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Abstract:   An experimentally validated finite element model of filling pressures in rectangular silos 

with flexible walls is used to predict the stress regime in the stored solid in squat and intermediate 

aspect ratio silos.  The model predicts the state of stress in the stored solid and the pressures imposed 

on the flexible walls of the silo.  The non-uniform horizontal pressure distributions at each depth at 

the end of filling are explored.  It is known that an empirical relation for the horizontal pressure 

variation on each straight wall derived from experimental observations in an earlier study closely 

matches the computational predictions.  The coefficients of this relation are found to vary with depth 

below the stored solid surface, and depend on the relative stiffness of stored solid and the silo wall.  

Following many calculations involving different solids, an empirical relationship is derived that is 

suitable for practical design for a range of different stored solids for which relevant properties are 

known. The resulting expression is well suited to the practical determination of filling pressures in 

rectangular silos, and provides a silo design pressure proposal that is based on theoretical, rather 

than empirical findings.  
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1.0 Introduction 

Silos are sometimes required in locations where space is very limited.  Under these conditions, a 

rectangular cross-section or planform provides a good economic solution, and multiple silos can be 

tessellated.  However, the structure of a rectangular planform silo must be designed to sustain both 

bending and stretching (membrane) actions [1-3], whilst those of a circular silo are predominantly 

designed for membrane forces [1, 3-7].  Where a rectangular silo is constructed in steel, the walls may 

be made relatively thin if the pattern of pressures on the wall is well understood, and a thin wall itself 

reduces the pressures at the mid-side of the wall [8].  The required wall thickness for a rectangular silo 

is very sensitive to the bending moments that develop in the walls, and these in turn depend very 

much on the distribution and magnitude of the pressures on the wall.  This paper explores the pressure 

patterns in silos containing different solids and produces design recommendations for both the pattern 

and magnitudes of pressures on moderately flexible walls in rectangular planform silos.  These non-

uniform pressure patterns might be used directly to produce extremely efficient structural designs.  

Wall pressure predictions in standards are almost universally based on the equilibrium of a horizontal 

slice of stored granular solid [9,10] often using the assumption of a constant value for the lateral 

pressure ratio Km (the ratio of mean horizontal wall pressure to mean vertical stress in the granular 

solid at any level). Janssen’s original paper suggested that the mid-side of each wall in a rectangular 

silo might experience an increase in normal pressure, and this idea was reinforced by a few sample 

finite element predictions [11] in which the walls were treated as rigid.  By contrast, experimental 

observations [8,12,13] in steel silos have shown that there is a substantial pressure reduction at the 

mid-side of each wall.  Many authors [e.g.14-19] used the finite element method to assess the 

pressures in circular silos during both filling and discharge.  A significant review of the earlier work 

was made by Rotter et al [20].  However, none of these studies led to design rules that relate the 
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calculated pressures to the properties of the stored solid.  Moreover, relatively few calculations have 

been made for rectangular silos, and none appear to have included the wall as a flexible element when 

considering structural design.  

This paper exploits a large body of predictions of filling pressures produced by a finite element model 

that was validated against detailed careful experiments on thin-walled square steel silos, in which 

significant wall flexural deformations developed by the end of the filling process.  The predicted 

pressure patterns on the silo walls were found to closely match the simple empirical relationship 

previously developed by the authors from experimental measurements [21].  Following an extensive 

parametric study, practical design rules are developed for filling pressures in rectangular planform 

silos, relating the pattern and magnitudes of the wall pressures to the properties of the stored solid.  

2.0 Materials and Methods 

2.1 Finite element modelling and the constitutive law  

The finite element method has been exploited to predict pressures in silos by treating the granular 

solid as a continuum by many authors [14-18, 22-27]. In this study, the commercial code ABAQUS 

[28] was used to develop a reliable model for the filling pressures in square and rectangular silos with 

flexible walls, and was validated against detailed experiments [29-31].  A close match with the 

measured filling pressures in the granular bulk solid was achieved using the porous elastic model with 

Drucker-Prager plasticity (PE-DP) constitutive law to describe the stored solid.  This law was also 

previously successfully applied to silo problems [26,32,34].  The porous elastic model is based on the 

isotropic compression response of critical state soil mechanics [e.g. 35] in which the stiffness of the 

solid is dependent on the stress level and stress history.  The parameters that must be used in this 

model are discussed below. A key advantage in using the validated finite element model is the 

capability to represent different stored materials through change in a limited set of material 

parameters. 

