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Abstract

For complex manufacturing systems, the current hybrid Agent-Based Modelling and Discrete

Event Simulation (ABM–DES) frameworks are limited to component and system levels of

representation and present a degree of static complexity to study optimal resource planning.

To address these limitations, a modular hybrid simulation framework for complex manufacturing

system design is presented. A manufacturing system with highly regulated and manual

handling processes, composed of multiple repeating modules, is considered. In this framework,

the concept of modular hybrid ABM–DES technique is introduced to demonstrate a novel

simulation method using a dynamic system of parallel multi-agent discrete events. In this

context, to create a modular model, the stochastic finite dynamical system is extended to

allow the description of discrete event states inside the agent for manufacturing repeating

modules (meso level). Moreover, dynamic complexity regarding uncertain processing time

and resources is considered. This framework guides the user step-by-step through the system

design and modular hybrid model. A real case study in the cell and gene therapy industry is

conducted to test the validity of the framework. The simulation results are compared against

the data from the studied case; excellent agreement with 1.038% error margin is found in

terms of the company performance. The optimal resource planning and the uncertainty of the

processing time for manufacturing phases (exo level), in the presence of dynamic complexity

is calculated.
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1. Introduction

Manufacturing system simulation focuses on operation and system design [1]. System

operation studies maintenance planning & scheduling, real-time control and performing policies

& regulations [2, 3]. Whereas, system design studies facility and plant layout, material

handling and flexible manufacturing [4, 5, 6, 7]. Facility design considers the allocation of5

different machinery in a system and, therefore, impacts manufacturing performance. Moreover,

material-handling design has been the centre of attention for numerous research studies

due to its significant effect on total production efficiency. Flexibility can be described in

terms of labour, products, raw materials, machines, inventory, routing or as a combination;

known as mix flexibility. In manufacturing processes, flexibility is vital to accommodate the10

production capacity and customers’ demand. One of the key elements for developing a flexible

manufacturing process is to measure the capacity of the process, known as manufacturability,

where the system must be developed and refined to have a robust and error proof-process [8, 9].

Complex manufacturing systems consist of multiple sub-systems that operate simultaneously

- referred to as the manufacturing phase in this study. Manufacturing processes in different15

phases can interact with each other; for instance, the interaction can emerge from labourers

who are responsible for performing several tasks in different phases, or can arise from equipment

and information, which are shared between different processes. In this study, such interactions

are referred to as parallel interactions. These considerations are essential to achieve mix

flexibility. Moreover, complex systems are highly time-dependent, multifunctional and possess20

diverse characteristics. In this context, a manufacturing module is described as a sequence

of events that are repeated frequently; such as quality control and feedback procedures.

The existence of repeating modules in multiple sub-systems is a characteristic of complex

manufacturing. Complexity in manufacturing systems can potentially arise from complications

in the physical structure of systems and sub-systems, as well as multifunctionality of system25

components, known as static complexity. The unpredictability in system behaviour presents

dynamic complexity over time [10]. The later complexity is more likely to arise in highly

regulated manufacturing systems, including manual handling processes and with interactive

behaviour. The complexity study necessitates the use of advanced simulation techniques to

certify high quality, economically viable processes and final products. [11]. Evaluating and30
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optimising the behaviour of such systems requires an integrated framework that considers all

aspects and characteristics of manufacturing processes.

1.1. Research gaps

In the current hybrid ABM–DES simulation frameworks, the agent-based technique is

mostly employed to model the global manufacturing system and components as macro and35

micro-level agents respectively [12, 13]. However, global manufacturing systems can also

be split into multiple sub-systems (exo-level agents) which can interact with each other in

a parallel manner. Each sub-system has an individual dynamical discrete event structure

composed of multiple repeating modules. In this study, these modules are considered as the

meso-level of agent-based modelling. The multi-layer ABM structure for complex manufacturing40

systems is illustrated in Figure 1.

Micro-Level ABM 

Manufacturing System
Components

Meso-Level ABM 

Manufacturing Modules

Exo-Level ABM 

Manufacturing Phases

Macro-Level ABM 

Global Manufacturing System

System:[Main Agent]

sub-system:[Agent]

sub-sub-system:[sub-Agent]

[sub-sub-Agent]

Figure 1: Modular hybrid ABM–DES method (MHSM): Multi-layer ABM structure for complex manufacturing

systems

Regarding the context of complex manufacturing system design [10], the following research

gaps are identified: (i) In the existing ABM–DES hybrid simulation methods, the dynamical

structure at meso level is not fully covered for manufacturing systems with highly regulated

and manual handling processes; (ii) system design and simulation are not integerated and45

typically carried out by individual procedures including logical design, floor planning and

physical design [14]; (iii) A degree of static complexity has been considered to study optimal

resource planning [15, 16, 17]. In [16], static complexity arises from the variability in production
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line since each product batch may take different route though the preparation process with

different queue capacity. Hao & Shen [17] proposed a hybrid simulation approach to model50

material handling processes in an assembly line. Complexity in their work is due to the

variability of operations on different products which is also known as static complexity.

