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We present an analytical low-energy theory of piezoelectric electron-phonon interactions in un-
doped Weyl semimetals, taking into account also Coulomb interactions. We show that piezoelectric
interactions generate a long-range attractive potential between Weyl fermions. This potential comes
with a characteristic angular anisotropy. From the one-loop renormalization group approach and a
mean-field analysis, we predict that superconducting phases with either conventional s-wave singlet
pairing or nodal-line triplet pairing could be realized for sufficiently strong piezoelectric coupling.
For small couplings, we show that the quasi-particle decay rate exhibits a linear temperature de-
pendence where the prefactor vanishes only in a logarithmic manner as the quasi-particle energy
approaches the Weyl point. For practical estimates, we consider the Weyl semimetal TaAs.

I. INTRODUCTION

The physics of three-dimensional (3D) Weyl semimet-
als (WSMs) is presently attracting a lot of interest. For
several different candidate materials, experiments have
recently revealed WSM signatures in various observ-
ables [1-3]. Within band theory, WSMs have an even
number of touching points (the so-called Weyl nodes)
in the Brillouin zone. Near those special points, low-
energy quasi-particles have a linear spectrum and rep-
resent Weyl fermions [4-9]. The Weyl character of low-
energy fermions implies the existence of a chiral anomaly
which in turn produces characteristic signatures in ex-
perimentally accessible observables such as the magne-
toconductivity [8]. The remarkable transport features
of WSMs may also lead to useful practical applications
[10, 11].

We here study the theory of electron-phonon (e-ph)
interactions in WSMs. Apart from the case of optical
phonons [12-17], the exploration of e-ph coupling effects
in WSMs has not received much attention by theorists
so far. However, it has been pointed out that in the
static (frozen phonon) limit, strain engineering can be
used to induce pseudo-scalar and pseudo-vector poten-
tials that couple to Weyl fermions [18-24]. We here fo-
cus on low-energy long-wavelength acoustic phonons with
linear dispersion, schematically written as Q(q) = ¢,u/q]
with sound velocity c,p,. The linear dispersion of phonons
as well as Weyl fermions suggests the existence of a scale-
invariant effective action that may allow for nontrivial
fixed points under the renormalization group (RG). We
shall assume below that all relevant phonon momenta
are well below the momentum separation b between a
time-reversed pair of Weyl nodes, |q| < b, such that
phonons cannot scatter electrons between Weyl points at
low temperatures. However, at elevated temperatures,
T 2 cprb/kp, this assumption breaks down and addi-
tional processes not considered in this work could take
place.

For insulators or semiconductors, the most important

couplings between electrons and acoustic phonons gen-
erally originate from either the deformation potential
or the piezoelectric interaction [25-27]. While the for-
mer is a short-range interaction, the latter represents
an anisotropic long-range interaction that only exists for
inversion-symmetry-breaking crystals. The so-called di-
rect piezoelectric effect refers to the appearance of an
electric polarization when a material is subjected to static
stress. On the other hand, in a metal, free charge carri-
ers will screen the electric fields produced by local dipole
moments, thereby preventing any macroscopic polariza-
tion. Nonetheless, it is still possible to speak of piezoelec-
tricity in metals by measuring the bulk electric current
in response to a time-dependent strain [28, 29|. Elec-
tric currents in response to strain have been discussed
in the context of WSMs in Ref. [30]. Below we will
employ piezoelectric coupling expressions derived within
the phenomenological theory of electronic insulators [31].
The main assumptions behind this approach are that the
electric field produced by phonons is approximately lon-
gitudinal, and that there are no free charge carriers re-
sponsible for screening. In that case, V- D = 0 can be
assumed for the electric displacement field D. A micro-
scopic derivation of the piezoelectric coupling [32] gives
further support to this phenomenological theory. The mi-
croscopic approach directly applies to insulators, where
one can neglect the frequency dependence of the permit-
tivity at frequencies well below the energy gap.

In undoped WSMs, the Fermi level is aligned with a
Weyl point. Albeit the spectrum is gapless, screening
is absent since the density of states vanishes at the Weyl
point even when weak disorder is taken into account [33].
In fact, electron-electron (e-e) interactions are marginally
irrelevant in 3D WSMs, such that the dielectric function
picks up only logarithmic corrections at low energy scales
[34-38]. However, when computing finite-temperature
observables, it may be necessary to include the dynamic
screening effects represented by these logarithmic correc-
tions, as we will discuss in Sec. V in more detail.

We thus conclude that the piezoelectric coupling in



undoped WSMs can be obtained along the lines of
Refs. [27, 31, 32], see Eq. (21) below. If piezoelectric cou-
plings are finite, we find that they dominate over all other
types of e-ph couplings which represent RG-irrelevant
short-range interactions. Since many WSMs discovered
so far belong to polar crystal symmetry classes, e.g., the
ditetragonal-pyramidal 4mm class for TaAs, piezoelec-
tric couplings are expected to play an important role for
a wide class of WSM materials. Our general results will
below be illustrated for the concrete case of TaAs, which
also represents one of the experimentally most intensely
studied WSMs [39-48]. For related ab initio results, see
Refs. [49, 50].

In this paper, we present an analytical theory captur-
ing the generic low-energy physics of undoped 3D WSMs
taking into account the piezoelectric e-ph interaction. We
also include e-e interactions even though they represent
marginally irrelevant perturbations in WSMs. Nonethe-
less, their interplay with the piezoelectric coupling may
lead to an instability in the RG flow [51] which drives the
WSM into a Weyl superconductor [9, 52-58] phase. For
a similar but different study of e-e and e-ph interactions
in the context of two-dimensional (2D) Dirac fermions in
graphene layers, see Ref. [59]. The main limitations of
our theory come from the neglect of disorder and from
the often rather complex band structure of real WSM
materials. Moreover, we confine ourselves to bulk prop-
erties only, leaving studies of surface state properties to
future research.

The structure of the remainder of this paper is as fol-
lows. In Sec. II, we explain the model used in our study,
derive the piezoelectric coupling Hamiltonian, and intro-
duce a local field theory capturing both e-e and e-ph
interactions. We use this field theory to derive the ef-
fective interaction potential between two Weyl fermions
and show that the phonon-mediated attractive contribu-
tion has a characteristic angular anisotropy. In Sec. ITE,
we provide parameter estimates for the example of TaAs.
In Sec. III, we then derive and discuss the RG equations
found from a one-loop analysis. We continue in Sec. IV
by investigating the stability of different superconducting
phases by an analytical mean-field analysis. In addition,
in Sec. V, we address the temperature and momentum de-
pendence of the quasi-particle decay rate for small piezo-
electric couplings where no interaction-induced instabil-
ities are expected. Finally, we offer our conclusions in
Sec. VI. Technical details can be found in the Appendix.
We put h = kg = 1 throughout.

II. PIEZOELECTRIC INTERACTIONS IN
WEYL SEMIMETALS

In this section, we describe the model used in this work
and derive the piezoelectric coupling between electrons
and acoustic phonons in undoped WSMs. We first briefly
summarize the electronic Weyl Hamiltonian in Sec. IT A,
and then discuss a general acoustic phonon model in

Sec. II B. We proceed in Sec. II C with a derivation of the
piezoelectric coupling Hamiltonian. Next, in Sec. II D, we
introduce a local field theory approach in order to cap-
ture both Coulomb interactions and piezoelectric inter-
actions on equal footing. We also derive the attractive
phonon-mediated potential and show that it exhibits a
pronounced angular anisotropy.

A. Weyl Hamiltonian

In the absence of e-e and e-ph interactions, fermionic
quasi-particles near a given Weyl node are described by
the Weyl Hamiltonian [4-8],

Hy = ZW(P) [vipL-o1 +wvspsos]y(p), (1)

where the momentum p = (p_,ps) is measured with re-
spect to the Weyl node, ¢ = (¢1,%,)" is a spinor field
operator, and the Pauli matrices o, = (01,02) and o3
(with identity o) act in spin space. In Eq. (1) we con-
sider anisotropic Fermi velocities, v3 # v, . In fact, such
anisotropies can be generated by the piezoelectric interac-
tion in crystals with tetragonal symmetry, see Sec. IIT A 4
below. However, for simplicity, we will often specialize to
the isotropic case with

v =vg = 0. (2)

Throughout we assume that the chemical potential is lo-
cated exactly at the Weyl node.

