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‘The Probationary Period as a Screening Device

Jaap Spreeuw

Abstract

In this paper, the effectiveness of the probationary period as a screening device
in case of asymmetric information in an insurance market is investigated. This will
be done within the classical framework of two risk classes. Both the monopolistic
and the competitive insurance market will be analyzed. It will be shown that, if
there is a so called partial stochastic order between the distributions of time-of-loss
of the respective risk types, the equilibria resulting have at least some properties
in'common, compared with the corresponding equilibria related to the monetary
‘deductible as a screening device.

Keywords: Probationary periods, adverse selection, monopoly, competitive mar-
ket, separating equilibrium, pooling equilibrium

1 Introduction

The models discussed in the classical papers on the monetary deductible as a screening
device in case of asymmetric information (Rothschild and Stiglitz [1976], Wilson [1977],
Miyazaki [1977] and Spence [1978] for a fully competitive insurance market; Stiglitz [1977)
in case of a monopolistic insurer) rely on the assumption that the loss in case of an accident
is non-random. Offering a contract with a monetary deductible then actually means the
same as offering a contract with partial coverage. Since this implies non-linear pricing, in a
competitive insurance market this would require the insurers to share information with one
another in a perfect way, a condition which may not always be satisfied. However, in non-
life insurance, the insurer’s loss in case of a claim is almost always random. Besides, in non-
life business contracts usually remain in force after incurring a loss, and this gives insurers
the opportunity to offer multiperiod contracts, where both premiums and coverage may
be adjusted according to the claims experience. For an overview of such strategies, the
reader is referred to Dionne and Doherty [1992].

On the other hand, life insurance contracts concern fixed benefits, to be paid out
in case of death. Hence, there is actually no difference between imposing a monetary



deductible and lowering the benefit due in case of death. As explained above, in non-
monopolistic markets such strategies require perfect sharing of knowledge among insurers
concerning the purchase of insurance. Furthermore, offering multi-period contracts in the
way described above is not possible, since each individual dies, i.e. produces a loss, only
once.

Around 1990, some papers appeared considering different screening devices for life
companies. One of these is Venezia [1993], dealing with the so-called cash-value life
insurance contracts. He introduces a three-period model and argues that the savings
element and its rate of return can be used as a screening device when dealing with a
population consisting of two different risk classes.

An alternative method which can be used more generally, and which will be the theme
of this paper, is the probationary period. Such a period excludes coverage for events
that occur during some period after the inception of the policy. The method, aiming to
rule out preexisting conditions, has found applications in some dental or medical policies,
so the method is not exclusively available to life insurers. Moreover, recently it has
gained popularity among Dutch group life companies, as a consequence of new legislation
concerning medical examination of employees. By the new laws which came into force at
the beginning of 1998, insurance companies are strongly restricted in their possibilities
to test individual members of a group life scheme medically. Therefore they in general
cannot determine whether any member has a serious disease. A probationary period may
then be an appropriate instrument to keep out individuals who are likely to make a claim
soon after issue. It can be compared with the money back guarantee on consumer goods,
offered by a seller, see e.g. Moorthy and Srinivasan [1995]. However, most models on this
signalling device lack a time dimension and are therefore not very useful in this context.

Several aspects of the probationary period, among others its impact on the expected
utility of individuals, have been investigated in Eeckhoudt et al. [1988]. They prove
that, in a fully competitive market, the solution under symmetric information involves
full coverage for any risk class, similar to the monetary deductible case, provided that the
probability of incurring an accident is smaller than one. The authors’ main conclusion
is that most of the basic properties of the above mentioned monetary deductibles do not
carry over to probationary periods.

The aim of this paper is to investigate the effectiveness of the probationary period
as a screening device in case information is asymmetric and hence adverse selection is a
threat. In this sense, the approach is similar to the one in Fluet [1992] who considers
the combination of a probationary period and a time-dependent monetary deductible.
By allowing varying monetary deductibles, his model is more general than the model
considered in Eeckhoudt et al. [1988] and in this paper. However, starting points of his
analyses are a fixed contract of full coverage and an actuarially fair premium for the high
risks and the assumption that the proportion of high risks among the entire population is
not too low, just as in Rothschild and Stiglitz [1976]. Such restrictions are not imposed
in this paper. Moreover, we will not restrict ourselves to a competitive market but will
deal with the case of a monopolistic insurer as well.



The model will be described in Section 2, where also the basic assumptions will be
listed. These will be the foundation for the two sections following thereafter. It will turn
out that the assumption of a so-called partial stochastic order between the distribution
functions of time-at-accident of the low and high risks — which means that the probability
to make an accident before any relevant point of time is for the high risks at least as great
as for the low risks — is crucial. In Section 3, we will deal with the case of a monopolistic
insurer, while in Section 4, a fully competitive market will be considered. Both situations
will deal both with the cases of symmetric and asymmetric information. Regarding the
latter topic, it will be investigated under which circumstances the equilibria resulting are
comparable to those related to the monetary deductible as a screening device. For the
competitive market, it is assumed that companies behave with foresight, i.e. they foresee
their competitors’ response to their own policy offers. This implies that policies which
are loss-making in the long run will not be offered. In both sections, it turns out that
conclusions are relatively easy to draw if the utility function is taken to be exponential.
Both sections will also be illustrated by a numerical example. The characteristics of the
equilibria and its corresponding conditions will be compared with one another in Section
5. Conclusions and recommendations for further research will be given in Section 6.

This article is to a large extent based on Chapter 5 of the author’s PhD thesis (Spreeuw
[1999]).

2 The basic assumptions and the nature of a proba-
tionary period

The basic assumptions, mainly derived from Fluet [1992], are listed below:

e A population consists of two risk classes, namely the high risks and the low risks. In
the remainder of this paper all variables pertaining to high risk and low risk individ-
uals will be accompanied by the subscripts H and L, respectively. All individuals
have an initial, nonrandom, wealth of W. All individuals within the population are
identical, except with respect to the probability of having an accident in the pe-
riod [0, n], where 0 is the current time (by ”accident” a certain unfavorable event is
meant, which can e.g. be injury or death) and n is real valued and positive. In case
an individual is faced with an accident, there is a welfare loss of D. This probability
for an individual of risk class ¢ is denoted by #,, ¢ € {H, L}, with n;, < ng. It is
assumed that to each individual an accident can occur at most once.

o All risks are insurable.
e The proportion of high risks among the entire population is denoted by p.

e The time at which any accident occurs is perfectly observable to both the individual
concerned and the company.



e The probability for an individual of risk class 7, 1 € {H, L}, of facing an accident
before time ¢ (0 <t < n) is denoted by Fi(t) (hence Fi(n) = n,), being continuous
in [0,n]. All individuals fully know these probabilities. These probabilities are
exogenous, so that the risk of moral hazard is non-existent.

¢ To each individual, the same utility function U(-) applies, being increasing, strictly
concave, twice continuously differentiable and independent of time.

e Only expected wealth at time n matters and all interest rates are equal to zero. Any
individual’s concern is to maximize expected utility.

¢ Insurance companies are risk neutral (implying that each company’s utility function
is linear). Their concern is to maximize expected profit.

e Insurance companies have enough resources to offer any set of contracts, which resul
in a nonnegative expected profit.

e There are no transaction costs in the supply of insurance and no costs of administer-
ing the insurance business. Nor are there costs of obtaining classification information
on a potential insured when it is possible to do so.

In addition, for the sake of simplicity, we will assume that a partial stochastic order holds
between the above introduced distributions Fy(t) and Fy(¢):

Fy(t)>b() FL (), withb(t) >1, 0<t<n, 1)

while for ¢ = n:
ng = Fu (n) =b(n) F, (n) with b(n) > 1. (2)

The function b (¢) is assumed to be twice differentiable on the interval [0,n]. Later on in
this paper it will turn out that, by imposing the above restrictions, for both insurance
markets the resulting equilibria will have some properties in common with the corre-
sponding equilibria related to the monetary deductible as a screening instrument (i.e. the
equilibria analyzed in Rothschild and Stiglitz [1976], Wilson [1977], Miyazaki [1977] and
Spence [1978] for a fully competitive insurance market and in Stiglitz [1977] for the case
of a monopolistic insurer).

Remark 1 (Stochastic order) The conclusions drawn in this chapter will not change
if, instead of a partial stochastic order, one assumes the order between the distribution
functions of the high risks and low risks also to hold outside the interval [0,n], i.e.

Fu(t) > FL(t), Yt>0. (3)

For details about this so called stochastic order, see Kaas et al. [1994].



Remark 2 (Additional restriction) Without additional restrictions regarding the dis-
tributions of time-at-accident, it is hard to draw conclusions in general. This was also
notified by Fluet [1992]. At a certain stage in his analyses he assumes a strict inequality
with respect to the corresponding hazard rates:

bty — 40 ;tFH () _ _dln(1 ;tFL ®) _, . wso @

If the >-sign in (4) were replaced by a >-sign, then we would deal with a mortality order,
as defined in Kaas et al. [1994]. These authors also prove that ({) is a more severe
restriction than the partial stochastic order defined above.

In this paper, contracts will be specified by (¢, P) with ¢ and P denoting the probationary
period and the premium, respectively. For the given contract, no indemnity is paid if
an accident occurs in the period [0,¢], nor will the premium P, to be paid at time 0, be
refunded to the insured. If on the other hand, an accident occurs somewhere during the
period (¢,n], the insured will get a benefit equal to D.

In the next two sections, equilibria concerning the offering of insurance contracts in
case of asymmetric information will be derived. These contracts are related to a mo-
nopolistic and a fully competitive insurance market, respectively. By ”asymmetry of
information”, we mean that the insurer knows the proportion of both types of homoge-
neous subgroups with respect to the whole population but cannot monitor the risk type
to which an individual belongs. In order to be able to interpret the equilibria in a useful
way, each of the next two sections will start with the case of symmetry of information,
where the insurer also knows the probabilities of facing an accident per individual.

As mentioned before, variables pertaining to high risk and low risk class individuals,
will be accompanied by the subscript H or L, respectively. In the subsections on symmetry
of information, such subscripts will not be used as the equalities and inequalities stated
in these subsections apply to both risk types.