The details of the validated model has been presented extensively elsewhere [30-31].  One quarter of 

the structure was modelled, and the corner where the box and hopper walls meet was restrained 

against vertical movement.  Symmetry conditions were applied to the cut vertical boundaries.  The 

structural model used 4-noded quadrilateral shell elements of isotropic elastic mild steel with  = 



 4 

210GPa and  = 0.3. The stored granular solid was modelled using 8-noded brick continuum 

elements. Two natural granular solids (Leighton Buzzard sand and Pea Gravel) were used in the 

validation, but this paper covers a wider range of solids, with a range of properties.  This treatment 

was used to ensure easy generalisation of the results to all free-flowing solids.   

The value of Km was taken from the Eurocode [36] on silo loads: 

 Km =  1.1 (1 – sin i)                                     (1) 

where i is the loading angle of internal friction.  Poisson’s ratio ν was obtained from this expression 

assuming that it derives from compression of an isotropic elastic solid in a smooth-walled rigid 

container [37] as: 

  = 
Km

1 + Km
   or Km = 



1 – 
   (2) 

leading to: 

  = 
)sin   - (1.91

)sin   - (1

i

i




  (3) 

This value of Poisson’s ratio was used only during the initial elastic phase of the filling of the silo and 

consequently has a weak impact on the pressure patterns that were calculated. A range of values for 

Poisson’s ratio is given in the Appendix using values of i from EN1991-4. 

The most important parameter in describing a porous elastic granular solid is the compressibility 

coefficient λ, as described by Muir Wood, which is the slope of the plot of specific volume against the 

natural log of the isotropic stress pI.  This coefficient and the initial voids ratio e0 at a defined pressure 

po are used by the numerical model to define the elastic volumetric behaviour.  The compressibility 

coefficient  is a measure of the flexibility of the solid; a lower value of the compressibility 

coefficient  represents a stiffer solid.  

Values for the compressibility coefficient  in the pressure range appropriate for silos (< 100kPa) 

have rarely been published.  It should also be noted that the initial conditions for filling in a silo (and 

hence for an initial mean pressure po and corresponding voids ratio eo) are not easy to define because 

of the sensitivity to filling method. Tests for material properties that use “hand” filling tend to produce 
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higher initial voids than those adopting a rain fill technique [e.g. 38] where high but repeatable 

densities are achieved.  The best work on this was probably that of Ooi [39].  Evaluation of an 

appropriate value for  for a given solid may be subject to some variation.  Been et al [40] determined 

the value 0.02 for quartzitic sand, but the Leighton Buzzard sand used in the tests used to validate this 

analysis [8] has a much higher density and stiffness, so a much lower value than 0.02 should be used 

for the compressibility coefficient.  Goodey et al [29] described a simple uniaxial compression test 

from which the approximate values of 0.002 for Leighton Buzzard sand and 0.0025 for pea gravel 

were deduced. Values for wheat are taken from Ooi [39]. 

In the plasticity model, non-dilational flow was assumed with a very small nominal value of cohesion 

to ensure numerical stability.  For the interface between the solid and the wall, a Coulomb friction 

model was adopted with a constant friction coefficient Table 1 gives the properties used. 

 

Parameter Leighton 

Buzzard Sand 

Pea Gravel Wheat 

Compressibility coefficient,  0.002 0.0025 0.015 

Poisson’s ratio,  0.316 0.306 0.369 

Initial voids ratio, e 0.64 0.56 0.80 

Cohesion, c 0.1 kPa 0.1 kPa 0.1 kPa 

Internal angle of friction,  45.1° 46.1° 39.1° 

Initial Bulk density 1587 kg/m3 1704 kg/m3 761 kg/m3 

Coefficient of wall friction,  0.445 0.392 0.440 

 

Table 1 – Properties used in finite element model 



The filling process was modelled by increasing gravity incrementally until the full value of the 

granular solid self-weight was reached.  This calculation procedure leads to little difference from a 

progressive layered filling calculation in square silos [41]. 
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3.0 Results 

3.1 Verification of FE model predictions by comparison with test observations 

Goodey et al [29] presented extensive results to show that an FE model using the parameters 

described above gives excellent predictions of the experimental observations determined from a series 

of tests on the filling of pilot-scale square silos. A comparison between the mean wall pressures 

predicted by finite element (FE) analysis (found by integrating horizontally across the wall at the 

given height) and the Janssen value for one of the experimental silos shows excellent agreement for 

both of the stored materials used [8,42].  

