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- Convex order and rniﬂtistate life insurance contracts

Jaap Spreeuw

Abstract

The distribution function of the present value of a cash flow can be approximated by means of
a distribution function of a random variable, which is also the present value of a sequence of
payments, but has a simpler structure. The corresponding random variable has the same ex-
pectation as the random variable corresponding to the original distribution function and is a
stochastic upper bound of convex order. In this paper it will be shown that such an approach
can also be adopted for some multistate life insurance contracts under Markov assumptions.
The quality of the approximation will be investigated by comparing the distribution obtained
with the one derived from the algorithm presented in the paper by Hesselager & Norberg
(1996).

Keywords: Convez order, comonotonic joint distribution, multistate life insurance con-
tracts, present value distributions.

1 Introduction

In life contingencies under a stochastic framework, distributions of the present value of future
payments are a key component in order to derive premiums satisfying a certain criterion. The
most usual principle is that of actuarial equivalence, meaning that premiums are such that the
expected present value of benefits less premiums is equal to zero.

The probability distribution of present values gives an indication of the riskiness of a contract,
such as the variability of the actual benefits paid out or the upper tail of the present values.

De Pril (1989) and Dhaene (1990) derive distributions of such present values in a classical
life insurance framework where only the two states ”Alive” and "Dead” are relevant (and where
only payment by single premium is considered). As the present value depends on the outcome
of only one random variable, such analyses turn out to be quite straightforward.

Deriving distributions such as above in general tends to be much more complicated if instead
we are dealing with life contracts involving more than two states. Hesselager & Norberg (1996)
show that an approximated distribution for a multistate life insurance contract under the Markov
assumption can be obtained by deriving a set of integral equations. However, the execution of the
algorithm they derive may be time-consuming, especially in case there are many states and/or
if the Markov chain is not hierarchical. The question is whether a method exists to derive an



approximate version of the real present value distribution, which saves computing time (though
maybe at the cost of some accuracy).

A common method is to replace a random variable by a ”riskier” one, i.e. a random variable
being larger with respect to some ordering relation. The probability distribution of this "riskier”
random variable has a simpler structure. Goovaerts et al. (1999) consider distributions of the
present value of cash flows based on stochastic interest. They conclude that the comonotonic
joint distribution (the distribution that is the largest in convex order) is often a good approxima-
tion of the original distribution. The latter can usually only be derived by means of simulation.
The aim of this paper is to investigate if something similar applies for a multistate life insurance
contract. The quality of the approximation by means of the comonotonic joint distribution
will be analyzed by comparing it with the present value distribution derived by means of the
algorithm developed by Hesselager & Norberg (1996). The latter algorithm is executed in such
a way that the present value distribution thus obtained is very close to the real one. For the
sake of simplicity, we will restrict ourselves to contracts involving only benefits due in case of
remaining in a state.

The paper is organized as follows. In Section 2, the basic assumptions are stated and the
relevant present value random variable, the distribution of which is to be derived, is displayed.
A summary of the algorithm developed in Hesselager & Norberg (1996) is presented in Section 3.
In Section 4, an alternative way to evaluate the distribution of a present value random variable
is discussed. Besides, for some disability annuities, we derive the comonotonic joint distribution
of the payments and analyze its properties. Section 5 contains illustrating examples and Section
6 concludes.

2 Basic assumptions

The following assumptions are the same as in Hesselager & Norberg (1996), except that benefits
and premiums due to transition from one state to another are not taken into account.