Remark 3 (Binding reservation and self-selection constraints) In  the next
analyses it will turn out that any feasible contract is always subject to one or more con-
straints. One restriction involves that individuals from any of the two risk classes will
value the contract designed for them at least as high as the contract designed for the in-
dividuals of the other risk class (the self-selection constraint). Besides, if any individual
purchases the contract designed for him, his expected utility resulting must be at least
as high as it would have been had he not bought any insurance at all (the reservation
constraint). In some cases, one or both of these constraints are binding. Actually, for
the self-selection constraint this would mean that each individual concerned is indiffer-
ent between choosing the contract designed for him or the contract designed for the other
risk class. The consequence would be that, on average, half of those indwiduals would
buy the contract designed for them and the other half would purchase the other contract.
Something similar would apply for a binding reservation constraint: on average, half of
the individuals considered would purchase the contract designed for them while the other
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half would not insure themselves. We, however, assume that each individual will buy the
contract designed for him if the above restrictions are satisfied, whether they are binding
or not.

3 Monopolistic insurer

In case the insurance market is monopolistic, the equilibrium resulting yields maximal
expected profit for the insurer, since a monopolist is not hindered by (re)actions of com-
peting firms. First it will be shown that, in case of perfect information, this aim is achieved
by offering, to any individual of a certain risk class, full coverage against the maximal
premium such an individual is willing to pay. In Subsection 3.2, the case of imperfect
information will be discussed. Considering the exponential utility function

U(z) = —ae™*, a>0, (5)

it will turn out that only in particular cases the equilibrium resulting is similar to the ones
derived in Stiglitz (1977) where the monetary deductible acts as the screening device.

3.1 Symmetry of information

Adopting the definitions stated in the previous section, the insurer’s expected profit for
an individual contract (¢, P), denoted by T' (¢, P), is equal to

I't,P)=P—(n- F())D. (6)

Regarding (t, P), we have the following reservation restriction for an individual with
accident probability  (i.e. a condition that has to be satisfied in order to let such an
individual purchase insurance):

FOUW =P —D)+(1—FE)UW —P)>qU(W—D)+(1—-n)UW). (1)
Since the left hand side of (7) decreases as either ¢ or P increases, while

or(,P) . . 0tP)

P o O ®)

equation (7) is binding:
FQUW -P-D)+(1-F)UW —-P)=qU(W-D)+(1-n)UW). (9)

Remark 4 (Binding reservation constraint) The second proposition is an ezample
of a binding reservation constraint as explained in Remark 3. Recall that it has been
assumed (see the same remark) that an individual will always buy the contract designed
for him. If this were not the case, the contract designed for the individual should be
designed in such a way that the expected utility resulting from buying that contract is
an infinitesimally small bit higher than the expected utility resulting from not purchasing
any insurance at all. The same will apply in the next subsection concerning a binding
reservation constraint for the low risks.



In the remainder of this paper, the right hand side of equation (7) will be denoted by E,
o)

E=nUW -D)+(1-nU (W), (10)
with an appropriate subscript added if an individual belonging to a certain risk class is

meant. It follows that ¢ can be written as a function of P. This function will be denoted
by ¢ (P):

_ UW-P)-E
t=¢p(P)=F" :
v (P) (U(W—P)—U(W—P~D)> (11)
The right hand side of (6) can also be written as a function of P alone, and hence we get:
T(P) = P=(n-F(p(P))D
UW-P)-F
- — D.
P (n U(WfP)—U(W—P—D)>
For full coverage the optimal premium is equal to
P=¢7(0)=W-U""(E). (13)

In view of this, the premium for a contract with any nonnegative probationary period can
be written as

(12)

P=p ') =W -U"Y(E)—eD, ¢>0. (14)
Substituting into (12) gives, after some rewriting, the following result:
T(P) = T(¢ (1) =T (W U (E)-eD)
= W-U"YE)-nD
+ ((1~e)U(U‘1(E)+eD)+eU(U‘1 (B)+(e=1)D) —E) D
UW-P)-U(W—-P-D)
W —U(E)—nD
N (U(U‘I(E)+eD+((1—e)O—e)D)—E> D
UW-—-P)—U(W—-P-D)

= W-UE)-nD=T(W-U"(E)) =T(¢ (0)). (15)

The inequality sign follows from Jensen’s inequality (which can be applied because U (-)

is concave). It can only be replaced by an equality sign for € = 0. Hence offering full
coverage is optimal.

IA

We will, however, now note another peculiar thing. Notice that
dh(P)
dpP
UW-P\UW-P-D)-U(W-P—-D)YU (W — P)
+E({U (W-P—-D)-U (W - P)) D

= UW—-P)—U(W—P—D))




The right hand side of (16) may be negative, contrary to the case of a monetary deductible.
Hence there may be contracts with a certain strictly positive probationary period which
give the individual an expected utility equal to the one corresponding to the situation of
no insurance, but which will never be offered by an insurer since they yield a negative
profit, as the next example shows:

Example 5 Let U (-) be an ezponential utility function with absolute risk aversion coef-
ficient a:
U(z)=—ae ™™, a>0. (17)
Then regarding the contracts with an expected profit equal to no insurance, the following
relationship between probationary period t and premium P holds:
UW—P)-nUW - D)+(1-n)UW))
UW-P)—UW—-P-D)
(ne*P + (1 —m)) —e*”

F(t) =

= 1
eaP (eaD _ 1) ? ( 8)
So the expected profit, written as a function of P only, proves to be equal to:
aD aP
- (ne*P +(1—n)) —e
—P_{np— D. 1
Pp)=P (n @D (19)
Differentiating with respect to P results in
i aD 1— —aP
dr(p) _ 1@ (ne*P +(1—mn))e D. (20)
dP (e2P — 1)
Hence, if b
e* —1—aD
il 21

there are contracts with relatively low P (or relatively hight), resulting in %Sf) < 0, which

will never be offered, because they will provide the insurer with losses.

It should be emphasized, however, that there are always contracts with a nonnegative
probationary period yielding a positive profit if offered. This property always holds for
contracts with full coverage, because of Jensen’s inequality:

~ ~

INCRN ()] I'(W-U"(E))
W —U"(ngU (W — D)+ (1 = 1) U (W)) = 1y D
W —

1\

(g (W —D)+ (1 ~nyg)W)—nxgD
0



3.2 Asymmetry of information

The profit optimization problem becomes more complex if the insurer does not have
complete information at its disposal. Although, as assumed before, the firm still knows
the relative weight of each of the two risk classes in the population, it is constrained in its
facilities to offer contracts if it cannot be observed whether an individual is of a low or a
high risk type. More formally stated, in case of imperfect information, the contracts to be
offered to low risk and high risk individuals, in the remainder of this section denoted by
(tr, Pr) and (tg, Py), respectively, are not only subject to the reservation constraint, i.e.
the restriction that they are purchased. The two contracts will have to be constructed
such that, just as in the case of a monetary deductible, a self-selection mechanism is
induced, which will only happen if each individual purchases the contract designed for
the risk class he belongs to. This implies that self-selection constraints act upon these
contracts: an individual belonging to the low risk class must value (¢, P) as least as
high as (tg, Py) and vice versa. Adopting the following notation for the expected value
resulting from buying a certain contract (with ¢ € {L, H}):

Et,P) = EQUW-P-D)+(1-F#)UW - P); (23)
E, = Ei(n,0), (24)

the Lagrangian has the following form:

£ = p(Py—(ng— Fu(tu)) D)+ (1—p)(Pr— (n, — FL(t2)) D)
A {EL (tr, Pr) — Er} + Au {Ex (tzr, Py) — En}
+vL{EL (tr, Pr) — Ep (tu, Pu)} + vy {Ex (tw, Pu) — En (t1, PL)},  (25)

with A; and -y, representing the multipliers associated with the reservation constraint and
the self-selection constraint, respectively, of group 7 (i € {H, L}).

In the remainder of this subsection we will compare the results of our investigations
with the four main propositions derived by Stiglitz [1977] concerning the monopolist’s
optimal strategy in case the monetary deductible, instead of the probationary period, is
the screening device. These propositions are displayed below:

1. The optimal contract for the high risks involves full coverage.

2. If a low risk individual purchases insurance, the utility of such a person is the same
as the expected utility would have been, had he not purchased any insurance at all.

3. High and low risk individuals never purchase the same policy.

4. There exists a critical proportion of high risk individuals within the population, such
that if the actual proportion exceeds the given critical one, the low risk individuals
do not buy insurance.



Note that the first and third proposition imply that low risk individuals never buy full
coverage. If the actual proportion of high risks within the population exceeds the critical
one mentioned in the fourth proposition, this implies that it is optimal to offer only one
contract, namely full coverage against the maximal premium the high risks are willing to
pay. This premium is higher than the maximal premium the low risks are willing to pay
and this is the reason why individuals of that risk type are then excluded from coverage.
Offering only this contract - that is, full coverage against the maximal premium mentioned
- gives rise to a nonnegative expected profit anyway. The same conclusion applies for a
probationary period. We will denote the maximal premium by PY, being equal to:

Py =W U (Ex). (26)

Furthermore we will specify the maximal premium the low risks are willing to pay for full
coverage as P?. This quantity proves to be

P)=W U (E,). (27)

Recalling assumption (1) concerning a partial stochastic order, it will be shown that one
or two of the given four Lagrange multipliers are equal to zero while the remaining ones
are strictly positive.

First it will be shown that under a partial stochastic order, Proposition 1 of Stiglitz
[1977)] holds, that is that for any given feasible contract (¢, P) for the low risks, the second
contract, to be purchased by the high risks, always involves full coverage, both when
the contract (¢, P) will be purchased by the high risks if no other contract is offered, or
not. Later on in this section, it will be clarified that contracts may exist which will be
purchased by the low risks but not by the high risks.

If the given contract (¢, P) is not purchased by the high risks, the self-selection con-
straint for the high risks is not binding, so by offering additionally the contract (0, P%)
(a contract which will not be purchased by the low risks) maximal profit is achieved.

If, on the other hand, (¢, P) will be purchased by the high risks if no other contract
is offered, then again offering a second contract with full coverage for the high risks is
optimal. This will be demonstrated by first ignoring the self-selection constraint for the
low risks and then showing that for the given optimal solution this constraint is not
binding. We have the following self-selection constraint for the high risks:

Ey (tg, Py) > Ex (t, P). (28)

Just as in Stiglitz [1977], in order to achieve a maximal profit, the above equation must
hold with equality, otherwise a contract could always be found with higher expected profit
than the given (tg, Py) and still satisfying the inequality. Equality however implies that
offering full coverage is optimal as argued in the previous subsection concerning symmetry
of information.
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This contract (0, Py), satisfying (28) with equality, so
EH(O’PH):EH(‘J;VP)7 (29)

does not violate the self-selection constraint for the low risks. The reason is that the
resulting Py is equal to:

Py =W - U (Eg (t,P)) > W — U (EL (¢, P)), (30)

where the right hand side of the above inequality represents the premium corresponding
to the full coverage contract giving the low risks the same expected utility as (¢, P). Note
that the above inequality follows from the partial stochastic order assumed.
The conclusion is that the resulting self-selection constraint for the low risks, in this
case being
EL(ti‘P)ZEL(Oz‘PH)) (31)

is never binding, hence v; = 0. The Lagrangian reduces to the following expression:

£ = p(Py—ngD)+(1—p)(Pr—(n,— Fr(tz)) D)
—I—)\L {EL (tL, PL) — EL} + )\H {EH (O, PH) — EH}
+Yu {En (0, Py) — Eg (t1, Pr)} - (32)

As can be read in the appendix, it follows from the first order conditions that both the
following restrictions on the Lagrange multipliers hold:

I) AL > 0;
II) Ay >0 and/or y5 > 0.