Literature addressing dynamic complexity is scarce. Studies regarding dynamic complexity

in manufacturing processes with several random events and uncertainties require stochastic

data analysis and performance measures, which are addressed in this paper; (iv) Developing55

a simulation framework for system design, in particular by using the ABM technique, was

mainly covered in social sciences and supply chain studies [18], rather than complex manufacturing

processes in plants.

In this work, a Modular Hybrid Simulation Framework (MHSF) for complex manufacturing

system design is presented. In this framework, the concept of modular hybrid ABM–DES60

technique is introduced to demonstrate a novel simulation method called Modular Hybrid

Simulation Method (MHSM) using a dynamic system of parallel multi-agent discrete events.

In this context, the stochastic finite dynamical system is extended to allow the description

of discrete event states inside the agent at the meso level. This extension creates a modular

structure for the hybrid ABM–DES technique called modular hybrid. Dynamic complexity65

regarding uncertain processing time and resource allocation is investigated to quantify uncertainty

in the processing time.

The remainder for the rest of this paper is organised as follows: the modular hybrid framework

is developed in Section 2. A case study in the cell and gene therapy industry is conducted in

Section 3 to test the validity of the framework, following the research methodology illustrated70

in Figure 2. Moreover, the simulation results are verified and validated with the actual

data from the studied case. This is followed by further simulation and optimisation results.

Summary of critical discussion on the framework and the simulation outcomes are presented

in Section 4. Finally, Section 5 highlights the conclusions and the potential future research

work.75
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Figure 2: Research Methodology

2. Proposed Modular Hybrid Simulation Framework (MHSF) for complex manufacturing

system design

Analytical modelling provides mathematical formulations to describe and predict the

performance of manufacturing systems. However, for complex manufacturing processes,

mathematical complexity grows rapidly. Even when the manufacturing performance is formulated,80

it is challenging to find the analytical solution due to inherent stochastic emergence phenomenon.

Moreover, designing the physical structure including a dynamic network of interactive behaviours

add more complexity to the analytical model. Therefore, advanced simulation techniques can

be deployed to study complex systems. Within this context, modular hybrid ABM–DES

simulation method is presented in Section 2.1. This is followed by the modular hybrid85

framework development in Section 2.2.

2.1. Modular hybrid ABM–DES simulation method

A dynamic system of multi-agent discrete events is deployed to model complex manufacturing

processes. MHSM is introduced as an extension to the Stochastic Finite Dynamical System
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(SFDS) approach which allows the description of discrete event-based states within an agent90

using Discrete Event System Specification (DEVS) modular formalism. The method consists

of three main parts as illustrated in Figure 3:

SFDS con�guration/Multilayer networksPart -1: ABM | 

SFDS con�guration /Network theory

DEVS formulation into SFDS con�guration 

- CAD �le & Space markups
      o Path()
      o Node()
      o A�ractor()

Physical layout: Macro-level Agent:

Part -2: ABM | 

Network (Java code)

o Events()
o Functions()
o Actionchart()
o Parameters()
 

Part -3: DES | 

Time discrete dynamic system

� = <X, S, �int, �ext, �, 	 > 

Queuing model

M/M/c/K/n

Con
guration: Exo / Meso level

� : X
n
 ➔ Xn 

Micro-level Agent:

X = (x1, ..., xn) 

Exo-level Agent:

Meso-level Agent:

� = {
1,...,�k,...,�t}

�k = {�k1,...,�kk,...,�km}

Figure 3: Modular hybrid ABM–DES method (MHSM): SFDS and DEVS configuration using network theory

Part-1: Objected-oriented approach for macro and micro level agents: in this study ABM

approach has been selected to create the global system of complex manufacturing, multiple

local sub-systems, repeating manufacturing modules and components. The global system is95

a top-level or macro-level agent called Main() class. Moreover, Main() agent may contain

several manufacturing components such as staff members, products, machines, information,

etc., which are modelled at a micro-level agent so-called <sub-sub-Agents> class. These

agents are created as population agent type where a number of entities of the same type

living in the same environment. Micro-level agents have specific characteristics which can be100

described by several parameters (e.g. rate, capacity, constraints) and schedule elements (e.g.

working shifts) and can be divided into different resource units. The type of resource units

can be categorised as static, moving or portable. The behaviour algorithm of each micro-level

agent can be defined by an Action chart. The interaction rules between multiple agents can be

defined using Functions and Events for algebraic and non-algebraic rules respectively. Some105

of the labourer related rules can be task delays & timeouts; and machine related rules can be

breakdowns, time of failure, and time to maintenance for equipment.
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Figure 4: UML Class diagram of MHSM

The UML class diagram is shown in Figure 4

Part-2: Objected-oriented approach for exo and meso level agents: the ABM approach has

been also selected to simulate the interactive structure of manufacturing sub-systems and110

repeating modules, which are modelled at exo and meso level agents so-called Agents() and

sub-Agents() class respectively. Such agents are created as a single agent type that will

always exist within the Main. Meso-level agents are modular and can be deployed in multiple

sub-systems.

