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Abstract

Efficient methods of amortizing actuarial gains and losses in final-salary defined benefit
pension plans are considered. In the context of a simple model where asset gains and
losses emerge as a consequence of random (independent and identically distribute'd) rates
of investment return, it has been shown that direct amortization of such gains and losses
over a fixed term leads to more variable funding levels and contribution rates compared
with an indirect and proportional form of amortization which ‘spreads’ the gains and losses.
Proportional spreading may be rationalized as the contribution control that optimizes mean
square deviations in the contributions and market values of plan assets when the funding
process is Markovian and the fund is invested in two assets (a random risky and a riskfree
asset). Simulations indicate that, when rates of return follow simple autoregressive AR(1)
and moving average MA(1) processes, spreading rather than amortizing gains and losses
remains more efficient at achieving secure funding levels and stable contribution rates.
Similar results are obtained when a more comprehensive actuarial stochastic investment
model (which includes economic wage inﬂation) is simulated. Efficient ranges of spreading
and amortization periods are also determined.

*Correspondence: Department of Actuarial Science and Statistics, City University, Northampton
Square, London EC1V OHB, England. Phone: +44 (0)20 7477 8478. Fax: +44 (0)20 7477 8838. E-mail:
igbal@city.ac.uk. The authors would like to thank Dr. Keith Sharp, University of Waterloo, Ontario,
Canada, as well as the sponsors of the Actuarial Research Club at the City University, London, England.

A research grant from the Actuarial Education and Research Fund of the Society of Actuaries is gratefully
acknowledged.



1 Introduction

1.1 A Simplified Model

Consider a strictly defined benefit pension plan in which no discretionary or ad hoc benefit
improvement is allowed except for benefit indexation. Assume that provision is made only
for a retirement benefit at normal retirement age based on final salary and that actuarial

valuations are carried out with the following features:
1. Actuarial valuations take place at regular intervals of one time period.
2. The actuarial valuation basis is invariant in time.
3. Pension fund assets are valued at market without smoothing (market value f(t)).

4. An ‘individual’ actuarial cost method (or pension funding method) is-used, generating

an actuarial liability AL(t) and a normal cost NC(t).
A simple model for such a pension plan may be projected forward based on the following:
1. The pension plan population is stationary (deterministic) from the start.
2. Mortality‘and other decrements are assumed to be contingent as per a life table {l.}.

3. A salary scale exactly reflects promotional, merit-based or longevity-based increases

in salaries (and may be incorporated in the life-table, I, = SzlL).

Economic wage inflation (the general increase in wages as measured by a national wages
index) may be distinguished from the salary scale. The actuarial valuation basis includes
{1} as well as a valuation discount rate and an assumption as to wage inflation (in order to
value final-salary benefits). Actual experience is in accordance with the actuarial valuation

assumptions except for inflation and returns on plan assets. The model described above



bears similarities to the models described by Trowbridge (1952), Bowers et al. (1979),
Dufresne (1988, 1989) and Owadally & Haberman (1999).

1.2 Funding Methods and Objectives

Suppose that cash flows occur at the start of the year. The unfunded liability at the
start of year (¢, t 4 1) is the excess of the actuarial liability over the value of plan assets:
ul(t) = AL(t) — f(t). The funding level or funded ratio in the plan is defined as the value of
plan assets as a percentage of the actuarial liability. The outcome of an actuarial valuation

at the start of year (¢, ¢t + 1) is to recommend a contribution
c(t) = NC(t) + adj(t), 1)

where adjj(t) is a supplementary contribution (or contribution adjustment) paid to amortize
past and present experience deviations from actuarial assumptions. These deviations result
in actuarial gains or losses. A loss {(t) is the unanticipated change in the unfunded liability
over year (t — 1, t) or the excess of the unfunded liability at time ¢ over the unfunded
liability anticipated at time ¢ based on information and the valuation basis at time £ — 1.
(A gain is a negative loss.)

The calculation of the contribution is crucial to the dynamics of the pension fund when
economic experience is volatile. For example, Winklevoss (1982) finds that “the correct
treatment of actuarial gains and losses is critical in stochastic simulations because the effect
of random fluctuations in salaries and plan assets impact on costs through the funding of

”»

such deviations.” The actuarial gain or loss in each year may be individually amortized

over a fixed term m:
m—1

adj(t) = Ut — j) /iy, 2

J=0

Alternatively, gains and losses may be spread by paying a proportion k = 1/ ii;l of the



unfunded liability:
adj(t) = kul(t) = KAL(t) - (1), 3)

Dufresne (1988) states that the method in equation (3) “may be interpreted as ‘spread-
ing’ the unfunded liability over a period of m years.” Trowbridge & Farr (1976, p. 84) refer
to “spreading of actuarial gain or loss”. The method is described as “Amortization over a
Moving Term” by Bowers et al. (1979) and as “spreading surpluses/deficits” by Owadally
& Haberman (1999). (A deficit is an unfunded liability and a surplus is a negative deficit.)
McGill et al. (1996, p. 525) describe it as a “spread method of dealing with gains and
losses” such that “actuarial gains and losses are automatically, and without separate iden-
tification, spread” over a future period. Trowbridge & Farr (1976, p. 85) and Bowers et
al. (1979) show that the spread adjustment is implicit in the Aggregate and Frozen Initial
Liability actuarial cost methods, which are also known as “spread-gain” methods.

The unfunded liability in the plan is the accumulation with interest of portions of
previously incurred losses (as well as of any initial unfunded liability) that have not been
fully paid off and have been deferred. When the supplementary contribution in equation (3)
is made to the plan, a spread payment equalling a fraction k& of the deferred portion of
each incurred loss is settled in respect of each loss (as if the loss were taxed at rate k).
Therefore, the excess of the unfunded liability over the supplementary contribution in a
given year must equal the present value of the unfunded liability, less the newly emergent
loss, in the following year: w(ul(t) — kul(t)) = wl(t +1) — (¢ + 1), where u = 1+ and %
is the rate at which cash flows in the plan are discounted. Ignoring any initial unfunded
liability, it follows that ul(t) = 3272 (1 — k)Yu/i(t — j) and

0
adj(t) =Y k(1 — k)7Lt ~ 7). (4)
=0
See Dufresne (1994) for a more precise development of the above. When k =m =1, gains

and losses are not deferred and the unfunded liability consists only of the loss that emerged
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during the past year, that loss being paid off immediately: ul(t) = adj(t) = I(t).

Initial unfunded liabilities, due to past service at plan inception or arising from amend-
ments to actuarial valuation bases or benefit rules, were disregarded in the above. An initial
unfunded liability uly at time 0 may be separately amortized or spread. If it is amortized
over n years, then a payment of uly/ dn—‘ is required in addition to the supplementary con-
tribution in equation (2) over a finite schedule (0 < t < n — 1). When gains and losses
are spread and the initial unfunded liability is separately amortized, the supplementary
contribution is (Owadally & Haberman, 1994)

i) = ulo /gy + klul(t) — ulodp=/bl, 0<t<n-—1, )
kul(t), t>mn,
which may be written in terms of the losses emerging from time 1 onwards (I(t) = 0 for
t<0)as

ulo /g + Yo k(L — kYWt — §), 0<t<n-—1,
adj(t) = (6)
im0 k(1 — k)Yil(t - ), t>n.

Initial unfunded liabilities may be disregarded in the pension plan model henceforth since
they can be separately amortized and have no permanent effect.

Under amortization (equation (2)), gains and losses are paid off in level amounts over
a finite term m. Under spreading (equations (3) and (4)), gains and losses are liquidated
in perpetuity by means of exponentially declining payments. A large k (or short spreading
period m, with k =1/ iiﬁl) hastens funding as smaller portions of the losses are deferred.
Expressing k in equation (3) as 1/dy is a convenient device that enables gains and losses
to be removed faster if future cash flows are discounted at a higher rate. A loss is asymp-
totically liquidated when it is spread since the present value of payments made in respect
of a unit loss is 352 k(1 — k)7 = 1 when m > 1 (since 0 < d < k = 1/dz; < 1 where

d=1(1+14)7).



If actuarial assumptions are unbiased and are realized on average, the loss, or unan-
ticipated change in the unfunded liability, in any year is expected to be zero. Once the
initial unfunded liability is completely amortized, the unfunded liability (an accumulation
of unpaid losses) is therefore expected to be zero, whether gains and losses are amortized
or spread. The uncertain nature of deviations from assumed experience (particularly eco-
nomic experience) means that gains and losses are volatile, however, and the consequent
variability of the funding level and of the required contributions must be examined. A mo-
tivation for the long-term funding of pension benefits is to maximize the security of these
benefits. A reasonable objective is to minimize a second-moment measure of the variability
of the funding level or of the unfunded liability in the pension plan. (An ideal measure
of security would be based on second and higher moments, would allow for solvency re-
quirements and would not be two-sided, but the variance is a reasonable and tractable
approximation.) Another motivation for funding benefits in advance is to stabilize the
future contributions required from the plan sponsor and hence reduce the strain on the
sponsor’s cash flows. Trowbridge & Farr (1976, p. 62) refer to the “smoothness of contri-
butions” as a desirable objective. This is often expressed relative to the total payroll for
plan members. Minimizing a second-moment measure of the variability of the contribution
or contribution rate (that is, total contribution per payroll dollar) is also a reasonable
objective.

The choice between amortizing and spreading gains and losses is discussed, in terms
of these objectives and under the modeling assumptions of section 1.1, in the rest of the
paper. One notes at the outset that the asymptotic nature of funding under spreading
is not a drawback, as remarked by Trowbridge & Farr (1976, p. 85), because gains and
losses occur randomly and continually and are never completely defrayed. Gains and losses
in the pension plan model arise only as a consequence of unforeseen economic variation

from actuarial assumptions, that is, in the returns on plan assets and in inflation on plan



liabilities. Contributions may be determined as a level percentage of payroll. The annuities
in equation (2) and in k = 1/dz; in equation (3) are then calculated at the valuation
discount rate net of assumed inflation on wages.

