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Asset Valuation and the Dynamics of Pension Funding

with Random Investment Returns

M. Igbal Owadally* and Steven Haberman

Abstract

Various methods are used to value the assets of defined benefit pension plans when such
plans undergo actuarial valuations. The motivation for special asset valuation methods
in the context of funding valuations and the properties of these methods are described.
Variants of the “Average of Market”, “Weighted Average”, “Deferred Recognition”, “Ad-
justed Market” and “Write-up” methods that use exponential smoothing are defined and
shown to be equivalent. The dynamics of the pension funding process is investigated in
the context of a simple model where asset gains and losses emerge as a result of random
rates of investment return and where the gains and losses are spread indirectly and in a
proportional manner over a moving term. The valuation methods generate asset values
that are stable and consistent. Smoothing market values up to a point does improve the
stability of contributions but excessive smoothing is shown to be inefficient. It is also
shown that consideration should be given to the combined effect of the asset valuation
and gain and loss adjustment methods. Efficient combinations of spreading period (when
the spread form of gain and loss adjustment is used) and weighting on the current market
value of assets (when asset values are smoothed) are suggested.
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1 Pension Plan Asset Valuation

Various methods are used by actuaries to value the assets of pension plans. The choice
of method should be consistent with the aim of the valuation. Specific methods are of-
ten prescribed for valuations that are carried out to verify compliance with solvency or
maximum funding regulations or for accounting valuations. Only funding valuations of
defined benefit pension plans are considered here. The main aim of such a valuation is to
compare assets and liabilities and to recommend contribution rates from a going-concern
perspective. Practical methods of valuing pension plan assets for such purposes have been
described and classified, notably by Jackson & Hamilton (1968), Trowbridge & Farr (1976,
p. 88), Winklevoss (1993, p. 171) and by the Committee on Retirement Systems Research
(1998).

Market-related methods are used most frequently. The value of pension plan assets
may be taken to be the current market value of these assets, or it may be some average
of current and past values in an attempt to remove short-term volatility. Market-related
methods are based approximately on the economic valuation of both asset and liability
cash flows by reference to the market. Pension liabilities are not generally traded and so
pension liability cash flows must be priced by comparison with similar asset cash flows.
This argument has been diversely expressed in the actuarial literature in terms of immu-
nization (Vanderhoof, 1972; Milgrom, 1985), matching (Wise, 1987) and hedging (Tilley,
1988). Pension liabilities are therefore to be discounted at market discount rates, suitably
risk-adjusted, or at the rates implied in asset portfolios that are dedicated or matched by
cash flow to these liabilities. In practice, the pricing of pension liability cash flows is ap-
proximate. For example, pension liabilities which have a long duration are often discounted
at a single term-independent (possibly duration-weighted) average discount rate. Adjust-

ments for the riskiness of pension liabilities, stemming for instance from potential default



by the sponsor or from the uncertainty in the amount and timing of benefit payments, are
also made approximately (typically yields from corporate bonds rather than government
securities are used). On the asset side of the pension plan balance sheet, market values may
be volatile and are often smoothed over short intervals. Comparison of the pension plan
liability and asset values provides a measure of the unfunded liability that is consistent (at
least approximately) so that contribution rates may be set to secure the long-term funding
of pension benefits.

An alternative approach is the discounted-income method which was popular in the
United Kingdom until recently and is mentioned for completeness. The difference between
income from assets and outgo (benefit payments and expenses) in each year is viewed as a
surplus of cash that is reinvested in the asset portfolio held by the pension fund. Accumu-
lating projected net proceeds at the rate of reinvestment return would give an accumulated
value of the surplus in the plan. Asset and liability cash flows may instead be discounted
at that rate yielding ‘present values’ of assets and liabilities, the difference between these
values being the present value of the surplus of asset over liability cash flows (or an un-
funded liability). Contributions may then be determined such that, when reinvested at
the assumed rate of return, they liquidate the unfunded liability (Gilley & Funnell, 1958;
Funnell & Morse, 1973). The assumed rate of reinvestment return is based on a notional
portfolio representing the long term investment strategy of the fund so that the value of the
unfunded liability does not change as pension fund asset allocation changes. The notional
portfolio should also loosely match the liability cash flows so that, by way of an approx-
imate immunization, the value of the unfunded liability is insensitive to small changes in
the assumed rate of return and remains consistent. To reflect any mismatch between the
actual and notional portfolios, approximate risk adjustments are apparently made to the
assumed liability valuation discount rate and assets are hypothetically switched into the

notional portfolio before the asset cash flows are discounted (Springbett, 1964; Wise, 1982;



Thornton & Wilson, 1992). Fixed income securities and any pension liability matched by
these securities are thus valued by discounting cash flows at the same rate. Equities are
typically valued using a Dividend Discount Model possibly with term-dependent dividend
growth assumptions (Day & McKelvey, 1964).

2 Some Properties of Asset Valuation Methods

Asset valuation methods should satisfy certain desirable properties, irrespective of the
methodology employed. Consistency between the valuation of plan assets and plan liabil-
ities is one such property. Since pension fund valuation involves the comparison of asset
and liability cash flows and the subsequent determination of an unfunded liability and con-
tribution rate, it is important that the values placed on assets and liabilities be comparable
and consistent. Asset values may be smoothed to remove the impermanent fluctuations in
security prices driven by speculators and short-horizon investors because it is believed that
such volatility is not reflected in pension liability values and that it is irrelevant to long-
term planning for retirement benefits. The plan sponsor’s own financial planning tends to
be over a shorter term, however, and will be influenced by volasile market conditions. Fair
pricing of assets and liabilities should be consistent by virtue of the no-arbitrage principle
and smoothing asset prices and using practical approximations in the valuation of pension
liabilities may arguably distort the comparison of asset and liability cash flows and the
measurement of the unfunded liability. If an asset valuation method is not consistent with
liability valuation, then systematic gains or losses will emerge, and such a method would
not be acceptable, for example under the Standard of Practice for Valuation of Pension
Plans of the Canadian Institute of Actuaries (1994, para. 5.01).

Pension plan assets should also be valued in an objective way. Market values of assets

are objective in the sense that, absent accounting errors, two actuaries will employ the



same asset value. The variety and opacity of some averaging techniques, especially if
they are frequently changed, may appear to be somewhat arbitrary. (Smoothed asset
values would certainly not be objective for the determination of solvency.) Off-market
valuation methods are often more arbitrary. When both asset and liability cash flows are
discounted and a Dividend Discount Model is used, asset values are highly sensitive to the
equity dividend growth assumption and the smoothing effect may not be very transparent
(Dyson & Exley, 1995). Details of any smoothing method should be disclosed according to
Actuarial Standard of Practice No. 4 of the Actuarial Standards Board (1993) and should
presumably be applied systematically and rationally.

Asset values must also be realistic. For funding purposes (as opposed to compliance
purposes such as solvency and accounting), the primary objective is to determine a rea-
sonable rate of contribution rather than to place an absolute value on assets. The asset
value is not meant to be a fundamental measure of the worth of pension plan assets. Asset
values may be smoothed, but should remain in some proximity to market values (Berin,
1989, p. 30; Winklevoss, 1993, p. 172). The U.S. Internal Revenue Service for example
requires that the actuarial asset value be within a 20% corridor of market value. Market
values are relevant because market conditions do affect the plan sponsor, who ultimately
contributes to the pension plan. It is nevertheless sometimes argued that, when asset and
liability cash flows are discounted on the same basis, the intermediate present values of
assets and liabilities are superior to the corresponding market values (Day & McKelvey,
1964). Although they may satisfy some internal consistency, the resultant values of the
unfunded liability and recommended contribution rates may be artificial, off-market and
irrelevant to the financial management of corporate plan sponsors.

Asset valuation methods also stabilize and smooth the pension funding process. Actu-
arial valuations for funding purposes aim at measuring the shortfall (or surplus) of assets

over liabilities so that contribution rates may be calculated in order to make good these



shortfalls and secure assets to meet pension liabilities as and when they are due. Firms
sponsor pension plans on a voluntary basis and also through competitive pressures in the
employment market. But plan sponsors are motivated to fund defined retirement bene-
fits in advance when the contributions required are stabilized and spread over time, so
that the costs arising from the uncertainty of long-term pension provision are not imme-
diately borne. (It is not generally desirable however that the accounting pension expense
be smoothed.) Thus, an unfunded liability is generally defrayed over a number of years.
Short-term variations in asset prices conflict with this stability objective. A fundamen-
tal reason for using special methods to value assets in the funding valuations of defined
benefit pension plans is therefore to moderate volatility in asset values and generate a
stable and smooth pattern of contribution rates (Anderson, 1992, p. 108; Ezra, 1979, p. 40;
Winklevoss, 1993, p.171).