Part-3: Process-oriented approach for exo and meso level agents: The finite dynamical115

system of manufacturing processes at each manufacturing phase and modules are modelled

inside the exo and meso level-agent classes using DES modelling approach. Utilising the

modular technique will simplify the complicated structure of DES model and will ease the

simulation error tracking through the modelling procedure. Moreover, the structure of the

modular hybrid model becomes more neat and understandable for non-experts. In this study,120
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dynamic complexity is introduced in the hybrid model by considering uncertainties in the

form of probabilistic distribution in design parameters, schedule and shifts and sequence of

events within each sub-system.

2.2. Modular hybrid ABM–DES framework development

The research gaps highlighted previously, led to the development of the modular hybrid125

simulation framework for complex manufacturing system design as illustrated in Figure 5.

The framework is composed of six steps.

Step-1: Creating physical layout & multi-layer agents 
 

Step-2: Creating multi-layer logical network
 

Step-3: Creating work centers & processes

Step-4: Model veri�cation and validation

Step-5: Performing simulation experiments

Step-6: Identifying decision strategies

Modular Hybrid ABM-DES Method

 

F
e
e
d

b
a
ck

 

Figure 5: Modular hybrid simulation framework (MHSF) for complex manufacturing system design.

Step-1: Creating physical layout & multi-layer agents

The structure of complex manufacturing systems has multiple layers of connectivity.

Layout of manufacturing systems and configuration of each layer in the global Main agent

(Macro-level) can be introduced in the simulation environment using space markups. The

physical network representation between different layer can be developed in terms of Path

(e.g. movement), Node (e.g. reside, intersection) and Attractor ; Attractors control the entities

(Micro-level) inside a node. In this context, SFDS formulation can be used as a configuration

to perform ABM and to simulate the communication networks between the agents, where the

model space and network are considered as continuous. State of locations and dynamics of
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complex interactions between the agents can be modelled using Network theory. Moreover,

states of each node updates using a permutation π ∈ T together with a given probability

distribution, where, T is the subset of permutations and for any random permutation π, Φπ

is the phase space function for a parallel dynamical system. Let x1, . . . , xn collection of entities

in a finite set X and the elements in X represent the state of the entities at micro-level agent.

SFDS configuration is a set of parallel dynamical systems Φπ together with a probability

distribution, therefore the phase space of Φ at exo-level agent can be described as a directed

graph on the vertex set Xn written as Φ : Xn → Xn and all micro-level agents in Φk have the

probabilities p1, p2, . . . , pt and the finite collection of agents, Ω, are Φ1, . . . ,Φk, . . .Φt. The

stochastic phase space of ΦΩ is ΓΩ and calculated as thus:

ΓΩ = p1Γ1 + p2Γ2 + · · ·+ ptΓt

The stochastic phase space ΓΩ can be introduced as a Markov chain over the state space Xn

and therefore the adjacency matrix can be described as the Markov transition matrix [19].

Similarly, considering the finite collection of meso-level agents, Ωm, as Φk1, . . . ,Φkk, . . .Φkm.

The stochastic phase space of ΦΩk
is ΓΩm and calculated as thus:

ΓΩk
= pk1Γk1 + pk2Γk2 + · · ·+ pkmΓkm

Step-2: Creating multi-layer logical network

The logical network in a complex manufacturing system necessitates consideration of the

interactions between micro-level agents among the upper layers. Base on the mathematical

formulation of multilayer networks [20], suppose two set of nodes xi and xj represent different

micro-level agents who interact with each other, where i, j = 1, 2, . . . , n. The associated state

with each node set can be represented by a canonical vector ei and ej in the vector space

RN . In this regard, the second-order canonical tensor describes the relationship between the

sub-agents and can be defined by Eij = ei ⊗ e>j , where > is the transposition operator.

Concerning multilayer networks, let eα(i) as the αth component of the ith contravariant

canonical vector ei, and eβ(j) as the βth component of the jth covariant canonical vector

ej in the space RN . Following a similar approach, for the agents layers l̃i and lj̃ , where

ĩ, j̃ = 1, 2, . . . , L. Thus, eα̃(̃i) and eβ̃(j̃) are the canonical vectors in space RL. The multilayer
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adjacency tensor can be written as thus:

Φαα̃
ββ̃

=
L∑

ĩ,j̃=1

Cαβ (̃ij̃)Eα̃
β̃

(̃ij̃), (1)

where the second order tensors Eα̃
β̃

(̃ij̃) = eα̃(̃i)eβ̃(j̃) represent the canonical basis of the space

RL×L and the second-order interlayer adjacency tensor Cαβ (̃ij̃) is thus:

Cαβ (̃ij̃) =

N∑
i,j=1

wij (̃ij̃)E
α
β (ij), (2)

where wij (̃ij̃) is the intensity of the relationship between nodes ni in layer ĩ and nodes nj in

layer j̃. Therefore Equation 1 can be expressed as:

Φαα̃
ββ̃

=
L∑

ĩ,j̃=1

 N∑
i,j=1

wij (̃ij̃)E
α
β (ij)

Eα̃
β̃

(̃ij̃),

=
L∑

ĩ,j̃=1

N∑
i,j=1

wij (̃ij̃)Eαα̃ββ̃ (ijĩj̃),

(3)

where Eαα̃
ββ̃

(ijĩj̃) = eα(i)eβ(j)eα̃(̃i)eβ̃(j̃) is the forth-order canonical basis in space RN×N×L×L.130

Equation 3 is a general form of the multilayer adjacency tensor to represent the interactions

between the agents in a complex manufacturing system.