A review of previous work concerning the choice of efficient amortization and spreading
periods is undertaken in section 2 and a justification for the result that spreading should
be preferred over amortization is provided. This is based on rates of return on plan assets,
net of inflation on pension liabilities, béing independent from year to year, and in section 3
this assumption is relaxed. Stochastic projections are used in section 4 to investigate if
the result holds when both inflation on pension liabilities and returns on plan assets are

explicitly modeled. Section 5 summarizes the results and highlights areas where further

work is necessary.

2 Random Walks on Pension Fund Assets
2.1 Spreading Gains and Losses

The liabilities of a final-salary pension plan are subjected to economic inflation, both on
prices and on wages, since benefits are linked to salary and pensions in payment may
also be indexed (or possibly informally enhanced) in line with price inflation. Modeling
inflation as well as the returns on various asset classes is not straightforward. For the sake
of mathematical tractability, Dufresne (1988, 1989) and Haberman (1994) assume that
pensions in payment are indexed with wage inflation. All monetary quantities may then
be considered net of wage inflation. Under the modeling assumptions made earlier, the
payroll, actuarial liability, normal cost and yearly pension benefit outgo (all deflated by
wage inflation) are constant. (Alternatively, inflation on salaries could be disregarded for
the sake of simplicity, and nominal quantities considered.)

The rate of investment return on pension plan assets net of wage inflation (henceforth



termed a real rate of return) may be usefully modeled as being independent and identically
distributed from year to year (Dufresne, 1988, 1989; Haberman & Sung, 1994). In a
simplified pension plan model, such an assumption allows for mathematical tractability,
parsimony and a search for optimal or robust performance. Although it may not lead
to accurate forecasts of the finances of the pension plan, this assumption allows us to
investigate the behavior of the pension fund system when invested in capital markets
that are volatile. Frees (1990) views such an assumption as “a useful modification of the
traditional deterministic [rate of interest]. This modification permits volatility of interest
rates in the model.” The random walk assumption accords with the Efficient Market
Hypothesis.

'The market value of plan assets f(t) and the contribution ¢(t) are random variables as
a consequence of the random real rate of return i(¢) on plan assets: f(t +1) = (1+i(t -+
1))(f(t)+¢c(t)—B), where B is the benefit outgo. The moments of f() and c(t) are derived
by Dufresne (1988) when i(t) is independent and identically distributed over time, when
liabilities are wage inflation-related, and when gains and losses are spread (equation (3)).
The plan is expected to be fully funded eventually: Eul(t) — 0 and Eadj (t) > 0ast — oo,
whatever the initial unfunded liability and provided actuarial assumptions are unbiased.

Dufresne (1988) postulates that there are two actuarial objectives in the long-term
funding of pension benefits: to maximize the security of these benefits by minimizing
the variance of the funding level, and to maximize contribution stability by minimizing
the variance of the contribution rate. Dufresne (1988) shows that the stochastic pension
funding process becomes stationary in the limit as ¢ — oo, provided that gains and losses
are not spread over very long periods (that is, provided that k¥ > 1 — 1/\/E(1 + i())?),
and he obtains Varc(t) and Varf(t) as t — co. Since the payroll and actuarial liability
are constant (net of wage inflation) under the assumptions set out earlier, lim Vare(t) and

lim Var f(¢) represent the long-term variances of the contribution rate and funding level



respectively. The following results (labels carry the prefix ‘S’ for ‘spreading’) are also

obtained by Dufresne (1988).

REsuLT S-1 The variance of the funding level of the stationary (stochastic) pension fund-

ing process increases as gains and losses are spread over a longer period.

RESULT S-2 As the period over which gains and losses are spread increases, the variance
of the contribution rate in the stationary pension funding process initially decreases, attains

o minimum (at m?, say), and then increases.

RESULT S-3 Based on the criterion of minimizing the variances of the contribution rate

and funding level, it is more efficient to spread gains and losses over a period m € [1,m?].

Gains and losses are volatile. Spreading them over shorter periods and recognizing
them faster ensures that full funded status is reached faster and is maintained. This
should improve the security of benefits, as confirmed by Result S-1. It may be thought
that spreading, and therefore deferring, the gains and losses over longer periods leads to a
smoother and more stable contribution rate pattern. Dufresne’s (1988) Result S-2 partly
contradicts this. For spreading periods longer than m?, contribution rate stability and fund
security cannot be traded off and there will always be a shorter spreading period for which
the variances of both funding levels and contribution rates are reduced. It is therefore
more efficient to spread gains and losses over m € [1,m?].

Dufresne (1988) concludes that, under modern economic conditions, m € [1,10] is an
efficient range over which to spread gains and losses. This result has had some influence
on actuarial practice in the United Kingdom. See Wilkie in Dufresne (1994, p. viii).
Thornton & Wilson (1992) recommend short spreading periods based partly on Dufresne’s
(1988) conclusion. Faster defrayal of gains and losses arising from amendments to benefits

. or to valuation bases, rather than from experience deviations, have also been promoted



(Kryvicky, 1981; Colbran, 1982).

2.2 Amortizing Gains and Losses

Dufresne (1989) also derives the moments of the funding process when gains and losses
are amortized (equation (2)), under the same assumptions as above. Again, full funding
is expected (when the initial unfunded liability is completely amortized and with unbiased
actuarial assumptions) and the funding process has a finite variance and is therefore sta-
ble as long as gains and losses are not amortized over very long periods. The following
results are obtained by Owadally & Haberman (1999) (labels are prefixed with ‘A’ for

‘amortizing’).

REsULT A-1 The variance of the funding level of the stationary (stochastic) pension fund-
ing process increases as gains and losses are amortized over a longer period. Funding levels

are less variable under amortization over a fized term than under spreading over the same

term.

Result A-1 indicates that amortizing gains and losses over shorter periods improves the
security of benefits. It is illustrated in the top half of Figure 1 (reproduced from Owadally
& Haberman, 1999). The maximum period over which gains and losses may be amortized
or spread is constrained. If m, = m, = 1, then experience deviations are neither spread nor

amortized over time and are paid off immediately: equations (2) and (3) lead to identical

results.

RESULT A-2 As the term over which gains and losses are amortized increases, the variance
of the contribution rate in the stationary pension funding process initially decreases, attains
a minimum (ot m} > m}), and then increases. Contribution rates are less stable under

amortization over a fized term m < m}, than under spreading over the same period.
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The minimum in the contribution rate variance is depicted in the bottom half of Figure 1.

RESULT A-3 Suppose that gains and losses are amortized. Based on the criterion of min-
imizing the variances of the contribution rate and funding level, the range of amortization

periods m € [1,m}] is efficient.

We infer from Results A-1 and A-2 in combination that the efficient range of amortization
periods exists because for amortization periods m > m] there will always be an amorti-
zation period in [1, m}] that yields the same variability in the contribution rate together

with less variable funding levels.

RESULT A-4 According to the objective of minimizing the variance of funding levels and
contribution rates in the stationary state, it is more efficient to spread gains and losses
than to amortize them: for any two spread and amortization periods such that the funding
level has the same variance, the variance of the contribution rate is lower under spreading

than under amortization.

Result A-4 suggests that it is better to recommend contribution rates by spreading gains
and losses (equation (3)) than by amortizing them over a fixed schedule (equation (2)).
This is depicted in Figure 2 (reproduced from Owadally & Haberman, 1999).

Compare Result A-1 (amortization leads to less variable funding levels than spreading
over the same period), Result A-2 (spreading leads to less variable contribution rates
than amortization over the same period m < m}), Result A-3 (there exists an efficient
amortization period range analogous to the efficient spreading period range of Result $-3),

and Result A-4 (overall, spreading is more efficient than amortization).
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2.3 Proportional Spreading and Optimal Contributions

The efliciency of spreading as compared to direct gain/loss amortization may be explained
by the fact that, in the former, the supplementary contribution is proportional to the
contemporaneous unfunded liability in the plan (equation (3)). Proportional adjustment
represents an optimal form of contribution control when a quadratic measure of the vari-
ability of contribution and market value of plan assets is to be minimized. This result
is obtained by O'Brien (1987) and Haberman & Sung (1994) assuming random rates of
investment return on the plan assets. Boulier et al. (1995) obtain a similar result when
asset allocation between two assets is also a decision variable and when the pension plan
is being valued continuously and indefinitely.

A linear contribution adjustment is also obtained when regular valuations and cash
flows occur at discrete intervals and a finite time horizon is assumed. Consider a similar
pension plan to the one described in section 1.1. Assume that the fund may be invested in
two assets: a risk-less asset earning risk-free rate r and a risky asset earning r + a(t + 1)
in year (¢, t + 1), where a(t 4 1) is a random risk premium. Let y(t) be the proportion
of the fund invested in the risky asset in year (t, ¢ + 1), and 1 — y(t) be the proportion
invested in the risk-less asset. The arithmetic rate of return on the fund in year @t t+1)
is 7+ y(t)a(t + 1). It is further assumed that {c(t)} is a sequence of independent and
identically distributed random variables over time, with mean & > 0 and variance o2. It is
also simpler to disregard inflation at this stage. Since the plan population is assumed to be
stationary, the payroll, actuarial liability and benefit payout are constant. The variability
of contributions corresponds to the contribution rate variability while the variability of
market values of plan assets corresponds to funding level variability.

The pension fund can be considered as a random system,
fE+1) =[1+r+yalt+1)]fE)+c) - B, (7

12



where the market value of plan assets f(t) is a state variable and c(t) and y(¢) are con-
tribution and asset allocation control variables respectively. B represents the retirement
benefits paid out yearly. By virtue of the independence over time of {c(t)}, f(t) exhibits
the Markov property: E[f(t + 1)|W;] = E[f (¢t + 1)[f(¢), y(2), c(t)], where W, represents all
information available up to time t.