Consider a set ¢ = {0, ...,J} of all possible states of a general life policy, such that at any
time ¢ € [0, n], the policy is in one and only one state. The state of the policy at time ¢ is denoted
by X (t). The stochastic process is taken to be right continuous with X (0) = 0, implying that
the policy is in state 0 at time 0, being the time-upon-issue. Introduce I; (t) as the indicator of
the event that the contract is in state j at time ¢, and

N () = #{r € (0, |X (1—) =5, X (7) =k} M

as the total number of transitions of {X (¢)},5, from state j to state k (# j) by time ¢. The
payment function B is assumed to be continuous from the right as well. It is specified as

4B (1) = Y1, (1-)dB; (1) @)

where each Bj is a deterministic payment function specifying payments due during sojourns in
state j (a general life annuity). The left limit in I; (t—) means that the state annuity is effective
at time ¢ if the policy is in state j just prior to (but not necessarily equal at) time ¢. Consistent
with this, we define Iy (0—) = 1. Specification (2) implies that there are no benefits due to
transition from one state to another.
We assume that each B; decomposes into an absolutely continuous part and a discrete part
as
dB; )= b; (tydt + AB; (t). (3)



Premiums are counted as negative benefits.
It is supposed that {X (¢)},5¢ is a Markov chain. Denote the transition probabilities by

pjk (t,u) = P[X (v) = k|X (t) = j]. (4)
The transition intensities
(5)

are assumed to exist for all j,k € {, j # k. The total intensity of transition out of state j is
tic () = 3. i (£). The probability of staying uninterruptedly in the state j during the time
ke;kj
-f pic(s)ds
interval from ¢ to u is e ff ¥ .
We assume ¢ (t), being the force of interest at time ¢, to be a deterministic and continuous
function. We introduce the following discount function:

- fT §(s)ds
vi{r)=e ® . (6)
Our aim is to derive the distribution function of the random present value, which will be specified
by V. So )

V= /'V(T) dB (7). )
0

Without loss of generality, single premiums (that are to be paid upon issue) will not be considered
to be part of the present value.

3 The method by Hesselager & Norberg

The formulas displayed in this section are adopted from Hesselager & Norberg (1996). The
difference in the formulas concerns the force of interest which in their paper is allowed to be
state-dependent and fixed, conditionally given the state. In this contribution, on the other hand,
the force of interest is taken deterministic and independent of the state where a contract remains,
though not necessarily constant as a function of time. Recall, furthermore, that contracts
with benefits due to transition are not taken into consideration. Hesselager & Norberg (1996)
introduce the state-dependent probability functions
n
v(T) .
P; (t,u) =P / y(t)dB(T) <ull;(t)=1|,te0,n],ueR,je(. (8)

t

So P; (t,u) denotes the probability that at time ¢, conditionally given that the contract is then
in state 7, the present value of future payments, discounted to ¢, is smaller than or equal to u.
Starting point in their analyses is the recursive equation

n s

= [ njc(r)dr v(t) *v(r)
P;(t,u) = et Bk (8)ds - Py | 5, ——u — dB; (1)
k%;/ * ( v (s) / v (s) )
e 11y / I”/((Z)) dB; (1) <ul . )



Applying the auxiliary function

Qs (t) = P, (t,y(t)-l (u - /Oty ()dB; (T)>> , (10)

and substituting this in (9) yields

t
- {ng(s)ds
€

Qj (t77‘l‘>
[ = fusctnar :
= /e '.[ﬂc d Zﬂjk(s)ds'Qk (s,u+/ I/(T)d(B]C(T)—B]‘(T))>
: ikt 0
Ly 11O / V() dB; () <ul . (11)

0

By differentiating with respect to ¢ and rearranging a bit it follows that the functions Q; (t,%)
in (11) are the unique solutions to the differential equations

de (twu) = M (t) dt- Qj (tau)

=S e Q (t,u+ [va@.o -8, <T>>), 12)

kik#j
subject to the constraint

n

Qj(n,u) =1 /U (r)dB; (1) < u| . (13)

0

The computational scheme follows by taking the finite difference version of the above equation:
#0 5 we)-Qi (tus [ v -5 ) (1)

T
kikij 0

Then starting from (13) (with Qj in the place of Q;) one calculates first the functions @} (n — h,-)
by (14) and continues recursively until @ (0,-) finally can be calculated. In the paper, the
functions @ (¢,u) are defined for ¢ € {0,h,2h,...,n} and u € {a,a+ h',a + 2K/, ...,b}, where h
and k' are certain step-lengths.