WSMs have an even number 2N of Weyl nodes in
the Brillouin zone. In particular, time-reversal invariant
WSMs with at least four Weyl nodes generically appear
as intermediate phases between the trivial and the topo-
logical insulator phases of non-centrosymmetric semicon-
ductors, where — depending on the space group of the
crystal — all 2N Weyl nodes could be located at the
Fermi level [60, 61]. For a continuum model that pro-
duces four Weyl nodes by breaking the reflection sym-
metry of a Dirac semimetal, see Ref. [6].

Below we employ the fermionic Matsubara Green’s
function (GF) [25, 62| for Weyl fermions near a given
node,

Goor(x — ') = —(Totpy (x)], (a")), (3)

where T denotes imaginary time (7) ordering, the spin
index is ¢ =71,], and we use the four-vector notation

x = (r,r). Taking the Fourier transform, with four-
momentum p = (iw, p), the GF has the spin matrix form
1 . )

_ —twT+ip-T

G(z) = % ;e P*G(p), (4)

where w denotes fermionic Matsubara frequencies, the
volume is V, and 8 = 1/T. Equation (1) yields the GF
matrix

Wog + V1Pl -0 +VU3p303

BT )

(5)



which has poles at iw = £ F(p) with

E(p) = /vl p? +vip3. (6)

Such a gapless dispersion relation is characteristic for 3D
Weyl fermions. For the isotropic case (2), this yields the
familiar massless Weyl fermion dispersion with F(p) =
v|p|. Unless noted otherwise, we consider the thermody-
namic limit with 7" = 0, where all discrete sums such as
those appearing in Eq. (4) are replaced by integrals. This
step also implies that we investigate only bulk physics.

It will sometimes be advantageous to work in the band
basis where G(p) is diagonal. Labeling these bands by
@ = + and using Eq. (6), we find

5 ’
Guw (p) = —

) = e Cup) (7)

The mode expansion for the fermion field then reads

1 DT
Yolr) = - ijump)wp,ue’p : (8)

where U(p) is the unitary matrix that diagonalizes the
single-particle Hamiltonian in Eq. (1). Note that U =
U(P) is a function of the angles defined by the unit vector
p = p/|p| in momentum space. The Fourier transform of
the electron density operator, p.(r) = 111, is then given
by

pela) = > [UPUP+a)],, Vhtpiqu  (9)

S TN

Allowing for contributions from all 2N Weyl nodes in the
Brillouin zone (indexed by h), we have p.(r) =", ¢;L1/’h~

B. Phonons

We here focus on acoustic phonons at long wave
lengths. The physics is then described by the lattice dis-
placement field u(r). With the linearized strain tensor,

1

Ujk = 5(8juk + 8kuj), (10)

and the fourth-order stiffness tensor Cj;;, the Euclidean
action is given by [25, 63]

1
Spllz/d4x %O(&u)2+§zcijkzuijukl , (11)

ijkl

where py is the mass density and d*x = drd®r. Our main
interest in this work is in describing possible electronic
instabilities of WSMs due to piezoelectric interactions,
and we will therefore not study a specific phonon model.
We assume instead that all three (J = 1,2,3) acoustic
phonon modes have a linear dispersion,

Qs(q) = cs(q)ldl, (12)

where the respective sound velocity, c¢;(q), could depend
on the angular direction q = q/|q|. Using bosonic anni-
hilation operators, a ;(q), the standard mode expansion
of the lattice displacement field is given by [25]

etar
Jz:l Zq: vV 2POVQJ

where the €/(q) are polarization unit vectors.
Next we define the phonon propagator [62],

—(Truj(z)ur(2")). (14)

Taking the Fourier transform and using ¢ = (iw,q)
with bosonic Matsubara frequencies w, we obtain from
Egs. (12) and (14) the result

6'-]
Dji(q) = iz (7 J

po 2= (iw)? — 22(q)

(q) + h.c., (13)

Djg(z—2') =

= Dyj(=q)- (15

For an isotropic continuum, we may identify J = 1 with
the longitudinal mode and J = 2,3 with the transverse
modes, where ¢c; = ¢; and ¢z 3 = ¢; denote the longitudi-
nal and transverse sound velocities, respectively. We will
often make the simplifying assumption

Ct=c = Cpn, Cpp K, (16)
on top of the isotropic Fermi velocity condition (2).
These assumptions do not affect scaling properties in an
essential way. Moreover, relaxing those approximations
does not pose conceptual problems and could allow one to
take into account ab initio results, see, e.g., Refs. [50, 64].

C. Piezoelectric interaction

A microscopic derivation of the e-ph interaction in in-
sulators encounters short-range as well as long-range in-
teractions [27, 32]. The long-range contributions can
be organized in terms of a multipole expansion of the
electron-ion interaction potential. The first term in this
expansion is a dipolar contribution which must van-
ish due to the acoustic sum rule. The next terms are
quadrupolar contributions which account for piezoelec-
tric couplings and vanish for centrosymmetric materials,
but not when inversion symmetry is broken. A phe-
nomenological derivation [26, 31] starts from the consti-
tutive relation for the electric displacement,

Di = Zeijkujk + ZEijEJ‘, (17)
Jk J

where E is the external electric field, e;;, the piezoelec-
tric tensor, and &;; the permittivity tensor [25]. A non-
vanishing piezoelectric tensor arises if strain can induce
D # 0 even for E = 0. The relation e;;; = (0D;/0uji)E
and the symmetry of the strain tensor, ;i = ug;, imply



that the piezoelectric tensor is symmetric in the last two
indices, e;;; = €ik;-
In the absence of free charges, from Eq. (17) we have

V-D=0= Zeijkaiujk + foijaiEj~ (18)
ijk ij

Taking the Fourier transform gives

Z ijqiEj(q) = —i Z €ijkqiq;ur(a). (19)
ij ijk

Since the electric field is effectively longitudinal [31], we
can write E(q) ~ —iq(b( ) with the scalar potential

2 Zezjk%(buk (20)
ijk

For notational simplicity, we assume an isotropic permit-
tivity tensor, €;; = €d;;.

The scalar potential (20) now couples to the electronic
charge density, cf. Eq. (9), resulting in the piezoelectric
interaction Hamiltonian

Zzewk (@pe(—a).  (21)

ka q#0

We emphasize that the coupling strength in Eq. (21) de-
pends on the direction of the unit vector ¢, where the
q = 0 mode is omitted to ensure overall electric neu-
trality. From dimensional analysis, Hp,, is marginal un-
der RG transformations, and second-order perturbation
theory implies a linear-in-7' dependence of the quasi-
particle decay rate, see Sec. V for details. At low T', the
piezoelectric interaction will therefore dominate over RG-
irrelevant short-range contributions, e.g., from the defor-
mation potential. We find that the latter terms generi-
cally cause a quasi-particle decay rate scaling as ~ T3.
In fact, for insulators and semiconductors, the piezoelec-
tric interaction is known to dominate small-q scattering
if it is allowed by crystal symmetries [26]. We emphasize
that the piezoelectric interaction is marginal only in three
spatial dimensions. In 2D systems, the corresponding op-
erator is relevant instead. In practice, such interactions
are then screened above a length scale defined by the bare
coupling constant.

Finally, in view of the symmetry property e;jr = €;xj,
it is customary to express the piezoelectric tensor in Voigt
notation [31],

€ijk = €i(jk) — €im, ™M =1,...,0, (22)

where matrix elements with (11) — 1, (22) — 2, and
(33) — 3 correspond to tension or compression, and
those with (23) = (32) — 4, (13) = (31) — 5 and
(12) = (21) + 6 describe shear. Depending on the crys-
tal symmetry, the various components in Eq. (22) may
be related to one another or they could vanish identi-
cally, see Ref. [65] for useful tables. For instance, for
TaAs with space group I4;md, No. 109, one finds only
three independent components, namely e;5, e3; and ess.
Their respective values have been computed by ab initio
methods [50].