The effect of the asset valuation method on the dynamics of pension funding is sig-
nificant. Asset-liability models turn out to be sensitive to the specification of the asset
valuation method (Kingsland, 1982; Kemp, 1996). Asset allocation decisions should not
be based on the outcome of a funding valuation but may be influenced by the assessment
of pension plan liabilities and assets and the unfunded liability reported after such an actu-
arial valuation. The asset valuation method should not therefore lead to wrong investment
decisions (Fzra, 1979, p. 110; Dyson & Exley, 1995). The way in which assets are valued
certainly affects the timing of contributions, as the emergence of asset gains and losses
depends on the value placed on plan assets. This has an indirect effect on the ez post cost
of pension provision. Asset gains and losses are also amortized but it is often considered
that this is not powerful enough to dampen their volatility and stabilize contributions, and
consequently asset valuation methods themselves need to incorporate a smoothing quality
(Anderson, 1992, p. 108). It is not meaningful, therefore, to consider the issue of asset

valuation without addressing the method by which gains and losses are amortized. Trow-



bridge & Farr (1976, p. 73) thus refer to the “consistency between the asset valuation and

the techniques of actuarial gain or loss adjustment”.

3 A Simple Model of the Pension Funding Process

Market-related or smoothed market asset valuation methods employing exponential smooth-
ing are considered in the following. Certain simplifying assumptions are required to study
the effect of valuing the assets of pension plans according to this method when contribution
rates are determined. A simple but mathematically tractable model of a defined benefit
plan, providing a pension based on final salary upon retirement at a normal retirement
age, is set up as follows.

The plan is valued at the beginning of every year and a contribution rate is determined.
Plan assets are directly marketable, their market value f(t) is instantly obtainable and an
actuarial asset value F'(t) is calculated. The valuation of pension liabilities is not analyzed
and it is assumed from the outset that the actuarial valuation basis is constant and that
the actuarial cost method is not changed and generates an actuarial liability AL and a
normal cost NC. The valuation discount rate ¢ is chosen such that AL is a practical
approximation to the fair value of pension liabilities. The actuarial assumption as to the
projected long-term rate of return on plan assets is also 4.

As regards the demographic experience of the plan, its membership is constant and
evolves exactly according to the life table used for valuation purposes. No mortality gain
or loss arises. The economic experience of the plan is such that only asset gains and losses
emerge owing to a variable rate of return r(t) in year (¢ — 1, ¢). For simplicity, neither
salaries nor benefits are subject to economic inflation. The actuarial liability AL, normal
cost NC and yearly benefit outgo B are constant as a result of the stationary nature of

pension liabilities and of the fixed liability valuation method. Alternatively, all salaries



and benefits (including pensions in payment) increase at the same rate of inflation, and all
monetary quantities (including ¢, 7(t), f(t) etc.) are then deflated. AL, NC, B are then
constant in real terms.

This simple model resembles the model of Trowbridge (1952), who shows that when

the liability structure of the pension plan is in equilibrium,
AL =(1+4)(AL+ NC - B). (1)

The model is also similar to those of Bowers et al. (1979) and Dufresne (1988), except that
a smoothed actuarial asset value F'(t) is explicitly considered here.
All cash flows occur only at the start of the year, and if ¢(t) is the contribution income

at the beginning of year (¢, ¢t + 1),
fE+1) =1 +r(t+1)[f(t) +c(t) - B], 2)

for ¢ > 0. The unfunded liability based on the market value of plan assets and the smoothed
unfunded liability based on the smoothed actuarial value of plan assets are respectively

defined as (for ¢ > 0)

ul(t) = AL — f(t), 3)
UL(t) = AL — F(t). (4)

The anticipated market value of plan assets at time ¢ > 1, if the actuarial assumption

as to returns on plan assets is borne out during year (t — 1, t), is
A =Q+9)[ft-1) +ct—1) - B]. (5)
The anticipated or written-up actuarial value of plan assets is, correspondingly,

FA[)=(1+4)[F(t—1)+c(t—1)— B]. (6)



The unsmoothed anticipated unfunded liability is ul4(t) = AL — f4(t) and the smoothed
anticipated unfunded liability is ULA(t) = AL — F4(t).

An asset gain or loss emerges in year (t — 1, t) as the actual return on plan assets r(t)
differs from the actuarial assumption 7. A loss is defined as the difference between the
unfunded liability and anticipated unfunded liability, and a gain is a negative loss. The
unsmoothed and smoothed loss (based on whether market or smoothed asset values are

used) are respectively, for ¢ > 1,

1) = ul(t) — ul(t) = F4(t) — (2), (7)
L(t) = UL(t) — ULA(t) = FA(t) — F(t). (8)

From equations (2), (5) and (7), for ¢ > 1,
i(t) = (@ —r@)f(t~1) +c(t - 1) - Bl. ©)

Contribution rates are adjusted to pay off asset gains and losses. The population-
salary profile is fixed (in nominal or real terms) in this simplified model and we consider

the contribution (in nominal or real) dollar terms rather than as a percentage of payroll:
c(t) = NC + adj(t), (10)
where adj(t) is a supplementary contribution paid to liquidate gains and losses as well as
any initial unfunded liability in the plan.
4 Asset Valuation Methods

The method by which the actuarial asset value F(t) of plan assets is determined is yet to
be defined. For notational convenience, u = 1 +7 and v = 1/(1 + %) are used henceforth.

Define the present value of plan assets at time ¢ written up over j > 1 years and allowing



for cash flows to be
Fi(t) =w/f(t—j)+)_ uFle(t — k) — B]. (11)

k=1

From the definition of the loss I(¢) in equations (5) and (7),

f@) +1(t) =u[ft—1)+c(t—1) — B (12)

and, by recursion, it is easily shown that

Fi(t) = [(t) + Y u*l(t k), (13)
k=0
Fi(t) = u[F;(t = 1) + ¢t — 1) — B] — (¢t — j). (14)

The smoothed actuarial value of plan assets at time ¢ > 1 is defined generically as

F(t)=(1-% {f(t) + ZAJ‘Fj(t)} , (15)

for 0 < A < 1. It is an exponentially weighted average allowing for cash flows and interest.

The actuarial asset value may be reinterpreted by substituting F;(t) from equation (11)

into equation (15),

F(t) = i N1 =Nl f(t - §) + i)\j(l =) iuk[c(t — k) — B]
7=0 7=1 k=1
=Y M= Nf(t—5)+ Y w)le(t - j) - B), (16)
=0 j=1

for £ > 1. The method could be termed an “Exponentially Weighted Infinite Average of
Market”, by contrast with the arithmetic “Moving Average of Market” mentioned by the
Committee on Retirement Systems Research (1998), as it averages over the market values
of plan assets whilst allowing for cash flows and the time value of money. (The smoothing

weights sum to unity since 3322, M(1 - X) = 1)
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The anticipated actuarial value of assets at time ¢ based on actuarial valuation assump-

tions and the actuarial value at time t — 1 is, from equations (6) and (16),
FA®R) =u[F(t— 1) +c(t — 1) — B]

= i N =N f(t—5) + Y Nt — 5) — B). (17)

j=1 j=1

By comparison with F'(¢) in equation (16), it is clear that, for ¢ > 1,
F(t) = AFA(t) + (1= N f (), (18)

which exhibits the method of valuation of plan assets as a “Weighted Average” of the
market value of plan assets and of the written-up anticipated actuarial value.

The asset valuation method may be rewritten as
F(t) =FAt) + (1= N[f () - FA@®), (19)

(for ¢ > 1) which is one instance of the “Write-up” method with an adjustment. The
actuarial value of plan assets is the written-up anticpated value, with recognition of a
fraction of the difference between the market and anticipated or written-up values of plan

assets.

It is equally clear that, for ¢ > 1,

F(t) = f(t) + A[FA(t) - £ ()], (20)

This represents the asset valuation method as an “Adjusted Market” method. The actuarial
value of plan assets is equal to the market value, smoothed by an adjustment equal to a
fraction of the difference between the anticipated actuarial value and the market value.

One can also define the asset valuation method in terms of the asset losses {I(t)} in the

11



pension plan. Replacing F;(¢) from equation (14) into equation (15) yields

F(2)

I

11— NF@E) + ui/\j(1~)\)F3(t—1) + uMc(t — 1) - B

j=1

- Z)\j(l — Nt - 7)

uF(t—1) + (1= Nf@) — u(l=Nf(t—1) + uMe(t—1) - B

= 3 N = - ) (21)
j=1
and upon substituting from equation (12),
F(t) = FA(t) = > N (1 - ANl — j), (22)
Jj=0

for ¢ > 1. This expresses the asset valuation method as a “Write-up” method, with the
adjustment explicitly defined in the losses {I(¢)}.

From equations (19) and (22), the smoothed loss as defined in equation (8) is therefore

L(t) = (1= N[FA() - f(2)] (23)
= Z N1 = Nl(t - 5). (24)

Equation (24) shows that the present value of losses {u?l(t—3)} is exponentially smoothed.
A unit loss is smoothed by recognizing {A\°(1—)), AL(L =), A2(1— 1), ... } together with
interest, in successive years and in perpetuity. For a unit loss that emerged j years ago, a
total of 1 — AT has been recognized (along with interest) and separately amortized.
The “Adjusted Market” method in equation (20) may be rewritten, using equations (23)
and (24), as
o0
F(t) = () + ) Mt - ), (25)
=0
(fort > 1) which expresses the asset valuation method as a “Deferred Recognition” method.