This method is the only general approach to tackle the problem of determining the present
value distributions that has appeared in the literature until now. For practical calculations,
however, it has the drawback that the method is time-consuming if one only needs to calculate
the probability distribution at issue for a certain given state j, that is, P; (0,-). If all the states in
the contract are intercommunicating (this means that from one state, one can make a transition
to each other state and vice versa) at any time the contract is valid, the total number of times
that QF (t — h,u) in (14) needs to be computed is in the order of

n b—a

h-T-M’ (15)
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Figure 1: Disability without possible recovery (hierarchical Markov chain).

where M denotes the total number of states. In (15), % and b;—,a represent the total values

that the first and second argument of @Q* can adopt, respectively. For instance, if n = 30,
h = ﬁ, b—a=10,h = T500 and M = 3, the relevant quantity needs to be calculated for
about 180 million times. Besides, in each of these evaluations the second argument of the @}
function in the second term of the right hand side of (14) must be rounded to the nearest point
in{a,a+ R ,a+ 2k, ..., b}, thus slowing down the speed of computing. In practice, with at least
one absorbing state (death) and usually some strongly transient states, fewer calculations have
to be done, but the method can still be cumbersome.

In the next section, we will present a way to derive, for some disability annuity contracts,
an approximation of the c.d.f. of V' defined in (7).

4 The probability distribution of a present value, largest in con-
vex order

In this section we show that there are alternative ways to obtain the present value distribution of
V if the underlying Markov chain is relatively simple. First, in Subsection 4.1, we will illustrate
this by means of an example, concerning a hierarchical Markov chain with only a few number
of states. In Subsection 4.2, we will briefly discuss the approach in the paper Goovaerts et al.
(1999) and rewrite the present value random variable in equation (7), such that their method
can be applied.

4.1 Example of a contract under a hierarchical Markov chain

Counsider a disability annuity equal to unity to be paid out continuously while the individual
is disabled. The contract is issued at time 0, when the insured is active. Hence the number
of states is equal to 3. Let the symbols a, ¢ and d represent the three relevant states in this
contract, namely ”Active”, "Disabled” and "Dead”. The Markov chain is hierarchical if an
individual cannot recover once being disabled. The situation can be displayed graphically as in
Figure 1. So the B; (t) in the right hand side of (2) are equal to (recall that single premium
payments are not taken into consideration)

0 t<0

t t>0 (16)

Ba(t):Bd(t):O Vt, Bz(t):{



Furthermore we assume & (-) to be constant and equal to §. Hence v (t) = e~%. For an active
individual, the probability distribution of the present value at issue proves to be

0 for u < 0
~Jhac@ir  m — Fugc(riar
P, (0,u) = e ° + bre 0 Hog (8)ds for u=0; (17)
P, (0,0) + v (w) for 0<u<H(n);
1 for w>H(n),
with
rax( - a(t71)
w  TP(t) N fl g (5)ds B 2_f 1 gl )i
() = e =0 Mo (T2)e =T fig (T2 (t71)) dtdry,
t=0 11=0
In (e~ + 6t In(14e — =071 4 6t
gy = Ty = e A
n
and H (n) = / e %ds. (18)
Jo

We will give a short explanation:

1. The present value can never be negative;

2. P, (0,0) is the probability that the contract will never enter the state ”Disabled”. This is
the case if the insured either survives the entire period [0,n] or dies as an active person;

3. H (n) is the maximum possible present value, corresponding with the event that the in-
dividual gets disabled immediately after issue and is still disabled upon the end of the
contract period,;

4. If 0 < u < H (n), the individual, at some time the contract is in force, enters the state
”Disabled” remains there for some time and enters the state "Dead” before the insurance
treaty expires. The cumulative probability distribution is obtained by transforming the
present value u in the period the contract is in the state "Disabled”, bordered by two
points-of-time, namely the time-upon-entering the state i and the time-upon-leaving that
state, in the above specification denoted by 71 and 79, respectively.