Inequality I) indicates that, under the given conditions, Proposition 2 of Stiglitz [1977]
also holds: whether a low risk individual purchases insurance or not, his expected utility
remains the same. The pair of inequalities given in II) points out that, for the high risks,
the option of purchasing the contract designed for them can never be strictly preferable to
both the option of purchasing the contract for the low risks and the option of not insuring
at all.

Hence there are only three different combinations to be taken into account. Next it
will be shown that, contrary to the case of a monetary deductible where the self-selection
constraint is always binding, there may be contracts acceptable to the low risks but not
to the high risks. We will restrict ourselves to contracts which give the former class an
expected utility equal to the situation of no insurance at all.

Such contracts (1, Pr) satisfy the following relationship:

UW - P)— By )

tL:FL_l(U(W—PL)~U(W—PL~D) (38)
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Hence

Ey (tz,Pr)

= Fu <FL_1 (U(W —UJELM)/—_;%/_fEILJL —D))) v R D)

(o= (2 (=B ) o ow -

b(t) U(W_PL)_EL
YUW-P)-UW —P,-D)
UW - P)—-Ey
+(1—b(tL)U(W_PL)_U(W;PL_DJU(WfPL)
= Eu+(b(n) —b(t))n, (UW)-U (W — D))
—(1=0b(t) UW)-U(W = Pr)). (34)

IA

U (W - P, — D)

For low values of P (and hence large values of ¢1) and b(t;) > b(n), the following
inequality may hold:

(b(n) =b(tL))n, (U W)U (W - D))
—(1=b@t)([UW)-UW -P)) <O0. (35)

Contracts satisfying this inequality would be purchased by the low but not the high risks.

Example 6 Consider the following extreme case, also dealt with in Fluet [1992]:
Fg(t) =G@), 0<t<t

=G(t), t>t
FL(t) =0 0<t< '
=H@E) t>t

In the given case, both G(t) and H (t) are specified to be continuous and non-decreasing
functions on the intervals [0,t'] and [t',n], respectively, with G(0) = H(t') = 0, and
G(t') > H(n). Figure 1 gives an illustration fort' = 10. Consider the contract (¢, Py, (¢')),
where Py, (t') is the mazimal premium the low risks are willing to pay for a contract with
probationary period t' (actually for full coverage). Note that this contract will never be
bought by the high risks. An optimal solution involves offering (t', P, (t')) together with
(0, P9).

The existence of such contracts may provide an opportunity for the insurer to increase
profits since the optimal contract for the high risks is then always (0, P%).

Hence, in order to find an optimal solution, one should separate all contracts to be
offered to the low risks (where the contract (n,0), involving no insurance at all, is also to
be considered a contract) into two classes:

1. Contracts also acceptable to the high risks.

12



2. Contracts not acceptable to the high risks.

One then selects from all the contracts belonging to class 2 the one that is most
profitable to the low risks. (As Example 5 indicates, this is the one with the lowest
probationary period.) Then one compares the strategy of offering the combination of this
contract and (0, P}) with the most profitable combination of the contracts belonging to
class 1.

In the analyses below, for the sake of simplicity it will be assumed that (1) (the
inequality expressing the partial stochastic order) holds with equality.

Remark 7 Note that the consequence of this assumption is that cases such as Example
6 cannot occur, because then

Fy(t) = 0= Fy () =0. (36)

After some substitutions, the expected profit then turns out to be equal to equation (150)
of the appendix:

/F\(PLap)

N { UW - Pr) - b (B (ot }
p

(U(W = Pr) — Er)

—Dnyg
+(1-p) (PLfD (nL— T _Uég:zfiévﬁf&—za)))' (37)

For any real valued interval of values Py, such that (¢7, Pr) belongs to class 1, differenti-
ating the equation above with respect to P, results in:

or (Py, p)

oF;,

= (U (UW = P) —b(F; (9 () (U (W = Pr) - Ey))
-U’ (W PL)
=b (FE' (g ))(FLI) (9(PL))-g (PL)(U(W—PL)—EL)}
+b (F;* (g (PL) U (W Pr)
+(1 - p)(1+Dg'(Pr)), (38)
with UW— P N
g(Py) = W= F) - By (39)

UW-—P,)-U(W =P, —-D)’

Local extreme values of the expected profit can be found by setting this derivative equal
to zero and solving for Pr. If this gives a root falling between 0 and P?, and besides the
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second derivative is negative for any P, falling within the critical region, then a global
maximum is achieved. This second derivative turns out to be equal to:

0°T (P1, p)
opP?
= —p(U™)" (UW = P) = b(F; (g(Pr))) A(Pr)
U (W - Prp) ?
—V (F7 (g (Po)) (Fp 1) (g (Py))
g (Pr) A(Pr)
+b (Fp (9 (P2))) U' (W — )
—p(U') (UWwW - PL)“b( g ()
U”(W PL)
b"( - ( P )) ( F..l)/ g
N (

( (
—AWPD) S 4 (F7 (g (B)) (F5Y)" (9 (Py)) (9 (PL))2
+b’( 1 (9 (Pr)
(

) A(Pr))

( L

9(Pr))) (Fz) (9 (Pr)) o" (Pr)
+20' (F (g (PL))) (F2') (g (Pr)

—b(Fy (9 (Pu)) U" (W — Pr)
+(L=p) Dg"(Pp), (40)

with
A(PL)=U(W - P) - Ey. (41)

This expression is quite cumbersome, due to the fact that b(-) has not been specified,
beyond the property of being twice differentiable in [0,n]. In the next subsection, an
example will be worked out based on the assumption that & () is constant, implying that
(1) reduces to

FH(t)szL(t),O<t§n. (42)
Then the formulas (37), (38) and (40) reduce to

T (P, p)
B W —U"1bE, - (b-1)U(W - Pr))
- p{ —Dny }

UW - Py) - By

+(1_p)(PL_D(nL_U(W—PL)'U(W'PL*D)))’ (43)
oT (Py, p)

op;,

= —pb-DUW-P)U) UW-P)—b-(U (W~ P) - Ep))

+(1—p) (1+ Dy (Pr)), (44)
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and

~ U" (W - Py)
T (Pr,p) -1l (U™ [bEL - (b— 1)U (W — P)]
apz  * —(b-1) (U (W - B))?

(U by~ (b~ 1)U (W — Py)]
+(1—p) Dg" (Fr),

respectively.

Remark 8 Note that for constant b, (34) reduces to

s0 all contracts purchased by the low risks are then also acceptable to the high risks.

EH (tL,PL) = FEg+ (b— 1) (U (W) — U(W— PL)) > EH,

(46)

Still, in general it is hard to derive an optimal strategy. The only exception, at least after
imposing a few additional restrictions, is the exponential utility function which will be
discussed below.

3.3 Application: the exponential utility function

If U (-) has constant absolute risk aversion coefficient o, so

U(z)=—-ae™, a>0,

the formulas (43), (44) and (45) become:

~

T(Py,p) = p (éln [(b—1)e*r —b(n, (P —1) +1)] - DnH)

+(1~p) (PL+D<%(QQD_1)+1_EQPL —nL>>,

eaPL (eaD _ 1)

o (Pr.p) _ (b—1)e

P, Pl (P —1) 7 1) — (b - 1) eoPe

+(1-p) (1~aDinL (e 1) “) ,

eaPL (eaD _ 1)

oP; +(1 - p) o ariany

15

8°T (PL, p) —pa b(e—1)e>Pr ,
S ELEF AL (nL (e“D - 1) + 1) (blnz (exP—1)+1)—(b—1)e=FL) )

(47)



Note that the second derivative is decreasing in P;. We now define

. aD 51

= -1)b(e* P — 1) +aD’ (51
and )
D (b D _ 1) 41

ﬂ**': o (nL(e ) ) (52)

(b—1)b(e*P — 1) + aD (byy (e — 1) +1)*’
being the solutions of

oF; (PL=F}) 7
and R
a2F (PLHO) =0 (54)
oF IZ, (PL=0) ’ )
respectively. We have p* < p**. Next let p, and ppg be the solutions of
o' (P, p)
=0, 55
OF,  (p,=0) (55)
and —~
TPy 6

0P (p=rp)
They are equal to

(bng, (e*P —1) +1) (e*P —1—aD —n; (e*P — 1) aD)

#0 = (o, (50 1) + 1) (b(e2P — 1) — D = ngbaD (@0 — 1)) 57)
and ( oD 1) D
PPE = h(esD 1) —aD’ (58)

We will now introduce two theorems, proofs of which can be found in the appendix. In
the next theorem a critical value of p is

_In [7, (e*P —1) +1] — aDny,

7T nlbng (P = 1) + 1] — aDnyy,

(59)

For p < py, the strategy of offering only (0, P}) is to be preferred to the strategy of offering
only (0, PY), while for p > p,, the opposite holds.
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Theorem 9 Ifbn;, <1 as well as

aD
b — -2
S @D 1—aD’ (60)
then in case p < py, it is optimal to offer only (0, PY) (a pooling contract) while in case
p > p1, the optimal strategy involves offering only (0, PY) (i.e. excluding the low risks
from coverage).

This theorem states that, if b, being the fixed proportion between Fy (t) and F, (t), is
lower than a certain critical level, then offering a contract with a probationary period
is never optimal. Instead, it is always optimal to offer only one contract involving full
coverage. Which contract this should be depends on the proportion of high risks within
the population. If this proportion is lower than the given critical level p;, defined in (59),
a maximal profit is achieved by charging the maximal premium the low risks are willing
to pay. On the other hand, if the critical ratio is exceeded, this premium should be the
maximal one the high risks are willing to pay.