Step-3: Creating work centres & processes

In this section an extension to the SFDS approach is proposed to include the description

of process-oriented states in the canonical vector specification of an agent at both exo and

meso-level agent. According to MHSF, different work centres, assembly and disassembly

procedures, and quality check procedures can be simulated using DES technique within

an agent and modelled mathematically using Discrete Event System Specification (DEVS).

Accordingly, DEVS provides a mathematical description of the time discrete dynamical

systems for agent Φ with a modular formalism and structure as [21]:

Φ = < χ, S, δint, δext, λ, τ >, (4)

where, χ is input set for external events, S is a set of sequential states, δint and δext are

internal and external transition functions respectively, λ is the output function and τ is the

time advance function. Equation 4 has the following constraint that τ is mapping from states

10



S to a non-negative real with infinity τ : S → R+
0,∞, where τ(s) represents the time the

system is allowed to stay in state s, if no external event occurs. Considering eτ as the elapsed

time for state s, the total state-set of the sub-system Φ is thus:

Q = {(s, eτ )| s ∈ S, 0 ≤ eτ ≤ τ(s)}. (5)

Moreover, considering x ∈ χ as an input function at the state s for an elapsed time eτ , δint(s)

and δext(s, eτ , x) transition mappings are thus:

δint : S → S, δext : Q× S → S. (6)

Considering the DES simulation approach, the queuing model typically follows theM/M/1

rule which indicates a single-server system with unlimited queue capacity and infinite calling

population. However, in multi-agent DES models with parallel servers, the queuing model

can be expressed as M/M/c/K/n where, the number of parallel services c > 1; K, the system

queue capacity varies based on the system policies and regulations and n is the number of

entities. Hence, the modified steady state probability Pn of having n arrivals in the systems

is thus:

Pn =


λ̄n

n!µnP0 1 ≤ n < c

λ̄n

c!cn−cµn
P0 c ≤ n < K

,where P0 =


(∑c−1

n=0
rn

n! + rc

c!
1−ρK−c+1

1−ρ

)−1
ρ 6= 1(∑c−1

n=0
rn

n! + rc

c! (K − c+ 1)
)−1

ρ = 1

,

(7)

where ρ = λ̄/cµ and λ̄ is the mean arrival rate which is equal to inverse of expected value

of inter-arrival time; µ denotes the service rate which is equal to inverse of expected value of135

service-time. In a complex manufacturing system, entity n represent a quantity of different

sub-agents at different parts of the manufacturing system. It can be a number of customers,

orders, deliveries and raw materials.

Step-4: Model verification & validation

Comparing the simulation outcome with real system requires application of real system140

initial states. For instance, the state of all agents at the start-time, Work-In-Progress (WIP)

data, non-zero stock size for the raw materials and storing goods and pre-scheduled orders for

dispatching. Initial conditions can be introduced using statechart or actionchart functions.

It is not the goal of this article to introduce the different validation approaches for complex

manufacturing systems; within this study however, the validation procedure for the case study145

is discussed in Section 3.1.
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Step-5: Performing simulation experiments

To measure the system performance under uncertainty, a wide range of stochastic analysis

techniques is required. The system performance can be evaluated by identifying the current-state

bottlenecks, and performing multiple time-in-system analysis, flexible optimisation, and resource150

and space utilisation analysis. For instance, by introducing the objective function of random

variable X as f(X ) = E[X ] + θ, where E[.] is the expected value operator and θ is the

associated uncertainty, optimisation experiments under uncertainty provides the optimum

value of a parameter set corresponding to the best value of f(X ) with respect to the system’s

constraints. Parameter Variation experiment is run multiple times to evaluate the value of155

f(X ) by varying one or several parameters.

Step-6: Identifying decision strategies

Performing numerical and mathematical experiments provides the information required

for decision makers to evaluate and describe the behaviour of a complex manufacturing

system. Within the final step of the proposed framework, the final sestem design outcomes160

could support decision and policy makers to enhance and modify strategies. These strategies

can be in terms of product commercialisation, sourcing and procurement, value and supply

chain, bidding strategy and planning, risk mitigation and management, environment and

sustainability strategies, etc. The optimal decision strategy can be formulated in a general

form as [22]: X ∗ = argmin(or argmax)f(X ) for X > 0. The outcomes with respect to the165

associated constraints improve the knowledge of decision and policy makers and subsequently

their wisdom to modify policies and regulations within the complex manufacturing system.

These knowledge and wisdom are ultimately fed back into the system.