The objectives of the funding process are to stabilize contributions, defray any unfunded
liabilities and pay off actuarial losses and gains as they emerge. The performance of
the pension fund may be judged in terms of the deviations in the values of plan assets
and contributions from their desired levels (say F'T; and CT; respectively) relating to the
actuarial liability and normal cost. The ‘cost’ incurred for any such deviation at time

0 <t < N —1 may be defined as
C(f(2),ct),t) = 0:1(f(t) = FT1)? + Oa(c(t) — CTy)? (8)

Different weights (f; > 0 and 6, > 0) are placed on the twin long-term objectives of fund
security and contribution stability. The cost in equation (8) reflects a quadratic utility
function. Minimizing the cost also minimizes the risks of contribution instability and of
fund inadequacy.

The performance of the fund may be given different importance over time. At the
end of the given control period N, a closing cost is incurred if an unfunded liability still
exists: Cy = 0p(f(N) — FTy)®. The discounted cost of deviation occurring ¢ years ahead
is B*C(f(¢),c(t),t), where 0 < 8 < 1. For 0 < ¢ < N — 1, the discounted cost-to-go or

discounted cost incurred from time ¢ to N is

N-1

Co= Y BC(f(s), els), ) + B¥Cr. (9)

s=t

An objective criterion for the performance of the pension funding system over period

13



N may therefore be defined to be

N-1

E[Co|Wo = E B¥Cw + ) B*C(f(5),¢(s), 5)

s=0

Wo] : (10)

The value function J(f(t),¢) is defined as the minimum, over the remaining asset alloca-
tion and contribution decisions, of the expected discounted cost-to-go from time ¢ given
information at time t: J(f(t),t) = min, E[C,|W,], where 7 = {c(t),y(?),c(t + 1), y(t +
1),...,¢(N —1),y(IN —1)}. Objective criterion (10) may be minimized using the Bellman
optimality principle (see e.g. Bertsekas, 1976): the minimizing values of ¢(t) and y(t) (say,
¢*(t) and y*(t) respectively) in the optimality equation,

76),0) = i, {O(0)c0,8) + FEL(0+ 1.6+ DI Oe0000 ) ()
with boundary condition J(f(N), N) = Cy = 6p(f(N) — FTy)?, are the optimal contri-
bution and asset allocation controls.

The pension planning objectives above were set over a finite period N. The plan
is assumed to remain solvent and not discontinued during these N years, so that the
funding process does not terminate unexpectedly. When the pension plan is regarded as
a going concern, an infinite planning horizon may be usefully envisaged as a reasonable
approximation to long-term funding.

No closing cost is incurred in the infinite horizon case. Suppose that the funding process
is time-homogeneous, in that the fund and contribution targets are constant. The instan-
taneous cost at time ¢ is as in equation (8) with F'T; = FT, CT; = CT Vt. The discounted
cost-to-go and objective criterion are as in equations (9) and (10) respectively, except that
Cy = 0 and an infinite summation of discounted costs is taken. One naturally expects
that the control rules that are optimal at time ¢ based on the infinite discounted cost-to-go
are also the optimal control rules at times t+ 1, ¢+ 2,.. . since the same infinite discounted

cost-to-go exists at all times. The dynamic programming algorithm in equation (11) can

14



in fact be shown to converge as N — oo (see Bertsekas, 1976, p. 251) as it involves a
contraction mapping and the instantaneous costs in equation (8) are non-negative and are
discounted. The optimal contribution and asset allocation over an infinite horizon (say,
cio(t) and y% (t) respectively) are the minimizing values of ¢(t) and y(¢) in equation (11)
when the value function and the control variables are fixed or time-invariant functions of
the state variable f(¢).

It is shown in Appendix A that the solution to the Bellman equation (11) in the finite-

horizon case is

J(f(t),t) = P.f(t)® — 2Q:f (t) + Ry, (12)
where
P, = 01+ 0280%(1 +1)2Pyy1 Py, (13)
Pt+1 = {92(052 -+ 02) + 5‘72(1 + T)2P15+1]_17 (14)
Qr = O,FT, + 6280*(1 +7)Pp1[Qip1 — Poa (1 + r)(CT; — B)], (15)

with boundary conditions Py = 6y and Qn = 6, FTy (R; represents some additional terms

independent of f(t)).

It is also shown in Appendix A that the equivalent solution in the infinite-horizon case

T(F(8) = PA( - 2Qf(t) + R, (16)
where P > 6, is the positive root of the quadratic equation
P2[Bo*(1+7)*] + P[6a(0” + 0%) — (6 + 62)B0* (L +7)?] = 6165 (0® +0%) = 0 (17)
and P = lim;_,, P;, and where
Q=[LFT +(P—6:,)(B-CT)|P(1+r)/(Pr+6) (18)
and @ = lim;_,, Q¢, and R contains terms independent of f(¢).
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Define ©; = 65(a® + 0%)B, = 05(a? + 0%)/[62(? + 02) + Bo(1 + r)2P)] in the finite-
horizon setting and correspondingly © = 6;(a? + 02)/[02(a? + 02) + Bo?(1 + r)?P] in the

infinite-horizon setting. The following proposition is proven in Appendix A.
PROPOSITION 1 For 0 <t < N — 1 over a finite horizon, the optimal contribution is
() = 01 CTi + (1 = 0441)[B — f(t) + QP (1+7) 71 (19)
and the optimal amount invested in the risky asset is
YO0+ () = Bl = [Qua P (L+1) 7" = (F()) +¢(8) = B)la(L +7)(o® +0%) 7. (20)
The corresponding optimal decisions over an infinite horizon are:

() =0CT +(1-0)[B— f(t) + QP X1 +1)7Y, (21)

Yoo (8) + c5o(t) = Bl = [QPT (1 +1)7" = (f(t) + ¢ (1) — B)la(1 +7)(0” + o).

(22)

Note that since Py = 6 > 0, backward recursion in the Riccati difference equation for
P; formed by equations (13) and (14) shows that P, > 0, P, > 0 for ¢ € [1, N]. Clearly,
0<©¢ <lforte[l,N] It is reasonable to assume that the fund and contribution targets
in any year are such that F'T; > 0 and CT; < B (as otherwise there is no sense to funding
in advance for retirement benefits). Then, @Q; > 0 for ¢ € [1, N] from equation (15) and
the boundary condition Qn = 6yFTy > 0. In the infinite-horizon case, P > 6; > 0 and
clearly 0 < © < 1. With F'T > 0 and B > CT, it follows that @ > 0 (equation (18)).

It is immediately observed that dc*(t)/0f(t) < 0 from equation (19). From equa-
tion (20), it is easy to show that dy*(t)/8[f(t) + c*(t) — B] is directly proportional to
~Q:1 P (1 + )~ which is negative. Since d[f(t) + ¢*(t) — B]/8f(t) = O > 0, it
follows that 8y*(t)/0f(t) < 0. Likewise, dc, (¢)/0f(t) < 0 and 9y (t)/df(t) < 0.

‘The optimal proportion invested in the risky asset decreases as f (t) increases, whatever

the planning horizon. A similar result is obtained by Boulier et al. (1995) and Cairns
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(1997) for an infinite horizon and for continuous pension plan valuations. The better the
investment performance of the risky asset, the better funded the plan is, the more the
pension fund should be invested in the risk-less asset. This is a contrarian strategy that
entails buying as the market falls and selling as the market rises. It is reasonable in the
sense that, first, liabilities need to be hedged so as to minimize the volatility of both
surpluses and contributions and, second, any available surpluses should be ‘locked in’ by
being invested in less risky assets (Exley et al., 1997). Conversely, the optimal strategy
requires that an underfunded plan takes a riskierkinvestment position than an overfunded
plan, all other things equal. For instance, the assets of a poorly funded immature pension
plan (with a young membership) could arguably be invested more aggressively in the early
years than the assets of a comparable plan with a healthy surplus. The optimal strategy
here may be contrasted with portfolio insurance strategies (Black & Jones, 1988) that
require riskier investment as the value of plan assets less some minimum value (possibly
determined by a solvency requirement) increases. The contrarian strategy is evidently a
consequence of the quadratic utility function implied in criterion (8), which is simplistic as
it is symmetric and continuous and does not admit solvency and full funding constraints.

'The optimal contribution is linear in f(t), whatever the planning horizon: from equa-
tion (19), ¢*(t) may be written as co(t) — (1 — ©,41)f(t), where 1 — ©,4; > 0 while, from
equation (21), ci,(¢) may be written as ¢co — (1 — ©)f(t), where 1 — © > 0. The optimal
contribution at the start of year (¢, t+ 1) is therefore similar to the contribution calculated
when gains and losses are spread (equations (1) and (3)) in that they both depend in a
decreasing linear way on the current market value of assets. This result is based on the
assumption of an efficient market in the risky asset, implying serially independent rates
of return and a Markovian funding process. The market value of plan assets represents
the state of the funding process and, conditional on knowing the current state of funding

and current funding decisions, the future evolution of the fund is statistically independent
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of its past. The optimal contribution is therefore a function of the current state only.
This contrasts markedly with the amortization of gains and losses where the contribution
(equations (1) and (2)) is a function of unanticipated changes in the state of the funding
process over the past m years. This analysis helps to justify the efficiency of spreading
over amortization as stated in Result A-4 (which was also based on quadratic or second-
moment criteria) despite the simplifying assumptions of a quadratic utility function and

of zero inflation.

3 Dependent Rates of Return

The results of the previous sections are limited by the assumption of independent real
rates of return from year to year. Rates of return on pension fund assets are likely to be
statistically dependent. Markets may not be efficient over the long term and rates of return
on several asset classes have been found to be correlated over time, as is demonstrated by
the statistical analysis of Panjer & Bellhouse (1980), Fama & French (1988), Wilkie (1995)
among others. Whether or not markets are efficient, not all the securities held by the fund
will typically be traded every year and some dependence in the returns from individual
securities will occur (Vanderhoof, 1973). This is particularly the case where debt securities
are held to match certain liability cash flows. Even when the asset portfolio is actively
managed, many securities will be held for over a year. McGill et al. (1996, p. 663) report
that “in a volatile business environment, a third or a half of a common stock (equity)
portfolio may turn over within a one-year period.” At this stage, consideration of dynamic
asset allocation among several asset classes is suppressed and the rate of return on the

pension fund is modeled.
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3.1 Spreading Gains and Losses

It is of interest to consider whether Results S-1-A-4 hold when dependent rates of return
are assumed. The two most common time series of rates of return applied in mathematical
actuarial models are the autoregressive (Pollard, 1971; Panjer & Bellhouse, 1980; Bellhouse
& Panjer, 1981; Dhaene, 1989) and the moving average processes (Frees, 1990).
Haberman (1994) assumes that logarithmic rates of return are stationary Gaussian
autoregressive processes of order 1 and 2 [AR(1), AR(2)] and that gains and losses are
spread, while Haberman & Wong (1997) make the assumption of logarithmic rates of
return that are stationary Gaussian moving average processes of order 1 and 2 [MA(1),
MA(2)]. They derive the moments of the pension funding process. Their numerical work

for the simple AR and MA rates of return demonstrates that:
1. Result S-1 appears to hold.