Note that, as b > 1, restriction (60) requires that —522

> 1. This is the case for

e*P—1—aD
aD <1.2564.
Theorem 10 If
aD
b> ——M—— 61
P p— (61)
e b(es? —1) —aD
e —1) -
1 62
5 (el —1) ’ (62)
the optimal strategy depends on p in the following way:
1 p < ppo: itis optimal to offer only (0, P?);
2. p> py: it is optimal to offer only (0, PY);
3. ppy < p < py: 1t 15 optimal to offer (t3,, Pp) together with (0, Pj;), where
[ (1=p)(b(e*P —1) + (b—1)aD) ]
2
_ (1=p)(b(e*P —1) + (b—1)aD)
1 +\/(1 p){ —4(b—1)aDb (e*P — 1) "
Fi=F+ 3= 1) (P = 1) (63
UW-P})-Eg
* —1 L 64
= (gm0 F= ) oy
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and
Phy=W—-U"'(bE,— (b—-1)U (W - P})). (65)
This solution satisfies

This theorem shows the conditions under which the optimal solution is most similar to
the one derived in Stiglitz [1977]: if 7, falls below a certain upper bound and b exceeds
a certain lower bound, and moreover, p belongs to a certain interval, then the insurer
maximizes expected profits by offering insurance with a deductible to the low risks and
full coverage to the high risks, thus satisfying the first two propositions of Stiglitz. Besides,
there is a critical value of p, namely pg, such that if this value is exceeded, the low risks will
not purchase any coverage. Because of this, the fourth proposition of Stiglitz is satisfied
as well. Note, however, an essential difference with Stiglitz’ third proposition: it may be
optimal to let the high and low risks buy the same contract. This is the case if p falls
below another critical level.

In Figure 2, the upper bound of 7, as a function of aD, expressed in (62), is displayed
graphically for b = 2 and oD > 0.25. For oD < 0.2838, this upper bound is greater than
1, so in that case there is in fact no restriction at all.

Example 11 We taken =30, a=1-10°D=2-10% b= 3, and

Fi(t) =1 exp <_% (101 - 1)) (67)

(so the mortality low is Gompertz (z,6, k) with parameters z = 35,6 = 0.003,x = 1.01).

Note that
aD

b—3>0.45568———eaD_1_aD (68)
and
b (e"‘D - 1) —aD
2baD (exP — 1)’
so the conditions of the previous theorem are satisfied. It turns out that
po = 0.42825 and ppy = 0.25567. Hence the optimal solution 1s similar to the one given
in Stiglitz (1977) for p € (0.25567,0.42825). In Figure 3, the resulting optimal values for
Py and Py, are displayed. The corresponding values for tr, are as given in Figure 4.

. = Fr(n) = 0.13806 < 0.22391 = (69)

4 Fully competitive market
A monopolistic insurer does not have to take into account possible actions of competitors

and therefore the equilibrium in a monopolistic insurance market is obtained as a result
of maximizing the aggregate profit. This is not the case for a fully competitive market.
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Instead each company has to consider the possibility that a competitor in the same market
may develop a strategy, which results in attracting the risks away of the former firm.

In this section, we assume that there is freedom of entry and exit for insurance companies.
Just as for the monopolistic case, we will first deal with perfect and then with imperfect
information.

4.1 Symmetry of information

If an insurer has complete information on any individual’s risk profile, the equilibrium
resulting requires offering to any individual an actuarially fair priced contract. The reason
lies in the fact that under competition firms are constrained to earn zero profits.

So for any probationary period ¢, the premium P is equal to

P=(n-F(t)D. (70)

Another property of an equilibrium is that each individual’s expected utility is maximal.
If existing companies fail to meet this criterion regarding members of any risk type, any
insurer would have the opportunity to offer a contract to that type with higher expected
utility for the individual and positive expected profit for the firm. Just as in the case
of a monopolistic insurer, this requirement is satisfied by offering full coverage, i.e. no
probationary period, to any risk type, as shown in Eeckhoudt et al. [1988]:

E(t,(n—F(t) D)
FOUW-D-P)+(1-F(@)UW - P)
= FOUW-D—-(n—-F(t)D)+ (1~ F())U(W—(H—F(t))D)
S UW-(n- F())D—F()D)
U(W —nD)
= FOUW-D-(n—F(0)D)+(1—-F(0)U(W — (n—~ F(0)) D)
E(0,nD). (71)
Note that
OE (t,(n— F(t)) D)
ot
UW-D-(n-F(t))D)-U(W —(n—F(t)D)
= F'(t) +F (@) DU (W — D — (n— F(t)) D) . (72)

+(1-F())DU (W —(n—F (1)) D)

The right hand side of (72) does not have to be negative. This result, also observed in
Eeckhoudt et al. [1988], is in contrast with the case of the monetary deductible, where
the individual’s expected utility always decreases with increasing monetary deductible.
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Example 12 Let U (-) be an exponential utility function with absolute risk aversion co-
efficient a:
U(z)=—-ae™®, a>0. (73)

Then (72) reduces to
OE (t, (n - F'(t)) D)

ot
= F' (1) W= 0-FOD) (P (t) oD (2P — 1) — (¢*P — 1 — aD)), (74)

which is positive for at least some t if

e —1—aD

T2 aD(ed -1y

(75)
The inequality derived is exactly equal to the one resulting in Ezample 5, being its monop-
olistic counterpart. This is just as one would expect. In Example 5 it has been shown that,
if the above inequality holds, there are contracts which result in the same expected utility
the individual would have had without purchasing any insurance. This ezample serves
to show an equivalent conclusion: that there are contracts with a positive probationary
period for which the insurer will break even on average, but which will not be bought by
the insured, since the expected utility is lower than the one corresponding to not insuring
oneself at all.

4.2 Asymmetry of information

If an insurer cannot distinguish between the different risk types, it makes no sense, of
course, to offer the two actuarially fair contracts with full coverage to anybody, as all
individuals will prefer the one with the lowest premium (the actuarial premium concerning
the low risks), resulting in losses for each insurer.

Rothschild & Stiglitz [1976], considering the monetary deductible as a screening device,
assume that each insurer follows a pure Cournot-Nash strategy. This means that all firms
behave without foresight, i.e. they do not take into account their competitors’ responses
to their own strategy. The authors prove that, if the proportion of high risks in the
population exceeds a certain critical level, there is a separating equilibrium with the
following properties:

1. The high risks buy full coverage against an actuarially fair premium.
2. The low risks buy partial coverage, also against an actuarially fair premium.

For the probationary period, a similar strategy exists. It will be formulated in Definition
15 and we will call it the Rothschild-Stiglitz strategy.

If, on the other hand, the actual proportion of high risks in the portfolio falls below
the critical one, there is no equilibrium. Rothschild & Stiglitz [1976] also show that an
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equilibrium can never involve offering one pooling contract, where the low risks subsidize
the high risks, because this would induce a new entrant to offer a contract attracting the
low risks, but not the high risks, away from the insurer with the pooling contract. The
latter policy would then result in losses.

In this section, however, we assume that any company in the market behaves with
foresight: it explicitly considers the reactions of competitors to its own strategy. The
consequence is that, as shown in Wilson [1977], an equilibrium always exists. Such an
equilibrium is called a Wilson equilibrium, defined in Spence [1978] as follows:

Definition 13 (Wilson equilibrium) A set of contracts offered is called a Wilson equi-
librium if no firm can offer a different set that a) earns positive expected profits right away
and b) continues to be profitable after competitors have dropped all unprofitable policies in
response to the original firm’s move.

A difference with the situation of myopic firms just considered is that an equilibrium may
involve a pooling contract, as shown in Wilson [1977]. We furthermore assume that the
distribution of individuals is stable over time and that the probability distributions Fy (-)
and Fp, (-) remain unaltered as well.

In this section, Wilson equilibria will be derived and their characteristics compared
with those involving the monetary deductible as a screening device. The main properties
of the Wilson equilibrium are stated below:

1. The Wilson equilibrium results as a solution of the problem of maximizing the
expected utility for the low risks under certain constraints.

2. Each firm’s expected profit is equal to zero.
3. High risk and low risk individuals never purchase the same policy.

4. The high risks purchase full coverage against a price which is at most actuarially
fair.

5. The low risks purchase partial coverage and pay a price which is at least actuarially
fair.

6. There exists a critical ratio of high risk individuals to the entire population. If
the actual ratio exceeds the critical one, the Rothschild-Stiglitz strategy applies.
Otherwise, the low risks subsidize the high risks, but the low risks’ deductible is
lower than in the case of actuarially fair pricing.

Next, it will be shown that the first and fourth criterion also apply to the case of a
probationary period, at least under the given assumptions. In a Wilson equilibrium, the
final expected utility for the high risks should be at least equal to U (W — nyD), being
the utility resulting from purchasing full coverage against the actuarially fair premium
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ngD. To verify this, suppose that the maximal utility for the high risks were equal to
UW —nyD — BD), with § > 0 such that

(g +B) D <W — U™ (En), (76)

where Ey is as defined in Subsection 3.2. (Recall that the right hand side of the above
inequality represents the maximal premium the high risks are willing to pay in return for
full coverage, so the above inequality means that the maximal possible expected utility for
the high risks is higher than the expected utility related to no insurance.) Then a new en-
trant to the insurance market could make profits by offering the contract (0, (74 + 8) D),
to all individuals, regardless of whether the low risks would purchase it. Competitors
would respond by offering some contract (0, (ny + ) D) with v < S, still resulting in
profits. New series of premium cutting would follow, resulting finally in the situation
where a high risk individual will obtain at least U (W — ng D) as expected utility.
The consequence of this result is that, since, for any 0 < ¢t < n,

UW—-nyD) 2 Fa(Q)UW =D —(ng — Fu (t)) D)
+ (1= Fg(0))UW = (ng — Fu (1)) D), (77)

the high risks pay a premium smaller than or equal to the actuarially fair one. Hence,
since a company cannot afford making losses, the low risks should pay premiums at least
as high as the actuarially fair ones. This proves the fifth criterion with respect to the
premium the low risks pay (higher than actuarially fair). So companies rely on the low
risks for their profits and therefore have to make the conditions for individuals of this
type as favorable as possible in order to be able to attract them, by offering a contract
maximizing their expected utility. This proves the first criterion.
The Lagrangian of the optimization problem is therefore equal to:

£ = Ep(t,Pr)+v(p(Pu— (g — Fu (tw)) D)+ (1 — p) (Pr — (n — FL (t1)) D))
+u (Ey (ta, Pu) —U (W —ngD)) + v {EL (tr, Pr) — Er (ta, Pr)}
+vu {Exu (tu, Pu) — Ex (tr, Pr)}, (78)

with v,v; and 7, acting as the Lagrange multipliers corresponding to the nonnega-
tive profit constraint, the self-selection constraint for the low risks and the self-selection
constraint for the high risks, in this order. Finally, u denotes the Lagrange multiplier
specifying the constraint considered above (expected utility for the high risks at least
equal to U (W —nyzD)).