3. Framework validation: Case study

In this study, manufacturing system at a Cell and Gene Therapy (CGT) cryogenic storage170

company is selected as the case study to test the validity of the proposed framework. The

manufacturing system includes highly regulated and manual handling processes with multiple

repeating modules. A typical CGT supply chain is illustrated in Appendix A, Figure A.1.

For such complex manufacturing processes, generating the performance model are constrained

by various boundaries and regulatory conditions. The interrelationship between different CGT175
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manufacturing procedures in multiple phases develops complexity in such systems. Such

complexity arises from multiple response time requirements and consideration of numerous

policies and regulations. MHSF has been followed to model the case study intending to

identify the manufacturing bottlenecks and to optimise the system performance.

3.1. Step–1: Physical layout & multi-layer agents180

To define the physical layout and to map the manufacturing processes, a series of industrial

site visits (5 site visits; 4 hours each), meetings (13 meetings and teleconferences; 2 hours

each) and interviews (5 interviews; 3 hours each) with the global director, head of operations

and the project team manager were carried out. Three main manufacturing phases have been

investigated, which are: Phase I–receipt & inventory, Phase II–storage & monitoring, and185

Phase III–distribution of cryo-products. These phases are modelled as single type agents,

Φ = {Φ1,Φ2,Φ3} at exo-level in the global Main CGT system. The parallel interactive

procedures of the three phases are initiated when the products are transmitted from the

CGT manufacturer or other healthcare institution to the CGT cryogenic storage companies.

A detailed schematic for these phases are presented in Appendix A, Figures A.2–A.4. Staff190

members with different expertise and equipment were modelled as sub-sub-agents, X with

individual attributes. These characteristics include sub-agents population, working hours and

shifts, movement speed (meter/second) and shape (2D/3D animation sketch). The collection

of micro-level agents in a finite set X = {x1, x2..., x8} as technicians, recycle & refill, load

& unload, QA, QC, QP, Cryocart and trolley respectively. Moreover, three manufacturing195

modules are created as meso-level agents Φk = {Φ21,Φ31,Φ22,Φ32,Φ23,Φ33}; the ‘Quality

checking’ module to perform quality checks required to release the products in Phase II, Φ21

and III Φ31, the ‘Picking products’ module form quarantine storage in Phase II Φ22 , and

from storage in Phase II, Φ32 and the ‘Packaging’ module in Phase II, Φ23 and III, Φ33 to

model the sequence of activities to pick the products from the storage area for quality check200

at quarantine stage and dispatch respectively.

3.2. Step–2: Multi-layer logical network

The logical network of the global manufacturing system at the studied CGT cryogenic

storage is as follows: after shippers with/without products are delivered to the storage

site, Phase–I starts by verifying and documenting deliveries. The products are initially205
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stored in quarantine storages and may be released, recycled or disposed - considering the

type of the supply - after multiple quality checks. The stored products are then quality

checked and documented based on the policies and regulations in Phase–II. In this phase,

the approved products will be moved to the long-term cryogenic storages. In parallel to the

activities in Phase I and II, the company receives orders to dispatch the products to the210

healthcare institutions such as hospitals, medical clinics, etc. at Phase–III. This phase starts

with planning and scheduling the shipments (daily, weekly, etc.) and continue by products’

secondary packaging (it is not required for all shipments), verification, multiple checking

procedures and finally dispatching containers. The three phases include highly interactive

machine and material handling processes as shown in Figure 6.

Figure 6: Case study: UML composite structure diagram for the logical network between classes with role-based

annotations; manufacturing phase processes (in green) and repeating modules (in brown) are simulated using

DES (see Appendix B, Figures B.6–B.8).

215

3.3. Step–3: Manufacturing processes

The course of the processes in details are presented in Appendix B, Figures B.5–B.8.

The Figures present the discrete event modelling interface of each sub-system based on the
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sequence of events illustrated earlier in Figures A.2–A.4 respectively.

3.4. Step–4: Model validation220

In this paper, the CGT cryogenic storage processes of the Fisher BioServices UK (FBS)

Company have been studied to develop the simulation model. The micro-level agents and the

corresponding attributes are summarised in Table 1.

Table 1: Simulation micro-level agents, X for the case study system design.

Agents Technician Recycle/Refill Load/Unload QA QC QP Cryocart Trolley

(X) (x1) (x2) (x3) (x4) (x5) (x6) (x7) (x8)

No. 16–20 2–6 2 4 6 2 3–4 4

The uncertainty of the collected data regarding the manufacturing processes were analysed.

The continuous probability distributions are used as the input data in the simulation model as225

summarised in Table 2. The simulation modelling tool, AnyLogic version 8 has been selected.

Validation of the model is accomplished using the data from the case study. The simulation

time unit is set as ‘minute’. Initially, the model generates the results for one working day.

Then, the time is set as ‘day’ to generate the simulation results for one working month. The

total number of daily orders and dispatches over time are illustrated in Figure 7.