(Equation (25) may also be obtained directly by replacing Fj(t) in equation (13) into the

12



basic definition for the actuarial asset value in equation (15).) Equation (24) shows that a
fraction 1— M+ of a unit loss that emerged j years ago has been recognized (and separately
amortized). Successive portions {MT1(1 — X), ¥*2(1 — A), ... } (totalling A*!) are yet
to be recognized (with interest) in future years. In other words, a fraction M+! of a loss
J years ago has been deferred and, in the “Deferred Recognition” method, is added (with
interest) to the market value of assets.

The perpetual deferral of declining portions of asset gains and losses is not as inad-
visable as may first appear. Smoothing using an infinite exponentially weighted average
is perhaps more natural than averaging over a finite moving interval. Gains and losses
emerge randomly and continually and are never completely liquidated in any case.

It may be observed that the asset valuation methods above continually adjust the
actuarial value of assets relative to the market value. One of the methods listed by Win-
klevoss (1993, p. 174) is identical, except that the adjustment is discontinuous: the actuarial
value of assets equals F4(¢) when F4(t) is within a corridor of values around f(t), and
otherwise is a suitably adjusted written-up value similar to F(t) in equation (19). The
asset valuation method, in the form described in equation (18), is also akin to a method
suggested by Dyson & Exley (1995). Their method involves an exponential smoothing of a,
certain funding ratio (that is, the asset value as a fraction of the actuarial liability) without
accounting for cash flows or interest. The asset valuation method that we have described
is also sufficiently general to encompass certain methods described by Jackson & Hamilton
(1968), Ferris & Welch (1996) and Aitken (1994, p. 289).

Finally, it is clear that the various asset valuation methods described in equations (16),
(18), (19), (20), (22) and (25) are identical, if initial conditions are ignored. The initial
conditions may be chosen arbitrarily so that identity follows.

The pension system is initialized as follows. Let the initial market value of plan assets

be f(0) = fo with certainty and the initial unfunded liability (at market) be ul(0) = uly =
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AL — fo. The pension fund is marked-to-market at time ¢ = 0 so that F (0) = fo and
UL(0) = uly with probability 1. For ¢t < 0, assume also that I(t) = 0, ¢(t) = NC and
f(t=1)=vf(t) — NC + B (with f(0) = f,).

5 Supplementary Contributions

The method of funding for pension benefits is not completely specified until the treatment of
gains and losses is described. Gains and losses are not amortized directly over a fixed term
but are instead indirectly spread forward over a moving term, as discussed by Trowbridge
(1952), Trowbridge & Farr (1976, p. 85), Bowers et al. (1979), Dufresne (1988) and McGill
et al. (1996, p. 525). They show that this gain and loss adjustment technique is implicit
in the Aggregate and Frozen Initial Liability actuarial cost methods which are known as
“spread gain” methods (Berin, 1989, p. 63; Aitken, 1994, p. 326). The spread adjustment
of gains and losses may also be used with individual actuarial cost methods, such as the
Projected Unit Credit method.

The initial unfunded liability uly, arising at plan inception or from amendments to
valuation methods or plan benefits, may be implicitly spread forward or it may be explicitly

amortized over M years (say) by payments

ulp/izm, 0<t<M-—1,
P(t) = M (26)
0, t> M.

The unamortized part of uly is

ulg &ml/a’HP 0 <t<M-1

0, t> M.

Note that



where we define U(n) =U(n+1) =--- =0.

The supplementary contribution or adjustment adj(t) is (Owadally & Haberman, 1999):
adj(t) = (1 - K)[UL(t) — U(t)] + P(2), 1-K =1/b. (29)

The adjustment is such that level payments over a spreading period of m years would
amortize the plan unfunded liability (based on the smoothed actuarial value of assets) in
excess of the unamortized part of uly. Note how this fits in with, and historically probably
derives from, the calculation of the contribution rate in the discounted-income approach
described in section 1. The annuities in equations (26), (27) and (29) are evaluated at
rate ¢. If assets are valued at market only, that is F(t) = f(t) V¢, then the model reduces
to the one investigated by Dufresne (1988) (with the minor exception that he does not
consider the separate amortization of the initial unfunded liability).

The method of indirectly spreading gains and losses is chosen because the propor-
tional supplementary contribution involved in equation (29) appears intuitively to lead to
smoother contribution rates by contrast with fixed-term gain/loss amortization schedules.
To explore this further, replace F(t) by UL(t) (equation (4)) and c(t) by adj (t) (equa-
tion (10)) into equations (6) and (8) to obtain a recurrence relation for the smoothed

unfunded liability, for ¢ > 1,
UL(t) —u-UL(t — 1) = L(t) — u - adj(t — 1), (30)

and simplify by further substituting adj(t) from equation (29) and using equation (28):

(UL(t) = U(t)) —uK(UL(t — 1) = U(t — 1)) = L(t). (31)
Hence, for t > 0,
UL(t) - U(t) = Z(uK)J‘L(t -7, (32)

15



and from equation (29),

o0

adj(t) — P(t) = > KI(1 - K)wWL(t — j). (33)

=0

Note the symmetry in equations (24) and (33). Asset gains and losses (at market)
are smoothed twice, first by the asset valuation method and then by the gain/loss ad-
justment method. When the spreading adjustment is used, equation (33) shows that the
supplementary contribution is an exponentially weighted infinite average of smoothed losses
(32 K/(1-K) =1,since 0 < K < v < 1form > 1). An identical smoothing mechanism
is employed in the asset valuation and gain/loss adjustment methods that are considered
here.

The smoothness of contribution rates when the spreading adjustment is used within the
Aggregate and Frozen Initial Liability methods is indeed observed by Trowbridge & Farr
(1976, p. 62). Hennington (1968) states that “The smoothness of the annual contribution
is determined not only by the method for determining asset value but also by the actuarial
funding method. [ ... ] An actuarial cost method involving a spreading of actuarial gains
and losses makes it easier to use some of the market value methods”. Berin (1989, p. 28)
notes that the valuation of assets at market is less “risky” if a spread-gain funding method
is used. Owadally & Haberman (1999) also find that spreading is more efficient than the
direct amortization of gains and losses in the sense that more stable contribution rates and

funding levels may be achieved.

6 Pension Funding with Asset Valuation and Gain/Loss Spreading

The pension funding process with asset valuation and spreading of gains and losses may now

be examined under the simplifying assumptions set out in section 3. A simple recurrence
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relation can be set up as follows. First, note from equations (6) and (18) that
F)=M[Ft-1)+ct—1)= Bl +(1-XN)f(), (34)

for ¢ > 1. This can be rewritten in terms of the unfunded liabilities, using equations (1),

(3), (4) and (10), as
UL(t) = M|UL(t — 1) — adj(t — )]+ (1 — Mul(2). (35)

Gains and losses are indirectly spread forward and the contribution adjustment term

may be replaced using equations (28) and (29) to give, for ¢ > 1,
UL(t) - U(t) = AMKu[UL(t — 1) = U(t — 1)] + (1 — A)[ul(t) — U(2)]. (36)

Since ui(0) = UL(0) = U(0) = uly, it is clear that for ¢ > 0,

t
UL(t) — 2> (KW ul(5) - U)]. (37)
j=0
The outcome of an actuarial valuation at ¢ > 0 is therefore to recommend a contribution
payment of
c(ty=NC + (1 — K)(UL(t) - U(t)) + P(t) (38)

=NC+(1-K)1-X) > (AKu)'Iul(f) - UG+ Ut) - vU(t+1), (39)

=0

[N

from equations (10), (28) and (29).
We may now obtain a recurrence relationship for the unfunded liability ul(t) (¢t > 0)
by substituting c(¢) from equation (39) and ul(¢) from equation (3) into equation (2), and

by using equation (1):
(wl@+1)-U@E+1)) - (AL-U(t+1))

=(L+rt+1) | (@l(t) - U®) - (1 - K)(1 -3 D> _(AKu) (ul(j) — U())
-
— (AL - U(t+1))|. (40)
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Suppose now that the initial unfunded liability is not separately amortized and is indi-

rectly spread forward, i.e. P(t) = U(t) = 0 Vt. It is easily established from equation (36)

that
t
UL(t) = (1 - A) >_(AKw)!ul(j) + AAKw)ulo (41)
7=0
and hence that
t .
c(t)=NC+ (1~ N COKwIu(G) + (1 - K)AAKw) Tl (42)
j=0

and

ul(t+1) = AL = (1 +7r(t+1)) |ul(t) = (1 - K)(1 = A) Y (AKu) ul(j)
=0

<.

—vAL = M1 — K)(AKw)tuly|. (43)

If the initial unfunded liability is disregarded (assumed to be zero or to have been
completely amortized), then symmetry in K and A holds over time in the pension funding
process. The values of K and A could be interchanged in equations (39), (40) (42) and (43)
without affecting the dynamics of the pension funding process (ignoring ulp). This confirms
that the methods of asset valuation and of asset gain/loss treatment under consideration

have a similar smoothing function.