D. Electron-electron interactions

As we show below, the piezoelectric interaction (21)
generates a long-range e-e interaction that is attractive in
the low-frequency limit where retardation effects can be
neglected. This phonon-mediated potential has a charac-
teristic angular anisotropy and competes with the repul-
sive Coulomb interaction in undoped WSMs. We there-
fore also include Coulomb interactions from now on.

To that end, we express the Euclidean action of the
system in local form by introducing a scalar bosonic
Hubbard-Stratonovich field ¢(x), see Refs. [37, 38|.
Loosely speaking, the field ¢ describes photon modes me-
diating Coulomb interactions. It couples to the sources of
the electric field, which include both the conduction elec-
tron density and the effective charge density generated
by strain via the piezoelectric effect. With the phonon
action Spp in Eq. (11), we start from the total action

S = Sy + / d'e[ 2, 0,0 — (Vo) (23)
-1

Z
+ %(V@Q +iget)" ) o +igpn Y €jrdjp Ukl} :
kL

The bare weight of the fermion (Coulomb) field is given
by Zy = 1 (Z, = 1). These factors could, however,
change during the RG flow, see Sec. III. The partition
function is thereby expressed as a functional integral over
the fermionic Grassmann fields (¢, ¢*), the displacement
field u, and the field ¢, ie., Z = [D[y,y*,u,ple™
[62]. For simplicity, we here assumed isotropic Fermi
velocities, cf. Eq. (2), but we also discuss the general
case in Sec. III. The action (23) contains two interaction
vertices with couplings g. and gp. Their diagrammatic
representation is shown in Fig. 1.

In order to verify that Eq. (23) makes sense, let us now
integrate out the bosonic field . With p, = ¥*1 and
switching to Fourier space (d*q = dwd?q), the interacting
part of the action is then given by

. — d4 ge _
S = [ o (W pel@)pe(~a) + (24)

+ 9eGpn > _ €iji Wuk(q)pe(—q) +
ijk

9 h 1
p Z Z €ijk€lmn qu]Q|2qm U (q)un(_q)> :

ijk lmn

The first term corresponds to the Coulomb e-e interaction
upon choosing g2 = €2 /e, while the second term repro-
duces the piezoelectric interaction (21) for geg,n = e/e.
The bare couplings are therefore given by

e 1
ge*ﬁv gph*\@-

We emphasize that the charge e is associated only with
the Coulomb vertex ~ g. in Fig. 1. In Egs. (23) and

(25)



(a) (b)

Figure 1. Feynman diagrams for the vertices in Eq. (23),
coupling the field ¢ (wiggly curve) to (a) electrons (solid line)
and to (b) phonons (dashed). The Coulomb (piezoelectric)
vertex ~ ge (~ gpr) is shown as filled (open) circle.

(24), we have tacitly assumed that intra- and inter-node
Coulomb interactions can be taken identical. Since the
effects considered in our paper come from the long-range
1/r tail of the Coulomb potential, the couplings between
long-wavelength density fluctuations p;, and pps of elec-
trons near the Weyl nodes h and h’, respectively, are
approximately described by the same potential. The last
term in Eq. (24) describes the energy density associated
with strain-induced electric fields. Being quadratic in
the strain tensor, this contribution generates the so-called
piezoelectric stiffening correction, see Ref. [65] for details.
This modification of the phonon dispersion typically acts
to increase sound velocities [16, 65]. Since here our main
interest is centered on electronic instabilities, we will sim-
ply assume that the phonon velocities ¢;(q) in Eq. (12)
already incorporate piezoelectric stiffening to all orders
in gpp.

Next we discuss the effective interaction potential be-
tween two Weyl fermions described by the above theory.
The two diagrams determining the effective e-e interac-
tion at tree level, i.e., to lowest nontrivial order in per-
turbation theory, are illustrated in Fig. 2. In particu-
lar, Fig. 2(b) defines a retarded e-e interaction poten-
tial, Vpn(g), mediated by the piezoelectric interaction,
where ¢ = (iw, q) is the exchanged four-momentum. Us-
ing Eq. (23) and the phonon propagator in Eq. (15), we
find

Z gegph/po Z |€LJkQLQJ6k(Q)’ . (26)

4
7 3 (a) &5 al

Neglecting retardation effects by going to the static limit,
w — 0, the potential can be written as

with the anisotropy functions

Z ezgk%%ek

ijk

;o (29)

’VJ(Q) - |4

which describe the angular dependence of the phonon-
mediated interaction. We emphasize that y(q) > 0 for

(a) (b)

Figure 2. Effective e-e interaction at tree level. (a) Repulsive
Coulomb interaction. (b) Phonon-mediated e-e interaction,
see Eq. (26).

all directions ¢, and thus the interactions in Eq. (27) are
always attractive. Combining Eq. (27) with the long-
range Coulomb interaction in Fig. 2(a), we arrive at the
total e-e interaction potential

Viot(q) = Z (1—91”17(@). (29)

Po

Let us now consider WSMs in the 4mm crystal class,
which in particular includes TaAs, and also use the sim-
plifications in Egs. (2) and Eq. (16). In Voigt notation,
see Sec. ITC, we define the ratios of piezoelectric coeffi-
cients

A= g8 (30)
The anisotropy function v = v(6) now depends only on

the polar angle 6 of q. To evaluate Eq. (28), the polar-
ization unit vectors are parametrized as

elA:ZA’ €2A:w7 €3A:AX€2A,
(@) =1iq, €(q) %% dl (@) =daxe(q)
(31)
leading to
71(0) = 33 cos?0 [1+ (2A + B — 1) sin® 0]2,
ph
72(0) = 07 (32)
v3(0) = ;’3 sin? @ [(B — 1) cos® 0 + 14008(29)]2
ph

The contribution from the J = 2 transverse mode, where
the polarization is always perpendicular to z, vanishes
identically. More generally, () = 0 whenever €’z = 0.

In the simplest approximation, one may just average
over the directions q in Eq. (27), see Refs. [25, 31]. We
write the angular-averaged total interaction potential as

ge(l _’7)

V:cot( ) q2 (33)

For the 4mm crystal class, we find from Eq. (32)

T 2
5= Ion / dosin<e>v<a>—1;’;<%e“) RN

2po Cph



Figure 3. (a) Polar plot of the anisotropy function ~(6) in
Eq. (27) for the case of TaAs, with v(¢) multiplied by g2, /po.
We take ¢ = 20e0, where €y is the free-space permittivity. The
piezoelectric tensor values are taken from Ref. [50], where we
get ¥ ~ 0.20 in Eq. (34). The blue color indicates that the
phonon-mediated interaction is always attractive. (b) Effec-
tive anisotropy function of the total e-e interaction potential
in Eq. (29), where we adjust ess such that ¥ = 0.97. Blue
again indicates attraction while orange represents repulsion.

with the coefficient
1
wy = I [104% +4A(B+1) +2B* + 3] . (35)

Clearly, for 4 > 1, the averaged total interaction (33) is
attractive. One thus expects a gapped superconducting
phase with s-wave singlet pairing. However, as we show
in Sec. IV, for 4 < 1, one may also encounter more exotic
superconducting phases exhibiting, e.g., nodal-line triplet
pairing.

E. Parameter estimates

To get concrete predictions from our theory, we need
information about the piezoelectric coefficients [66-68],
the permittivity €, the mass density pg, and the Fermi
as well as the sound velocities. Since in TaAs the lattice
parameters are a; =~ 3.43A and a3 ~ 11.6A, and the
conventional unit cell contains 4 Ta and 4 As ions, the
mass density is pg ~ 1.24 x 10* kg/m?>. For simplicity, we
here adopt the simplifying assumptions in Egs. (2) and
(16). For the Fermi velocity, we take hv ~ 2 VA [69],
which corresponds to v ~ 3x10° m/s. The sound velocity
is assumed to be given by cp, >~ 6 X 103 m/s, cf. the value
quoted in Ref. [70] for TaN. For the piezoelectric tensor
of TaAs [50], we use ez3 = —1.89 Cm~2 and the ratios
in Eq. (30) are A ~ —2.62 and B ~ —0.43. This gives
wy =~ 4.40. Using the rough estimate € ~ 20g( [38], we
obtain aeg ~ 0.24 and 4 = 0.20. The latter is well below
the critical value 4 = 1. However, the value of 4 could in
principle be higher in other materials which might have,
for instance, larger piezoelectric coefficients or smaller
permittivity.