FBS Working Hours

8:30am 10:30am 12:30pm 2:30pm 4:30pm

N
D o

/
N

D d

0

5

10

15

Daily Orders

Daily Dispatches

Figure 7: Simulation results for the total number of daily orders ND
o and dispatches ND

d on average.

230

The graph shows that the company received orders during the daily working hours between

8 : 30am and 4 : 30pm. However, orders are dispatched between 2 : 30pm and 4 : 30pm when

the delivery trucks are available at the company. Furthermore, the results for total number

of monthly orders and dispatches are summarised in Table 3.
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Table 2: Input data for the case study simulation model; Note that 1 new shippers’ validation takes about 1

month and includes 20-day temperature monitoring process; 2 after cleaning process, shippers should be left

for 12 hours so the shipments adapt to the room temperature.

Task Expertise Distribution (minute)

A
g
en

t:
P

h
as

e–
I

R
ec

ei
p

t
&

in
ve

n
to

ry Unloading Loading person Triangular(2, 6, 10)

Arrival checking Technician Uniform(2, 3)

Documenting Technician Triangular(5, 7, 10)1

Recycling Recycling person Triangular(15, 32, 50)2

Refilling Refilling person Triangular(10, 15, 20)

A
ge

n
t:

P
h

as
e–

II

S
to

ra
ge

&
m

on
it

or
in

g

Storing/Picking shippers Technician Uniform(3, 5)

Storing/Picking products Technician Uniform(5, 10)

QA quality check QA person Triangular(25, 30, 35)

QC quality check QC person Triangular(15, 20, 25)

QP quality check QP person off-site, > 1 day

A
ge

n
t:

P
h

as
e–

II
I

D
is

tr
ib

u
ti

on

Documenting Technician Uniform(30, 45)

Verification Technician Uniform(5, 10)

Packaging/Second checking QC person Triangular(10, 15, 20)

Loading shippers Loading person Uniform(5, 8)

Table 3: Simulation results for the total number of monthly orders NM
o and dispatches NM

d on average.

Time Week-1 Week-2 Week-3 Week-4

NM
o 48 87 132 199

NM
d 47 87 131 199

The number of the total daily dispatches ND
d , and the total monthly dispatches NM

d fall into235

the FBS dispatch ranges which are 8− 11 and 150− 250 respectively. FBS company sets an

schedule for the daily and monthly dispatches and therefore the difference between the orders

and dispatches represents the WIP in the system. Actual data of the number of dispatches

for an eight-month period between Jan–Aug 2016 has been provided by FBS for validation.

The simulation time has been set accordingly. The real data has been compared to the results240

derived from the simulation model in a longitudinal study as illustrated in Figure 8.
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Figure 8: Simulation results against the FBS case study for the total number of dispatches (a) in each month

Nd and (b) the cumulative monthly sum of the number of dispatches Cd between January and August 2016.

Initially, the simulation model generates the output for each month, and therefore it has been

compared with the company monthly dispatches as presented in Figure 8(a). Moreover, the

cumulative monthly sum of the company dispatches has been compared with the simulation

results as shown in Figure 8(b). In order to generate the cumulative simulation output, the245

model time has been set to the target period (i.e. the last month) in every cycle. The graphs

illustrate a highly representative comparison between the simulation model and the case study

data with an average error of 1.038% for the monthly dispatches and 1.05% for the cumulative

monthly sum of the number of dispatches.

3.5. Step–5: Simulation experiments250

The simulation model has been verified and validated against the case study previously.

The model represents the actual behaviour of the interactive system. To quantify the uncertainty

in processing time, a range of simulation experiments has been performed and presented in

this section. In this regard, the simulation time is set as ‘minute’, and the model generates

the outputs from January to August. The uncertainty is quantified using stochastic data255

analysis. The histogram graphs have been developed to calculate the Probability Density

Function (pdf) for the time period which has been spent in each sub-system. The pdf graphs

for the processing time in Phase I–III have been illustrated in Figures 9(a–c) respectively.

Considering the results, during the receipt & inventory process, 86.73% of deliveries are being

received and documented in less than 50 minutes, see Figure 9(a).260
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Figure 9: Histogram pdf for the processing time in each sub-system (a) receipt & inventory; (b) product

storing/documentation and (c) dispatching, between January and August 2016.

Moreover, the corresponding pdf has a Poisson distribution with λp = 52.76 minutes. Besides,

the pdf for the processing time in the products’ ’storing and documentation’ phase has a

Poisson distribution with λp = 71.15 minutes. Moreover, the graph shows that 45.52% of the

products are being stored in about 50 minutes. However, just above 50% of the products are

being stored in between 50–100 minutes, and for just below 4%, the process takes more than265

100 minutes, see Figure 9(b). Furthermore, pdf for the processing time in the dispatching

phase has an exponential distribution with λe = 0.1567, see Figure 9(c).

Parameters variation experiment

As mentioned earlier, studying current practices is the initial step in manufacturability.