7 Moments of the Pension Funding Process

Suppose now that the rate of return r(t) on pension plan assets in year (t—1, t) is projected
to be random (independent and identically distributed), with mean r and variance o2. Such
a projection assumption simplifies reality but does introduce volatility and reflect market

efficiency. It is convenient to define d = i/(1 +4), d, = 7/(1 +7), as well as
6 = (1-K)(1-X)/(1-XKu). (44)
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The long-term expected values of various variables in the pension fund are shown in Propo-

sition 1, which is proven in Appendix A.

ProprosITION 1 If i > —100%, r > —100%, AK (1 +4)(1+7) <1 and 0 > d,, then

lim BI(t) = —AL(d, — d)(d — 0)u/(d, — 6), (45)
Jim Eul(t) = AL(d, — d)/(d, — 0), (46)
lim BUL(t) = AL8(d, — d)/(1 - K)(d, - 6), (47)
lim Ef(t) = AL(d - 6)/(d, — ), (48)
lim EF(t) = AL — ALO(d, — d)/(1 - K)(d, — 9), (49)
lim Be(t) = NC + AL§(d, — d)/(d, — 6). (50)

The symmetry between K and A in the first moments (except in those of the actuarial
values F'(t) and UL(t) which involve only smoothing through asset valuation and not
through gain/loss adjustment) is again evident. When unsmoothed market values of plan
assets are used (A = 0) then § = 1 — K, in which case the results reduce exactly to those
obtained by Dufresne (1988). When asset gains and losses are not amortized or spread but
are paid off immediately (m =1, K = 0) then § = 1 — ), in which case the results mirror
those of Dufresne (1988) with A exactly replacing K.

Simpler results follow if the actuarial assumption i as to the rate of return on plan

assets is unbiased and equals the mean rate of return .

COROLLARY 1 Suppose that r = i. Then El(t) = 0 Vt. Furthermore, if there is no
initial unfunded liability (uly = 0), then Eul(t) = EUL(t) = 0 V¢, Ef(t) = AL Vt and
Ec(t) = NC Vt. If the initial unfunded liability is separately amortized by additional
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payments, as in equation (26), then

uly dgp—p fiigg, 0<t<M—1,
Eul(t) = BUL(f) = M= (51)

0, t> M,

AL—ulg am‘/am, 0 < t < M—l,

Ef(t) = BF(1) = (52)
AL > M,
NC +ulpfizz, 0<t<M—1,
Ec(t) = o/t (53)
NC, t> M.

If the initial unfunded liability is not separately amortized then, provided that r = i >

—100%, 0 < K <v and 0 < A <,

Jim Eul(t) = tlirglo EUL(t) =0, (54)
Jim Ef(t) = lim EF(t) = AL, (55)
Jim Ec(t) = NC. (56)

See Appendix B for a proof. If the actuarial assumption as to returns on plan assets is a
best estimate and is borne out by experience on average, then no gain or loss is expected to
emerge. The set of asset valuation methods defined in equations (16), (18), (19), (20), (22)
and (25) therefore exactly satisfies the criterion for consistency as stipulated for example
in the Standard of Practice for Valuation of Pension Plans of the Canadian Institute of
Actuaries (1994, para. 5.01).

After the initial unfunded liability is defrayed, the plan is expected to remain fully
funded and no supplementary contribution beyond the normal cost is paid on average.
Even if the initial unfunded liability is not being separately identified and amortized over
a finite period, the plan is expected to become fully funded eventually. But this will only

happen if the unfunded liability is recognized and liquidated fast enough relative to interest
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paid on the initial unfunded liability: pension liabilities will ultimately be fully funded if
asset values are not excessively smoothed (0 < A < v) and gains and losses are not spread
over very long periods (0 < K < v).

Full funding occurs only asymptotically in spread-gain or aggregate actuarial cost meth-
ods but, as pointed out by Trowbridge & Farr (1976, p. 85) and others, this is not necéssarily
objectionable since random experience deviations occur all the time and a perfectly zero
unfunded liability is never achieved except by chance.

The second moments of the pension funding process are considered in Proposition 2.
The simplifying assumption is made henceforth that the assumed rate of return is unbiased
(r = i). The variance of the random rate of return on plan assets is 0®> = Varr(t).

Furthermore, define ¢ = E(1 + r(¢))? = u? + 02 and V, = 0®v?AL?/Q, where

Q=(1-q¢K*(1 - u?)(1 - \Ku?)
— M1 - K)o’[2K (1 — A%u?) + A(1 — K)(1 + AKu?))] (57)
= (1 - g\)(1 — K%?)(1 — AKv?)

— K(1—-X)0o*[2A(1 = K*®) + K(1 — ))(1 + AKu?)]. (58)
PROPOSITION 2 Provided that r =1 > —100%, 0< K <v, 0< A< v, Q >0 and

(1+MK2qu®) (1 + M K302 — MK 4qud)

> XK+ K)go™ut + MK () + K)2qu?(1 — A2K2qu?),  (59)
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then

lim Varl(t) = Vio(1 — K%?)(1 — Mu?)(1 — AKu?), (60)

t—co

Jim Varf(t) = Vaol(1 = AKu?)(1 — A2K%u?) + 20K (1 — \)(1 - K)u?],  (61)

lim VarF(t) = Vo1 = N)2(1 + AKu?), (62)
lim Vare(t) = Veo(1 = K2 (1= 221+ AKu?), (63)
lim Cov[f(t), F(t)] = Veo(1 — N)[1 + AK (1 = K — \)u?], (64)
Jim Cov[f(t), c(t)] = —Vao(1 = K)(1 = N)[L + AK(1 - K — N)u’], (65)
Jim Covle(t), F(t)] = —Vao(1 — K)(1 — M)*(1 + AKw?). (66)

See Appendix C for a proof. Again, the moments (except those involving the smoothed
actuarial asset value F()) exhibit symmetry and K and X can be interchanged. When pure
market values of assets are used (A = 0) then @ = 1 — ¢K? and the second moments are
identical to those obtained by Dufresne (1988) (lim VarF'(t) = lim Varf(¢)). When asset
gains and losses are not amortized but are paid off immediately (K =0) then Q@ = 1—gX?

and Dufresne’s (1988) results are again obtained but with A exactly replacing K.

8 Effects of Smoothing Asset Values

8.1 Stability

An important property of an asset valuation method is that it should lead to stable and
smooth funding for pension obligations. The funding process should at least exhibit finite
variance. The stability conditions of Proposition 1 and 2 are sufficient for stability. (Nec-
essary and sufficient conditions are discussed in Appendices A and C.) These conditions
are realistic in normal economic circumstances and the condition that most constrains the

choice of gain/loss spreading period m (or spreading parameter K) and of asset valuation
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parameter A is @ > 0. (K and m are in a direct one-to-one relationship: see equation (29).)
It is shown in the proof of Proposition 2 that it is necessary, but not sufficient, for stability
that K < 1/4/q and A < 1/4/q (see equations (95) and (96) in Appendix C).

Table 1 exhibits the stability constraints in terms of maximum allowable spread periods
for various choices of {i, o, A}. Table 2 shows maximum allowable smoothing parameters
for various choices of {i, ¢, m}. Both tables are based on the stability conditions of
Proposition 2. It is easily verified in Tables 1 and 2 that inequalities K < 1/4/q and
A < 1/4/g hold.

1t is clear from Table 1 that gains and losses should not be spread over very long periods
as this could result in an unstable funding process. This conclusion is also emphasized by
Dufresne (1988) who considers only pure market values of assets. Spreading periods should
be even shorter if asset values are being smoothed.

Table 2 shows that excessive smoothing of asset values must be avoided, specially if gains
and losses are being spread over long periods. Asset valuation and gain/loss adjustment
perform a complementary actuarial smoothing function and there is a finite limit to the

cumulative amount of smoothing that may be applied.

8.2 Effect on the Smoothed Actuarial Asset Value

A suitable asset valuation method should generate an asset value that is realistic in the
sense that it remains fairly close to market values. Furthermore, the asset value should
be more stable or less variable than the market value (Berin, 1989, p. 29; Aitken, 1994,
p. 289). Proposition 3 states that these properties do indeed hold for the variants of the
“Average of Market”, “Weighted Average”, “Write-up”, “Adjusted Market” and “Deferred

Recognition” valuation methods described earlier.
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PROPOSITION 3 Provided that the stability conditions of Proposition 2 hold,

Jlim B[f(t) - F(t)]* < oo, (67)
tlgg VarF(t) < Jim Varf(t). (68)

Proof. E[f(t) — F(t)]> = Varf(t) + VarF(t) — 2Cov[f(t), F(t)] + (E[f(t) — F(£)])* and
all the terms on the right hand side are convergent as ¢t — oo as shown in Propositions 1

and 2 provided the stability conditions hold. From equations (61) and (62),
lim Varf(f) — lim VarF(t) = V(1 —o®K*)A[(1-X) + (1 - ?K)] > 0, (69)
t—00 t—o0

given the stability conditions in Proposition 2. Equality holds when A =0. O

Inequality (67) shows that the deviation between the smoothed actuarial asset value
and the market value of plan assets remains bounded in the mean-square, provided that
the amount of smoothing in the asset valuation and gain/loss adjustment methods are
constrained as discussed in section 8.1. Excessive averaging of market values (as well
as spreading of gains/losses over very long periods) must therefore be avoided. Note in
particular that if A = 1, a variant of the “Write-up method without adjustment” is being
used (Winklevoss, 1993, p. 173; Committee on Retirement Systems Research, 1998, p.
41). The actuarial asset value F(t) in equation (19) does not revert towards the market
value f(t) and unless the fund is marked-to-market regularly the actuarial asset value will
diverge from the market value of pension plan assets.