Figure 4. Schematic form of the possible amplitudes gener-
ated by the local field theory in Eq. (23), where shaded regions
represent dressed vertices in a perturbative expansion.

Moreover, the approximation in Eq. (33) neglects the
angular anisotropy of the effective interaction. A polar
plot of v(f) based on our estimates for TaAs is shown
in Fig. 3(a). The attractive interaction strength is max-
imal for # = 7/2. This shape of v(0) is representative
of the regime |e15| > |ess| > |es1|, which is also realized
for the paradigmatic piezoelectric insulator BaTiO3 [66].
For TaAs, the total e-e interaction potential is repulsive
in all directions. However, for higher values of 4 and de-
pending on the relative strength of the Coulomb and the
piezoelectric terms, there may be directions along which
the total interaction potential becomes attractive even
for 4 < 1. In this case, superconducting phases could
be possible despite the effective repulsion in the s-wave
channel. In Fig. 3(b), we show the angular dependence
of the total e-e interaction potential (29) for ¥ = 0.97. In
this case, the total e-e interaction potential changes sign
as a function of § and becomes attractive for § ~ /2.

III. RG ANALYSIS

In this section, we turn to the derivation and solution
of the one-loop RG equations. In an infinitesimal RG
step, the flow parameter changes as £ — £ + d¢, where
A(¢) = e~*Ay is the running high-energy bandwidth cut-
off with bare value Ag. We obtain the RG equations
by the standard momentum-shell integration approach,
where in each RG step one integrates over all field modes
appearing in the partition function with energies in the
shell A(4 4+ d¢) < E < A(¢). The resulting contributions
to the partition function are then taken into account by
renormalization of the various couplings in the action,
see Refs. [51, 62].

We start from the observation that for the local field
theory (23), perturbative expansions of physical observ-
ables involve only diagrams of the types shown in Fig. 4.
In all these diagrams, fermion loop contributions always
involve the Coulomb vertex ~ g.. This fact can be ra-
tionalized by recalling that the piezoelectric interaction
also arises from an expansion of the Coulomb potential,
see Sec. II C. The vertex g, only appears in regular, per-



turbative corrections to the Coulomb propagator. At the
one-loop level, perturbation theory in g. generates the
diagrams in Figs. 5(a), 5(b) and 5(c), which are precisely
the diagrams that govern the one-loop renormalization of
e-e interactions in the absence of phonons [38].

Within the static approximation with the angular-
averaged interaction potential in Eq. (33), the piezoelec-
tric interaction is combined with the Coulomb e-e inter-
action and its effect amounts to replacing g2 — g2(1—7).
As a consequence, the essential physics of the system can
be studied in terms of a single dimensionless coupling,
namely the effective fine structure constant

ge(l_ )

4mv (36)

Oleff =

Within this static approximation, the RG equation for
et at the one-loop level follows from the diagrams in
Figs. 5(a), 5(b) and 5(c). The result is [3§]

doeg - _Q(N + 1)@2
ar 3 off

(37)

Therefore, the system flows to strong coupling when the
effective fine structure constant becomes negative. This
happens for sufficiently strong piezoelectric coupling, in
the regime 7 > 1.

The strong-coupling phase realized for ¥ > 1 is ex-
pected to be an intrinsic superconductor since the attrac-
tive e-ph interaction then dominates over the repulsive
Coulomb interaction. Previous work [6, 53, 56] has dis-
cussed intrinsic superconductivity in doped WSMs. The
new element in our system is the long-range e-e interac-
tion resulting from a combination of unscreened Coulomb
and piezoelectric interactions. We recall that the stan-
dard BCS formula for the superconducting gap is given
by A ~ e 1/*FI\l where vp is the normal density of
states at the Fermi level and A denotes the strength of the
short-range attractive interaction. For vanishing vp, in-
trinsic superconductivity is not possible unless the short-
range interaction exceeds a critical coupling of the order
of the electronic bandwidth, far beyond the perturba-
tively accessible regime. As we will see in Sec. IV, the
long-range character of the piezoelectric interaction al-
lows for the opening of a finite gap even for the undoped
case with vp = 0. In this case, the gap is a function of
the dimensionless parameter a.g < 0. Eliminating the
need for doping to realize superconductivity in WSMs is
important because the density of states cannot be made
very large if one wants to stay below the energy scale vb,
where b is the momentum separation between two Weyl
nodes. In fact, at high energies, nonlinearities will appear
in the dispersion relation.

A. RG equations beyond the static approximation

We can use the RG approach to analyze how the
piezoelectric interaction affects the running couplings in

(a) (b) ()
PAEIREN
(d) (e)
Figure 5. Diagrams contributing to the one-loop RG equa-

tions. (a) Coulomb correction to the electronic self-energy.
(b) Vertex correction due to Coulomb interaction. (c) Polar-
ization bubble inserted in the Coulomb propagator. (d) Piezo-
electric correction to the electronic self-energy. (e) Piezoelec-
tric vertex correction.

the effective action (23) beyond the static approxima-
tion, i.e., including retardation effects. After perform-
ing an infinitesimal RG transformation and rescaling
Vs (14 6Zy/Zy) % and ¢ — (1 +6Z,/Z,) % to
absorb the field renormalizations, we obtain a correction
to the effective action of the form

0ge 04y 102,
7 +Z¢+2Z@)¢¢<P (38)
, ) 16Z,
+19ph (1 + ggph + ) Zejkla (Pukl}
gkl

We can compute dg. and dgp, from the corresponding
vertex corrections, whereas §Z, and Jv stem from the
electron self-energy and 0Z, from the polarization inser-
tion in the Coulomb propagator. The corrections can
then be absorbed as a renormalization of the parameters
U, Ge and 9ph-

At the one-loop level and at lowest order in gp, the
contributions from the piezoelectric interaction are rep-
resented by the diagrams shown in Figs. 5(d) and 5(e).
The latter are generated by taking into account the (non-
divergent) correction to the Coulomb propagator at order
ggh. In the following we will now separately discuss each
of the five diagrams in Fig. 5.

1. Coulomb correction to the electronic self-energy

The standard rainbow diagram in Fig. 5(a) describes
the lowest-order correction to the electronic self-energy
due to Coulomb interactions. A well-known consequence
of this contribution is a renormalization of the Fermi ve-



locities. Related effects have been predicted and exper-
imentally observed for graphene [71]. The diagram in
Fig. 5(a) yields the self-energy

Selp) = o [ GHrm G, 6)

with p = (iw, p). We evaluate Eq. (39) in App. A, where
we show that .. does not depend on the frequency w
and hence no field renormalization arises from this term,
0Zy = 0. Integrating out the modes of the field ¢ within
the high-energy momentum shell and keeping only self-
energy terms linear in the momentum p, we arrive at the
self-energy correction

2

68ee(P) = Sgﬁ (nipL - oL +n3psos)dl, (40)
where the numbers 1, and 73 depend on the Fermi veloc-
ity ratio vz/v,, cf. App. A. By comparing with Eq. (1),
we see that Eq. (40) generates a correction to the Fermi
velocities v, and vs. For the isotropic case (2), we get
1L = n3 = 4/3. In this case, we obtain

g2
v = G2 de. (41)

By itself, this term makes the Fermi velocity increase
under the RG flow.

2. Vertex correction due to Coulomb interaction

Next we turn to the diagram in Fig. 5(b), which pro-
vides a vertex correction due to the Coulomb interaction,
corresponding to a charge renormalization [62]. How-
ever, this diagram actually gives no contribution at all.
In fact, the instantaneous Coulomb interaction does not
give rise to charge renormalization for Weyl (or Dirac)
fermions at the one-loop level [72]. For the correspond-
ing 2D graphene case, charge renormalization is absent
also at the two-loop level [72].

8. Coulomb propagator: Polarization bubble

At the one-loop level, the self-energy of the field ¢
comes from the standard polarization bubble in Fig. 5(c).
Following the analysis of Ref. [38], the self-energy correc-
tion can be absorbed by the field renormalization of ¢,

Ng:
5ZLp = —medé, (42)
where the presence of a fermion loop in the diagram im-
plies that this correction is proportional to the number of
Weyl nodes, 2N. For simplicity, we have again assumed
isotropic Fermi velocities, see Eq. (2).