So we see in the above example that there are cases where one does not need to be restricted to the
method by Hesselager and Norberg. The derivation of the above c.d.f. is quite straightforward
because the present value depends only on two variables: the time-of-getting-disabled and the
time-of-death. This is due to the fact that:

1. there is only a few number of states applying, and that

2. the Markov chain is hierarchical: the state ”Disabled”, once left, cannot be visited again.

If, on the other hand, reactivation is possible, during the contract period an insured can be
disabled for more than one time interval. This makes calculations such as above much more
complicated.

However, even if a Markov chain is hierarchical, deriving the present value distribution is
quite complicated if there are many states applying. An example is the multilife insurance
contract, as given by Hesselager & Norberg (1996).



Our method of dealing with problems such as above involves replacing the random variable of
present value by one being larger in convex order. If X and Y are random variables, X precedes
Y in convex order (notation X <.Y) if E[f(X)] S E[f (Y)] for each convex function f. This
method has already been applied for distributions of the present value of cash flows based on
stochastic interest, see Goovaerts et al. (1999). A short overview of this paper is presented
below.

4.2 Approach by Goovaerts et al. (1999)

Goovaerts et al. (1999) specify the present value random variable, again denoted by V, as a
sum of 1.v.’s, each of them involving a certain point of time:

V=3 Y, (19)
k=1

with
Vi = Bre X%, By €R. (20)

where X;, represents the force of interest integrated from 0 to tx, so is actually the stochastic
discounting factor of a payment at time ¢,. Furthermore, 3, is the payment itself. If one wants
to obtain an expression for the probability distribution of V, one needs to realize that the X, ’s
are not mutually independent. As a consequence, the variables Y; are not independent of one
another either.

The authors first derive the distribution, which, within the class of random vectors
(Y1, .-, Ym) with fixed marginals (such a class is called a Fréchet class) is the comonotonic one.
This distribution is the largest in convex order. If Fi,...,Fy, are the c.d.f.’s of the respective
r.v.’s Y1, ..., Yo, this comonotonic joint distribution of Y1, ..., Yy, is equal to the distribution of
the random vector

(FTH U)o By (U)) (21)
where U ~Uniform(0,1) and F,;l (u),k € {1,...,m}, is defined by

F' (u) = min{z| Fy (z) > u}. (22)
The r.v. which is the sum of the components in (21) is denoted by W, and:
V< W (23)

Let Wy = F,;l (U), k€ {1,...,m}, so W = Y1t Wg. Then the joint c.d.f. of W,...,Wp, is
known to be
Pr(W1 <y1,... W <ym]= min _Fg(y)- (24)
ke{l,...,m}
Let Fyy (-) be the c.d.f. of W and Fy! () its inverse, the latter defined in the same way as in
(22). The c.d.f. of W follows implicitly from the relationship

Fptw) =Y F'(w), uel0,1]. (25)
k=1

The quality of the approximation by means of this c.d.f can be analyzed by comparing it with
the joint distribution obtained e.g. by means of Monte Carlo simulation.

The aim of our paper is to investigate if such a method also works well if one wants to derive the
probability distribution of the present value of a multistate life insurance contract, as introduced



above. This will be done by replacing V in (7) by a random variable which has the comonotonic
joint distribution within the given Fréchet class. We will do this for two level disability annuities,
one paid by single premium and the other paid by level premium while remaining in the state
" Active”. In the numerical examples in Section 6, which are based on these annuities, the quality
of the approximation will be judged by comparing the c.d.f. of the latter random variable with
an accurate approximation of the c.d.f. of V. The latter approximation is obtained by applying
the algorithm of Hesselager and Norberg with small values for the step-lengths h and #/, as
defined in Section 3.

