a manipulation check because salience highlighted an 
outcome of $0, rather than a rare reward. We expected that salience would operate at the level of 
outcome, rather than option, and therefore expected salience to have the opposite effect on Type 2 
problems. Table S3 presents the key descriptive statistics, and inferential statistics resulting from the 
same 2 (sampling) x 2 (salience) ANOVA used to analyze Type 1 problems above. Overall, there is little 
evidence for an effect of the salience manipulation for Type 2 problems. This suggests that participants 
may have treated $0 outcomes differently from rewards – perhaps viewing them as ‘non-events’ – 
though future work is needed to test this interpretation.   
 
Table S3. Descriptive and inferential statistics for Type 2 (Worst-Outcome Salient) problems in 

Experiments 3 and 4.  

 Proportion of Risky Choices     

Exp 
No-Salience Salience Sampling Salience Interaction 

df 
Standard 

Value-
Ignorance 

Standard 
Value-

Ignorance 
F p F p F p 

3 0.52 0.53 0.51 0.54 0.23 0.63 0.01 0.96 0.02 0.89 144 
4 0.55 0.47 0.45 0.48 0.33 0.56 0.93 0.34 2.07 0.15 173 
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3. Complete list of decision problems  
 
Table S4. Choice problems used in Experiment 1. Reward indicates the value of blue balls. Sample 
indicates the number of blue and red balls observed during sampling. For Example, Reward = 12 and 
Sample = 2:10 means that participants observed two blue balls worth $12 and ten red balls worth $0. 
 

 Riskier Option Safer Option 

Problem Reward Sample EV Reward Sample EV 

1 21 1:11 1.75 7 10:2 5.83 

2 18 4:8 6 2 10:0 2 

3 4 5:5 2 2 10:0 2 

4 16 1:9 1.6 2 8:2 1.6 

5 21 3:9 5.25 7 8:4 4.67 

6 14 3:7 4.2 6 7:3 4.2 

7 12 2:10 2.4 3 7:5 1.75 

8 9 3:9 2.25 3 10:2 2.5 

9 5 8:2 4 3 10:0 3 

10 10 2:10 1.67 3 11:1 2.75 

11 4 7:5 2.33 5 10:2 4.17 

 
 
Table S5. Choice problems for Experiment 2. All participants completed these five trials. Additionally, 
each participant was presented with six additional trials. For these, gamble pairs were drawn from a 
larger set of random gambles. These random gambles were generated by a factorial combination of 
reward values from $1 to $20 (in steps of $1) and reward probabilities from p = .0833 to p = .9163 (in 
steps of .0833). Identical gambles and dominated gambles (i.e. where both value and probability were 
higher for one option) were excluded. Random gamble sets were matched across conditions to assure 
that participants in both conditions were presented with the same stimuli.  
 

 Riskier Option Safer Option 

Problem Reward Sample EV Reward Sample EV 

1 16 1:9 1.6 2 8:2 1.6 

2 21 3:9 5.25 7 8:4 4.67 

3 14 3:7 4.2 6 7:3 4.2 

4 12 2:10 2 3 7:5 1.75 

5 9 3:9 2.25 3 10:2 2.5 
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Table S6. Choice problems used in Experiments 3 and 4.  

 Riskier Option Safer Option 

Problem Reward Sample EV Reward Sample EV 

1 16 1:9 1.6 2 8:2 1.6 

2 12 3:9 3 4 9:3 3 

3 20 1:11 1.67 2 10:2 1.67 

4 12 2:10 2 3 8:4 2 

5 8 2:8 1.6 4 4:6 1.6 

6 15 2:10 2.5 5 5:7 2.5 

7 12 1:11 1 3 4:8 1 

8 9 2:10 1.5 1 11:1 0.92 

9 4 4:6 1 2 11:1 1.83 

10 12 2:8 2.4 2 9:1 1.8 

11 6 3:9 1.5 3 9:3 2.25 

12 11 1:11 0.92 5 5:7 2.08 

13 10 1:11 0.83 3 4:8 1 

14 12 2:10 2 4 5:7 1.67 

15 3 7:5 1.75 2 10:2 1. 67 

16 6 6:4 3.6 4 9:1 3.6 

17 4 8:4 2.67 3 11:1 2.75 

18 2 7:5 1.17 1 10:2 0.83 

19 4 7:5 2.33 3 11:1 2.75 

20 4 8:4 2.67 2 11:1 1.83 
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4. Cumulative prospect theory analyses 
 