4. Piezoelectric self-energy correction

Next we turn to the electronic self-energy X, (iw, p)
due to e-ph interactions, which to one-loop order comes
from the diagram in Fig. 5(d). We evaluate this term in
App. B, see Eq. (B2). A non-universal contribution arises
for w = p = 0 which can be absorbed by renormalization
of the chemical potential. A similar contribution also
comes from e-e interactions, see App. A, and we eventu-
ally require the renormalized chemical potential to be lo-
cated at the Weyl node. As discussed in App. B, for 4mm
crystal symmetry and again using Egs. (2) and (16), the
self-energy correction after momentum-shell integration

is given by

2

1 (9e9ph€33> Cph (43)
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5Eep(p) =

with the numbers Cy ~ 1.40, C'| ~ 0.29 and C3 ~ 0.83
for TaAs. The smallness of the factor ¢, /v < 1, together
with the fact that in practice we have ¥ <1 in Eq. (34),
implies that contributions from Eq. (43) to RG equations
are rather small.

In marked contrast to the Coulomb case, we now en-
counter in Eq. (43) a term X, ~ w responsible for field
renormalization,

2
57y = o %(gegphe33> Zydl,  (44)

4Tpov v Cph

implying that the quasi-particle weight Z,, decreases un-
der the RG flow.

The p # 0 terms in Eq. (43) can be absorbed by
renormalization of the Fermi velocities. In general, even
for initially isotropic velocities, the fact that C; # Cj
implies that piezoelectric couplings intrinsically generate
anisotropic Fermi velocities. Because we have cp,/v <
1, however, this Fermi velocity renormalization is typ-
ically subleading against the dominant Coulomb term
in Eq. (41). For simplicity, we here neglect the RG-
generated anisotropy of the Fermi velocities and only
focus on the mean value of the Fermi velocity defined
as v = (2vuy + v3)/3, cf. Eq. (2). Taking into account
Eq. (41) and using the number C' = (2C, + C3)/3, with
C ~ 0.47 for TaAs, we obtain another correction to the
Fermi velocity which must be added to Eq. (41),

2 2
ot = — e Cpn (gph633> . (45)
47 pov Cph

Since C' > 0, the piezoelectric corrections tend to de-
crease the Fermi velocities.

5. Piezoelectric vertex correction

One-loop vertex corrections do arise from the piezo-
electric coupling, see the diagram in Fig. 5(e). This dia-



gram is studied in detail in App. C. We obtain a charge
renormalization corresponding to the RG flow of the cou-
pling g. in Eq. (25). For the 4mm crystal class, and using
again Eqs. (2) and (16), we obtain

2
é,ge _ 400 cpi <gegph633> gedg, (46)
TpPo VU Cph

with Cy ~ 1.40 for TaAs. Note the factor of ¢,p/v < 1,
which is a manifestation of Migdal’s theorem for WSMs
[73]. The fact that the same coefficient Cy governs both
the vertex correction and the field renormalization, see
Eq. (44), is due to a Ward identity for electron-phonon
interactions [74]. We also have dg,;, = 0 because there
are no loop corrections in this vertex.

B. RG equations

We now collect the results of Sec. III A. The one-loop
RG equations are then given by

dZy coh 92 Ipn€hs

e % 4 PoCay )

dz Ng?
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dv g2 | 37(Co+C) con Ipn€is )
¢ 6m2 2 v pocty, |

dge Ng:
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dgpn __ NgZgpn

dr 12720

We note that on effective length scales beyond the mean
free path, disorder effects could modify the above RG
equations. For g,, = 0, we recover the RG equations
in the absence of phonons, in which case the Coulomb
vertex ¢. is marginally irrelevant and the Fermi velocity
increases monotonically as we lower the energy scale. For
gph 7 0, the vertex correction dg./g. due to the piezoelec-
tric interaction gets canceled by the field renormalization
0Zy/Zy and ge still decreases with the RG flow. Solving
the RG equations numerically with the initial condition
set by the parameters for TaAs, we obtain the flow dia-
gram in Fig. 6(a).

However, we find that an instability can arise if the
piezoelectric interaction is strong enough to reverse the
flow of the Fermi velocity and make it vanish (or become
of the order of the phonon velocity) at some finite en-
ergy scale. A rough estimate of the condition for this
instability is obtained by imposing that dv/d¢ must be
negative at the beginning of the RG flow. This requires
v > %Cﬁ While Cy, C and w., are constants of
order unity, the factor of velocity ratio v/c,;, > 1 pushes
the critical 4 to a higher value than estimated within
the static approximation. Integrating the RG equations
numerically, we find that the renormalized velocity does

20
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Figure 6. Renormalized Fermi velocity v(¢) and Coulomb

coupling g.(¢) as functions of the RG flow parameter ¢ =
In(Ag/A). (a) Flow diagram obtained using the estimated
parameters for TaAs, corresponding to ¥ = 0.20, but consid-
ering 2N = 4 Weyl nodes. (b) Flow diagram obtained by
enhancing the piezoelectric coefficient ess to reach 5 ~ 75.
Here we stop the RG flow at the scale where the Fermi veloc-
ity vanishes, at which point the WSM becomes unstable.

vanish when we enhance the piezoelectric coefficient such
that 4 ~ 75, as shown in Fig. 6(b). Therefore, this RG
analysis suggests that retardation effects make the WSM
phase more stable against a superconducting transition.

IV. PHASE DIAGRAM AND
SUPERCONDUCTIVITY

We next perform a self-consistent mean-field analysis
to locate superconducting regions in the phase diagram
within the static approximation for the total interaction.
We develop the mean-field approach in Sec. IVA and
study the stability of superconducting phases with sin-
glet or triplet pairing. For small 7, the WSM phase re-
mains stable but will be characterized by a sizeable quasi-
particle decay rate I'. We determine the dependence of
T" on temperature and on the energy of the quasi-particle
in Sec. V.



A. DMean field theory

Since pairing involves time-reversed partner states, we
consider the effective inter-node e-e interaction potential
Viot(q) in Eq. (29) for a pair of nodes (h = 1,2) that are
linked by time reversal. The Hamiltonian is then given
by

Hogr = Z > 4h(p) (vp- @) ¢, (p) (48)
h=1 p
Z Viot(a 1/)1 p+a)i,(p W’;(k —q)y(k).

We assume the static approximation for the total e-e in-
teraction, as done in the standard BCS theory for the
normal-metal-superconductor transition. While phonon-
induced retardation effects could be included within
Eliashberg theory, we here explore only the static case
defined by Eq. (48). We expect to encounter a super-
conducting phase for ¥ > 1, see Eq. (34), where the ef-
fective interaction Viot will be attractive in all directions
and the order parameter should describe s-wave singlet
pairing. However, it is worth mentioning that the break-
ing of spin-rotational invariance by spin-orbit coupling in
WSMs blurs the distinction between singlet and triplet
pairing [53]. In fact, a mixing of singlet and triplet com-
ponents is generic for non-centrosymmetric superconduc-
tors |75, 76]. With this caveat in mind, we now imple-
ment the mean-field approximation for Heg in Eq. (48).

We consider a generic spin-matrix order parameter,
=(k), defined by

(V10(K) Y20 (—k + Q) = dq0 [E(K)ioa],,r - (49)

The gap function then also corresponds to a complex-
valued spin matrix,

ZVM p —k)E(k). (50)

Using four-component Nambu spinor operators [25],

R ) e = (210, e
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W(p) = (

the standard mean-field decoupling scheme yields the
Bogoliubov-de-Gennes (BdG) Hamiltonian

Hpac = Y (¥1(p)Hpac(p)¥(p) + Tr [AT(p)E(D)]) ,

Huac) = (WD WP ). (52)

We will now examine the conditions for superconducting
phases with singlet vs triplet pairing.