Inequality (68) shows that the asset value generated by the set of smoothed asset

valuation methods used here is less variable than market value, conditional on stability.

8.3 Effect on the Fund Level

Dufresne (1988) and Owadally & Haberman (1999) consider only pure market values of

assets (A = 0) but show that spreading or amortizing gains and losses over longer periods
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lead to more variable fund levels. This is reasonable. As gains and losses are deferred for
longer periods, fast enough action is not taken to defray them and the level of funding
becomes more volatile. Likewise, one anticipates that heavier smoothing of asset values,
which delays the recognition of asset gains and losses, should also adversely affect the

security of pension benefits. This is encapsulated in Proposition 4, proven in Appendix D.

PROPOSITION 4 Provided that the stability conditions of Proposition 2 hold, lim Varf (t)

increases monotonically with both m and .

This result is illustrated in Figure 1. The symmetry between asset valuation and

gain/loss spreading is clearly exhibited: Figure 1 is symmetrical in the plane K = ).

8.4 Effect on the Contribution Rate

Slower recognition and amortization of gains and losses should result in smoother and more
stable contribution rates. In the context of pure market values of assets (A = 0), Dufresne
(1988) shows that spreading gains and losses over longer periods does initially stabilize
contributions, but beyond a certain critical period contributions become more variable:
lim Varc(t) against m has a minimum at m* corresponding to K* = 1/q. (Owadally &
Haberman (1999) also assume that assets are valued at market and prove a similar result
when gains and losses are directly amortized rather than indirectly spread.)

An immediate consequence of the congruence between gain /loss spreading and the ex-
ponential smoothing asset valuation methods used here is that, if gains and losses are
immediately paid off and not spread forward (m = 1 or K = 0), then lim Varc(t) against
A has a minimum at A* = 1/q. Therefore, smoothing beyond a certain amount (weighting
the currént market value of assets by less than 1 — \*) is countereffective as contribu-
tions become more variable. (The proof is obtained, as a matter of course, by repeating

Dufresne’s (1988) proof and replacing all K by \.)
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The combined effect of asset valuation and gain/loss spreading on the stability of con-

tribution rates is investigated in Proposition 5 (proof in Appendix E).

PROPOSITION 5 Suppose m > 1 and A > 0. Provided that the stability conditions of

Proposition 2 hold,

1. as m increases,

lim Vare(t) has at least one minimum at some m < m*, provided 0 < A < X*;

lim Varc(t) increases monotonically, provided either A > X\* or m > m*;
2. as A increases,

lim Varc(t) has at least one minimum at some A < \*, provided 1 < m < m*;

lim Varc(t) increases monotonically, provided either m > m* or A > \*.

The variation of lim Varc(t) with K and A is illustrated in Figures 2 and 3 and in the
second contour plot in Figure 4. The two parts of Proposition 5 are identical except that K
and A are interchanged. The variation of lim Vare(t) with K is similar to its variation with
A and Figure 3 is symmetrical about the plane K = A. The boomerang-shaped contours
of Figure 4 are a further indication of the complementary function of gain/loss adjustment
and asset valuation: the same contribution or fund level variability may be achieved by
trading off A and K.

Proposition 5 does not state whether no more than one minimum occurs but numerical
work, as illustrated by Figures 2 and 3, does indicate at most one minimum. This suggests

that

o lim Varc(t) against K exhibits a minimum, except for large enough A when lim Varc(t)

increases monotonically;
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e lim Varc(t) against A exhibits a minimum, except for large enough K when lim Varc(t)

increases monotonically.

Thus, in Figure 2, lim Varc(t) versus K exhibits a minimum when A < A* = 0.82. The
minimum for A = 0 is seen to occur at K = K* = 0.82. The minima for 0 < A < I*
clearly occur at some K < 0.82. But when A > X\* = 0.82, lim Varc(t) versus K has no
minimum and increases monotonically. In other words, if asset values are being heavily
smoothed (A > X*), it is counterproductive to spread gains and losses in an effort to
smooth contribution rates further. Likewise, if gains/losses are being spread over long
periods (K > K* or m > m*), averaging market values of plan assets in an effort to
generate smoother contribution rates is counterproductive.

Attention must therefore be paid to the combined smoothing effect of gain/loss adjust-

ment and asset valuation.

8.5 Efficient Asset Valuation and Gain/Loss Spreading

It is argued by Dufresne (1988) that maximizing the security of plan members’ benefits
(by minimizing lim Varf(¢)) and maximizing the stability of contributions required from
the plan sponsor (by minimizing lim Vare(t)) are rational actuarial objectives in pension
funding in the long term. Given such objectives, it is possible to go further than in

section 8.4 and state that:

PROPOSITION 6 Under the objectives of minimizing lim Var f(t) and lim Vare(t),

1. it is not efficient to smooth asset values by weighting current market value by less

than 1 — \*;

2. it is not efficient to adjust gains/losses by spreading them over periods ezceeding m*.
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Proposition 4 states that increasing A causes lim Varf(t) to increase. Proposition 5
states that increasing A initially causes lim Varc(t) to decrease but eventually increasing
A beyond M* causes lim Vare(t) to increase. Hence, it is inefficient to smooth asset values
using A > A* as there is some other choice of A for which both lim Varf(¢) and lim Varc(t)
may be reduced. By symmetry, the second part of Proposition 6 is also proven.

The second part of Proposition 6 encompasses the conclusions of Dufresne (1988) who
investigates the choice of m when pure market values are used (A = 0).

Numerical work indicates that lim Vare(t) against A or K has at most one minimum,
as discussed in section 8.4. For any given gain/loss spreading period m, it is inefficient to
smooth asset values by more than the [lim Varc(t)]-minimizing value of X as a lower X will
reduce both lim Varf(t) and lim Varc(t). If m is long enough and lim Varc(t) is strictly
increasing with A, then pure market values should be used. Table 4 lists the [lim Varc(t)]-
minimizing values of A for various choices of {7, o, m}. It is efficient to smooth asset values
using a value of A between 0 and the [lim Varc(¢)]-minimizing value in Table 4. The first
column of Table 4 (m = 1 or K = 0) contains the upper bound A\* = 1/g. The values
in Table 4 are of course lower than the corresponding maximum allowable values of A for
stability in Table 2.

By symmetry, Table 3 shows the longest periods over which gains and losses can be
efficiently spread for various choices of {i, o, A}.

Tables 3 and 4 suggest that pension benefits would be efficiently funded if gains and
losses are spread over terms of 1-5 years with a weight of 20~100% placed on the current
market value of assets (A should be at most 80%). Spreading gains and losses over up to
10 years requires the current market value to be weighted by at least 60% for efficiency.

(This assumes real rates of return averaging up to 5% with standard deviations of up to

15%).
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9 Conclusion

The motivation for the use of special (market-related and discounted-income) methods to
value the assets of defined benefit pension plans was discussed in the context of funding
valuations. The desirable properties of asset valuation methods were considered and it
was argued that the value placed on plan assets must be objectively determined, must be
realistic as compared with market values, and must be consistent with liability valuation.
Asset valuation must also smooth and stabilize the pension funding process.

The “Average of Market”, “Weighted Average”, “Deferred Recognition”, “Adjusted
Market” and “Write-up” methods were defined in terms of exponential smoothing of mar-
ket values and were shown to be equivalent. A simple pension plan model was described
where experience unfolds deterministically except for random investment returns. Asset
gains and losses emerge and supplementary contributions are paid to spread them for-
ward in a proportional manner. Several authors have reported that this method leads to
greater smoothing. Symmetry between asset gain/loss adjustment and asset valuation was
explicitly demonstrated and it was shown that the gains and losses are smoothed twice.

"The first two moments of several variables (the intervaluation loss in the plan, the level
of contribution required, and the market and smoothed actuarial values of pension plan
assets) were obtained. If the assumed rate of return is borne out on average, then no loss
is expected to emerge, confirming the consistency of the valuation methods. An important
result is that asset valuation and gain/loss adjustment techniques have a complementary
function in achieving smoothness in the pension funding process and their combined effect
must be considered. Conditions for the funding process to be stable in the mean-square
were obtained, restricting the total amount of smoothing through both techniques. The
actuarial asset value does not diverge from, and is more stable than, the market value of

plan assets if the conditions for stability hold. The total amount of smoothing is further
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constrained if funding is to be efficient and the long-term variability of both contribution
and funding levels is to be minimized. Numerical work appears to indicate that a com-
bination of a gain/loss spreading period of 1-5 years and a 20-100% weighting on the
current market value of assets is efficient, as is a combination of 1-10 years and 60-100%
respectively.