2. Result S-2 appears to hold when the rate of return process exhibits moderate auto-

correlation (under practical conditions).

3. An efficient range of spread period therefore exists (Result S-3) for moderately auto-

correlated rates of return.

The efficient range appears to become more restricted as the variance of the rate of return
process increases, as well as for more positive correlation from year to year in the rate of
return process. As the variance and/or correlation from year to year of the rate of return
increase beyond some threshold, the efficient range vanishes and minimum contribution
rate and funding level variability are yielded when gains and losses are not spread into the

future but paid off immediately (m = 1).
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3.2 Amortizing Gains and Losses

It is more difficult to obtain closed-form solutions for the moments of the pension funding
process when gains and losses are being amortized over a fixed term and logarithmic rates
of return follow simple MA and AR processes. Stochastic simulations may be performed
to verify whether Results A-1-A-4 hold in these cases.

In the following, 2000 scenarios are simulated with a time horizon of 300 years each.
(The randomization routine generates the same set of 300x2000 random numbers so that
sampling error does not occur when results are compared.) A simple final-salary pension
plan as in section 1.1 is assumed. Pensions in payment are assumed to be indexed with
economic wage inflation. All quantities may therefore be considered net of wage inflation,
and since the pension plan population is stationary, the liability structure of the pension
plan is stable in time. The payroll in real dollars (net of wage inflation) is constant. The
valuation discount rate (net of wage inflation) is assumed to be 5%. The actuarial liability
(AL), normal cost (NC) and yearly benefit outgo (B) (all deflated by wage inflation) are
also constant and hold in equilibrium (B = NC + AL x 4.76%). The standard devia-
tion of the funding level is calculated (y/VarF/AL) while the standard deviation of the

contribution rate (contribution per payroll dollar) is proportional to /VarC/NC.

3.3 AR(1) Rates of Return

The logarithmic rate of return process (net of wage inflation) is first projected as a sta-

tionary Gaussian autoregressive process of order 1:
8t +1)— 6 =p(0(t) — 6) +e(t+1), (23)

where || < 1 and {e(t)} is a sequence of zero-mean independent and identically normally

distributed variables. The process is stationary from the start. The arithmetic rate of
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return (net of wage inflation) in year (¢t — 1, t) is exp(6(¢)) — 1 and, in the simulations,
its mean is 5% (i.e. equal to the valuation discount rate net of salary inflation) and its
standard deviation is 20%.

The scaled standard deviations of the funding level and contribution rate are shown in
Table D.1 (for an independent and identically distributed process and ¢ = 0), Tables D.2,
D.3, D.4 (for processes that are positively autocorrelated at lag one and 0 < ¢ < 1),
and Tables D.5 and D.6 (for processes that are negatively autocorrelated at lag one and

-1<p<0).

Variance of the Funding Level (Results S-1 and A-1). The numerical data in these
tables show that the variance of the funding level increases as spreading and amortization

periods increase. Both Results S-1 and A-1 appear to be borne out.

Variance of the Contribution Rate (Results S-2 and A-2). For lightly autocor-
related rates of return (¢ = +0.3, +0.5, -0.1), both Results S-2 and A-2 appear to hold.
For instance, when ¢ = +0.5 in Table D.3, m! = 3, m} = 5 < m}. For m < 5, contribu-
tions are more variable when gains and losses are amortized, but for m > 5, contributions
are more variable when gains and losses are spread. These features are also displayed in
Figures 3 and 4 for ¢ = 40.3 and -0.1 respectively (cf. second graph in Figure 1). General
features, rather than a precise determination of m¥ and m?, are sought.

When the autocorrelation in the rate of return process is more extreme, Results S-2 and
A-2 do not hold. For example, when ¢ = +0.8 (Table D.4), contribution rate variability
increases monotonically as gains and losses are spread over longer periods, as indicated by
the results of Haberman (1994). Contribution rates also become more variable as gains
and losses are amortized over longer terms, although they are more stable than if gains and

losses had been spread over the same term. For rates of return that are highly positively
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autocorrelated at lag one, it is then efficient to pay off any gain or loss immediately.
Conversely, it appears that when rates of return are very negatively autocorrelated at lag
one (¢ = —0.3, Table D.6), varying either the spreading or amortization period always
involves a tradeoff between funding level and contribution rate variability and there is no

efficient range for m (as also demonstrated in the case of spreading by Haberman, 1994).

Spread and Amortization Periods (Results S-3 and A-3). Results $-3 and A-3
therefore appear to be robust for moderately autocorrelated rates of return. For example,
when ¢ = +0.5 (Table D.3), it is better to spread gains and losses over m* = 3 years or
less, or amortize them over m? = 5 years or less. If longer periods are used, the variability
of contribution rates may be the same as when the recommended shorter periods are used,
but funding levels will be more variable. It is also generally apparent that m* and m!

decrease as the autocorrelation at lag one in the rate of return increases (as ¢ increases).

Efficiency (Result A-4). The variance of the contribution rate is plotted against the
variance of the funding level in Figures 5 and 6 for the values of ¢ considered above. For
any two (possibly different) spread and amortization periods for which funding levels are
equally variable, contribution rates will be less variable when proportional spreading is
employed rather than fixed-term amortization. For all the values of ¢ considered, it is
better to recommend contributions by spreading gains and losses than by amortizing them

over a fixed term. Result A-4 appears to hold true.
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3.4 MA(1) Rates of Return

The logarithmic rate of return process (net of wage inflation) is next projected as a sta-

tionary Gaussian moving average process of order 1:
6(t) — 6 = e(t) — e(t — 1), (24)

where {e(t)} is a sequence of zero-mean independent and identically normally distributed
variables and |¢| < 1 so that the process is invertible and may be expressed as an autore-
gressive process. The arithmetic rate of return (net of wage inflation) in year (¢t — 1, ¢) is
exp(4(t)) — 1 and, in the simulations, its mean is 5% (i.e. equal to the valuation discount
rate net of salary inflation) and its standard deviation is 20%.

The scaled standard deviations of the funding level and contribution rate are shown in
Table D.1 (for an independent and identically distributed process and ¢ = 0), Tables D.7,
D.8 (for processes that are negatively autocorrelated at lag one and 0 < ¢ < 1), and
Tables D.9 and D.10 (for processes that are positively autocorrelated at lag one and —1 <
¢ < 0). The numerical results closely parallel those for AR(1) rates of return. (Note that
the autocorrelation at lag one of the rate of return process increases as ¢ increases in the
stationary AR(1) process with || < 1 considered earlier, but it decreases as ¢ increases in

the invertible MA(1) process with |@} < 1.)

Variance of the Funding Level (Results S-1 and A-1). The funding level appears

to become more variable as spreading and amortization periods are increased.
Variance of the Contribution Rate (Results S-2 and A-2). The results concerning
the variability of the contribution rate also appear to hold for a moderately autocorrelated

(at lag 1) MA(1) rate of investment return process. (They hold for ¢ = -0.5,-0.3, 0, 4+0.1.)
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Spread and Amortization Periods (Results S-3 and A-3). Efficient spreading and
amortization period ranges (Result A-3) do emerge for the moderately autocorrelated (at
lag 1) processes, and m and m} appear to decrease as the autocorrelation at lag one

increases (as ¢ decreases).

Efficiency (Result A-4). The variance of the contribution rate is plotted against the
variance of the funding level in Figure 7 for the values of ¢ considered above: it is better to
recommend contributions by spreading gains and losses than by amortizing them. Result A-

4 appears to hold.

3.5 AR(p) Logarithmic Rates of Return

Rates of return on pension plan assets that are AR(p), p € N, p > 2, have not been
simulated. In the case when gains and losses are spread, first-order approximations seem
to show that Results S-1-S-3 will hold for moderately autocorrelated logarithmic rates of
return.

Haberman (1994) assumes AR(1) and AR(2) logarithmic real rates of return and
gain/loss spreading and shows that exact closed form solutions cannot be obtained for
the stationary first and second moments of the pension funding process. His numerical
analysis shows that first-order approximations are accurate when the rate of return pro-
cess is not strongly autocorrelated. His approach may be generalized for an AR(p), p € N,
rate of return process.

Consider a simplified pension plan similar to the one described in section 1.1 and
assume that retirement benefits are indexed with economic wage inflation, so that all
monetary quantities are assumed to be deflated by wage inflation, as in section 3.2. The

payroll, actuarial liability (AL), normal cost (NC), and yearly benefit outgo (B) (all
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deflated by wage inflation) are therefore constant. AL and NC are calculated at a valuation
discount rate (net of wage inflation) of ¢ (with d = (1 +4)™!) and equilibrium means that

B=dAL+ NC.
The logarithmic rate of return on the pension plan assets in year (¢, t + 1) is (¢t + 1)

and is projected to be stationary Gaussian AR(p), p < oo:
St+1)—6=p1(0(t) —6) + a6t —=1) =)+ + (6t —p+1) —6) +e(t + 1), (25)

where {e(t)} is a sequence of zero-mean independent and identically normally distributed
variables. §(t) is stationary and we may let Ed(¢) = 6 and Vard(t) = o V.