10
1. Singlet pairing

For the case of singlet pairing, we write A(p) =
Ao(p)op in a gauge where the scalar function Ag(p) is
real valued. Diagonalizing Hpac(p) in Eq. (52), one finds
the eigenvalues +FE,(p) with Es(p) = /v?p? + A3(p).
The gap equation then follows from Eq. (50) by not-
ing that Eq. (49) is solved by a spin-isotropic matrix,
=2k) = %O’(). Using the averaged interaction poten-
tial in Eq. (33) with 4 in Eq. (34), the solution follows
by assuming a constant gap function, Ag(k) = Ag, cor-
responding to s-wave pairing. For A # 0, with Eq. (36)
we arrive at the gap equation

2 e
4772 / Ak Vv2k? + A2

_ Oeff 2vb
= In (Ao) , (53)

where the large-momentum cutoff b corresponds to the
momentum separation between different Weyl nodes. For
aef < 0, corresponding to ¥ > 1, we then find the
isotropic gap

Ag = 2ube~/leett], (54)

Assuming that Ag has the same sign at both Weyl nodes
[6, 52], we obtain a topologically trivial gapped supercon-
ductor with conventional s-wave singlet pairing. How-
ever, it is worth noting again that a finite gap emerges
even though vp vanishes at the Fermi level. Technically,
the 1/k? momentum dependence of the long-range inter-
action potential compensates the density-of-states factor
k% in Eq. (53).

2. Nodal-line triplet pairing

We next investigate the possibility of other supercon-
ducting phases at ¥ < 1, where the effective interaction
strength is repulsive along certain directions but a signif-
icant attractive component exists near the g3 = 0 plane,
see Fig. 3(b). A general superconducting order parame-
ter can be written as

Ak) = Ao(k)og + a(k) - o, (55)
where Ag(k) is a real scalar function and a(k) is a com-
plex vector field. For a # 0, the superconducting phase
has a triplet pairing component [53]. We require that the
BdG Hamiltonian (52) preserves time-reversal symmetry,
which implies the conditions

Ao(—k) = Ao(k),

We then expand Eq. (55) to first order in k, where time-
reversal symmetry and Eq. (56) imply

a*(—-k) = —a(k). (56)

Ag(k) = Ay, a(k)=M -k +ia. (57)
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Figure 7.  Schematic representation of the dispersion rela-
tions of the two bands for Bogoliubov quasiparticles. Here
we set the mean-field parameters ay = a. = 0 and plot
the dispersion for k3 = 0. (a) For a2 = Ag = 0, the Weyl
nodes conjugated by time reversal symmetry are represented
as two degenerate Bogoliubov-Weyl nodes. (b) For Ag = 0
but a2 # 0, the spectrum is gapless along a nodal line located
in the k3 = 0 plane. (c) For a2 # 0 and Ag # 0, the spectrum
is fully gapped.

Here M is a real 3 x 3 matrix and the vector a; also has
real entries.

Next, in order to reduce the number of mean-field pa-
rameters, we take into account global spin and orbital ro-
tation symmetry around the z-axis for tetragonal crystal
symmetry. In this argument, we assume that these sym-
metries are approximately realized even when expanding
around the Weyl nodes. This approximation becomes
exact if the Weyl points are separated along the z-axis
in momentum space. Indeed, a state that minimizes the
energy should take advantage of the anisotropy in the
effective interaction (29). We thus take az = a2z and
M = diag(ai,a1,a)), leaving us with only four mean-
field parameters in Eq. (57). For Ag = 0, the eigenvalues
of Hpag (k) are given by +FE;(k) with

E} (k) = v’k* + ai kT + ajk3 + a5 (58)

+ 2|kl|\/(v2 + a3 )a3 + v2k3(aL — a))?.

For ay = 0, the energy only vanishes at k = 0, and each
of the original Weyl nodes splits into two Bogoliubov-
Weyl nodes, similar to the result of Ref. [52] for pairing
between nodes with opposite chirality. For ay # 0, the
spectrum instead exhibits a nodal Ting in the k3 = 0
plane,

|az|
\/v? —|—ai’

For a general discussion of non-centrosymmetric nodal
superconductors, see Refs. [9, 77, 78]. Interaction-
induced instabilities in nodal-line WSMs have also re-
cently been studied, e.g., in Ref. [79].

The spectrum in Eq. (58) shows that the parame-
ters a; and a; mainly just renormalize Fermi veloci-
ties, without introducing essential new physics. In order
to get tractable analytical expressions, we thus consider
the case ay = a1 = 0 in what follows. In particular,
we test whether it is energetically favorable to convert

k.| = ks = 0. (59)
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Weyl nodes into the nodal ring in Eq. (59) where the at-
tractive interactions are most pronounced. To that end,
self-consistency equations for the order parameters are
derived as shown in App. D. We arrive at the coupled
equations

ag = Geft @2 / dfsinf [y(0) — 1] (60)
47 0

402 p?
1 in?)In| —-+——
x (1+sin”6) H(A%—l—a%cosQH)’

and

Oéeﬂ‘AO i . 4U2b2
= /0 dfsinf [y(0) — 1] 1In (A% o 0) .
(61)
Note that Eq. (60) differs from Eq. (61) by the factor
(1 + sin®#) in the integrand. This factor enhances the
contribution from 6 ~ 7/2 where v(6) has its maximum.
This observation suggests the existence of a parameter
window where Eq. (60) has a solution with as # 0 while
Ay = 0 is the only solution to Eq. (61). In App. D, we
confirm that an intermediate parameter regime exists,
" < & < 1, where such a solution is stable, at least in
the absence of disorder. Using TaAs parameters, we find
&' ~ 0.91. The respective value for the order parameter
ay is given by Eq. (D8).

Our mean-field approach suggest that superconductiv-
ity will be absent for ¥ < 4, where the WSM phase
presumably remains stable. We study the quasi-particle
lifetime in this regime in Sec. V below. In the interme-
diate regime 4’ < 7 < 1, however, the system becomes
a gapless triplet superconductor with inter-node pairing,
where the Weyl nodes split and form a nodal ring located
in the k3 = 0 plane. Finally, for 4 > 1, the system en-
ters a fully gapped superconducting phase with s-wave
singlet pairing, see Sec. IVA 1. The general picture is
illustrated in Fig. 7. We emphasize that all these phase
transitions can already happen for small absolute values
of the fine structure constant o = g2/(4mv), within the
perturbatively accessible regime.

Ay =

3. Other competing phases

So far we have discussed superconducting pairing with
zero Cooper pair momentum in time-reversal-symmetric
WSMs, where a pair of nodes at opposite momenta is
conjugated by time reversal. By contrast, in inversion-
symmetric WSMs, the opposite chirality of nodes entails
that states with momentum k and —k do not necessarily
have opposite spin. In such cases, the type of super-
conducting order is less clear because pairing between
parity-reversed nodes leads to a gapless superconductor
[52, 53, 57]. The authors of Refs. [53, 54] have argued that
a fully gapped Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state with intra-node pairing has lower energy than the
gapless state. On the other hand, in Ref. [56] an odd-
parity BCS state with lower energy than the FFLO state



was found. Using our model, pairing between nodes of
opposite chirality can also be studied and could allow for
a nodal FFLO-type superconducting phase. However,
paired states are then not related by any symmetry, and
we find it unlikely that a lower energy than for the BCS
state in Sec. IV A 1 can be achieved for 4 > 1. Moreover,
our attractive phonon-mediated interaction favors pair-
ing between time-reversal-conjugated nodes. In Eq. (21),
phonons couple to the total electronic density, and pro-
jecting Hp, onto the Weyl nodes at low energies, we find
the same coupling to all nodes. Nonetheless, the pro-
cess of integrating out high-energy modes could lift this
degeneracy, and one pair of Weyl nodes may ultimately
have a stronger coupling. The effective e-e interaction
used as input in Eq. (48) will then favor a pairing of the
time-reversal-conjugated nodes with the strongest cou-
pling, as opposed to some other combination of nodes.

Let us also comment on the possibility of charge den-
sity wave (CDW) phases, see Ref. [80]. For the model
with short-range attractive interactions in Ref. [80], a
CDW instability can only occur at strong coupling. It is
straightforward to adapt their calculation to our model
with long-range attraction. The mean-field Hamilto-
nian for the CDW state is essentially as for our singlet
pairing state in Sec. IVA 1. The difference is that the
four-component spinor is defined as (11, Y1y, ¥2r, Yoy ),
where 1 and 2 now refer to two nodes with opposite chi-
rality and the order parameter is <1/)I (k)15(k)). As this
CDW order parameter breaks chiral symmetry, it leads
to an axion insulator where the axion field is identified
with the phase of the charge density wave. However, in
our setting, this type of order depends on the interaction
between nodes which are not related by any symmetry.
By the above argument, this state should have higher
energy than the BCS state.