Such a study attempt to identify the current-state bottlenecks and therefore to highlight the270

enhancement requirements and criteria in a complex manufacturing system. Hitherto, the

simulation results outline the existing company’s throughput and quantify the uncertainty
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in processing time of each sub-system. These results are based on the current practice, the

storage capacity and the layout of the company. Following the simulation experiment results,

the following manageable bottlenecks during the daily practices are identified:275

1. refilling and recycling zone, between 9:00am–4:30pm, due to the shortage of staff working

in this section,

2. receipt zone, between 10:30am–11:30am,

3. dispatching zone, between 2:30pm–4:30pm, due to the interactive processes between

receipt and dispatching zones.280

Moreover, by increasing the number of daily orders by 5 times, apart from the current practice

bottlenecks, the following new bottlenecks have been identified:

4. picking products and shippers for dispatching, around 10:00 am–3:00 pm,

5. quality checking zone, around 10:30 am–3:30 pm,

6. shortage in the number of validated shippers.285

It is also found that by the 20% increase in the number of orders, only about 80% of

the orders could be successfully dispatched, and this is mainly due to the shortage in the

number of validated shippers. Afterwards, Parameters Variation experiment is developed

to evaluate the impact of the number of staff working on the shop floor on the company’s

performance (throughput). The experiment is created by focusing on the total number of290

monthly dispatches NM
d and the total number of available validated shippers in a monthly

practice N s
v versus the number of staff members in the company. The aim is to find the

optimum number of staff members intending to maximise the number of dispatches where

the difference between NM
d and N s

v is minimum (i.e. NM
d ' N s

v ). It is assumed that the

bottlenecks [1 − 5] have been removed in the system. To perform the Parameters Variation295

experiment, the model has been run multiple times with varying the number of staff members

between 1 to 40 as presented in Figure 10.

The optimum number of staff members N∗opt and the corresponding values for the NM
d and N s

v

have been highlighted. Furthermore, it is found that the NM
d and N s

v values are insensitive

to the number of staff members working in the quality check section NQ. Therefore, this300

parameter is not considered as a variable for the optimisation study.
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Figure 10: Parameters Variation experiment: number of staff members versus the monthly number of dispatches

NM
d with (×) symbol, and validated shippers Ns

v with (o) symbol.

3.6. Step–6: Decision strategies

Flexible optimisation experiment has been conducted in order to find the best decision

strategy regarding the optimum throughput of the case study. The optimum solution for the

studied manufacturing processes has been evaluated with a view to maximise the total number

of dispatches. In an initial scenario, it is assumed that (i) the company has no intention to

recruit more shop-floor staff members; (ii) the bottlenecks [1–5] have been removed from the

system; (iii) the required initial inventory capacity (see Figure B.5) for the validated shippers

is minimum in the company and therefore NM
d ' N s

v , as thus:

f1,opt = max f1(X ) = max NM
d

f2,opt = min f2(X ) = min NM
d −N s

v

According to the interviews with the Head of Operations and the Project Team Manager,
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staff working as technicians also cooperate with the other activities when the workload in

other sections are high. Hence, this collaboration has been considered in the simulation. In305

order to find the optimum staff combination, optimisation experiment has been conducted

with a view to maximise the number of monthly dispatches in the Company. The optimisation

experiment is developed in AnyLogic using the built-in Opt-Quest optimisation technique [23].

optimisation is initiated by defining the objective function, model constraints, and parameters

that can be varied. The objective function is set as the “number of monthly dispatches”;310

the variables are the staff numbers. By running the experiment, the AnyLogic automatically

generates the User Interface (UI) for the experiments, which is embedded within the software.

The UI includes the current and best solutions and the dynamic chart of the optimisation

progress with respect to the simulation time. The optimisation results have been presented

diagrammatically in Figure 11(a).
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Figure 11: AnyLogic results of the optimisation experiments for (a) Scenario-2 and (b) Scenario-3, intending

to maximise the number of monthly dispatches in the Company. The graph presents the results for all possible

iterations presented in dotted line.

315

Note that, the total number of staff should be constant and equal to 24 and the number of staff

can obtain any value between 1 and 21. Therefore, the total number of iterations to perform

optimisation experiment has been calculated as 1771. The optimisation result illustrates that,

the total number of monthly dispatches can be increased up to 497 and the optimum staff

combination would be NT = 11, NRf = 2, NRc = 2 and NL = 9. In another scenario, it is320

assumed that there are no bottlenecks in the system and therefore there is no limit for the

initial inventory capacity of the validated shippers in the company. In this case, the total
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number of dispatches can be increased up to 1259 and the optimum staff combination would

be NT = 18, NRf = 1, NRc = 3 and NL = 2 in the company. The optimisation results have

been presented diagrammatically in Figure 11(b).325

4. Discussion

The current hybrid ABM-DES simulation frameworks are limited to micro and macro

levels of agent based modelling [12, 3, 13] and a degree of static complexity to study optimal

resource planning [16, 17]. In [13], the behaviour of multiple agents at micro level are specified

through state-charts. In a recent study by Mathieu, et al. [12], four possible interaction330

patterns between a micro and a macro level of agents are proposed. The example models,

advantages and limitation of each pattern have been discussed. They focused on models which

are composed of two relative micro and macro levels. This paper extends the current literature

to investigate how a complex system of manufacturing processes can be simulated using