Furthermore, the variation of pressure at any level [21,31] is also well predicted by the FE model, and 

the general distribution of stress within the stored solid shows good agreement.  It is therefore 

reasonable to conclude that this FE model produces an adequate representation of the phenomena 

observed in experiments using different structures and different bulk solids, and that this model is 

adequate as a tool for the more general prediction of rectangular silo filling pressures.  

3.1.1 Horizontal pattern of pressure on a flexible wall  

The mean value of wall pressure at any level in the experiments is quite accurately predicted by the 

FE model [29].  Rotter et al [21] proposed a model for the horizontal pressure distribution on each 

wall of a rectangular silo, defined by the two-parameter hyperbolic function  

 p = pm 








sinh 
  cosh 





2x

L
   (4) 

in which pm is the mean wall pressure at any level, x is the horizontal distance along the wall from the 

centreline, L is the side-length of the silo and  is a coefficient.  The mean wall pressure pm may be 

determined as the Janssen value.  The coefficient  is important and has been termed the “horizontal 

non-uniformity coefficient”.  Further detail of this work has been presented elsewhere [31]. The two-

parameter fit (pm and ) is best characterised in terms of a mid-side and a corner value, with the ratio 

of corner to mid-side pressure given by cosh  and the ratio of corner to mean value given by  

coth.  Uniform pressure across the wall is given by  = 0, while increasing positive values of 
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indicate increasing ratios of corner to mid-side pressure (a value of  of 2 gives a ratio of corner to 

mid-side pressures of 3.75). 

 

 

 

 

 

 

 

 

 

a) b) 

 

Figure 1 - Wall pressure predicted from FE model and two-parameter hyperbolic fit down the wall. a) 

sand b) gravel 

A comparison of the least squares best fit for  to the FE predictions using Eq. 4 is shown in Figure 1 

for the 2.5m vertical wall section, where it can be seen that this simple model represents the FE results 

quite well. The variation down the wall of the least squares best fit value of  for sand from the FE 

predictions rises from zero at the surface to a stable value of about = 2.5 for the majority of the wall 

(Figure 1a).  Some distance above the transition, the value rises again, achieving a peak of about = 

3.3 before falling back again to zero at the transition. The value previously deduced by Rotter et al 

[21] for the central part of the wall in the experiment was = 2.5 for sand, and this is clearly very 

close to the value found in the FE calculations.  

The best-fit value of the horizontal non-uniformity coefficient  for gravel varies down the wall is 

shown in Figure 1b.  The value is again zero at the surface, rising to a stable value of about  for 

most of the wall. It then rises to a peak of before dropping to zero again at the transition.  The 

value derived from the experimental data for the central part of the wall by linear regression was 

about 3.0 for gravel. 
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The least squares best fit tends to give higher values of  than were found in the tests for two reasons.  

First, the experimental data does not extend across the full width of the wall (pressure cells cannot be 

located exactly in the corners) and because the deduced value of  is quite sensitive to small changes 

in the pressure at the centreline. Secondly the best-fit line always tends to under-estimate the pressure 

at mid-span.  The horizontal non-uniformity coefficient  may alternatively be deduced from the 

“simple” ratio of the two outermost measured data points, giving a relatively accurate representation 

of the high pressure region.  These values are also shown in Figure 1 as the simple ratio. 

The comparisons described above show a reasonably close agreement between the experimentally and 

computationally derived values of , giving confidence that the same computational analysis may be 

applied to a wider range of similar problems, and the results exploited in design. 

3.1.2 Relative stiffness of the stored granular solid and the silo wall  

Both the experimental and computational evidence indicate that the pressure distribution in a square 

planform silo with flexible walls contains two key features: the mean pressure at any level that is well 

represented by the Janssen theory, and the distribution of the pressure at each level that is well 

represented by Eq. 4.  The value of the horizontal non-uniformity coefficient  depends on the 

relative flexibility of the silo walls.  The next parts of this study explored the effect of the flexibility 

of the wall relative to the stiffness of the stored solid.  

3.1.3 Stored solid stiffness 

For the two stored bulk solids (sand and gravel) used in the tests, many properties are very similar.  