In addition, there may be other phases at intermedi-
ate coupling strength, ¥ < 1. One particularly intriguing
possibility concerns phases that break time-reversal sym-
metry spontaneously, e.g., a p + ip superconductor. We
leave the exploration of such phases to future work.
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V. QUASI-PARTICLE LIFETIME

We next address the temperature and momentum
dependence of the on-shell quasi-particle decay rate,
I(p,T), caused by the piezoelectric e-ph coupling. We
assume that 7 is so small that interaction-induced in-
stabilities are absent. ~We show below that in this
WSM phase, the e-ph interaction is responsible for a
rather large quasi-particle decay rate, scaling as I ~
T/In(b/|p|) at low-to-intermediate temperatures with
T > cpp|p|- To ease notation, we again employ Egs. (2)
and (16).

A. General expression for the decay rate

Diagrammatically, the lowest-order electronic self-
energy is represented by Figs. 5(a) and 5(d). Since the
rainbow diagram in Fig. 5(a) is a real-valued Hartree-
Fock diagram, it does not contribute to the decay rate.
The e-e interaction only produces a finite decay rate at
higher orders and beyond the Hartree-Fock approxima-
tion. In order to compute I', we therefore study the
self-energy due to e-ph interactions, 3.,, see Fig. 5(d).
The rate follows from the imaginary part of X.,(E, p),
which in turn is obtained by analytic continuation iw —
E +i07, see, e.g., Ref. [81].

To be specific, we study the lifetime of a Weyl quasi-
particle in the state |p, u = +) with momentum p, taken
from the positive-energy (1 = +) band. We consider the
on-shell case, E' = v|p|. The quasi-particle decay rate is
then given by

[(p,T) = =2 Im (p, +[Xcp(P)|P, +)- (62)

Let us now make use of the results of Sec. IIT A4 and
App. B. We first observe that the decay rate must vanish
right at the Weyl point, I'(p = 0,7) = 0, since then
momentum and energy conservation cannot be satisfied
for any phonon momentum q # 0. For |p| # 0, it is
convenient to rescale q = £|p|q with the dimensionless
parameter £. Denoting the integration angles by 64 and
¢q, and using (p, +|o - q|p, +) = [q|q - P, we find

" dbg (@ Z{Ff”upmq-ﬁ) x (63)
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with v(¢) in Eq. (27), np(w) = 1/(e + 1), np(w) =

suy/T+ & 1264 p
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[
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g8 =sgn (1- T+ +24-p).



B. Zero-temperature limit

Let us first address the T' = 0 case, where only Fl(f)
in Eq. (64) yields a finite contribution to the decay rate,

2,2
L geggenlpl [T B
I'(p,T=0) = e dOfq sin 4 » dog
x (@) [1 - (a-p)’] ©(~a-p), (66)

where ©(x) is the Heaviside step function. Since the
integral in Eq. (66) is finite, we conclude that the T'= 0
rate scales as I ~ |p| when approaching the Weyl point.

C. Finite temperatures

Next we consider low but finite temperatures in the
regime

cpn|p| € T < min(v|pl, cprb). (67)

The dominant contributions to the decay rate (63) then

stem from the Fl(i) terms in Eq. (63), where the Bose
factors can be approximated by np ~ £T/(cpn|pl€), re-
spectively. We then obtain
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However, the integral (68) diverges logarithmically at the
boundary of the hemisphere q - p < 0, corresponding to
small-angle scattering processes with & — 0. This in-
frared divergence is related to the long-range character of
the piezoelectric interaction. Note that so far we have al-
ways assumed 71" = 0, with the Fermi energy located right
at the Weyl point. In that case, the unscreened Coulomb
potential can be used. For the finite-temperature quasi-
particle decay rate, we need to be more careful since also
finite-energy states within an energy window of width
~ T around the Weyl point are involved. For such states,
the long-range Coulomb interaction is modified by dy-
namic screening [38, 82]. By taking into account screen-
ing, we now show that the above divergence is indeed
removed.

Dynamic screening of the Coulomb interaction can be
included by replacing the permittivity according to [25]

corcta) = (1- Lnig ) o (69)

where II(q) is the polarization function. Within the
standard random-phase approximation, we take II(q) to
be the noninteracting polarization bubble, cf. Fig. 5(c),
where the T' = 0 limit of the polarization function yields a
good description for the temperature regime (67). A tem-
perature dependence of the decay rate is then generated
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only by e-ph interactions (we note that disorder effects
could modify our expressions). To obtain the dominant
terms contributing to I'(p,7T’) in this regime, the loga-
rithmic on-shell term calculated in Refs. [38, 83] suffices,

_ Nlaf
6m2v

II(q) ~ In (2b/]q]) , (70)
where b serves as large-momentum cutoff again. Note
that two factors of é~! appear in Eq. (68), associated
with either g2 or g2,. One can identify these two fac-
tors with the two wiggly lines in the self-energy diagram
in Fig. 5(d). Dressing both lines with the polarization
bubble, we arrive at a modified version of Eq. (68) which
takes into account screening,

2.2 T ™
. gegphT .
I'(p,T) = 4772p0v/0 dfq sin O4 [ﬂ doqg (71)
Q) 1-(q-p)°

lq- Pl Ng?2 1 b \]?
1+ e ()]

©(-q-p).

Using |p| < b, the regime (67) is therefore characterized
by a quasi-particle decay rate which scales as

[(p,T) ~ %. (72)

We observe that I'(p,T) vanishes for |p| — 0, as ex-
pected from kinematic constraints. However, the slow
logarithmic scaling with |p|, together with the linear-T
dependence, suggests that the quasi-particle lifetime of
Weyl fermions is significantly reduced by the piezoelec-
tric e-ph interaction, even when one stays in the very
close vicinity of a Weyl point.

VI. CONCLUDING REMARKS

In this work we have studied the long-range attrac-
tive interactions mediated by the piezoelectric electron-
phonon coupling in undoped non-centrosymmetric Weyl
semimetals. These interactions exhibit a significant
angular dependence and compete with the repulsive
Coulomb interactions.  This competition is mainly
governed by the dimensionless piezoelectric coupling
strength 4 in Eq. (34). Within a static approximation for
the effective e-e interaction, we find that for ¥ > 1 the
attractive interactions outweigh the repulsive Coulomb
part. We then predict a conventional BCS superconduc-
tor phase with spin-singlet s-wave pairing, even though
the normal density of states vanishes at the Fermi level.
We have performed a mean-field analysis to study this
state in some detail.

According to our rough estimate ¥ ~ 0.20 for TaAs,
see Sec. ITE, the above BCS scenario is probably hard
to encounter in TaAs. However, for 4 < 1, other, and
even more interesting, interacting phases may be stabi-
lized. For example, our analysis in Sec. IV A suggests



that a nodal-ring gapless spin-triplet superconductor will
be realized for intermediate values of 4. Our RG analysis
also shows that the critical values for 4 where supercon-
ducting instabilities are found can be pushed upwards by
retardation effects.