In the remainder of this paper it is assumed that the interval [0,n] can be partitioned into
subsequent subintervals [tp,t1], (t1,t2] , .-y (bm—2,tm—1] , (bm~1,%m), Such that there may only be
benefits due to remaining in a certain state at points of time 1,9, ..., tm—1,tm = 1;

As a consequence, we can write V in (7) as a sum of random variables:

V=>"Y%, (26)
k=1

with
Yi= Y fi(te) i (), (27)
J €
where
fj (tk) =v (tk) (Bj (tk) — Bj (tk_:[)) , JE€E C, ke {1, ,m} . (28)

In (28), f; (tx) denotes the present value of the benefit paid at time ¢j in case of remaining in
state j.

Remark 1 The fully continuous case arises as a special case if we let m — oo and besides
MaXge(o,... m—1} [te+1 — t] = 0 .

So V' can be decomposed in m separate random variables where the Y} denotes the stochastic
present value of benefits due to remaining in a certain state at time t;, k& € {1,...,m}. We have

Pr[V =2 > Pr[Y1 = fj, (t1), Y2 = fj, (t2) s Y = [ ()]

(f1,m)PEC™;

22:1 iy (te)=2
ST PrX (D) =51, X (2) = jo,ns X () = jim] - (29)

(1y-rm) €C
w1 Ji (te)=2

I

We define Fy as the c.d.f. of Yy, k € {1,...,m}. Furthermore, we define, just as above, Wy =
EY(U), ke {l,..,m}, with U ~Uniform(0,1). So W = 3", W; and

Fy (yk) =Pr [Yk Syk] =Pr [Wk Syk} , ke {17"‘7m}' (30)

Note that these marginals have a support consisting of a finite number of points.

In the next section we will derive the comonotonic joint distribution for two basic disability
annuities by applying formula (24). Besides, we will analyze the properties of this comonotonic
joint distribution, under additional conditions regarding the several probabilities to be disabled
at the respective points of time. In all the cases and examples following, it is assumed that
recovery from disability is possible.
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Figure 2: Disability with possible recovery (non-hierarchical Markov chain).

5 Two disability annuities

In this section we will apply the theory considered just before to two disability annuities. We
suppose that the same three states a (”Active”), ¢ ("Disabled”) and d ("Dead”), as considered
and defined in the case in Subsection 4.1, apply and that upon issue, the contract is in the
state ” Active”. The basic difference with the given case is that it is assumed that recovery from
disability is possible. Hence we are dealing with a Markov chain as displayed graphically in
Figure 2.

Furthermore, in both cases there are no payments due if the individual is dead. So we have:

fd (t;c) = Bd (tk) = 0; f1 (tk) =V (tk) (31 (fk) — B,L' (tk—l)) Z 0, vk € {1, ,m} . (31)

The only difference between the two policies is the method of premium payment. In Subsection
5.1 we will deal with payment by single premium, while Subsection 5.2 will consider the case
where premiums are paid on as long as the individual is active. In both subsections we will treat
the fully continuous annuity (where all benefits are paid on a continuous base) as a special case.

We will conclude this section with Subsection 5.3, containing some remarks concerning the
calculation of the transition probabilities paq (0, -), Pai (0,¢) and peq (0, ).

5.1 Payment by single premium
Recall that, by assumption, present values do not consist of single premium payments, so:
B,(ty) =fa(tx) =0 Vke{l,..,m}. (32)

In the given case the marginals F (yj) in formula (24) are specified as:

0 for ye <0
Fy (yk) = 1 — Dai (O,tk) for 0< Yk < fi (tlc) , k€ {1, ,m} . (33)
1 for  yr > fi(tk)

In practice, disability annuities are often contracts valid for the period that an individual is not
retired. As a consequence, for n not too large (otherwise the death rates will dominate), pa; (0,1)
is usually an increasing function of ¢ for t € (0,n]. This yields the following theorem:

Theorem 2 If dp%go,tz > 0, the comonotonic joint distribution of the present value correspond-
ing to a disability annuity contract, paid against single premium, with the payment scheme as



specified in (31) and (32) is:

0 for w < 0
PrW <w]=q 1-pai(0,te) for 3¢y filte) Sw <Pilefi(te), L€ {L,..,m};
1 for w> > fity)-
(34)
Proof. Note that, for any y, < 0 with £ € {1, ...,m} :
FW1,“.,Wm (yla 7ym) = FW1,...,Wm (07 "':07y2707 70) =0. (35)