It is well known that
Cov[3(t),5(t — h)] = o* ‘ZinG?, (26)
i=1
for A > 0 where the characteristic equation 7’

PP — P = —p, =0 (27)
has p distinct roots {G;} and {4;} is defined by Cov[4(t), 6(t — h)] for h € [0,p — 1]

characterizing the stationary AR(p) process (25). Stationarity implies that
|Gil < 1 forie€ll,p] (28)

The market value of the fund (deflated by wage inflation) follows the recurrence rela-
tionship below:

ft+1) =exp(8(¢t + 1))[f () + c(t) — B]. (29)

Gains and losses are spread and contributions ¢(t) are calculated from equations (1) and

(3). Noting that B = dAL + NC and letting k = l/tizr=1-Qand R=(1-Q ~d)AL,

the substitution f(t) +c(t) — B = Qf(t) + R may be made. Therefore, if f; is the initially
known market value of assets at time 0,

t - t
1) = £oQ"exp [Z é(uﬂ PR Qe [ > 6(u>] . (30)
u=1 s=0 u=s+1
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Define

O'2 1 + Gl
c=exp {H?Z:A’i—ai : (31)
302 1+ G;
_ v . 32
w=exp |§+ 5 ZL:AZI_GJ, (32)
i = UZAlG’Z(l - Gi)_2. (33)
The following proposition is proven in Appendix B.
PROPOSITION 2 Provided that |Qc| < 1,
lim Ef(t) ~ e~ Zi%Re/(1 — Qc), (34)
t—00
Jim Ee(t) = NC + (1 - Q)(AL ~ imEf (1)). (35)
o0
Provided also that Q%*cw < 1,
2R’QcPw . R’cw
im Ef(t)? 0 e 324 —AYiam_ T
Hm f@)y e (1-Q%w)(1 - Qe) e 1-Q%w’ (36)
lim Varc(t) = (1 — Q)?lim Varf (). (37)
t—o0

The approximations in equations (34) and (36) are reasonably accurate when the terms
| A;G;| are small, i.e. when the rate of return process {6(t)} exhibits weak autocorrelation—
see equation (26). (Better approximations are described in the Appendix.) ¢, w and z
(in equations (31), (32) and (33) respectively) correspond to the definitions of Haberman
(1994) for p = 1,2. The forms of the first and second moments generalize the forms
obtained by Haberman (1994) for p =1, 2.

It may be observed that the second moments of the pension funding process depends
on the gain/loss spreading period through @ alone and not through ¢, w and {#}. The
structure of the limiting second moments (equation (36)) of the pension funding process for

p = 1,2 is retained for p € N, p < co and for {é(¢)} with small autocovariance over time.
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It may therefore be surmised that the conclusion (obtained from the previous sections and
from Haberman’s (1994) numerical analysis) concerning the existence of an efficient range
of spreading periods, when rates of return are AR(1) and are weakly autocorrelated, holds
generally for p € N, p < oco. (In addition, it would be expected that mj reduces as the
variance of the rate of return increases and as the rate of return over time is more positively
correlated.)

This simple analysis lends further support to Results S-1, S-2 and S-3. There is a
strong indication that they hold when logarithmic rates of return on pension plan assets
are weakly autocorrelated AR(p) (for finite integral p) processes. Further work is required

to establish if the corresponding results hold when gains and losses are amortized.

4 Asset-Liability Modeling
In this section, a number of assumptions are relaxed.
1. Pensions in payment are not indexed.

2. Stochastic inflation on prices and wages is assumed and pensions are a fraction of

final salary.

3. Two asset classes (equity and long-term Government debt) are considered. A pro-
portional rebalancing strategy between the two asset types is assumed, with income

from an asset being reinvested in that asset.

The asset-liability projection basis that is used is described by Wilkie (1995), with
appropriate parameters for three countries. The statistical methodology, historical data
and economic theory employed by Wilkie (1995) are exhaustively discussed in the actuarial
literature (see Wilkie (1995) for relevant references). This projection basis is used because

it gives a fairly realistic indication of the relationship between various economic variables
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that are relevant to pension funding.

The projections described in this section incorporate inflation explicitly and pensions
are not assumed to be indexed with inflation. This is more realistic than considering real
rates of return, as was done in the previous section. Maynard (1992, p. 245) shows that
nominal rates of return have been more volatile than rates of return net of price inflation
and that this adds to the volatility in the funding of benefits that are not indexed with
inflation. The distinction between inflation on wages and on prices, which is important for
final-salary pensions, is also made in our projections. Stochastic projections are carried out
2000 times over 300 years and the standard deviations of the funding level and contribution
rate are calculated.

Wilkie’s (1995) economic time series are essentially linear and autoregressive. Similar
results to those of section 3 may therefore be anticipated. The feature of an efficient
range of spreading periods is indeed reproduced by Haberman & Smith (1997) through
simulations of Wilkie’s (1995) time series based on U.K. economic data. They observe
numerically that contribution rate variability decreases and then increases as gains and
losses are spread over longer periods.

In all the projections below, assets are valued at market and the Projected Unit Credit
method with a time-invariant valuation basis is used to value the liabilities. Contributions
are calculated so as to be a level percentage of payroll. The relevant parameters of the

Wilkie (1995) series are listed in Appendix C.1.

4.1 U.K. Projections

The projection basis described by Wilkie (1995) is originally designed and parameterized for

U.K. economic data. Some important features of our simulation study are listed hereunder:
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Economic projection assumptions. The pension fund is invested in two asset classes:
U.K. equities & irredeemable Government bonds (or “gilt-edged securities”). Payroll

increases in line with economic wage inflation every year.

Economic valuation assumptions. Wage inflation is assumed at 6.5% and a real (net of

wage inflation) discount rate of 4.5% is assumed.

Demographic projection assumptions. Mortality follows English Life Table No. 14 for

males. There is no early retirement and no salary scale.

Demographic valuation assumptions. Demographic valuation and projection assumptions
are identical. Demographic experience does not deviate from the actuarial valuation

basis and gains and losses emerge only as a result of unforeseen economic experience.

The standard deviations of the funding level and contribution rate at the time horizon of
the simulation study are shown in Tables D.11 and D.12 for a 60:40 and a 80:20 equity:bond
portfolio respectively. These portfolios are typical in practice and no suggestion as to their

being optimal or otherwise is being made.

Variance of the Funding Level (Results S-1 and A-1). The numerical data in
these tables satisfy both Results S-1 and A-1. Funding levels become more variable as m
increases. Amortizing gains and losses over any given period m leads to lower variability

in the funding level than if they were spread over the same m.

Variance of the Contribution Rate (Results S-2 and A-2). Results S-2 and A-2
are also observed to hold. As spreading and amortization periods increase, contribution
rates become more stable, and then gradually less stable. This is shown in Figure 8 for

the 80:20 equity:bond portfolio.
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Spread and Amortization Periods (Results S-3 and A-3). As gains and losses are
spread over a longer period, more stable recommended contribution rates and more variable
funding levels are obtained. But beyond a certain spreading period, both contribution
rates and funding levels become more variable. The same is true of amortization periods.
Efficient ranges of spread and amortization periods, in which contribution stability and
funding security may be traded off each other, therefore exist. This agrees with Results S-

3 and A-3.

Efficiency (Result A-4). The variance of the contribution rate is plotted against the
variance of the funding level in Figure 9 for both 60:40 and 80:20 equity:bond portfolios.
For both portfolios, it is better to recommend contributions by spreading gains and losses

than by amortizing them over a fixed term. Result A-4 appears to hold.

4.2 U.S. Projections

The projection basis described by Wilkie (1995) is also parameterized for U.S. economic
data, but does not include a wage inflation model. Some of the important assumptions

made in the projections are listed hereunder:

Economic projection assumptions. The pension fund is invested in two asset classes: U.S.

equities & long Treasury bonds. Payroll increases at a constant 4.5% every year.

Economic valuation assumptions. Wage inflation is assumed at 4.5% and a real (net of

wage inflation) discount rate of 4.5% is assumed.

Demographic projection assumptions. Mortality follows the 1983 Group Annuitant Mor-

tality table for males. There is no early retirement and no salary scale.
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Demographic valuation assumptions. As demographic projection assumptions. Demo-
graphic experience does not deviate from the actuarial valuation basis and gains and

losses emerge only as a result of random asset returns.

The standard deviations of the funding level and contribution rate at the time horizon
of the simulation study are shown in Table D.13 for a 60:40 equity:bond portfolio. McGill
et al. (1996, p. 665) state that “a 60-40 split between equities and fixed [income securities]
is common” in North America. Results S-1-A-3 are evidently borne out. The minima at
m* =~ 7 and m ~ 13 are shown in Figure 10. This suggests that gains and losses should be
spread over periods no longer than 7 years and should be amortized over no more than 13
years. The gain/loss amortization period range of up to 5 years prescribed by the Employee
Retirement Income Security Act, 1974, for single-employer pension plans is well within our
suggested range, but the range of gain/loss amortization periods for multi-employer plans
under ERISA is between 1 and 15 years (source: McGill et al., 1996, p. 597).

Figure 11 shows that it is more efficient to recommend contribution rates by spreading
rather than by amortizing gains and losses. Result A-4 appears to hold again. For the
most stable funding levels and contribution rates, gains and losses should be paid off by
being spread rather than directly amortized. Statutory and regulatory requirements must

of course be given consideration in practice.

4.3 Canada Projections

The projection basis described by Wilkie (1995) is also parameterized for Canadian eco-
nomic data, but does not comprise a wage inflation model. The model of Sharp (1993)
for Canadian wage inflation is used (see Appendix C.2). Some important features of the

simulation study are listed below:
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Economic projection assumptions. The pension fund is invested in two asset classes:
Canadian equities & Canada long bonds. Payroll increases in line with economic

wage inflation every year.

Economic valuation assumptions. Wage inflation is assumed at 4.5% and a real (net of

wage inflation) discount rate of 4.5% is assumed.

Demographic projection assumptions. Mortality follows the 1983 Group Annuitant Mor-

tality table for males. There is no early retirement and no salary scale.