However the measured lateral pressure distributions were significantly different.  The importance of 

the solid’s elastic stiffness to the determination of pressures is now well understood [e.g. 35] and the 

elastic stiffness of the sand and gravel were significantly different. 
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Figure 2 - Wall normal pressure in gravel with variation of compressibility coefficient 

 

In the FE model, the elastic stiffness of the stored solid was characterised by the compressibility 

coefficient (therefore dependent on the stress level) and an initial density (or voids ratio).  The mean 

pressure at each level (mean of the FE calculated pressures on the wall) is affected very little by the 

value of the compressibility coefficient.  Figure 2 shows the lateral pressures computed from the FE 

model for gravel.  The study subsequently uses values of of0.0020 and 0.0025 for sand and gravel 

respectively.  It should be noted that the mean pressures calculated using the Janssen formula (also 

shown in Figure 2) require the density to be specified, but density varies with stress level. To enable 

valid comparison, a final density corresponding to the Janssen asymptotic stress level should be 
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Figure 3  - Patterns of wall pressure from experiment and predicted from FE and empirical 

models 

 

The distribution of wall pressure at a given level will be different for stored solids whose stiffness 

characteristics are different from each other.  To explore the effects of solid stiffness more 

completely, wheat was chosen next as a material with very different stiffness characteristics (ν = 

0.369, =816 kg/m3, i=28˚, μ=0.44, λ=0.021).  These values were derived from the tests of Ooi [39] 

and used in the PEDP model.  The results show (Figure 3) that the redistribution of wall pressure is 

less marked in a softer solid, confirming the view that the distribution is related to the relative 

stiffnesses of the solid and structure. The determination of the compressibility coefficient at an 

appropriate pressure level is therefore critically important to the accurate prediction of the distribution 

of wall pressures in rectangular silos.   

3.1.4 Silo wall stiffness 

The effect of the relative stiffness of the solid and structure was explored by varying the wall 

thickness of the silo.  Such a change would seem to involve only a single parameter and not demand 
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careful interpretation, as is needed with changed solids properties.  The wall thickness was 

systematically varied for the modelled silo, with the stored solid taken first as sand and then as gravel.  

The resulting horizontal pressure distributions at 1.5m below the solid surface are shown in Figure 4.  

The integrated mean pressure is again always quite close to Janssen value using Eq.1, but the 

horizontal variation is very sensitive to the wall thickness.  When the wall is very stiff (i.e. wall 

thickness t is large) the wall pressures are close to uniform (= 0).  With a very thin wall, a 

considerable redistribution of pressure from the centre to the corners occurs, but this moves 

asymptotically towards a second extreme case, which may be characterised as an “ideally flexible” 

wall. 

 

  a)        b) 

Figure 4 - Effect of wall thickness on horizontal pressure distribution. a) sand b) gravel 

 

The effect of varying the modulus of elasticity of the wall alone has been determined for three wall 

moduli, and the value of α is directly proportional to the variation in Ew (r2=0.999).  Sufficiently large 

values of modulus are chosen to ensure unreasonable large deflections do not occur with the wall 

thickness of 6mm used in the study. 

3.1.5 Depth within the silo 

It has been suggested [11,43] that there should be a reduction in vertical pressure near the corners 

because elements adjacent to the corner will gain additional frictional support from the two adjacent 
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walls.  There is no evidence of this from the FE results, even for silos with very stiff walls.  The 

dominant mechanism controlling the pressures in rectangular silos is not only wall friction, internal 

angle and bulk density (the three key parameters used in the Janssen expression), but also the relative 

stiffness of solid and structure. 

 

Figure 5 - Variation of with depth in silo 

 

The extent of pressure redistribution towards the corners varies with the level in the silo.  To explore 

this thoroughly, the pressures in a deep silo (h/L = 6.67) were examined for sand, gravel and wheat 

(L/t=250).  The variation at each level was interpreted in terms of the horizontal non-uniformity 

coefficient .  The resulting variation of  with depth is shown in Figure 5, where it is evident that the 

majority of the silo displays a relatively constant value of  for each solid.  At the surface, the value 

approaches zero (uniform pressures), rising to the typical value within a depth of approximately one 

silo width L.  Above the transition, the value rises for sand and gravel before falling to zero, but for 

the softer wheat, it simply falls.  This behaviour is seen over a height of approximately the side length 

L, though it is less for wheat and greater for sand.  The reference value of , which is fairly stable and 
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pertains over most of the height, is a useful value by which to characterise the pressure patterns, and 

this is used in the following design method formulation.  