Recall, however, that we assumed the partial stochastic order

Fy(t) > b(t) Fy(8), withb(t)>1; 0<t<n, (79)

with equality in case ¢ = n. As a consequence, the contract in the equilibrium for the
high risks, should involve full coverage. If this were not the case, but instead a contract
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(tw, Pg), with tg > 0, were offered, a firm could make profits by offering (0, P};), with
Py such that

U(W — Pg) = Eyq (tu, Pu), (80)
as argued in Subsection 3.2, where it was also shown that this contract does not violate the
self-selection constraint for the low risks. So the high risks always purchase full coverage
and, since the premium they pay is actuarially fair at highest, this proves the fourth
criterion of the Wilson equilibrium. It follows that v, = 0, and the Lagrangian reduces
to

£ = Ep(ty, Pr)+v(p(Pu—ngD)+ (1 —p) (P — (n, — FL(t2)) D))
+u (gD — Pu) + vy {Eu (0, Py) — Ey (tr, Pr)} . (81)

As proved in the appendix, the following restrictions hold:

) v>0&p(Pg—ngD)+(1—p)(Pr—(n,— Fr(tr)) D) =0, and
II) w>0and/or y4 > 0.

So in an equilibrium, as I) indicates, the insurer breaks even on average. The interpre-
tation of II) is as follows: the optimal contract for the high risks is never a policy with
premium strictly lower than 75D which is at the same time strictly preferable to the
contract offered to the low risks.

Just as in the case of a monopolistic insurer, there are three different combinations
to be taken into account. Again, this is contrary to the monetary deductible case, where
the self-selection constraint for the high risks is always binding. In case of a probationary
period, however, things may be different. The next example shows that actually equilibria
satisfying the pair of constraints:

p> 0575 =0, (82)
(maximal premium constraint binding, self-selection constraint non-binding) may exist.
Example 14 Consider, just as in Example 6:

Fy(t) =G{), 0<t<t

=G(t), t>t
Fut) =0 0<t<t
=H({) t>t

Again, both G(t) and H (t) are specified to be continuous and non-decreasing functions on
the intervals [0,t] and [t',n], respectively, with G(0) = H(¢') = 0, and G(t') > H(n). The
contract (', H(n)D), on the one hand gives the low risks mazimal ezpected utility (for
them it is actually the same as full coverage) and on the other hand will be considered
by the high risks to be strictly inferior to (0,G(¥)D). The former contract will never
even be purchased by them since it actually involves no coverage at all. So an optimal
solution involves offering (', H(n)D) together with (0, G(t')D), having as property that
the self-selection constraint for the high risks is not binding.
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For the sake of simplicity, we will restrict ourselves in the analyses that follow to cases
where the ”>"-sign in (79) can be replaced by the ”="-sign.

Fy(t)=b({)Fy (), withb() >1; 0<t<n, (83)

The probationary period corresponding to the Rothschild-Stiglitz strategy, the latter hav-
ing the property that both the self-selection constraint and maximal premium constraint
are binding, is found as a solution of the equality:

UW —ngD) = b(ty) Fr(t)U (W — (9, — F(t2)) D — D)
+(1=0(ts) FL(te)) U (W — (n, — Fi(t)) D). (84)

This solution may not be unique but for the moment we assume it is the case. Later on in
this section we will prove that it actually is unique if b (+) is constant and an exponential
utility function applies.

Definition 15 (Rothschild—Stiglitz strategy) We assume that the solution of (84)
is unique, regarding the interval [0,n], and specify it by t;,. Now the Rothschz’ld;Stiglitz
strategy is defined as the strategy of offering (0,7, D) together with (tr, (n, — FL(tL)) D).

Then for all potential solutions of the optimization problem (81) with ¢; < ¢z, the self-
selection constraint is binding, but the maximal premium constraint is not, implying that
the low risks subsidize the high risks. On the other hand, for all potential solutions of
the optimization problem (81) with ¢; > ¢, the maximal premium constraint is binding
but the self-selection constraint is not: each contract pays the actuarially fair premium.
The reason is, in graphical terms, that the high risks’ indifference curve (an individual
of a certain risk type is indifferent between two contracts lying on the same indifference
curve applying to the same risk type) passing through (0,7,D) lies above the low risks’
zero-profit curve (the curve consisting of contracts breaking even on average) for ¢y, < #7,
and below it for ¢;, > ¢7. This will be illustrated in Example 17.
Hence, the optimization problem involves comparing:

1. the contract (tz, Pr) of all the contracts satisfying the constraints:

p (P —nyD) + (1= p) (P~ (n, — Fr (t)) D) = 0, (85)
Ey (t,Pr) = En (0, Pu); (86)
tr € [0,i], (87)
which maximizes the low risk class individuals’ expected utility, with
2. the contract (1, Pr) of all the contracts satisfying the constraints:
Pr=(n, — Fi(tL)) D, (88)
tp € [tr,n], (89)
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which maximizes the low risk class individuals’ expected utility.

Remark 16 In the monetary deductible case, the second partial optimization problem is
trivial as the contract mazimizing expected utility for the low risks is always the one with
the lowest deductible. This may not be the case for the probationary period, as was argued
by equation (72) and Example 12.

Next, the optimal contract of the first partial optimization problem will be derived. Com-
bining the corresponding constraints (85) and (86) results in the following relationship
between t; and Pr:

U (W—nHD+ =D p, - (1, - £ (m)D)) B P, (%0)

Concerning the above inequality, in general neither one of the two variables ¢7, and P, can
be written as a function of only the other one and hence in general the objective function
can not be written as a function of only one variable. An exception is the exponential
utility function, which will be considered in the next subsection.

4.3 Application: the exponential utility function

In this subsection, U () is specified to be exponential with o being the coefficient of
absolute risk aversion:
U(z)=—ce™, a>0. (91)

Furthermore, b(-) is assumed to be constant. Then the contract satisfying both the
maximal-premium and the self-selection constraint is unique. This will be verified by
substituting (91) into (84), yielding:

oD = e =FLUID (bFy (1) (e*P — 1) +1). (92)
The derivative of the right hand side of the above equality to ¢ is equal to
Fy (ty) 2@ FLlD (p (e*P — 1) — aD (bFy (1) (e*P — 1) + 1)) . (93)

It follows that, if
< b(e*P —1) —aD
"= e (e*P —1) ’
the right hand side of (92) is monotonously increasing as a function of ¢, varying from
el (< e Py to (b, (e*P — 1) + 1) (> e*™#P). On the other hand, if

(94)

b(e? —1) - aD

—_ 95
> baD (e2P —1) ’ (95)
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the right hand side of (92) is monotonously increasing in t;, for

L (b =1) —ap
O,FL <m)j|, (96)

varying from e®”? (< e*1#P) to

(et ) oo )

ty €

aD o)

and monotonously decreasing in t; varying from the last mentioned expression to
(1, (e*P —1) +1) (> e*=P). Hence the solution ¢, again denoted by i, is in any
case unique. As a consequence, in the equilibrium for all contracts with a probationary
period t;, < i the self-selection constraint is binding, and the maximal premium con-
straint is not. Contracts (1, Pr) designed for the low risks then satisfy (90), which in the
given case of an exponential utility function reduces to

Pu=p (D + 122 (= b)) D - n () (7 - 1) + D). o

The opposite applies for t; > t7: the maximal premium constraint is binding and the
self-selection constraint is not. The low risks then buy a contract satisfying;

Pp=(n, - Fr(t)) D, (99)

while the high risks will buy (0,7, D). The above results will be illustrated graphically
by means of the following example:

Example 17 We taken=30,a=1-10"5, D=2.10% p=0.4, b= 3, and

1.01 - 0.003%

Ft) =1-ex <_ n (0.003)

(0.003° — 1)) . (100)

Figure 5 illustrates the given case. It turns out that iy, being the probationary period ap-
plying to the contract designed for the low risks in case of the Rothschild-Stiglitz strategy,
15 equal to 10.8416. Furthermore Pr, = 18,114, where P denotes the premium corre-
sponding to t,. The figure displays the set of contracts (tr, P) satisfying the constraints
(solid curve). Forty <ty andt; > ty, these constraints involve the equalities (98) and
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(99), respectively. The indifference curve for the high risks, passing through (0,7 D)
and (t~L, Pp) (dashed), has been drawn as well. Besides, another high risks indifference
curve (dotted) is given, corresponding to a possible strategy of offering (0, Pg;) together
with (t5, Py), with ¢} < tr. The figure shows that in that case the self-selection constraint
(for the high risks) is binding, but not the mazimal premium constraint (also for the high
risks). It should be noticed, however, that this strategy is just a feasible one, and not
necessarily equal to the equilibrium.

Let us consider the contracts (¢, Pr) with ¢, € [tNL, n]. Recall from Example 12 that

OFE (tr,(n — F (tr)) D)
oty
— F(tg) W= 0-FCID) (F (1) aD (e*P — 1) — (e*” —1—aD)),  (101)

which is either positive for any value £, € [tz,n], or negative for any value t;, € [ﬂ,,n},
or negative for t;, € [t,t}) and positive for t,, € (¢}, 7], with t}, € (tz,n). It follows that,
when restricting oneself to contracts with probationary period ¢;, € [tNL, n] , a low risk class
individual’s expected utility is maximized either by offering (tz, (77 . — F) L(tNL)) D) or by
offering (n,0), which means no insurance at all. So contracts (tz, Pr) in the equilibrium
set with ¢y € (t},n) do not exist.