Demographic valuation assumptions. As demographic projection assumptions. Demo-
graphic experience does not deviate from the actuarial valuation basis and gains and

losses emerge only as a result of unforeseen economic experience.

The variances of the funding level and contribution rate are listed in Tables D.14 and
D.15 for a 60:40 and a 40:60 equity:bond portfolio respectively and displayed in Figure 12.
Results S-1-A-4 appear to hold.

5 Conclusion

The funding of final-salary defined benefit pension plans was considered and methods of
amortizing actuarial gains and losses arising from unforeseen economic experience were
investigated within simple models. Dufresne (1988) and Owadally & Haberman (1999)
show that there exist efficient periods over which to spread or amortize gains and losses
Spreading the gains and losses by paying a proportion of the current unfunded liability
appears to yield less volatile funding levels and more stable contribution rates than amor-
tizing past and present gains/losses. This might be explained by the fact that the optimal
contribution, based on a quadratic utility function and irrespective of the optimization

period, for a pension fund invested in one risk-free and one random risky asset resembles
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the contribution calculated when gains and losses are spread. Both are a function of the
current level of funding rather than the past and present gains or losses.

These results depend on the assumption that rates of return on the fund are indepen-
dent from year to year. Stochastic projections simulating Gaussian AR(1) and MA(1)
logarithmic rates of return indicated that the results of Dufresne (1988) and Owadally
& Haberman (1999) are robust when rates of return are moderately autocorrelated. An
approximate analysis for more general and weakly autocorrelated AR(p) logarithmic rates
of return allowed us to extrapolate and seemed to show that Dufresne’s (1988) conclusion
holds. The uncertain nature of final-salary pension liabilities was ignored in the foregoing,
either by assuming that pension liabilities (active and retired) increase in line with eco-
nomic wage inflation or by disregarding inflation altogether. Simulations of pension plan
assets and liabilities based on published actuarial stochastic time series models of equities,
long-term Government debt and wage inflation in three separate jurisdictions and based
on typical asset portfolios appeared to support our hypotheses. Gains and losses ought to
be amortized over no more than 13 years, but more stable funding levels and contribution
rates emerge if gains and losses are spread over suggested periods of no more than 7 years.

Possible areas for further work include: investigating logarithmic rates of return that
are more general MA(g) processes, shown by Frees (1990) to be fairly mathematically
tractable; considering a more realistic utility function incorporating solvency and full
funding constraints; modeling other asset classes, particularly shorter-term and inflation-
indexed bonds, and using asset allocation strategies other than proportional rebalancing
(e.g. constant proportion portfolio insurance); valuing plan assets at an average of mar-
ket values rather than pure market value; introducing a dynamic valuation basis possibly
based on corporate bond yields; and investigating efficient amortization mechanisms for

expensing purposes.
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Appendix A

Solution of Bellman Equation and Proof of Proposition 1

Finite-horizon case. Consider first a finite horizon. Let
@, = f(t) +c(t) - B,
Uy=1+r+ylt)a,
and note that
y(H)? = 07202 — 20721 + 1)U, + 021+ 1),

(c(t) = CT,)? = 8% — 2(f(t) — B + CT) @ + (f(t) — B+ CT,)2,

(40)

(41)

Since «(t) is independent and identically distributed over time, it follows from equa-

tion (7) that

E[f(t+DIf@)] = T2,

Var[f(t + 1)|f(t)] = o2 @2y (t)?%,

and using equation (40)

BIf(t+ 121£ ()] = (14 0% )0} — 20% (1 + r)2W, + 0%a~2(1 + )62,

The Bellman optimality equation (equation (11)) is

J(f(t),t) = min J,
(f(®),1) in

where
J = 0.(f(t) = FT1)* + 65(c(t) — CT,)* + BE[J(f(t + 1), £ + 1)| £ (1)),
with boundary condition, at time £ = N,
J(f(N),N) = 0o(f(N) — FTn)*.
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A trial solution for equation (45) is
J(f(t),1) = Bif(t)? — 2Q:f () + Ru. (48)

The boundary condition in equation (47) certainly satisfies the trial solution, with Py = 6,
and QN = QQFTN.
Proceeding by induction, suppose that the right hand side of equation (48) is a solution

of the Bellman equation (45) at ¢+ 1. Then,

E[J(f(t+1),t + D)If ()]
= PaE[f(t+ 1)°1f(8)] — 2Qe1Elf (¢ + | f(£)] + Reqa
= (1+0%a7)P1 930} - 2(Qun1®s + 0”0 (1 + 1) Pya ®7]Y,

+ O'Za_z(]. + T)ZPt.Hq)? + Rt+1' (49)

where use is made of equations (42) and (44).
J may be written as a quadratic expression in ¥y, ®; and f(¢), by substituting equa-

tions (41) and (49) into equation (46):

J =B+ ®a?) Py 1 ®7)07 — 2B[Qu1®: + 020 (1 + 1) Py 1 B2) 0,
+ [0 4+ Bo?a (1 + 1) Pyt ®? — 20,(f(t) — B + CT;)®,

+ BRi1 +62(f(t) = B+ CTy)* + 01 (f(t) — FT,)%. (50)

Upon completing the squares in ¥; and &,
J = TP~ U7+ 01 (8, - @F) + Pf (1) — 2Quf (1) + Ry, (51)

where P; and Q) are as in section 2.3, R, represents additional terms independent of f(t),
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and

U2 = B(1+ 0%a"2) Py, 82, (52)
2,.,—2
g 020 2(1+7)Py1®: + Qe

- 53

\Pt (1 + UQQ_Q)Pt_{_l@t ’ ( )
o = PRi(e? + o), (54)
®F = 05(a® + 0P (f(t) — B+ CTy) + Bo(1 + 1) Py Qupa), (55)
Py = [02(0% + 0%) + Bo*(1 + 1) Py ] . (56)

J has a unique minimum in ¥, and ®; provided ¥;* > 0 and & > 0. It is sufficient that
P, > 0fort € [1, N] for both these conditions to be satisfied (since P, > 0 = P, > 0). (It is
assumed that the plan is partially funded and invests in the two assets at all times and &, =
f() +c(t) — B > 0.) The minimum occurs when ¥; = U5 and @, = ®2 simultaneously.
There is a direct linear relationship between c¢(¢) and @; (equation (38)) and between y(%)
and ¥; (o > 0 in equation (39)). Therefore, mingy 44 J = Pif (£)? — 2Q;f(t) + R; which
is in the form postulated in the trial solution (48). Since the solution holds for t = N,
it holds for ¢ € [1, N]. Since Py = 6y > 0, then P; > 0 for ¢ € [1, N} and the sufficient
condition for the existence of a single minimum is satisfied.

Let ©; = 02(c? + 0?)P,. Then, 1 — ;11 = f02(1 4 7)2P,41 P41, from equation (56).
O = @7 = 01 (f(t) + OT, = B) + (1 = ©41) Qe PR3 (1 + 7). (57)
Using equation (38), ¢*(t) = ®; + B — f(t) is readily obtained. Replacing ®; = &} in the
right hand side of equation ¥; = UF gives

Qus1 + 022 (1 +7)Py B}

Ul =
¢ (1+02072) P,y 0}

(58)

Now, [1 47+ ay*@)][f(t) + c*(t) — B] = Ui @} = [Qs41 + 020 2(1 + 1) Poyr (F(8) + c*(t) —
B)|(1 + 02a~2)"'P}, from which equation (20) follows.
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It is also possible to express y*(¢) independently of ¢*(¢) by using equations (39) and

(58), giving
Qa1+ 1)Pna %

() =) — (1 = 59
ay (t) t ( +T) (1+02a—2)Pt+1@Z ? ( )

which, upon substitution of ®; from equation (57), readily yields

00411 (1 +1)[Qs1 — P (1 +1)(f(¢) + CT; — B)]

Vi = (@ + 0?)[(1 = ©441)Qe11 + O Pea (1 4+ 7)(f(t) + CT, — B)]'

Infinite-horizon case. The proof for the infinite-horizon case follows closely the pre-
ceding proof for the finite-horizon case and is only sketched.

CT, and FT, are constant and may be replaced by CT and FT. The value function
does not depend directly on time and J(f(¢),t) and J(f(¢t + 1),¢+ 1) may be written as
J(£(t)) and J(f(¢t+1)). The optimality equation has no boundary condition and backwards
induction is not necessary. Since the optimality equation does converge, its solution in the
infinite-horizon case is the steady-state or equilibrium solution of the finite-horizon case.
A suitable trial solution is J(f(t)) = Pf(t)? — 2Qf(t) + R, where P, —» P, @Q; — Q and
R, — Rast— oco. All B, @Q; and R; in the preceding proof may be replaced by constant
P,Qand R. E[J(f(t+1))|f(¢),c(t),y(t)] and J are as in equations (49) and (50), with the
appropriate constant terms described above. J may be simplified to a quadratic in ¥; and
®,. It turns out that J may be minimized, leaving a quadratic in f(¢), thereby confirming

the trial solution.

J = U0, — UP)? 4 84(®, — BF)? + £(1)2[6) + 6280%(1 + 1) PP]

= 2f()OFT + 0:80%(1L+71)P(Q — (1 +7)P(CT — B))| + R, (61)
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where

P = [0a(0® + 0°) + Bo*(1 + 7)2P) 7, (62)

T4 = B(1+ 0%a~%) PO2, (63)
_ % (14+1)P® +Q

vt = 1+ 0% 2)Pd, ° (64)

o4 = P + 0%, (65)

®F = 0,(c® + 0*)P(f(t) — B+ CT) + Bo*(1 + 1) PQ], (66)

and R includes additional terms independent of f(¢) and not required here.

By comparing the coefficients of f(¢)? and f(t) in equation (61) with those in the trial
solution, it is clear that P satisfies P = 6; -+ 8,80%(1 4 r)2PP, which may be rewritten as
equation (17), while Q satisfies Q = 6, FT + 0,802(1 +r)P[Q — (1 + r)P(CT — B)]. This
may be simplified into the form given in equation (18) by noting that 6;80%(1 + r)P =
(P —6.)/(P + Pr) given that P = 6; + 0,80(1 +r)*PP.