 3.1.6 Aspect ratio of silo 

The phenomena seen in the deep silo described above also occur in silos of squatter geometries, as 

shown in Figure 6, where the deduced variation of  for three different silo aspect ratios for the three 

solids is shown. The transition is at different depths below the surface for the three stored materials. 

At an intermediate aspect ratio (h/L = 3.33), the two end effects may be seen to occupy the same 

approximate ranges near the surface and above the transition, with a reduced zone of uniform values 

in between them.  At a squat aspect ratio (h/L = 1.50), the two end effects occupy the whole depth, 

with the surface and transition effects merging one into the other. 

 

 

 

 

 

 

Figure 6  - Variation of alpha for three different materials for different aspect ratios. 

The complexity of behaviour seen in the squat silo is not easily transformed into a design rule.  

However, the value of  is relatively stable over a large part of the height of taller silos, and this value 

is explored here as a basis for design rule development.  

The complete pattern of pressures is thus quite complicated, but the non-uniform pressures in the 

body of the silo can be safely exploited because the places where  is not at its stable value are parts 

of the structure that are relatively insensitive to the pressure distribution.  Near the surface, the 

pressures are close to constant (= 0), but these pressures are so low that the distribution is not 

critical.  Near the transition, both higher and lower values of  occur.  A conservative treatment of the 

structure would adopt a lower value of , so the high values are not critical.  The low value of  at the 
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transition occurs on a stiff strong structural element (the corner of a box), so this aberration from the 

general pattern is also not of great concern in a design rule.  

4.0 Discussion 

4.1 Relative stiffness of solid and silo structure 

The calculations described above have shown that the wall pressures are very non-uniform if the 

stored material is relatively stiff or the wall is relatively flexible.  Conversely if the stored material has 

little stiffness or the wall is very stiff, then the wall pressures are close to uniform, with a low value of 

.  The stiffness of the wall is dominated by bending deformations, and that of the solid by its elastic 

stiffness.  The relative stiffness is therefore best represented by the dimensionless parameter 

   =  






Es

Ew
  



L

t

3
    (5) 

in which Ew, L, and t are the modulus, side length, and thickness of the silo wall and Es is the 

equivalent elastic modulus of the solid. To implement such a relative stiffness, it is necessary to 

determine the local value of the equivalent linear modulus of the solid Es that is relevant to the solid-

structure interaction.  For this purpose, the tangent elastic modulus of the nonlinear porous elastic 

solid was extracted from the FE analysis using the mean vertical stress at the same level as that at 

which the value of  has been found. 

 

Figure 7  - Variation of  with  
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The accumulation of results that have been found for a variety of different wall lengths and different 

wall stiffness is that the variation of the horizontal non-uniformity coefficient  with the relative 

stiffness  can be determined (Figure 7).  A relative stiffness of zero corresponds to a very soft solid, 

for which the pressures remain relatively constant on the entire wall. As the relative stiffness 

increases, the value of  initially increases rapidly, but it becomes asymptotic to a value of about 2.3 

for sand, 2.7 for gravel and 1.8 for wheat.  This occurs at relative stiffness values  of about 100.  

These values are close to those found in the experiments by Brown et al [8]. 

When the wall is very thin, large displacements (δ>t) develop in the wall, resulting in a change in 

geometry, and the simple picture of Figure 7 is lost as  rises further. Calculations involving large 

displacements of the wall have therefore been omitted.  This situation arose with wheat when the 

value of  was about 150.  

These results are not usable in design until they can be represented in a dimensionless manner.  

Therefore, the prediction of this behaviour deserves further study, as significant savings might be 

made if lower mid-side pressures can be used in design.  This prediction can be made from the dataset 

described above, assuming an exponential form and using a goal-seek algorithm in Microsoft Excel to 

obtain the best fit for the unknown coefficients.  A remarkably good fit to the relationships for the 

materials shown is found as: 

   =  o { 1    e[(/(4o
2)] 0.6

 } (6) 

which is shown by the dotted lines in Figure 7.  However it may be that other material parameters 

weakly affect this relationship.  The value of o depends on the properties of the granular solid, and 

future investigations are needed to produce relations for  that have application to a wider range of 

granular solids, but based on the above data it can be closely represented (r2=1.0) by 

 o =  
0.47

Ko 
   (7) 

in which  Ko =  / (1 + )  (see also Eq. 1). (Figure 8) 
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Figure 8  - Correlation of α0 

It should be noted that, although the above correlation is very close and uses plausible parameters, it is 

empirically based on relatively limited data.  However, it may serve as a useful guide in future 

investigations that attempt to produce relations for  that have application to a wider range of granular 

solids.  