The conclusion is that the optimization problem involves deriving the optimal solution
with constraint 0 < ¢p < t~L, and then investigating whether the contract designed for
the low risks (this might also be a pooling contract with full coverage) will actually be
purchased by individuals of that type. )

So we can use a constrained objective function (constrained, since it is subject to the
constraint 0 < t; < tT;) which can be written as a function of either ¢y or Pr. This
is derived by substituting (98) into the unconstrained objective function given in (81).
Denote this function by v (tr,p). It turns out to be equal to

Vitn,p) = eV (bFy(tr) (e*P —1) +1) 77 (Fu(ts) (e*P - 1) + 1)
.e@Dlona +(1=p)n,—FL (L)) (102)

with first derivative

6‘7 (tln p)
Otr,
e~ W (bFL(tL) (eaD _ 1) + 1)—/’ @D ons+(=p) (. =FL (L)) B (¢
@ b(exP -1
(Fp(tr) (e2P — 1) +1) <prL(tL>(ew_)1)+l +(1—p)aD o (03)
_ (eaD . 1)
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The sign of this derivative is determined by the expression between large curly brackets.
Therefore we will consider this expression, defined as s (t1,p). So

WW%=@MW”4HUGmé%M%+ﬁUWWﬁ

~ (e - ). (104

Taking the derivative with respect to ¢y gives:

ds (tr, , oD b(b—1)(e*P -1
—%@=mm@—n@ﬂwwﬂmhdgqﬁw> (105)

The factor between large parentheses in the right hand side of the above equation increases
monotonously in £7. We now define

. aD
P (b—1)b(e*P — 1)+ aD’ (106)

e oD (bFy, (£) (P — 1) +1)°

ok

o= — =) (107)
(b—1)b(eeP — 1) + oD (bFy (£1) (P — 1) + 1)
as the solutions of 95 (¢
S ( L p) — 0, (108)
Oty (t,=0)
and
QSM =0 (109)
oty (tr=tz) ’
respectively. We have p* < p**. Next let pppoor, and prg be the solutions of
Ot (=0)
and R
Oty (1,-%7) '
respectively. They prove to be equal to
(P —-1)—aD (112)
Ppoor = b(eel — 1) —aD’
and
_GR) -)+) (D= - D () P +1)

PRS = (Fy (iz) (0 — 1) + 1) (b(e*P — 1) — aD (bFy (iz) (%P — 1) + 1))’
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We now derive the following two theorems, proofs of which can be found in the appendix.
In the first of these, a critical value is

_ In[F (i) (2P — 1) +1] — Fy (t2) @D
o (b—1)naD ’

P2 (114)
For p < p,, offering the pooling contract (0, pnyD + (1 — p) 7, D) is to be preferred to
the Rothschild-Stiglitz strategy, while for p > p,, the opposite holds.

Theorem 18 Ifbn; <1 and
aD
b< ———— 1
S @bl _aD’ (115)

the following conclusions hold concerning p:

1. If p < py, it is optimal to offer only the contract (0, pnyD + (1 — p)n;, D), provided
that

- In [ng, (e*? — 1) + 1] — n oD
(b—1)naD
If the above condition is not satisfied, it is optimal to offer only the contract (0,1 D).

(116)

2. In case p > p,, the optimal strategy involves offering (0,nyD) anyway. Besides,
(tz, (n — Fy (t2)) D) will be offered, provided that )

o(m-ru (i) - Mo (P -1 +1
e <FL(t2)(eaD—1)+1'

(117)

This theorem indicates that, if the fixed proportion between Fy (t) and Fi (t) is lower
than a certain critical level, then there are only three strategies to be considered: a) the
Rothschild-Stiglitz strategy; b) offering only the pooling contract (0, pny D + (1 — p) 1. D);
c) offering only (0,7, D), implying that the low risks are excluded from coverage.
Note, finally, that if 5
e*” —1—aD
L < (CQD _ 1) aD ’ (118)

the equalities (116) and (117) hold anyway.

Theorem 19 If
by — 2D (119)
eeD 1 —aD’
and b( " ) D
~ e —1) -«
Py (6n) < 2baD (e*P —1) ’

the optimal strategy depends on p in the following way:

(120)
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1. p < ppooy: it is optimal to offer only (0, pngD + (1 — p)n, D), provided that

In[ng (2P —1) + 1} —ngaD
< 6T n.aD ; (121)

2. p> pps: it is optimal to offer (0,ngD) together with (tz, (n, — Fr (tz)) D), pro-
vided that

— aD _
) P A Gt (12)
FL (tL) (EO‘D — 1) +1
3. ppoor < P < Prs: it is optimal to offer (t}, Pr) together with (0, Pf), where

(1—p) (b(e*P = 1) — (b+1)aD)

; (1_p){ ((b—1)aD —b(eP ~ 1))’ }

—p((b—1)aD +b(eP ~1))°
2 (e — 1) (1 — p) baD ’

-1
tr = F;

(123)

1- 1
P = (gD + oL~ ) D= S (R (0 -1) +1) ), 029
and
' x (1 - ,0) * . *W2\ D
Py =ngD - — (Pf = (n, — FL(t1)) D), (125)
provided that
eFL (Fr (t3) (2P — 1) +1) <np (e*P —1) + 1. (126)

If the condition related to any of the three cases listed is not satisfied, then it is
optimal to offer only (0,nyD).

The last theorem shows the conditions under which the optimal solution is most similar
to the one derived in Miyazaki [1977] and Spence [1978]: if Fy, (¢7) falls below a certain
upper bound and b exceeds a certain lower bound, and moreover, p belongs to a certain
interval, then a low risk class member’s expected utility is optimized by offering insurance
with a deductible to the low risks, which is smaller than the deductible corresponding to
the Rothschild-Stiglitz strategy. In addition the high risks are subsidized by the low risks,
thus satisfying the fourth and fifth property of the Wilson equilibrium. Besides, there is
a critical value of p, namely pprg, such that if this value is exceeded, then the Rothschild-
Stiglitz strategy applies. Because of this, the sizth property of the Wilson equilibrium
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is satisfied as well. Note however an essential difference with the third characteristic: it
may be optimal to let the high and low risks buy the same contract. This is the case if p
falls below another critical level, namely ppoor.-

The optima considered are only the real ones if they improve the low risks’ situation
compared with no insurance. This is the reason why extra conditions concerning b and
Fy (ﬂ,) are imposed. Note however, just as in the previous theorem, that if

el —1—-aD

< 12
A (E‘XD o 1) aD ) ( 7)
these conditions are always satisfied.
Example 20 As in Example 11, we taken =30, a=1- 107%, D =2 10°,
1.01-0.00338
Frt)=1- — e (0.003° — 1 128

(so the mortality law is Gompertz (z,6, k) with parameters z = 35, § =0.003,x = 1.01),
and b = 3. The actuarially fair premium corresponding to the full coverage contract for
the high risks is equal to

: nyD = 82,836. (129)

The Rothschild-Stiglitz strategy comprises the contract
f7, = 10.8416, P, = (n, — Fy (i) D = 18,114, (130)

We have that
b(e*P — 1) —aD

Fy (1) = 0.047487 < 0.22391 = ————~
1 (t2) = 0.047487 < 0 2baD (@0 — 1)’ (131)
and b
a
b=3>.455668 = ——7—— 132
z el —1—aD’ (132)
so the first two conditions of Theorem 19 are satisfied. Furthermore:
el —1—aD
=.13806 < ——F—
N, 3806 < €D T aD’ (133)

so the extra conditions regarding the three different cases considered in Theorem 19 are
satisfied anyway. It turns out that prg = 0.25567 and ppoor = 0.36119. Hence the
optimal solution is similar to the one given in Miyazaki (1977) and Spence (1978) for
p € (0.25567,0.36119). In Figure 6, the optimal values for Py and Py, are displayed. The
corresponding values for tr, are as in Figure 7.

The reader may have noticed that the equilibria derived in this section have some prop-
erties in common with the optimal strategies for the monopolistic insurer dealt with in
the previous section. This is the reason why we will next spend an extra section on the
properties both equilibria share.
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5 Comparison between equilibria for both insurance
markets

We will first make some comments about the properties that the equilibria for the monop-
olistic and competitive insurance markets have in common in general. (In this respect,
the solution yielding maximal profit for the monopolistic insurer is also considered to be
an equilibrium.) Then we will discuss the special cases of the exponential utility function,
which were taken as the leading example throughout the whole paper.

5.1 In general

It was shown that, if an insurer is able to monitor the individuals’ accident probabili-
ties, for both a monopolistic and a competitive insurance market, equilibria involve full
coverage for all risk types.

In this paper, a partial stochastic order between the c.d.f.’s of the time-at-accident
of low risks and high risks was assumed. This implies that, for both types of insurance
markets, an equilibrium always involves full coverage for the high risks. Furthermore, the
high risks are never worse off compared with symmetry of information (this also applies
for a monetary deductible). As a consequence we get that the Lagrange function concerns
three constraints in both cases, one of which (the low risks reservation constraint in case of
a monopolistic market, the nonnegative profit constraint if the market is fully competitive)
is always binding, just like at least one of the other two.

Irrespective of the market form, the Lagrange function applying to the monetary
deductible as a screening device has the property that the self-selection constraint for the
high risks is always binding. This does not have to be the case for the probationary period,
as was illustrated by one and the same extreme example for both market types (namely
Examples 6 and 14, respectively). In other words: contracts with partial coverage may
exist which will be purchased by the low risks, but which will be considered to be inferior
by the high risks, when compared to a contract with full coverage against the maximal
premium a member of the latter type can be charged. (This maximal premium is the
actuarial premium in case of full competition and the maximal premium the high risks
are willing to pay for full coverage if the insurance market is monopolistic.)

5.2 The special case of constant absolute risk aversion

The case of an exponential utility function was considered extensively in this paper. It
was shown that if the entire accident probability 1 exceeds a certain bound, depending
on the welfare loss, denoted by D, and on the risk aversion coefficient, denoted by o,
then there are contracts, with a relatively high probationary period, which will never be
offered, either because the individual considered will ultimately be worse off (in case of
a fully competitive market) or because they will contribute to losses from the company’s
point of view (in case of a monopolistic insurer).
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Such contracts will never be part of an equilibrium. A monopolistic insurer has always
a more profitable strategy at its disposal of excluding the low risks from coverage and
charging the high risks the maximal premium they are willing to pay, while, on the other
hand, the high risks, always buying full coverage, never subsidize the low risks.

In both sections two theorems were derived, being in pairs similar and based on a
constant proportion between the c.d.f.’s of both risk types, denoted by b.

We will first focus on the Theorems 9 and 18. It was shown that, if

aD
b<e°‘D—1—aD’ (134)

then offering a contract with a probationary period is never optimal if the insurer is a
monopolist, while in a competitive market, offering a contract with a probationary period
is never optimal if different from the one resulting from the Rothschild-Stiglitz strategy.
If the proportion of high risks within the entire period is low enough, it is optimal to offer
a pooling contract, a solution which never applies in case of a monetary deductible.