J in equation (61) has a unique minimum in ¥, and ®, provided that ¥4 > 0 and
®4 > 0. It is sufficient that P > 0 for both these conditions to hold. (The plan is
assumed to be partially funded at all times and ®; > 0.) Since the coefficient of P? and
the constant term in the quadratic equation (17) are positive and negative respectively, P
must have one negative real root and one positive real root, the latter being the admissible
solution. Then, P > 0 in equation (62), and P > 6, since P = 6, + 0:80%(1 +r)2PP. J
is minimized when ¥, = ¥4 and &, = ®* simultaneously and, exploiting again the direct
linear relationship between ®; and c(t) and between ¥; and y(t), the minimizing values of
c(t) and y(2), denoted respectively by ¢}, (¢) in equation (21) and by y (t) in equation (22),

may be found as in the finite-horizon case. Again, y% (¢) may also be written as

aO(1 +7)[Q — P(1 +7)(f(t) + CT — B)]
o2 +02)[(1-©)Q + OP(1+r)(f(t) + CT — B)]'

Yoolt) = { (67)
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Appendix B

Proof of Proposition 2

Preliminaries. It is required first to find the moments of the accumulation of 1 when

the logarithmic rate of interest §(¢) follows an AR(p) process. Such expressions have been

obtained by Boyle (1976) for independent and identically normally distributed {5(t)}, by

Panjer & Bellhouse (1980) for stationary AR(1) and AR(2) processes, and by Bellhouse &

Panjer (1981) for conditional AR(1) and AR(2) processes.

Consider the variance of a sum of §(¢) over a term ¢ — s.

Var [ Z 5(u)} =2 Z Z Cov[é(u),6(w)] — Z Vard(u)

u=s+1 u=s+1w=s+1 u=s+1
i U
_ 2 U—w 2
= 20 E Al E E Gz — 0 (t-S),
@ u=s+1w=s+1

after substituting equation (26). This may be expanded to

202 20%G; . 20%G; 2
Y[+ e - ] o

1-G;

1+ Gl 2 QUZGiAi 2 2U2GiAi
:; Ai(f (t—S)-ﬁ-;——G: *Zm,

(1-G,)?

i
where use is made of the fact that ), A; = 1.
The covariance of sums of §(t) over different terms may also be found.

Cov { Z o(u), Z d(w) Z 5(u)] + Cov [ Z §(u), Z 5(w)},

u=s+1 w=7+1 u=s+1 u=s+1 w=7+1

= Var

(s > 7) where the second term on the right hand side is

Yo 3 covlbw),sw) =034 S 3 g

u=s+1w=r+1 i u=s+1lw=7+1

UzAiGi —s S—T —T
:Zm{l—af —- G+ G,
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where equation (26) has again been used.

Therefore,
Var ugla(u)erila(w)}
= Var ugjﬂa(u) + Var wgﬂa(w)] +2Cov Liﬁla(u),wif(w)}
= 3Var uéla(u) + Var wztila(w)} +2Cov L_z;l(s(u),wilé(w)]

and using equations (69) and (71), this may be simplified to
P 1+4G; P\ 2024,G;
2 _ _ —ZAz _ ke el > S 2 i—s S—=T __ t—7 .
Bt —~s)+ (t—7)] E e Ez 1=Go? [3-2G°+G; 2G;]

i=1 i=1

{6(¢)} is a Gaussian process. Since

E[Z S+ > 5(w)} = (t—5)8 + (t — 1),

u=s+1 w=7+1

and given the variance in equation (73), we can write

Eexp{z d(u) + Z 6(w)]

u=s+1 w=T+1

=Tt te 3 i % xp {Z [2z,-G§75 + 2,GT — z.,-foT] } ,

where ¢, w and z; are as in equations (31), (32) and (33) respectively.
Likewise,

t
Eexp |: Z §(u):| = e X% exp |:Z ZiGE_S:| ,

u=s+1

Eexp |:2 Z 5(u):| — (cw)t—se—4zizi exp |:4ZziG§_sj| )

u=s+1

First Moments. Applying equation (76) to equation (30),

t—1

Ef(t) = fo(Qc)te™ =% exp [Z %Gt

s=0
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(73)

(75)

+ RQ e Z:% Y (Qe)t exp {Z ziGﬁ_s} . (78)



Given that 6(t) is stationary and therefore inequality (28) holds, it follows that exp (3", z:G§)
< exp(} ;]%G;|) for s € N.

t—1

+ RQ e~ Xi% exp [Z |zthl} Z(Qc)t_s (79)

s=0

Ef(t) < fo(Qc)te™ % exp [Z |2:Gi|

and the right hand side of the above is convergent as ¢ — oo, provided that |Qc| < 1.
Ef(t) is bounded above and since all terms in equation (78) are non-negative, Ef(t) is
convergent as t — oo.

The first order approximation to lim Ef(t) is obtained by replacing exp(}, z:G:°) by
1+ Y, G in equation (78). Provided |Qc| < 1 (and given |Gj| < 1), it follows that

Jim Bf(6) ~ e =% Re | (1 - Qc)” +Zz, Gi(1 — QeGy)™t (80)

which may be further approximated as in equation (34). This is a reasonable approximation
when the terms zG; are small in magnitude, i.e. when |A;G;| are small, which implies
that {6(¢)} exhibits weak autocorrelation (equation (26)). The first moment of c(t) is

straightforward given equations (1) and (3).

Second Moments. When both sides of equation (30) are squared and expanded and

expectation is taken,

Ef(£)? = f2Q*Eexp {225@)

u=1

+ 2foRQY 12@ Eexp [Zé(u)+ > s(w }

s=0 w=s+1

t—1 s—1
+2R2Q2Y N QT "Eexp[z 5(u Z §(w)

s=1 7=0 u=s-+1 w=T+1

t—1 t
+RQ?) Q" IEexp [2 > 6(u)] (81)
s=0

u=s+1

The third term on the right hand side of equation (81) may be simplified, upon appli-

cation of equation (75), to

t—1 s—1

2R2Q 2,324 ZZ cw t 3 Qc T exp {Z [2Z,L-G§—S + 22’,‘G§_T _ z,in—T]} . (82)

s=1 7=0 12
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Again, §(t) is stationary and equation (28) holds. Consequently,

exp (32,22:G7) < exp (32,2]:Gil) (83)
exp (—22;2G7) < exp (3,]2:Gil) (84)

for s € N. Therefore, the third term on the right hand side of equation (81) is bounded

above by
t—1 s—1

2R2Q ~2,-3%; Z,ZZ cw t— Qc 5 T exp |:Z5|231G |:| (85)

s=1 7=0

which, as £ — oo, converges provided |Qc| < 1 and Q%cw < 1. Since all terms in (82) are
non-negative, the third term on the right hand side of equation (81) converges as t — oo.

To first order, the third term on the right hand side of equation (81) is

t—1 s—1

2RPQ7P) D (Qu) T (Q) et EE {1 +3 [5G + 256G ~ 2G5 }

s=1 7=0
t—1 s—1 t—1 s—1
=2R%*Q™ Ze_szlz’{zz Q%cw)"™*(Qc) _T+Z2Z‘ZZ Q%cwGy) % (Qe)* ™"
s=1 7=0 s=1 =0
t—1 s—1 t—1 s—1
DD W ICETISTINSED DI B BCE L gt
s=1 7=0 i s=1 7=0

(86)

which converges as t — oo to

e-32ﬂi2R2Qc2w{(1 — Q%cw) M (1 - Qo) + z %G [ (1 - Q%wG) (1 -Qe)t
+26,(1 - QPeuG) (1L Qi) - (1 - Qew) (- @G| (67)
provided |Qc| < 1 and @%cw < 1. This may be further approximated by
e Xi%oR2QcPw(1 — Q%cw) M1 — Q). (88)

A similar procedure (and substitution of equation (77)) shows that the last term on the

right hand side of equation (81) is also bounded above provided Q*cw < 1 and its limit
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may be approximated by
et X% R (1 — QPew) ™ + Z4Z,Gi(1 - Q*cwG;)™! (89)

or further by

et X% R (1 — Q%cw) L. (90)

The first two terms on the right hand side of equation (81) vanish provided |Qc| < 1,
Q%cw < 1 as well as |Q| < 1. The last condition is redundant since Q = 1 — 1/éz;. The
approximations above are suitable when the terms |A4;G;| are small, i.e. when the serial
correlation of {4(¢)} is small.

Hence, we have shown that Ef(t)? is convergent as ¢ — oo when 4(t) follows a sta-
tionary AR(p) process, p € N, p < oo, provided |Qc| < 1 and Q*cw < 1. Combining
expressions (88) and (90) yields equation (36). The numerical analysis of Haberman (1994)
shows that this is an accurate approximation for AR(1) and AR(2) processes with mod-
erate autocorrelation. A better approximation is given by adding expressions (87) and
(89).

Finally, an approximation to lim Var f(t) may be obtained from equations (34) and (36).
lim Vare(t) = k*lim Var f () given equations (1) and (3).
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Appendix C

Economic Time Series

C.1 Parameters in Wilkie’s (1995) Time Series

The time series for price and wage inflation, equity dividend growth and yield, and long
bond yields are described extensively by Wilkie (1995). The parameters of these series
are given in Tables D.16-D.19 where the standard parameter names (as defined by Wilkie,
1995) associated with these economic series have been used. The following parameters
were used for U.K. wage inflation: WMU = 2.14%, WSD = 2.33%, WW1 = 0.6021,

WW2 =10.2671, WA = 0. The time series were initialized at their equilibrium values.