The analysis undertaken here may be extended in various directions. Pension liabilities
are subject to inflation, which could be explicitly modeled, and should be valued using a
dynamic valuation basis based on corporate bond yields. The various classes of pension
plan assets should also be identified, with more realistic modeling of investment returns
and with the possibie use of different valuation methods for different classes. Practical
regulatory constraints, as mandated by the Internal Revenue Service for example, may

also be incorporated and their effects could be explored.
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Appendix A

Proof of Proposition 1

For notational brevity, we define u = 1+, v = 1/(1 +4), d = 4/(1 + ¢) in terms of i
and correspondingly u, = 1+, d. = r/(1+ r) in terms of r = Er(t).

The rate of return on plan assets {r(t)} is a sequence of independent and identically
distributed random variables and it follows that r(¢ + 1) is independent of r(¢) and ul(t),

ul(t — 1) etc. in equation (40). Hence,
Bul(t+1)-Ut+1)) — (AL - U@+ 1))(1 — uw)

¢
= uE(ul(t) — U®)) — up(1 — Z (AKu)* I E(ul(j) - U(5)), (70)
=0

for t > 0. We forward-shift equation (70) in time (so that it holds for ¢ > —1) and upon

deducting equation (70) multiplied by AKu, we obtain

Blul(t+2) — Ut + 2)]
— MKy +u —ur (1 = K)(1 = NE[ul(t 4+ 1) — U(t + 1)] + AKuw, E[ul(t) — U(t)]

= AL(1 - AKu)(1 — u,v) — [U(t + 2) — AKuU (¢t + 1)](1 — u,0), (71)
which holds for ¢ > 0 and requires E(ul(0) — U(0)) = 0 and an additional initial condition
E(ul(1) — U(1)) that may be found from equation (70). These initial conditions have only

a transient effect, and we will examine the situation in the limit only and so do not need

them.

Were the initial unfunded liability not to be separately paid off but to be spread forward,
it is easy to establish by the same method as above, but starting from equation (43), that
equation (71) holds (except that U(¢) = 0 V¢ of course).

The characteristic equation of the second order difference equation (71) is

P(z) = 2* — AKu+u, — u,(1 — K)(1 — A)]z + AKuu, = 0. (72)
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U(t) = 0 as t — oo, from equation (27). Eul(t) converges as t — oo provided the roots of
the characteristic equation (72) are less than unity in magnitude. This will occur if and

only if (Haberman, 1992):

|AKuu,| <1, (73)
Pz=1)>0 & 1-u —AKu+ A Kuu, +u,(1 - K)(1—2X) >0, (74)

Plz=-1)>0 & 1+u +MKu+AKuy, —u(1—K)(1=X)>0.  (75)

A simplifying assumption, which is not restrictive in practice, is now made: both the
assumed rate ¢ and the long-term mean rate of return on plan assets r are greater than
-100%. Then, 0 < Ku < 1 (Haberman, 1992), since K = 1 — 1/éz; where the annuity is
calculated at rate i. By definition, 0 < A < 1landso 0 < AKwu < 1.

Condition (73) can be written as AKuu, < 1. As for condition (74), it may be written
as [1 — AKul[1 —u,(1—6)] > 0, which, since 0 < AKu < 1 and u, > 0, simplifies to § > d,.
Condition (75) follows directly from the additional assumptions that u, > 0 and u > 0
(since ur —u (1 — K)(1— ) > 0 and 1 + AKu + A\Kuu, > 0).

Given these stability conditions, limEul(t) and limEf(t) follow immediately. Tak-
ing expectations across equation (36) and then taking limits, we find that lim EUL(t) =
lim Eul(t)(1 — A)/(1 — AKu) provided that [AKu| < 1 which holds as shown above. Also,
ImEF(t) = AL —lim EUL(t). From equation (38), it is clear that lim Ec(t) = NC + (1-
K)limEUL(t). Finally, from equation (9), imEl(t) = (i — r)[imEf(¢) + lim Ec(t) — B]

and equation (1) may also be used to simplify the result. O
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Appendix B

Proof of Corollary 1

The rate of return r(z) is independent from year to year and hence is independent from
f(t—1) and ¢(t — 1) and since Er(¢) = i, it follows from equation (9) that El(t) = 0 Vt.

When r = i, equation (70) simplifies to

E(ul(t+1) — Ut +1))
= uB(ul(t) — U(t)) — u(l — ) DKW IE(ul(j) - U(7)), (76)

for ¢ > 0. If the initial unfunded liability is separately amortized, then E(ul(0) —U(0)) =
is an initial condition. Hence, Eul(t) = U(¢) for ¢ > 0 with U(t) defined in equation (27).
The other moments follow as in Appendix A.

But if the initial unfunded liability is not separately amortized over a finite period but
spread forward, we need to establish the conditions for stability. The results of Corollary 1
follow immediately from Proposition 1 when 7 = 5 or d, = d (the subscript r may now be
dropped). The stability conditions (73), (74) and (75) simplify respectively to |AKu?| < 1,
(1= Adu)(1 — Ku) > 0 and (14 Mu)(1 + Ku) > 0. Again, under the realistic economic
assumption that 4 = r > —100%, then 0 < K < v and, since 0 < A < 1, 0 < AKu < 1.
Clearly, the condition that (1 + Au)(1 + Ku) > 0 does hold. If it is further required that

A < v, then the conditions that (1 — Au)(1 — Ku) > 0 and |AK4?| < 1 will also hold. O
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Appendix C

Proof of Proposition 2

For brevity, define p = AKwu, ¢ = E(1 + r(¢))? = u? + 0% Let the unfunded liability
in excess of the unamortized part of the initial unfunded liability be ulV(¢) = ul(t) — U(t)
and define b, = Eul”(¢)* and ¢, = Blul” (£) 35— p'7ul? (j)].

Suppose that the initial unfunded liability is amortized separately. Since r = 4, we have
from Corollary 1 that EulY(t) = 0 for ¢t > 0 (equation (51)). Note also the following two

identities:
¢ 2 ¢
E |:Zpt~julU(j):| _ 22 t—])c Zp2(t J)b (77)
j=0 J=0

E [ulU(t + l)prt‘julU(j)

=0

+ EUZU(t + 1)2 = Ct41- (78)

In order to find the second moments, we proceed to square both sides of equation (40)
and then take expectations. Note again that {r(¢)} is a sequence of independent and
identically distributed random variables so that r(t + 1) is independent of r(s) and ul(s)

for s <. Upon using equation (77) and collecting like terms, we have, for ¢ > 0,

t
beyr — gy +q(1 — = N2> P + 291 - K) (1 - Ner

j=0
t
=2¢(1 - K)’(1= M2 " pe; = o%2(AL-U(t+1))% (79)
=0
A second equation may be found by multiplying equation (40) by pZ;:O pIull (5)
and adding ulY(t + 1)? on both sides, and then taking expectations. Upon simplifying by
using equations (77) and (78) and collecting like terms, we find that, for ¢ > 0,

¢ t
Cep1 — upcy + 2up(l — A)(1 — K) pr’j)cj =be1 +up(l — K)(1— ) pr_j)b]
J=0 j

(80)
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Equations (79) and (80) constitute a linear dynamic system and, in the limit as ¢t — oo,
the system is not affected by initial conditions, which may therefore be ignored. From
equation (27), U(t) = 0 for ¢ > M. We could consider difference equations (79) and (80)
for t > M. Equivalently and more simply, it is convenient to put U(t) = 0 or uly = 0.
Similarly, we can assume that b; = ¢; = 0 for s < 0. Even if the initial unfunded liability
is not separately amortized, Eul(t) — 0 as long as the stability conditions of Corollary 1
hold, and the limits of b; and ¢, do not depend on the transient values of Eul(t) (which
satisfes a third difference equation obtained by taking expectations across equation (43))
and it can be assumed that uly = 0 for simplicity.

It is also convenient to use the forward shift operator E (as distinct from the statistical
expectation operator E) where E™z; = Zyym. See Brand (1966, p. 375). One could

alternatively use z-transforms or generating functions. Note that, if z, = 0 for s < 0,

t

t t
doa s =3 a = Y o (ET) e = B(E —a) o, (81)
=0 j=—o00 j==00

In terms of the forward-shift operator, equations (79) and (80) may be written as

Y(E)by + v(BE)e; = 0?02 AL*(E — p?) and (E)c; = u(E)b; respectively for ¢ > 0, where

Y(E) = (E - q)(E - p") + Bq(1 - K)*(1 - ), (82)
¥(B) =2q(1 - K)(1 = N)(E - p*) - 2¢(1 - K)*(1 - \)’E, (83)
¢(E) = (B - up)(E — p*) + 2up(1 - K)(1 - NE, (84)
ME) = E(E - p*) + up(1 - K)(1 - M)E. (85)

We contrive to obtain equations in terms of b; and ¢; alone. Ignoring initial conditions,
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b and ¢, satisfy Q(E)b; = 02v2AL%*p(E) and Q(E)c; = c?v?AL*u(E) respectively where

Q(E) = [W(E)p(E) + n(E)Y(E)|/(E - p°)
= (E - q)p(E) + Ev(E) + Bq(1 — K)*(1 - \)*(E + up)
= (E - q)(E —up)(E - p*) +2¢(1 = K)(1 = N)E[E - p* — (1 - K)(1 - \)E]
+2u(l = K)(1 = N)pE(E — ¢) + Eq(1 — K)*(1 — \)*(E + up). (86)
Assume for now that the limits of b; and ¢; as ¢ — oo exist. Then lim;_ o0 by =

o®v* AL?p(1)/Q(1) and limyyoo ¢; = 0?02 AL?u(1)/Q(1). It may be observed that p, o(E),
w(E), v(E), v(F) and Q(F) are symmetrical in K and ).