 
Figure S2. Posterior distributions of differences in population-level parameters between the 
Standard and the Value-Ignorance conditions plotted to maximize distribution coverage.  
 
 

 
Figure S3. Value and probability weighting functions for the salience manipulation including both Type 1 

and Type 2 problems. Red lines represent risk preferences when value information was available at the 

time of sampling (Standard). Black lines represent risk preferences when value information was revealed 

at the time of choice (Value-Ignorance). The functions show best-fit population-level utility functions 

(Panel A,B) and probability weighting functions (Panel C,D), for the No-Salience (solid line) and the 

Salience (dashed line) conditions. Histograms show the posterior distribution of population-level 

differences in parameters (i.e., No-Salience - Salience).  
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5. Description data 
 

The original plan for this project was to investigate the impact of presenting value information 
at different points in the sampling process. This focus led to the development of the Value-Ignorance 
condition to be compared to the Standard condition. However, we had some limited opportunity to also 
collect description data, which was collected to explore whether choices made under Value-Ignorance 
would be more like those made in the Standard condition, or more like those made with described 
versions of the same gambles.  

In Experiment 1 these data were collected via a brief computerized task displaying the same 
gambles used in the Experience conditions (Table S4) using a convenience sample of 40 participants who 
had finished other experiments being run in the lab. The choice options were presented side-by-side 
(with both probability and value information in numerical format) and participants indicated which of 
the two options they would prefer to play for real. In Experiment 2 we aimed for more controlled 
sampling of participants, though a wholly separate description condition was not practicable. We 
therefore used a within-subject design, in which each participant would perform the Description task 
after the experienced-based task (Value-Ignorance / Standard, displaying the same gambles – see Table 
S5). In other words, due to constraints on data collection, neither data set was collected under ideal 
circumstances (Exp 1 - convenience sample across many different experiments, Exp 2 order effects) and 
were somewhat noisy, and we therefore abandoned this condition in favor of focusing the remaining 
data collection resources on the two key conditions (Exp3-4). 

For completeness, we nonetheless performed the hierarchical Bayesian prospect theory analysis 
on the Description data, pooling across experiments as in the main analyses (N=120, with each N 
contributing choices for 11 gambles). Figure S4 shows the result of this analysis, alongside Standard and 
Value-Ignorance conditions (reported in Fig 5).  
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Figure S4. Hierarchical Bayesian Prospect Theory – ‘Description’. Top row: Posterior means and standard 
deviations of group-level prospect theory parameters. Bottom two rows: Posterior differences in 
parameters between the two key conditions and ‘Description’.  

 

As can be seen (Fig S4), Description resulted in  parameters that were closer to Value-

Ignorance than to Standard, in-between Standard and Value-Ignorance for , and closer to Value-

Ignorance than to Standard for , with a bias () in favor of the right rather than left option. For the 

parameter with the least clear pattern, , the posterior distribution of differences (second panel from 
left, two bottom rows, Fig S4), suggests (albeit not conclusively) that Description resulted in more 
overweighting (of small probabilities) than Standard, and that it resulted in less overweighting than 
Value-Ignorance.  

Overall, the Description data provide tentative evidence that having to integrate probability and 
value at the time of choice, in an experienced-based task (Value-Ignorance), results in risk preferences 
that are more similar to decisions-from-description than to the standard experienced-bask task where 
such integration is not strictly necessary. However, given the noted shortcomings, these results should 
be confirmed with more rigorously collected data.  

 
 

  