Theorems 10 and 19 will now be compared. Suppose that the conditions of Theorem

10 apply, so: 5
o
e s (155)
and ——
b(eP —1) —aD

2baD (e*P —1) ° (136)

N <

This implies
b (e"‘D - 1) —aD
20D (e*P - 1)’
so the conditions of Theorem 19 are satisfied as well. Besides, it implies (127), hence
in an equilibrium of a competitive market the low risks will always get coverage, with

probationary period at most equal to 7. Solving %ﬁl’:’ﬂ =0 (cf. (103)) for p results in:

(bFy (t1) (2P — 1) + 1) ((e*P = 1) — aD (Fp (1) (e*P — 1) + 1))

Fy () < (137)

= (Fp (t2) (e = 1) + 1) (b (e — 1) — aD (bFy, (t1) (e*P — 1) + 1))’ (138)

And solving L&) = 0 (with 22 as in (44)) for p yields:
_ BBy 139
P B (1)

with

B, = e (e*P —1) —aD (n, (e —1) +1); (140)
By = blny(e*P —1)+1) — (b—1)e*"; (141)
Bs = np(eP—1)+1; (142)
By = (22 (b(e*P —1)+ (b—1)aD) —baD (n; (e*” —1) +1)).  (143)
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which by applying (33) results in (138).
So if the given conditions hold, the following can be concluded concerning the equilibria
for monopolistic and competitive insurance markets:

L. For p < ppoor = Pp2s it is optimal for both market types to offer only one contract
of full coverage.

2. For ppoor, < p < prs, it is optimal in both cases to offer two contracts, one of which
having a probationary period ¢} equal to

(1—p) (b(e*P = 1) = (b+1)aD)

_ (1_p){ ((b—1)aD —b (P ~ 1))* }

—p((b—1)aD+b (e - 1))2
2(e*P —1) (1 — p)baD

ty = Fp*

(144)

3. For p > pgs, the optimal strategy for a monopolist involves offering two contracts,
one of which has a probationary period greater than tLifp < Po, and no coverage at
allif p > py. On the other hand, if the market is fully competitive, the probationary
period for the low risks will always be equal to tr .

So if p < pgg, for both market types the equilibria coincide with respect to the proba-
tionary period, provided the given conditions hold.

6 Conclusions, final comments and recommendations
for further research

Insurance companies have always been faced with the problem that they know less about
individual persons than individuals know about themselves. As a consequence, they have
to cope with the threat of adverse selection. In this paper, the probationary period has
been introduced as a method to design contracts in such a way that each individual
person in a population selects the contract designed for him. This has been done for two
extreme insurance market types, namely the monopolistic insurer and a fully competitive
market. It has been compared with the more common screening instrument of a monetary
deductible. This has been done under simplified assumptions such as the existence of
only two risk classes, no discounting of interest and a partial stochastic order between the
distribution functions of time-at-accident of a low and a high risk class individual.
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In order to be able to draw conclusions in an appropriate way, the case of symmetric
information has been considered as well. For both market types it has been shown that in
that case any individual will purchase full coverage, i.e. no probationary period. This will
be against either the actuarial premium, in case the market is competitive, or against the
maximal premium the individual considered is willing to pay, if there is only one insurer.
Tt has also been shown however, that there may be contracts with a certain probationary
period which are actuarially fair with respect to an individual but will not be purchased
by him. It is difficult to explain this phenomenon. To our opinion, the reason seems to be
the fact that an insured gets less certainty from a contract with a probationary period,
compared to a contract with a monetary deductible (which will always be purchased by
a risk averse individual if actuarially fair). In the latter case, the insured at least always
gets some compensation for a welfare loss, whereas in the former case there is the chance
of getting no compensation at all. For other possible reasons, we refer to Eeckhoudt et
al. [1988].

The assumption of a partial stochastic order between the distribution functions of
time-of-accident of the two respective risk classes has proved to be an essential one, since
the equilibria resulting have at least some properties in common when compared with
the corresponding ones for the monetary deductible. One characteristic is that the high
risks will always purchase full coverage, i.e. insurance without a probationary period.
Just as in the case of a monetary deductible, they are also at least as well off as they
would have been in case of symmetric information. On the other hand, the low risks,
and this is again the same as with the monetary deductible case, are either as well off
(monopolistic insurer) or worse off (competitive market) compared with the situation of
perfect availability of information.

For both market types considered, using the probationary period as a screening device
can give the insurer extra opportunities, since contrary to the monetary deductible, con-
tracts may exist which will be purchased by the low risks, but not by the high risks. In
general, however, it is difficult to draw conclusions, partly due to the fact that so many
different specifications of the distribution functions of time-of-accident are possible. Some
analyses have been carried out with the exponential utility function and an additional as-
sumption concerning a fixed proportion between a high risk’s probability and a low risk’s
probability of facing an accident before any point of time. It has been shown that, for a
monopolistic insurance market, the strategy yielding a maximal profit is comparable with
the one derived by Stiglitz [1977], provided that some restrictions hold. Under similar
circumstances, the equilibrium in case of a competitive market has much in common with
the one derived in Miyazaki [1977] and Spence [1978]. For both market types, however,
an equilibrium may involve a pooling contract with full coverage, where both risk types
pay the same price. This can never happen in case of a monetary deductible.

The approach in this paper has been analytic. This has yielded some unambiguous results,
though at the price of rather severe restrictions. Many extensions of the approach in
this paper are possible. One can, for instance, add interest as an additional parameter
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or relax the assumption of a partial stochastic order between the two above mentioned
distribution functions of the low and high risks. It may be interesting to investigate
how the conclusions derived in this paper may then change. Other possibilities are the
addition of more risk classes, the study of other utility functions than the exponential
one, consideration of more moderate and more realistic insurance market forms (e.g. an
oligopolistic market), and the addition of costs due to underwriting. Last but not least,
one can study the consequences in a competitive market if the assumption used in this
paper that companies behave with foresight, is replaced by the one that they are myopic,
i.e. do not take not account the competitors’ reactions to their own strategy.

The analyses in this paper rely on the expected utility hypothesis, an assumption
which is very often used in the literature, but which may contradict reality. Another
critical assumption is that individuals have perfect information on themselves. One can
make this restriction more lenient by supposing that an individual’s perception of his own
profile is to be compared with the realization of a random variable, or more loosely stated,
a "move of Nature”.

It should be noted that most (if not: all) of these extensions require thorough simula-
tion studies in order to obtain well-founded conclusions
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Appendix A: First order conditions of optimization
problem (32)

The first order conditions of the reduced Lagrangian, displayed in (32) are:

Table A.1
First order conditions of mazimization problem (32)
Al aZT'é: : p*()\H-F’)’H)U’(W—PH):O.

7()\ _ ) FL(tL)U/(W—PL—D) -0

L=V (1= Fy (t) U (W — Py) :

A3 F=0: (1—p) Fy(t) D +[U (W — P) = U (W — P, — D))
(ygFy (tp) = ALFy (tL)) = 0.

A4 AL,AH;VHEO-

A5 % >0: Ep (tr,Pr) > Er.
A6 5"’% >0: Eg (0,Py) > En.
A7 aaT,, >0: Ey (0,Py) > Ey (t1, Pr) -

From (A.2) or (A.3) we have that A, cannot be equal to zero. Furthermore it follows
from (A.1) that the following combination of values of multipliers cannot be part of an
optimal solution:

Ay =0,74=0. (145)

As the constraint corresponding to Az is binding, the following relation between ¢; and
Py, holds in any case (identical to (7) with ”>"-sign replaced with the ”="-sign):

Ep (tr, Pr) = E, (146)
yielding the following relationship (writing ¢, as a function of Pp):

_ -1l UW—-P)-EL
o=t <U<W—PL)—UL<W—PL—D))

(147)

We now assume that the constraint corresponding to vy is binding. This is e.g. the case
for b constant. Then the following relation between Py, t;, and Py, applies:

U(W — Py) =b(ty) Fi(t)U (W — Pp — D) + (1 = b(tz) Fi(¢)) U (W — Fr) . (148)

Substituting (147) results in:

Py=W—U" v W= F) (149)
=T - W—Pp)— ]
" b (F (o 5%y ) (U (W = Pu) = Ei)
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The expected profit resulting from offering the contracts, satisfying the constraints (147)
and (149) is equal to:
f (P Ly P )
U(W - Pr)

W-U1¢ (FEI( UW=-PL)-EL D)))

U(W—Pr)-U(W—Pr—

-(UW - P) - Ez)
—Dny

+(1-p) (PL -D <nL - T _U]EZ;/:;L&/__EILDL — D))) . (150)

= p

Appendix B: Proof of the theorems of Subsection 3.2

B.1. Proof of Theorem 9

‘We have . ]
&3 *
b<m¢>ppg<p. (151)
For p < p*, M is monotonously increasing in Py, so it is optimal to offer either only

(0, PY) or only (0 PY), depending on whether p < p; or p > py, respectively. Regarding
the case p > p*, note that the equation Qé%»pl = 0 has no roots for

b(eP 1) — (b—1)aD\’
P> (b(eaD—1)+(b—1)aD> ' (152)

In the given case, under the given assumption (i.e. b < —p22—5):

. (b =1 - p-DaD)’
’ b(ew—1>+( >
(b—1)b (e — 1) (( —(b—1)aD)’ - (2aD)2)

(b(ee? — 1) + (b— 1) aD)? ((b “1)b(e* — 1) + aD)
> 0. (153)

Hence, for p > p*, M is strictly negative, so it is optimal to offer only (0, PY). This
proves the theorem.
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B.2. Proof of Theorem 10

‘We have

(b>
e

aD
—_— A < | = A p* < Pg- 154
51 ab ™ < 2paD (el = 1) > po > P Ap" < ppo < pp.  (154)

b(e*P —1) —aD

We now consider the several scenarios and distinguish between the cases 1. ppo < p™ and
2: ppy > p™*

L. ppg < p*™

(a)

(b)

p < p* w > 0 at P, = 0, monotonously increasing in Py, so m >0
at P = PL The optimal solution involves offering only the contract (0 PD).

pr<p<ppo: SF(PL"’ ) > 0 at P = 0, monotonously increasing in P, varying
from 0 to the solutlon of
82F(PL )
P 15
o Pg ’ ( 5)

and then decreasing,%’—p) > 0 at P, = P2. The optimal solution involves
offering only the contract (0, P).

ppe < p= P af(P""’ > 0 at P, = 0, monotonously increasing in Py, varying
from 0 to the solutlon of =
82T (Pr, p)
il SalkL 1 A | 156
57 =0, (156)

and then decreasing,@g};—’» < 0 at Py, = P?. The optimal solution is found as
follows. In this case, the equation

T (PL, p)

s =0 (157)

has a zero root falling in the interval [0, P?] which at the same time is the
optimal value of Py. This equality can be rewritten as follows:
(b _ 1) (eaD _ 1) e2aPL
aD _ _ Py, ,oP?
+(1—p){(b(e 1) + (b—1)aD) e*re L}

—baDeXFL

=0, 158
eoPr (be"‘Pg —(b=1) eaP,,) (exD —1) (158)
resulting in two roots, namely
1
Py =Py + —In[A(p5;05 D], (159)
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with
(1—p) (b(e2? = 1) + (b—1)aD)

b(e*P —1 2

+ |(1-p) (1_9){+gb—1)a%)}

—4(b—1)aDb(e*P —1)
2(b—1)(e*? — 1)

A(p;b;a; D) =

(160)

The root with the '+’ sign turns out to be the relevant one. Denote this root
by P;. Then the corresponding values for ¢, and Py are found by substituting
Py in (147) and (149), respectively.