(1) = (1= AKu?)(1 — N K*u?) + 20K (1 — M) (1 — K)u?, (87)
p(l) =1+ AK(1 - K — Mu?, (88)
(1) =2¢(1 — K)(1 — M)[1 - X¥K%? — (1 - K)(1 - \)]. (89)

Define @ = Q(1) and simplify @ by collecting terms in ).

Q=0Q(1) = 1 - a)e1) +7(1) +¢(1 = K)*(1 = 3)*(1 + up), (90)
= (1-gK?) — AK[u*(1 — ¢K?) 4 2(1 — K)o?]

= N[u?(1 - gK?) + 0% (1 — K)?] + MKu?[u?(1 - ¢K?) + o2(1 — K?)]. (91)

Q may also be simplified into the form given in equation (57). Because K and A can be
interchanged in @ = Q(1), @ may also be written as in equation (58).
Therefore, lim b; = Viop(1) and lim ¢; = Voop(1) using Voo = 0?v2AL?/Q and assuming

that the limits exist. Assuming also that |p| < 1, it follows from equation (77) that

t—o00

lim B [Zpt_julu(j)] = (2lime; — limb,) /(1 — p?) = Vio(1 + AKu?).  (92)

The various variances and covariances in Proposition 2 are readily obtained from the

above. Recall that EulV(t) = 0 for t > 0 under Corollary 1. Thus, given equation (3)

)
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lim Varf(t) = limb. Also, given equations (4) and (37), it follows that
Cov|[f(t), F(t)] = Cov[ul?(t), ULY (t)]
= (1 - ))Cov [ulU(t), Zt: pt_julU(j)] =(1-XNE {uzU(t) Zt: pIulv (j)] (93)
=0 =0
and lim Cov[f(t), F(t)] = (1 — /\)Jlim ¢;. From equations (4) and (38)1, lim Cov[f(t), c(t)] =
—(1 = K)lim Cov[f(t), F(t)]. It is straightforward from equations (4), (37) and (92) that

VarF(t) = VarUL(t) = (1 — A\)?Var [i pt—ful"(t)} =(1-A)’E [Z ptjulU(j)} (94)

=0 =0

and lim VarF(t) = Voo(1 — A)?(1 + AKu?). We use equations (4) and (38) to obtain
lim Vare(t) = (1 — K)*lim VarF(t) and lim Cov[c(t), F(t)] = —(1 — K) lim VarF(t). Fi-
nally, from equation (9), we exploit the independence of r(t) from f(s) and c(s) (s < t)
and the fact that El(t) = 0 (Corollary 1) and use equation (1) to simplify, to find that
lim Varl(¢) = o®[lim Var f(t) + lim Varc(t) + 21im Cov[f(£), c(t)] + v ALY = Vao[o2p(1) +
o?(1-K)’(1-A)2(1+AKu?) —20%(1— K)(1—\)p(1) +Q], which may be further simplified
as in equation (60) upon using equations (87)-(90).

It has been assumed thus far that these limits exist. As shown in Appendix A, the
definitions of A and K and the realistic assumption that i > —100% imply that 0 <
AKu < 1 which satisfies the requirement that Ip| < 1. The limits as ¢t = oo of b; and ¢,
exist if the magnitude of the roots of Q(z) = 0 is less than one. Q(2), in equation (86), can
be expanded as a cubic, Q(2) = 2* — A2® + Bz—C, where A = p?+¢(1— (1- K)(1- X))+
up(l=2(1 = K)(1 =), B = [up® +uq(l - (1 = K)(1 - X))* +pg(1 — 2(1 - K)(1 - A\))]p
and C = up®q. Necessary and sufficient conditions for the roots of Q(z) = 0 to be less than
unity in magnitude are given by Jury (1964, p. 136) and Marden (1966): condition (a) is
IC] < 1; condition (b) is |4+ C| < 1+ B; condition (c) is [AC — B| < |1 — C?|.

We now show that conditions (a), (b) and (c) hold provided that the conditions in

Proposition 2 are true. First note that, given that ¢ > —100%, 0 < K < v and 0 <A<,
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then

Q>0 = g¢K*<1, : (95)
Q>0 = gX*<1, | (96)
using equations (57) and (58).
Consider first condition (a). If i > —100%,0 < K <v,0< A < v and Q > 0 (and using
implication (95)), then |C| = |up’q| = (Mu)2gK?|Auj|uK]| < 1, i.e. condition (a) follows.
Next, consider condition (b). The requirement that A+C < 1+ B is of course equivalent

to requiring that @ > 0. We can show that A+C > —(1+ B). Assuming that 1 > —100%,

0<K<wv,0<A<u,then C >0 and
A=p* +qK? +q(1 - K)22? + 2¢K (1 — K)XA +up — 2\(1 = Mu’K(1 — K)
=p* 4+ gK2+q(1 — K)*X? +up + 2(1 — K)AK (0® + Mu?) >0,
and further |

B =plup® + ug(1 - (1= K)(1 = X))* +u’p(1 — 2(1 - K)(1 - }))
+0%p(1—2(1 — K)(1 = )]

=upA+o?p*(1 - 2(1 - K)(1 =)

=up[p? + ¢K? + q(1 = K)*X? + up + 2(1 — K)N’Ku?] + o?p?(1 + 201 - K)) >0.
Hence, A+C >0>-1>—(1+ B). ‘

Finally consider condition (c). If ¢ > —100%, 0 < K <v,0< A <wv and @ > 0 (and
using implication (95)), then 0 < C < 1 and since A+C < 1+ B, therefore AC—B < 1-C2.
The requirement that AC — B > —(1 — C?) is an inequality of the sixth degree in ) and,
after collecting terms in AK and A + K, may be written as inequality (59).

We have therefore shown that if 1 > ~100%, 0 < K < v, 0 < A < v, Q@ > 0 and
inequality (59) holds, then the limits of the variances and covariances in Proposition 2 do

exist. O
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Appendix D

Proof of Proposition 4

From Appendix C, lim Varf(t) - limb, = 0%2AL2%p/Q, where ¢ = (1) in equa-
tion (87) and may be written as a polynomial in K as follows: ¢ = 1 + KX u?(1 — 2)) —
K2 u?(2 — X)) + K3A3u%. In equation (90), @ may be simplified, after replacing v(1) from
equation (89), to @ = (1 —q)p+4¢(1 — K)(1—A)p, where p may be written as a polynomial
in K as follows: p= (14 X) + K(1 - A)(1 + Au?) — K221 + M)

O[lim Varf(t)]/0K is proportional to Qdp/8K — p0Q /8K . This may be simplified and
is the product of g(1— ) (a positive term under the conditions for stability in Proposition 2)
and a second term, [(1 — K)pdp/0K + pp— (1 — K)pdp/dK]. The sign of the latter must
be examined. This second term may be expanded using ¢ and p as given above. Terms in
K may be collected and 2(1 — A?u?) (also a positive term) may be factored out, and upon
collecting terms in X, we are left with A(1 — K)[1 — XuK3] + K[1 — AKu?|[1 — \2u2K)].

The sign of 9[lim Varf(¢)]/0K is also the sign of the last expression, which turns out
to be non-negative, since each of the bracketed terms in that expression are positive under
the stability conditions. 0 < A < v and 0 < K < v imply that MAutK® = du(Ku)® < 1,
AKu? = (Qu)(Ku) < 1, 202K = (Mu)?K < 1.

Hence, we have shown that 9[lim Varf(¢)]/0K > 0 for K > 0 and X > 0. By virtue of
the direct one-to-one relationship between m and K (0m/0K > 0) and of the symmetry
between K and A we have shown that, as m increases or as A increases, lim Var f (t) increases

monotonically. O
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Appendix E

Proof of Proposition 5

From equation (63), lim Vare(t) = 0®*AL*(1 — K)*(1 — A)*(1 + AKvu?)/Q, where Q
may be written in the form given in Appendix D. d[lim Varc(t)]/0K is proportional to
Qa[(1 — K)?(1 + AKu?)]/0K — [(1 — K)*(1 + AKv?)|0Q/0K. This may be expanded into
[(1-q)p+q(1-K)(1-X)p](1 - K)[u® 2= 3AKw?] - [(1- K)*(1+ AKu?)][(1 - )0/ 0K —
g(1 = M)p+q(1 = X)(1 — K)8p/B6K], from which 1 — K (a positive term) may be factored
out and the resultant expression may be further expanded using ¢ and p, both given in
Appendix D as polynomials in K. Terms in K may be collected and after factoring out
2(1 — X?u?) (also a positive term) an expression, which we denote by , is left. m may be

written as a quadratic in A or a cubic in K:

(A =—-(1- Kq) + A1 - K)g(1 — u?K?) + X K2?[u?(1 — Kq) + (1 — K)a2] 97)
=—(1- K1 - XK+ M1 - K)q(1 — v’K?) + XK*(1 - K)u’0?,  (98)

T(K) = —(1 — Aq) + Kq(1 — A) — K2A(1 — N)gu® + K3 (g — Agu? — Ao?). (99)

The sign of d[lim Vare(t)]/8K depends on the sign of m which must be investigated.