For small 7, we expect that the Weyl semimetal phase
remains stable. Nonetheless, the piezoelectric coupling
should leave a clear experimental trace in the quasi-
particle decay rate at finite temperature. In particular,
we find that this rate scales as T' ~ T/ In(b/|p|) at low-
to-intermediate T'. Albeit I' = 0 right at a Weyl point
(p = 0), the weak logarithmic scaling with |p| suggests
that the quasi-particle lifetime will be rather short even
for very small (but finite) |p|. In any case, we hope that
future theoretical and experimental research will continue
to study the interesting consequences of piezoelectric cou-
plings in Weyl semimetals.
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Appendix A: Electronic self-energy from Coulomb
interactions

Here we provide details concerning the electronic
self-energy correction from Coulomb interactions, see
Sec. IITA 1. Using Eq. (5) and performing the internal
frequency integration in Eq. (39), we obtain

g2 [ d*q 1
2/(27T)3q ( o0+

4 vi(pL+q1) o1 +v3(ps + %)03)

Yee(iw, p) = (A1)

E(p+aq)

Yep(iw, p)

ijk lmn
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which is independent of the frequency w. We now ex-
pand Eq. (A1) for |p| < |q|. For p = 0, one finds a
non-universal constant that can be absorbed by renor-
malization of the chemical potential. The renormalized
value of the chemical potential is then assumed to be
aligned with the Weyl node. Universal RG contributions
appear at the first order in p. For instance, from terms
linear in p3, we get a contribution of the form
vial

2 3
ge d’q
by = =< —_— A2
ee(pS) 2 V3P303 / (27T)3 qug(q)? ( )
where momentum-shell integration yields the self-energy
correction

2

08ee(p3) = ;%7731?3036%7 (A3)
_ vz [T sin® @
BT o [sin®0 4+ (v3/v))2cos2f]3/2

Self-energy terms ~ p, follow in a similar manner with
13 replaced by 1y = 4v, /(3vs). For the isotropic case
(2), we then find 7, = n3 = 4/3. The complete linear-
in-p self-energy correction after momentum-shell integra-
tion is given by Eq. (40).

Appendix B: Electron self-energy from e-ph
interactions

Next we turn to the self-energy X.,(p) due to piezo-
electric interactions, see Sec. IITA 4. The leading term
arises from the diagram in Fig. 5(d),

Eep gegph Zzemkelmn (Bl)

ijk Ilmn

d4q 4i954919m
X / (277)4 WDkn(q)G(p + q)a

with the phonon propagator in Eq. (14) and the elec-
tronic GF in Eq. (5). Performing the internal frequency
integration, we obtain

gegph a4 qqjqgmel (a)el(—a)
Z DD cijkeimn 5
(2m)3 |d|*Qs(@)E(p +q)

o Z [ZWiQJ( Moo +vi(pL+qui)- o +vs(ps+g3)os
+iw +Qy(q) + E(p +q) '

+

We now integrate out all phonon modes within the high-
energy shell. For 4mm crystal symmetry and using
Egs. (2) and (16), to linear order in p, we find the cor-

(

rection

7
Xep(p) = —9¢ <<200 +{1pL-o1L + C3p303> e,
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with, cf. Eq. (30), ITE, we find C| ~ 0.29 and C3 ~ 0.83. The self-energy
) corrections are summarized in Eq. (43).
o G (10 e o
Po Cph v
Cy = = (10A2 +4AB +4A+2B% + 3) ~ 1.40. Appendix C: Vertex corrections

The terms ~ p in Eq. (B3) involve dimensionless numbers

H ide details about th t tion d
C1 and s defined as in Bq. (B4) but with Co — C'1 s, ere we provide details about the vertex correction due

to the diagram in Fig. 5(e), see Sec. IIIA 5. We define

where the three-point function with fermions in the band basis
CL= (144 + 12AB + 12A 4+ 6B* + 15)
1057 A (@, 2") = (T, (), (2 )p(a)). (C1)
Cs = (42A* + 4AB +4A+2B*>-9). (B5)
1057 The free boson propagator is Dy, (z) = (¢(z)¢(0)). In
Using Eq. (30) with the parameters quoted in section — momentum space, Dy, (q) = —|q| >

J

The three-point function at tree level is obtalned by perturbation theory to first order in g.. Taking the Fourier
transform Ao (p,p',q) = [diad*s'd*a” e~ o= ip'z’ —iqa’ Aw/l(x,x’,x”), we find

A (0,9, q) = igeld" (PIUD + @)y Gru(p) G (p + 0) Dy () 27) (6 +p + q). (C2)

The vertex correction at the one-loop level appears at order g2 gph’

A (0,0 ) = —ig205, Dy (@) (27) 50 +p+0) DY Camberns

amb rns

d4q’ 0095995 / /
X Z S EE = D (g )Gu(p)Gu”(p —q )Gu”’(p+ q—q )Gu’(p +q)
)LI‘IIH,//
X [UT(p)M(p — )] U (P — dWUP +a— ) U (P +a— WU +a)] e,  (C3)
with the phonon propagator in Eq. (15) with ¢’ = (iv/,q').
At low energies, all external four-momenta can be assumed small against ¢’. The integral over the internal frequency
v/ then defines the quantities

s _/+°°d1/ 1 1 1 1 ()
T o i — Qi) Q) iv—i -y Ep—q)ivt+iw—iv — ' E(p+q—d)’

Performing the frequency integral, we obtain

1
Iy =—— - - . Ch
R T O O E ) R RE YD iary) o
We now effectively set the external four-momenta to zero, p,q — 0, which results in I = —1/[Q2;(q') + E(q')]?. In
this limit, U(p — ') UT(p + q — ') — 00, and we arrive at
;3.2
t9e9
A (p:,0) = =5 U B)U(D + @)l G )G (0 + ) Dp0) (2m) 50" +p+ ) (C6)

<357 Campe / Pd qaad.  en(d)e(—d')
am ™ns .
— et 2m)? |9t Qu(d)[(d) + E(q))?
At this point, we compute the one-loop contribution to the RG equations by integrating over phonon modes with
momenta within the high-energy momentum shell. The correction corresponds to a charge renormalization, and hence
to a renormalization of the coupling g. in Eq. (25). We find

gegph d? q 9% g 1
9 = 0 Z/ 2_emiqrd @) o @0 T B@P (©7)

(

For the case of TaAs, with the simplifications in Egs. (2) and (16), one can then employ similar steps as



in Apps. A and B. We thereby arrive at Eq. (46).

Appendix D: On triplet pairing

In this appendix, we provide details concerning the
solution of the self-consistency equations in Sec. IV A 2
for the triplet pairing case, keeping only A and as as free
parameters. The self-consistency equations are given by

B0 = 55 3 Vie T (1)

1 =
ar =~ 5 zk: Viot (k) ImTr[E(k)o3)].

Now suppose that Hpag(k) is diagonalized by the uni-
tary transformation W(k) = U(k)¥(k), with eigenvalues
ordered as (E1(k), —FE1(k), —E2(k), Ea(k)). For an arbi-
trary 2 x 2 matrix W, we can use the auxiliary relation
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reduce to

3
20=3 3 [ GV O 07 oo 09150, 03)

3
ag = % Z /é&mot(k)Im[UT(kﬁU3U(k)}’\>"
A=2,3

where the integration domain is the ball 0 < [k| < b.
Defining the function

R(x,0) =
MV

as = xsiné
T 2a9xsin0 + A2 + 22’

(D4)

the above equation for as takes the form

o
as = —
4 0

vb ™
da / d0sin0 R(z,0) [v(0) — 1], (D5)
0
where a = g2 /(47v). Performing the integral over o and
assuming az, Ag < vb, we obtain Eq. (60). In a similar
fashion, we obtain the equation for Ay in Eq. (61).
Setting Ay = 0 and substituting the form of v(#) in
Eq. (32), we get from Eq. (60)

TERW] = - > [Uil)r WU(K)w,  (D2) 1= -2 [ dfsin6[y(0) — 1] (1+sin®6) In 20 ’
A=2.3 2 Jo as cos 6
« a
= o [ + L) (5] - (D6)
where 7+ = 7, + iTy and Pauli matrices 7,4 . act in g v
Nambu space. The self-consistency equations (D1) then =~ We here define the linear functions L 2(7) as
J
Lis) = B4 7 (25047  SU0SAB 54084 21045 146
W= T w U 11025 ' 11025 ' 11025 « 1225)°
_ 10 5 (18 1 _ ., S8SAB 88A 44B2
Ly(f) = —— + = (== + 21242 - 222 208 : D7
20 = =5+ <35 T3 105 105 105 (D7)

with w, ~ 4.40 in Eq. (35). Solving for as, we obtain

(D8)

2 L
as = 2vbexp <7T+a1> .

OéLQ

For a £ 1 and 4 < 1, the constraint as < 2vb simplifies
to L2(%) > 0. In order to obtain a nontrivial solution for

az, this in turn requires that

175w,
126 A2 + 44AB + 44A + 22B2 4+ 27"

¥>5 = (D9)

For TaAs parameters, Eq. (D9) yields 4’ ~ 0.91.
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