5.0 Conclusions 

A non-linear elastic-plastic constitutive 3D finite element model has been used to predict the 

pressures in square planform thin-walled silos filled with three different solids.  The calculations have 

been strongly supported by a remarkably close correlation with the experimental results on test silos.  

The chosen constitutive model involved a limited number of parameters to maximise the potential for 

the results to be applied in design, where limited information is available concerning material 

properties.   

The mean wall pressure at any level is close to the Janssen prediction, but the horizontal distribution 

is far from uniform and is sensitive to the flexibility of the wall.  In thin-walled silos, high pressures 

develop in the corners, with corresponding low pressures at the mid-side.  If this effect can be 

exploited in design, the wall can be made much thinner, leading to greater wall flexibility, which in 

turn leads to a greater redistribution of pressures into the corners.   
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The simple two-parameter empirical model proposed by Rotter et al [21] gives a very good 

description of the horizontal pressure distribution at all levels for both the experimental data and 

calculations, characterised by the horizontal non-uniformity coefficient .  These subsequent 

calculations presented above have shown that the extent of redistribution depends on the relative 

stiffness of the solid and wall, characterised by the parameter .  At low , the pressures on the wall 

are uniform, but where exceeds about 100, the amount of redistribution remains unchanging at a 

value that depends on the stored solid. 

A simple preliminary empirical relationship has been developed to predict the value of the horizontal 

non-uniformity coefficient  as a function of the stiffness ratio but a further study is required to 

extend this relationship to design rules. However, provided the relevant solid stiffness Es can be 

evaluated satisfactorily, a relationship of this type could be adopted into design procedures to achieve 

efficient structural designs for square planform silos.  
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APPENDIX 

 Mean 

Angle of 

internal 

friction 

from Table 

E1 [3] 

Mean 

Lateral 

pressure 

ratio K 

from Table 

E1 [3] 

Poisson’s 

ratio 

calculated 

from Eq. 2 

Poisson’s 

ratio 

calculated 

from Eq. 3 

percentage 

error 

Default material  35 0.5 0.3333 0.3191 -4.3 

Aggregate   31 0.52 0.3421 0.3477 1.6 

Alumina   30 0.54 0.3506 0.3546 1.1 

Animal feed mix 36 0.45 0.3103 0.3118 0.5 

Animal feed pellets 35 0.47 0.3197 0.3191 -0.2 

Barley   28 0.59 0.3711 0.3683 -0.7 

Cement   30 0.54 0.3506 0.3546 1.1 

Cement clinker  40 0.38 0.2754 0.2819 2.4 

Coal   31 0.52 0.3421 0.3477 1.6 

Coal powdered  27 0.58 0.3671 0.3750 2.2 

Coke   31 0.52 0.3421 0.3477 1.6 

Fly ash   35 0.46 0.3151 0.3191 1.3 

Flour   42 0.36 0.2647 0.2666 0.7 

Iron ore pellets 31 0.52 0.3421 0.3477 1.6 

Lime hydrated  27 0.58 0.3671 0.3750 2.2 

Limestone powder  30 0.54 0.3506 0.3546 1.1 

Maize   31 0.53 0.3464 0.3477 0.4 

Phosphate   29 0.56 0.3590 0.3615 0.7 

Potatoes   30 0.54 0.3506 0.3546 1.1 

Sand   36 0.45 0.3103 0.3118 0.5 

Slag clinkers  36 0.45 0.3103 0.3118 0.5 

Soya beans  25 0.63 0.3865 0.3882 0.4 

Sugar   32 0.5 0.3333 0.3406 2.2 

Sugar beet pellets  31 0.52 0.3421 0.3477 1.6 

Wheat   30 0.54 0.3506 0.3546 1.1 

 

Appendix - Typical values for Poisson’s ratio 

 