Besides, if pq; (0,t) is increasing in ¢ € [0,7n] we have for yq,...,y—1 > 0 and 0 < yp < f; (to),
2e{2,..,m}, that

FWlw-,Wm (yl’ weny ym) = FWL---»Wm (07 "'707y13+17 ---7ym) . (36)

The above equality states that if an individual is not disabled at time tp, he cannot be disabled
before that time either. This is equivalent to saying that if an individual is disabled at time g,
he will remain so with certainty till the expiration of the contract. This implies that the present
value only depends on the time at which the contract enters the state ”Disabled”. This proves
the theorem. m

Note that the Markov chain corresponding to the distribution of W is hierarchical. The chain
is even more rigorous than the ordinary hierarchical Markov chain considered in Subsection 4.1:
a disabled individual can neither recover nor die. In other words: compared to the ordinary
hierarchical Markov chain, the state ”Disabled” is an absorbing one and not a strongly transient
one.

On the other hand, since the marginals are fixed, the probabilities to get disabled are lower
and the death rates for an active person are higher.

The fully continuous version of (34) leading to a benefit payment of dB; (¢} if the contract is
in state ¢ at time ¢, with ¢ € (0,7n] (so dB; (t) > 0 on the same interval ¢ € (0,n]) is obtained by

.....

0 for w < 0;
PrW<w]={ 1-pa(0,t) for w= [;"fi(s)ds, tel0,n]; 37)
1 for w > f(;ﬂ fi(s)ds.

One of the numerical examples in Section 6 will be based on this contract.

The next equations show to illustrate the transition intensities corresponding to the comonotonic
joint distribution. These are obtained from the forward differential equations of Chapman-
Kolmogorov. For notational convenience, they are accompanied by an asterisk superscript (*).
The original transition intensities, corresponding to the joint distribution of V, are given between

10



brackets.

pia(t) = 0

(10 ) = iy (22 4 0.0 s )+ 1as ) ) (39
pig(t) = 0

(ma) = oy (222 = 0.0 s 1)) ()
) =

(s = gy (2502 4 00 a0 4 a @) ) 40
Hal) = e

(o0 = s (220 0.0 ) ). (a1

Next, we will consider annuity treaties where premiums are paid while the contract is in the
state ”Active 7. We will treat this topic in the same way as above

5.2 Premium payment in state ” Active”
In this case the premiums discounted to time-upon-issue are:
fa (te) = v (tg) (Ba (tk) — Ba (tr-1)) <0, Vke{l,..,m}. (42)

The marginals Fi (yx) in equation (24) are, as one might expect, a bit more complicated than
in the single premium case:

0 for  yk < fo(te);
) 1 =04 (0,tx) —paa (0,tx) for fo(te) <ye <0
Fi (ue) = 1= pas (0, t) for 0<ye<fifte); @ FEhemmb (43)
1 for Yk > fi (tk) -

We again assume that pe; (0,t) is an increasing function of ¢ for ¢ € (0, )], leading to the following
theorem:

Theorem 3 If %’%&Q > 0, the comonotonic joint distribution of the present value correspond-
ing to a disability annuity contract, with the payment scheme as specified in (31) and (42) is:

Pr{W < w)
0 for w < 3kl fa(t)s
_ }] 1-Pai(0,t) = paq (0,s) for v Ee[gg &?:_?ﬂffﬁ}i 1)12[?;,&2:5'1(;}_’1)) ) )
1 — pai (0, %) for w € [max[g; (r),00,9:(r=1)), 7 €{l,.., min};
1 for w > fi(te) -

11



In the above formulas

£
ga(t) = Y falte);
k=1
g(r) = > filt)+d falts); (45)
k=r+1 k=1
Tmin = mMax re{l,...,m~l}| Z fi(tk)+2fa(tk)<0 .
k=r+1 k=1