(d) p*™ < p < pg: just as in case l.c.
() p>po: Léii’—”) < 0 at P, = 0, monotonously decreasing in P, %’l <0

at P, = P?. So a_f[gI;LL_@ < 0 for each P, € [0, PP}, and therefore the optimal
solution involves offering only (0, Pf).

2. ppo > P

(a) p<p*: é—’%};’;—"’z > 0 at P, = 0, monotonously increasing in P, so %ﬂ >0
at P, = 0. The optimal solution involves offering only the contract (0, PY).
(b) p* < p<p™: %I;Z—’p) > 0 at P, = 0, monotonously increasing in Py, varying
from 0 to the solution of "
0°T' (P, p)

opr =0 (161)

and then decreasing,glg—l;;i’—”) > 0 at P, = P?. The optimal solution involves
offering only the contract (0, PP).

(c) p™ < p < ppo : %ﬁi’@ > 0 at P, = 0, monotonously decreasing in Pp
,@ﬂ% > 0 at P, = PY. The optimal solution involves offering only the
contract (0, PP).

(d) ppe < p < po : %}{’m > 0 at P, = 0, monotonously decreasing in Pr
LELp) < at Py = P?. The optimal solution is as in case 1.d.

8P, L
(€) p>po: ﬂg,i’—p) < 0 at P, = 0, monotonously decreasing in P, a_ré%,p_) <0

at P, = P?. So mqé;;i"’) < 0 for each Py, € [0, P?], and therefore the optimal
solution involves offering only (0, P%).

Hence the theorem is proved.
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Appendix C: First order conditions of optimization
problem (81)

The first order conditions of the reduced Lagrangian displayed in (81) are:

Table C.1
First order conditions of mazimization problem (32)
Cl 5 =0: vp—p— U (W — Pg) =0.
Fy (t,)U' (W — P, — D)
2L _ - _ H\lL L
C2 OPf, 0: (1 P) V+H + (1 _ FH (tL)) U’ (W _ PL)

Fy (1)U (W — P, — D) }_0
+(1-FL () UW-PF) [
C3 g£=o0: (U(W — Pp) = U(W — Py — D)) (yu Fy (tr) — Fy, (t2))
+v (1 —p) F} (¢1) D =0.
C4 ApAm,vg >0

C5 ‘;—f >0: p (P —nuD)+ (1 —p) (Pr = (n, — Fr(t)) D) 2 0.
C.6 a—‘g >0: Py <nyD.
07 éé;—'g” Z 0 : EH (O,PH) Z EH (tL‘, PL) .

From (C.2) or (C.3) we have that at least one of the variables v and vy must be non-
zero. But then v = 0 would imply that (C.1) has no solution. It follows that v > 0
(implying that in an equilibrium the insurer breaks even on average). As the constraint
corresponding to v is binding, the following relation between i, and P; and Py holds
anyway:

p(Pa —ngD)+ (1 - p) (P — (ny — Fr (t)) D) = 0. (162)
Furthermore we have from (C.1) that the following combination of values of multipliers
cannot be part of an optimal solution:

p=0,74=0. (163)

Appendix D: Proof of the theorems of Subsection 4.2

D.1 Proof of Theorem 18

Consider the case D
[0
_— 164
b<e°‘D—1-aD (164)
This implies that:

ppooL < P" (165)
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For ?ll p < p*, we have that @%@ >0 fortg € [O,t}], so s (i, p), determining the sign
of gvl,g—iiﬁ, is increasing everywhere. The consequence is that either:

) B—VC,SZ—’M is positive for all ¢z € [O,tﬂ, or

. %ﬁ—'ﬁl is negative for all ¢, € [0,152], or

o there is a value t3 € |0, t~L] , such that %ﬁ"’) is negative for ¢z, € [0,¢3) and positive
for t; € (t5,1L].

It follows that for p < p*, the equilibrium involves one of the following two strategies:

1. For p < py: offering only the pooling contract (0, pnyD + (1 — p)n, D), provided
that this will actually be purchased by the low risks, which is the case if

Ep (0,png D+ (1= p)n.D) > Ey, (166)
implying

In [n;, (e*P — 1) + 1] —n D

p< (b-1)n oD

(167)

2. For p > p,: the Rothschild-Stiglitz strategy, provided that the contract
(1, (ny — Fi (t2)) D) will actually be bought by the low risks, which is the case if

E (EZ, (n,— Fo (FL)) D) > Ey, (168)

implying

S aD
eaD(nL—FL(tL)) < L (e — 1) +1

P () 1) 1T (169)

If, for any of the above cases, the condition related is not satisfied (implying that the low
risks will not purchase the contract), then the equilibrium involves offering only (0,75D),
hence excluding the low risks from coverage.

Regarding the case p > p*, note that the equality

6‘7 (tIn ,0) _
o, 0 (170)
has no solutions for )
- b(e?? —1) = (b—1)aD )
PZ\ %P -1)+(-1aD |
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If p exceeds this upper bound, Ma%ﬁl is strictly positive for ¢1, € [0, tNL] In the proof in
Appendix B.1, it was shown that, under the given conditions,

> (b(eap_1) (b—l)aD)2'

b(e*P —1)+ (b—1)aD

(172)

So for p > p*, the equilibrium involves the Rothschild-Stiglitz strategy, provided that
condition (169) holds. Otherwise, the equilibrium involves offering only (0,75D).

D.2 Proof of Theorem 19
We have that

oD
b> b1 aD (173)
and
~y b(e*P—~1)—aD
Fu(t) < Spapeen—1) (174)
imply
P < prs» (175)
Prs = PPOOLs (176)
and
ppooL > P (177)

As the proof of Theorem 18 showed, each equilibrium derived is always accompanied by a
certain condition indicating that the low risk class individuals actually buy the contract
designed for them. This will also be the case in this proof. It will turn out from the
analyses that follow, that there are three kinds of equilibria, all subject to the condition
just described. Just as in the proof of Theorem 18, for the pooling equilibrium and the
Rothschild-Stiglitz strategy, these conditions are

In [nL (e*P — 1) + 1] —npoD
(b—1)nLaD

p< (178)
and 5
eaD(TIL—FL(ZZ)) < nL~(e — 1) +1 .
Fp (tr) (e — 1) +1
The equilibrium resulting from the next cases 1.c, 1.d and 2.d are subject to a condition
which will be clarified in case 1.c.
Next we consider the several scenarios and distinguish between the cases 1: pppop <
p* and 2: ppoor, > P

(179)

L ppoor < P
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(a)

(b)

p < pf: %ﬂ < 0 at t; = 0, s(tr,p) monotonously increasing for {1 €

[O,ﬂ], B—VESE—"’) < 0 at t;, = t;. The equilibrium involves offering the pooling
contract (0, ongD + (1 — p) D).

p* < p < ppoor - V(tL"’ < 0 at ty =0, s(tr, p) monotonously decreasing at
tr, varying from 0 to the solution of
0s (tLa ,0)
———==0 180
bt o, (180)

and then increasing, avét”’ ) < 0att 1 =tr. The equilibrium involves offering
the pooling contract (0, anD + (1 =p)n.D).

opoor < p < p*: aV(tf 2) > 0 at t;, =0, s(t, p) monotonously decreasing in
t;, varying from 0 to the solution of
9s (1, p)
—— =0, 181
atL ( )

and then i 1ncreasmg, tL V(e . 0 at t; = t;. In this case, the equation

aV (t[n p)

el (182)

has a root falling in the interval [0, tNL] which at the same time is the optimal

value of ¢. The equilibrium is found as follows: the two roots of the equation
AV (tL.p)

B, — 0 are
0= 0E? 1) -6+ aD)
o (6-1eD-b(e=P 1))
=" p){—p((b-l)amb(ew—l))z}
tL:FL_l (183)

2(e*P — 1) (1 — p) baD

The root with the '—’-sign turns out to be the relevant one. Denote this root by
% . Then the corresponding values for P, and Py are found by first substituting
* in (98), yielding P} as defined in the theorem, and then substituting t} and
PL into (162). This yields P} as defined in the theorem. This results in the
strategy of offering (¢} , Pf) together with (0, P§;) which is the equilibrium
if purchasing (¢} , P}) gives the low risks a higher expected utility than not
purchasing any insurance at all. This is the case if

(P () (P~ 1) +1) < (P -1)+1 (184)
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(d)
()

P < p < ppg: asin case l.c.

P > Prs ¢ %ﬁ“’) > 0 at t;, = 0, s(f1,p) monotonously decreasing in %,

Wlwe) 0 at t, = f;. The equilibrium involves the Rothschild-Stiglitz
strategy.

2. ppo > p™*

(a)

(b)

(c)

* .

p < p*: M < 0 at t;, = 0, s(tz,p) monotonously increasing in Py,

8_‘7(# <0 at t . = tr. The equilibrium involves offering the pooling contract
(0, D + (1= p) D).

pr < p < p* av(t’;”’ < 0 at ty = 0, s(¢1,p) monotonously increasing at 1,
varying from 0 to the solution of

82 (tL: )

=0, (185)

and then decreasing, %p—) < 0 at t; = t;. The equilibrium involves offering

the pooling contract (0, anD + (1= p)n.D).

P < p < ppoor : ML’—") < 0 at t;, = 0,s(tL, p) monotonously decreasing

at tr, M < 0 at t; = t;. The equilibrium involves offering the pooling

contract (U gD+ (1= p)n.D).

ppoor < P < Pgrs: —é;f;p) >0 at t;, =0, s(tr, p) monotonously decreasing in

tr, ,%ﬂ <0Qattp= ;. The equilibrium is as in case 1.c.

OV (tL.p)
1

P > Prs : > 0 at t; = 0, s(¢z,p) monotonously decreasing in %y,

8V41.8) > 0 at 1y, = £y, The equilibrium involves the Rothschild-Stiglitz strat-
egy.

Hence the theorem is proved.
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Figure 1: Tllustration of Example 3 with Fi (+) solid, Fy, (+) dotted, n = 30, and ¢’ = 10.

1
1
0.9
U o8
p
0.7
P
e 0.6
T 05
b 0.4
o 0.3
u 0.2
n
s 01T
0 t t + + t t t + + —
0.25 0.756 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25
aD -
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Figure 5: Tllustration of case of an exponential utility function.
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Figure 6: Optimal values for Py, (solid) and Py (dotted) as a function of p.
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