MHSF, in the presence of dynamic complexities at different levels of the agent-based model335

(see Figure 1). The modular model was formed by creating a discrete event-based state to the

SFDS approach for each agent using the DEVS modular formalism at the meso-level of the

agent-based model. Integrating MHSM with stochastic data analysis and flexible optimisation

led to the development of MHSF for simulation and optimisation of complex manufacturing

systems. The developed method is applicable for manufacturing systems with highly regulated340

and manual handling processes, including multiple repeating manufacturing modules. The

modular model reduces the simulation complication by introducing the meso-level agents and

reducing the simulation elements. This assists the user with more insight in identifying and

tracking the bottlenecks and the root-causes. Utilising the framework, such systems can

be analysed regarding uncertainty quantification on processing time and performance. Such345

detailed analysis can ultimately facilitate strategic decision making for the system.

Based on the case study, this paper investigates four main outcomes: First, the impact

of bottlenecks on the system performance was evaluated by completing several simulation

experiments. The results show a 1.56 and 5.49-fold increase in the throughput with and

without the limit on inventory size respectively. Second, the uncertainty on processing time350

at exo-level was quantified in the form of pdf graphs using stochastic data analysis. Third,

this paper investigated how the flexibility in manufacturing design regarding labour and
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inventory affects production performance. In this regard, Utilising parameter variation and

optimisation experiments, optimal resource planning and inventory size were calculated, as

discussed in detail in Section 3.5. Finally, the weaknesses and strengths of the system have355

been identified. This led to the identification of three high priority strategies for the Company;

(i) implementing the optimal resource planning and inventory size at the shop-floor and

elimination of bottlenecks; (ii) using the Radio-Frequency Identification RFID technology to

track and trace products and shippers; (iii) applying lean principles to reduce waste at the

shop floor.360

5. Conclusions and further work

This paper has presented the modular hybrid simulation framework for manufacturing

systems with highly regulated and manual handling processes, composed of multiple repeating

modules using the modular hybrid ABM–DES method. The theoretical aspects and the

mathematical formulation of the modular method have been introduced as an extension to365

the dynamical system approach. The framework considers dynamic complexity in terms

of uncertain processing time and resources and present a systematic user guide through the

system design. To test the validity of the framework, a case study in the cell and gene therapy

industry was conducted. Following the framework, the case study system was designed and

simulation results compared against data from the company; excellent agreement was found370

in terms of current performance of the company. Furthermore, the optimal resource planning

and the uncertainty of the processing time at each sub-system was calculated. The outcomes

from the simulation model provide clear, scalable and detailed information to support users.

The framework can be used by decision-makers as a tool to improve or modify policies

and regulations in manufacturing sectors with a highly regulated and complex nature. In375

summary, the main contributions of this paper are thus: 1) A modular hybrid framework is

developed for complex manufacturing system design, 2) An extension to the finite dynamical

system for manufacturing modules is presented, 3) Uncertainty in processing time is quantified

in the presence of dynamic complexity, 4) The optimal resource planning to maximise the

manufacturing performance is analysed.380

Further to this study, adding manufacturing cost information as an input data can deliver

a cost analysis model to support users. The developed computational model can be used as
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a virtual platform to assess further real-world scenarios such as disruptions, breakdowns, fire

alarm and emergency events to enhance decision-making strategies. The simulation model

can be integrated with several sensitivity analysis techniques to perform failure modes and385

effects analysis in a complex manufacturing system.
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Appendix A. Case study supply chain & Manufacturing processes Phase I–III470
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Figure A.1: A typical CGT supply chain network and logistics; the dashed line shows the considered CGT

manufacturing phases in this study, [24].
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Figure A.2: Conceptual model for Phase–I: Current practice layout of the receipt & inventory phase.
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Figure A.3: Conceptual model for Phase–II: Current practice layout of the storage & monitoring phase.
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Appendix B. The computational simulation model and demonstration

Figure B.5: AnyLogic interface of the ABM model of initial storage capacity for the sub-agent store shippers

& store products

Supply Truck Arrival
Unloading Shippers Truck Leaving

Checking and Accepting

New empty shippers

Damaged shippers

Returned shippers with product

Shippers with new product

Empty used shippers

Product Storage

Recycle the case

Ambient Canister

Temperature Monitoring Testing on-site

Testing o�-site

Failure rate 10%

Exit to storage

Failure rate 1%

Figure B.6: Phase–I: AnyLogic interface of the DES model for the sub-system receipt & inventory.
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Figure B.7: Phase–II: AnyLogic interface of the DES model for the sub-system shippers & products’ storage

processes. The ‘Checking products’ and ‘Packaging’ modules are modelled as sub-sub-systems (sub-agent).
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Figure B.8: Phase–III: AnyLogic interface of the DES model for the sub-system receiving orders and

dispatching. The ‘Picking product’ module is modelled as sub-sub-system (sub-agent).
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