Proof. Note that, for any yy < fo (t¢) with £ € {1,...,m}:
FW1,.,.,Wm (yla >ym) = FWl,...,Wm (07 oy 07?/27 07 ey 0) =0. (46)

Furthermore, if pq; (0,¢) is increasing in ¢ € [0, n] we have the following:
1. Ify; > fo(t;) and fo(t) <ye<Oforje{l,..,£—1} and £ € {2,...,m} then

Fle‘-qu (y17 ey Y2,y 7ym) = FWl,u-,Wm (fa (tl) yeey fa (té) y Ye4+1, 7’£Im) ) (47)

implying that if an individual is active at a certain time, he is active all the time before.
The consequence is that a disabled individual cannot recover.

2. For yy,...,ye-1 > 0and 0 < yp < fi (tg), £ € {2,...,m}, that

FWl,...,Wm (y17 7ym) = FW1,~.,Wm (07 ey 07y2+17 uy'm) - (48)
The above equality states that if an individual is not disabled at time ¢;, he cannot be
disabled before that time either. This is equivalent to saying that if an individual is
disabled at time ¢, he will remain so with certainty till the expiration of the contract.
This implies that the present value only depends on the time at which the contract enters
the state "Disabled” or the time at which the contract enters the state "Dead ”.

This proves the theorem. m

The fully continuous version of (44) leading to a benefit payment of dB; (¢) if the contract is in
state 4 and a premium payment of —dBj (t) if the contract is in state a at time ¢, with ¢ € (0, 7]
(so dB; (t) > 0 and dB, (t) < 0 on the same interval ¢ € (0,n]), is, just as in the case of single
premium payment, obtained by letting m — oo and besides max;e(q, . ,m—1} [tit1 —t:] — 0 (cf.
Remark 1). The result is:

0 for  w< [§ fo(s)ds;
1 = Pai (0,9 (W) — Paa (0,94 (w)) for [ fa(s)ds <w < 0;
< = 0
PriW <] 1— pai (0,01 ()) for 0<w< [Ifi(s)ds; (49)
1 for  w> [ fi(s)ds.
In the above formula g; () and g4 (u) are the solutions of ¢ in the equalities
n T
/ fi(s)ds+ / fa(s)ds=w (50)
Jt Jo
and .
/ fa(s)ds =w, (51)
0
respectively.

One of the numerical examples in Section 6 will deal with the continuous case, and will
therefore be based on equation (49).
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5.3 Calculation of transition probabilities

Note that up to now we assumed that the transition probabilities were known. In fact, they
need to be computed first by solving a system of forward differential equations of Chapman-
Kolmogorov. It turns out that the method, in order to be computationally efficient, requires
that the numerical calculation of the transition probabilities does not take too much time. With
the availability of modern software packages (such as Mathematica) and powerful computers,
this is likely to be the case, except when the number of states is very high. One can also assume
that only a limited number of transitions can take place in a certain period of time. For instance,
both in the ATDS model and in the disability annuity model used in the Netherlands (cf. Alting
von Geusau, 1990, and Gregorius, 1993, respectively) it is supposed that there can be at most
one transition per year.

In the next section, a numerical example will be displayed, illustrating the two theorems we
Jjust derived.

6 Numerical examples

An insurance contract pays an amount of 1 on a continuous basis while the insured is in the
state disabled. Hence B;(t) =t; ¢ € [0,n]. We use the same transition intensities as those
applied in the numerical example 5.3 of Hesselager & Norberg (1996):

Paa(t) = hig (t) = 0.0005 107120088 GO, . (1) = 0.005;

1
o (B) = 0.0004 4 107346+0.06(30+8). 5 — Toog: ™=30; 6=In(L045). (52)
The value of § corresponds to an annual level of interest of 4.5%. The specification of the transi-
tion intensities results in the transition probabilities Daa (0,1),

Pai (0,t) and pag (0,t) as displayed graphically in Figure 3. We have studied two separate ways
of premium payment:

1. Payment by single premium;
2. Level premium payment such that there is equivalence at issue.
These two cases will be treated below.