Proof that m > m* = lim Vare(t) increases monotonically with m: The last two
terms in the right hand side of equation (98) are positive under the stability conditions
0 < K <vand 0< X< v Inthe first term on the right hand side of equation (98),
1—MK%* = 1 — (Mu)?(Ku)? > 0. The sign of the first term depends on 1 — Kq. If
A>0and m > m* (ie. 1 — Kq < 0), then w()) > 0. It follows therefore that lim Varc(t)
increases with increasing m > m*.

Proof that A > A* = lim Varc(f) increases monotonically with m: We wish to prove

that when m > 1 it is sufficient for A > A* for 7(A) > 0. Note that this has already been

proven when m > m* in the previous paragraph. We need only consider m < m* therefore.
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From equation (97), 7() is quadratic in A. When 1 — Kg > 0 (i.e. when m < m*), the
coefficient of A? is positive, so that 7()) has a minimum. Further, 7(A = 0) < 0 and

7'(A = 0) > 0. If we show that (A = A* > 0) > 0, then it follows that (A > X*) > 0.

(A= =1/q)
=’ K*[u*(1 - Kq) + (1 — K)o?] + ¢*(1 — K)(1 — v?K?) — ¢*(1 — Kq)
=K [v'K — qu*K? + K(1 - K)o*u? + ¢*(¢ — 1) — ¢’ K (1 ~ K)]
=K(g-1) [’ K(@* + (1 - K)o®) + ¢*]
> K(g—1) [-w’K (W + (1 - K)o®) +u?]  (since ¢* > u?)
=K(g—-1)u* [1 - K(u®+ (1- K)o?)]
> K(q—1)u’[l - Kq] (since v’ + (1 - K)o* < q)

>0 (when m < m").

We have éhown that (A > A*) > 0 or that lim Varc(t) increases monotonically with
increasing m provided A > A\*.

Proof that, as m increases, lim Varc(t) has at least one minimum, at some m < m?*,
provided 0 < A < A*: Denote the lim Varc(t)-minimizing value of m (if it exists) as m;
(with a corresponding K;). Consider 7(K) in equation (99). If A\ < A* = 1/, then it is
clear that 7(K = 0) < 0. In addition, #'(K = 0) > 0 and 7”(K = 0) < 0. We have shown
already that 7(K = K* = 1/q) > 0 from equation (98). 7(K) in equation (99) is a cubic
pdlynomial in K. Hence, if A < X*, 7(K) must have at least one root at some K = Kj,
such that 0 < K < 1/q and such that 7'(K = K;) > 0, i.e. 7(K) must have at least one
minimum at 0 < K < 1/g. We have shown that, if 0 < A < A*, as m increases, lim Varc(t)
has at least one minimum at some 1 < m; < m*.

The first part of Proposition 5 is therefore proven. The second part follows by virtue

of the symmetry in K and \. O
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o i |A=0[A=20%|A=40% | A=60% | \=80% | A =90%

01 1% | 112 111 110 109 104 94
3% 67 67 66 64 59 47
5% 51 50 49 47 42 29
10%| 33 33 32 30 23 5
15% | 25 25 25 22 14

0.15 | 1% 65 65 64 62 57 48
3% 45 45 44 42 37 27
5% 36 36 35 33 27 16
10%| 25 25 24 22 16 1
15% | 21 20 19 17 9

0.2 | 1% 42 41 41 39 34 26
3% 32 32 31 28 24 20
5% 27 27 24 22 19 9
10% | 20 20 17 15 11
15% | 17 16 15 13 7

0.25 | 1% 29 29 28 26 22 14
3% 24 24 23 21 16 9
5% 21 20 20 18 13 5
10% | 16 16 15 13 8
15% | 14 13 13 1 5

Table 1: Maximum allowable m for various choices of {i, o, A}. Blanks indicate that

stability conditions do not hold.

45



o ) m=1 3 5 10 15| 20 25| 30| 40| 50

0.1 | 1% 98.5|98.5 | 98.4|98.498.3|98.2|98.0|97.8 97.5 1 97.0
3% | 96.6|96.6]96.5|96.2 (959|955 |94.9|94.2 924|889
5% 94.8194.7|94.6 | 94.1193.4|92.5|91.2 | 89.6 | 82.9 | 34.7
10% 90.5|90.4|90.1 | 88.8 | 86.7 | 83.6 | 78.0 | 63.2
15% 86.6 | 86.4 | 85.9 | 83.6 | 79.5 | T1.4 | 40.8

0.15 | 1% 979|978 1977|974 |97.0|96.6 | 96.0 | 95.2 | 93.1 | 88.9
3% 96.1|95.9 | 95.7 | 95.0 | 94.0 | 92.7 | 90.9 | 88.3 | 73.8
5% 94.3 1 94.093.7|92.5|90.7 | 88.1 | 84.0 | 75.5
10% 90.1 {89.6 | 89.0 | 86.2 | 81.5 | 71.9 | 31.7
15% 86.2 | 85.6 | 84.6 | 79.8 | 70.3 | 31.5

0.2 [1% | 97.1|96.9|96.6 | 95.8 | 94.5 | 92.9 | 90.6 | 86.8 | 54.9
3% | 953|949 |945|92.8 | 90.4 | 86.6|79.4 580
5% | 93.6|93.0]92.4(89.8 857782550
10% | 89.4|88.6|87.4|82.1| 715|252
15% | 85.7 | 84.6 | 82.7 | 74.2 | 49.7

025 [1% | 96.1]95.6(95.0|92.9|89.6 | 83.9 | 70.1
3% | 94.3|93.6|92.7 |89.3|83.3|69.4
5% | 926|91.7|90.5|85.5 | 75.9 | 40.5
10% | 88.6|87.3 (852|759 |475]
15% | 85.0|83.2|80.2 | 65.7

Table 2: Maximum allowable A (%) for various choices of {7, o, m}. Blanks indicate that

stability conditions do not hold.
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o i | A=0[A=20% | A=40% | A=60% | A=80% | A=90%

01 |1% | 42 a4 39 36| 28
3% 20 19 19 17 14 3
5% 13 13 12 11 6 1
10% 7 7 6 5 1 i
15% 5 5 4 2 t

0.15 | 1% 28 27 27 26 22 14
3% 16 16 15 14 10 1
5% 11 11 10 9 4 i
10% 7 6 6 4 2 t
15% 5 5 4 2 i

02 [1% | 19 19 18 17| 13 5
3% 13 13 12 11 6 1
5% 9| 9 9 7 3 i
10% 6 6 5 4 1
15% 5 4 4 2 i

0.25 | 1% 14 14 13 12 8 1
3% 10 10 9 8 4 i
5% 8 8 7 6 2 t
10% 6 5 5 3 :
15% 5 4 3 2 +

Table 3: [lim Varc(¢)]-minimizing values of m for various choices of {7, o, A}. { indicates
that lim Varc(t) increases monotonically with m with smallest value at m = 1. Blanks

indicate instability.
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o |1 m=1 3 5 10} 15| 20| 25| 30| 40|50

01 |1% | 971|969 |96.7 |96.0 |94.8 |01.6|73.1 [345 |32/ +
3% | 93.4]926{91.4(80.6{239| +| 1| t| 1| t
5% | 89.9|87.9(838[228| t| t| +| f| t| t
10% | 820(730(350| | t| t| t| ¢t
15% | 75.0(504| 40| | +| t|

0.15| 1% | 95.9|955 (9471926837 (379|101 | +| +| ¢t
3% | 923(91.0(888|554| 57| +| t| | t

5% | 889|86.0{79.3(1L1| | | t| 1
10% | 811|702|280| | +| t| t
15% | 743(468| 11| t| t|
02 |1% | 943|934 |920|8L5|27.1] f| f| | t
3% | 90.8|886|842]250| t| | t| t
5% | 875 |ss2|707| | t| t| +
10% | 800|660 |202| | | +
15% | 734420 t] 1] t
025 1% | 924 (903|868 |39.2| +| |
3% | 89.0|851|754| 36| +t| f
5% | 85.8|79.2|556| f| t| f
10% | 786 (599(120| | 1

15% | 7221362 t|

Table 4: [lim Varc(t)]-minimizing values of A (%) for various choices of {i, o, m}. } indicates
that lim Varc() increases monotonically with A with smallest value at A = 0. Blanks

indicate instability.
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Figure 1: limVarf(¢) (scaled) against K and \. i = 10%, o = 5%.
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Figure 2: limVare(t) (scaled) against K for various A. K and A can be interposed. i = 10%,
o =10%, \* = K* = 0.82.
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Figure 4: Contour plots of lim Varf(t) (above) and lim Vare(t) (below) against K and A.

@ = 10%, 0 = 5%. Lighter shading represents higher values.
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