Case 4 (Payment by single premium) Recall that we have assumed that single premiums
are not part of the present value. Hence in case of single premium payment the minimal value
of that present value is equal to 0 (corresponding to the event that the contract will never enter
the state ”Disabled”) while the mazimal value is equal to

~30
/ (1.045)" dt = 16.6527. (53)
0
The algorithm by Hesselager and Norberg has been applied for a = —0.01, b = 16.66 and A’ =

W700! corresponding to 2381 points of support.
The distribution of W, displayed in formula (87), is as below:

0 for w < 0;
Pr(W<w)={ 1—pa(0,t) for w= ln(T.lMB_F ((1.045)t - (L045)™) te[0,n]; (54)
1 for w > 16.6527.

Both the approzimate c.d.f. of V and the comonotonic c.d.f., exhibited in (54), are as displayed
in Figure 4.
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Figure 3: Graphical display of paq (0,t) (dotted), pai (0,¢) (solid) and peg(0,t) (dashed) as a
function of ¢.
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Figure 4: C.d.f. of present value in case of single premium payment: approximate version of V,
obtained by Hesselager & Norberg algorithm (solid curve) and comonotonic version W (dotted
curve).
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Case 5 (Level premium payment) In case of level premium payment on a continuous basis,
with premium volume c, the premium payment function has the shape B, (t) = —ct; t € [0,n].
The level premium satisfying the principle of equivalence is in this case equal to

-5
o Jp e 0,0
fo e—atpaa (0» t) dit
The mazimum possible present value is the same as in the previous case, while the minimum,

attained in case the individual remains in the state ”Active” from the beginning till the end of
the contract period, proves to be

= 0.0175456. (55)

‘3
—c / e70dt = a = —0.2922. (56)
0

The algorithm by Hesselager and Norberg has in this case been used for a = —0.35, b = 16.7 and,
just as in the previous case h' = T7007 corresponding to 2435 points of support. The distribution
of W, displayed in formula (49), reads as:

0 for w < —0.29;
_ ) 1=4i (0,6 (w)) — Paa (0,94 (w)) for —0.2922 <w < 0;
Pr[W <u]= 1~ ai (0, 9; (w)) for 0<w < 16.6527; (57)
1 for  w >16.6527.
In (57), ( . )
L I &
Fc n{l+ =
giw) = g ) - O (59)

Both the approzimate c.d.f. of V and the comonotonic c.d.f. ezhibited in (57) are as given in
Figure 5. For graphical reasons the plotting has been restricted to the region where the deviations
between the two curves are relatively large.

One can see that, in both cases, and especially in the case of level premium payment, the
approximation of the c.d.f. of V by means of the c.d.f. of W gives very good results. Besides,
the approximation method has shown to be computationally very efficient. In both the cases of
single premium and level premium payment, it took only a few minutes to derive the c.d.f. of
W while the algorithm by Hesselager and Norberg required many hours of calculation time.

7 Conclusions and future research

In this paper, we have shown that the method implemented by Goovaerts et al. (1999) to ap-
proximate the probability distribution of a present value by means of the c.d.f. of the random
variable being the upper bound in convex sense can also be applied to some life insurance con-
tracts with more than two states applying. In the cases considered the c.d.f. of the comonotonic
joint distribution turns out to have a simple structure.

This paper is only a start-up for an extensive line of research. Extension in several ways is
necessary. It has to be investigated what the consequences would be if more states were added
to our model. Furthermore, the paper has dealt with insurance treaties where there are only
benefits due in case of remaining in a state. Contracts involving benefits due in case of transition
from one state to another (lump sum benefits e.g. due upon death of the insured) have not been
considered. It would be interesting to find out what the consequences would be in case such
lump sum benefits were also part of the insurance policy.

Finally, it would be nice if there were a general method to derive the c.d.f. being lowest in
convex order. This would improve the testing of the approximation’s quality.
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obtained by Hesselager & Norberg algorithm (solid curve) and comonotonic version W (dotted
curve).
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