C.2 Sharp’s (1993) Time Series of Canadian Wage Inflation

Sharp (1993) models the arithmetic (rather than geometric or logarithmic) rate of wage
inflation (say AW (t)) and finds evidence that the arithmetic rate of wage inflation on
Canadian data is crosscorrelated with the arithmetic rate of price inflation. If the geometric

rate of price inflation based on Canadian data is I(t), then

AW (t) = 0.408(exp(I(£)) — 1) + WN(t), (91)

WN(t) = 3.5% + 0.703(WN(t — 1) — 3.5%) + L.7%W Z(t), (92)

where W Z(t) is a unit normal variate, independent from year to year.
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Appendix D
Tables

Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 19.1% 19.1% 95.26% 95.26%
3 26.5% 24.3% 46.31% 58.31%
5 34.5% 29.6% 37.95% 47.98%
mi = 10 54.6% 42.0% 33.65% 39.56%
m;, ~15 79.4% 54.0% 36.43% 37.78%
20 122.9% 67.2% 46.56% 38.50%
25 232.8% 82.2% 78.74% 40.93%

Table D.1: Independent and identically distributed rates of return, p = ¢ = 0.
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Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 19.1% 19.1% 95.26% 95.26%
3 34.6% 30.5% 61.24% 75.83%
ms 5 51.0% 41.2% 54.77% 67.08%
mt T 69.3% 52.0% 56.57% 61.24%
10 109.5% 64.8% 67.08% 63.25%
15 273.9% 96.4% | 122.47% 70.71%
20 i 148.3% i 89.44%
25 1 214.5% 1 111.80%

Table D.2: AR(1) logarithmic rates of return, ¢ = +0.3. § indicates divergence.

Standard Deviation
m Funding Level Contribution Rate

Spreading Amortization Spreading Amortization

1 19.1% 19.1% 95.26% 95.26%

2 31.3% 27.4% 80.62% 90.83%
mia 3 43.6% 34.6% 77.46% 88.03%
4 57.4% 44.7% 79.06% 86.60%

mp RS 74.2% 52.9% 82.16% 85.15%
6 97.5% 61.6% 90.83% 86.60%

7 122.5% 70.7% 104.88% 88.03%

8 167.3% 81.9% 122.47% 94.87%

Table D.3: AR(1) logarithmic rates of return, ¢ = +0.5.
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Standard Deviation
m Funding Level Contribution Rate

Spreading Amortization Spreading Amortization

m* =1 19.1% 19.1% | 95.26% 95.26%
2 40.0% 30.3% | 102.47% 100.00%
3 79.4% 44.7% | 141.42% 110.68%
4 i 66.3% 1 136.93%

Table D.4: AR(1) logarithmic rates of return, ¢ = +0.8. i indicates divergence.

Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 19.1% 19.1% 95.26% 95.26%
3 24.5% 23.5% 43.01% 54.77%
) 30.7% 27.6% 33.91% 43.87%
mk =~ 10 44.7% 37.4% 27.84% 34.28%
15 54.8% 44.7% 28.28% 31.62%
m, =~ 20 80.6% 53.9% 30.82% 31.22%
25 104.9% 63.2% 34.64% 32.02%
30 130.4% 72.1% 40.62% 33.17%

Table D.5: AR(1) logarithmic rates of return, ¢ = —0.1.
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Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 19.1% 19.1% 95.26% 95.26%
3 21.0% 20.5% 36.74% 47.43%
5 24.9% 23.0% 27.39% 36.06%
7 28.5% 25.9% 23.45% 30.41%
10 33.2% 29.3% 20.62% 26.93%
15 40.0% 34.6% 18.71% 23.98%
20 46.9% 38.7% 18.03% 21.79%
25 52.0% 43.6% 18.01% 21.79%

Table D.6: AR(1) logarithmic rates of return, ¢ = —0.3.

Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 19.1% 19.1% 95.26% 95.26%
3 24.3% 23.5% 42.44% 54.77%
5 30.6% 27.7% 33.62% 43.59%
10 45.1% 36.7% 27.82% 33.91%
my ~ 15 60.1% 44.6% 27.55% 31.22%
mi ~ 20 71.7% 52.0% 29.69% 30.41%
25 102.2% 61.6% 34.51% 31.62%
30 148.1% 71.4% 45.88% 32.40%

Table D.7: MA(1) logarithmic rates of return, ¢ = +0.1.
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Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 19.1% 19.1% 95.26% 95.26%
3 20.1% 20.2% 35.21% 46.64%
5 23.5% 22.6% 25.82% 34.28%
10 30.5% 27.2% 18.80% 24.49%
15 35.7% 31.2% 16.39% 21.79%
20 39.5% 35.0% 15.10% 19.36%
25 42.0% 38.6% 14.18% 19.10%

Table D.8: MA(1) logarithmic rates of return, ¢ = +0.3.

Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 19.1% 19.1% 95.26% 95.26%
3 32.5% 29.7% 56.87% 72.46%
5 45.9% 38.7% 50.47% 61.24%
ms =7 60.8% 46.9% 50.00% 57.01%
m: ~ 10 90.1% 56.6% 55.59% 54.77%
12 119.7% 65.6% 64.32% 54.77%
15 209.8% 80.6% 96.18% 57.01%

Table D.9: MA(1) logarithmic rates of return, ¢ = —0.3.
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Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 19.1% 19.1% 95.26% 95.26%
3 35.2% 31.6% 61.62% 79.06%
mh 5 51.5% 41.2% 56.57% 67.08%
7 70.8% 52.0% 58.27% 63.25%
my 9 96.9% 60.0% 64.92% 63.22%
10 114.6% 64.8% 70.65% 63.25%
13 219.7% 82.5% | 111.39% 65.19%
15 766.2% 94.9% | 351.43% 67.08%

Table D.10: MA(1) logarithmic rates of return, ¢ = —0.5.
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Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 13.6% 13.6% 24.30% 24.30%
3 16.5% 16.4% 10.28% 13.78%
5 19.4% 18.6% 7.58% 10.48%
10 25.3% 22.8% 5.49% 7.29%
15 30.4% 26.4% 4.84% 6.23%
20 35.2% 29.6% 4.60% 5.66%
m; & 25 39.9% 32.5% 4.55% 5.36%
30 44.6% 35.1% 4.60% 5.22%
35 49.1% 37.7% 4.70% 5.15%
40 53.6% 40.3% 4.833% 5.17%
m; = 45 57.9% 42.8% 4.99% 5.12%
50 62.0% 45.1% 5.16% 5.16%
55 66.0% 47.4% 5.34% 5.33%
60 69.8% 50.1% 5.52% 5.50%
65 73.4% 53.5% 5.70% 5.68%
70 76.7% 56.7% 5.87% 5.77%
75 79.7% 59.5% 6.03% 5.87%

Table D.11: U.K. projections with a 60:40 equity:bond portfolio.
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Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 16.7% 16.7% 29.67% 29.67%
3 20.3% 20.1% 12.57% 16.82%
5 23.9% 22.9% 9.31% 12.83%
10 32.4% 28.0% 7.00% 8.83%
mk = 15 41.1% 33.0% 6.52% 7.74%
20 51.3% 37.7% 6.68% 7.16%
25 64.3% 42.3% 7.28% 7.01%
30 81.2% 47.0% 8.29% 6.97%
my, &~ 35 102.2% 51.8% 9.65% 7.11%
40 127.4% 57.0% 11.33% 7.41%
45 156.5% 62.3% 13.29% 7.46%
50 188.9% 67.6% 15.47% 8.09%
60 258.2% 83.8% 20.09% 10.25%
70 323.9% 111.1% 24.40% 11.84%

Table D.12: U.K. projections with an 80:20 equity:bond portfolio.
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Standard Deviation

Contribution Rate

Spreading Amortization Spreading Amortization

m Funding Level
1 15.7% 15.7%
3 23.2% 22.1%
5 29.8% 27.1%
mir T 37.0% 30.8%
10 52.0% 35.9%
mh s 13 75.9% 42.0%
15 99.9% 46.4%
17 135.7% 51.4%
20 235.0% 60.8%

42.46%
21.79%
17.45%
16.12%
16.84%
20.04%
23.74%
29.57%
45.97%

42.46%
28.87%
23.54%
21.04%
17.84%
17.40%
17.41%
17.56%
19.00%

Table D.13: U.S. projections with a 60:40 equity:bond portfolio.
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Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 14.0% 14.0% 37.55% 37.55%
3 18.0% 17.6% 16.81% 22.50%
5 21.7% 20.5% 12.69% 17.47%
10 30.5% 25.6% 9.87% 12.57%
m; = 13 36.3% 28.5% 9.62% 11.46%
15 40.7% 30.4% 9.71% 11.02%
17 45.4% 32.3% 9.94% 10.66%
my & 20 53.3% 35.0% 10.46% 10.29%
23 62.0% 38.1% 11.16% 10.64%
25 68.3% 40.3% 11.711% 10.69%
30 85.7% 46.9% 13.30% 11.21%

Table D.14: Canada projections with a 60:40 equity:bond portfolio.
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Standard Deviation

m Funding Level Contribution Rate
Spreading Amortization Spreading Amortization
1 11.3% 11.3% 30.47% 30.47%
3 15.1% 14.2% 14.12% 18.33%
5 19.5% 16.8% 11.46% 14.62%
m: T 24.5% 19.3% 10.69% 13.06%
10 33.5% 23.3% 10.89% 12.02%
13 45.2% 27.6% 12.01% 11.74%
mi ~ 15 54.5% 30.6% 13.05% 11.73%
20 83.6% 40.1% 16.42% 12.46%

Table D.15: Canada projections with a 40:60 equity:bond portfolio.
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QMU QSD QA

U.K. 4.73% 4.27% 0.5773
U.S. 3%  3.5% 0.65
Canada | 3.4% 3.2% 0.64

Table D.16: Parameters for price inflation given by Wilkie (1995).

YMU YSD YA YW

U.K. 3.77% 15.52% 0.5492 1.794
U.S. 4.3% 21% 0.7 0.5
Canada | 3.75% 19% 0.7 117

Table D.17: Parameters for equity dividend yields given by Wilkie (1995).

DMU DSD DY DB DD DW

UK. 1.57% 6.71% -0.1761 0.5733 0.1344 0.5793
U.S. 1.55% 9% -0.35 0.5 0.38 1.0
Canada | 0.1% ™% -0.11 0.58 0.26 0.19

Table D.18: Parameters for equity dividend growth given by Wilkie (1995).

CMU CSD CYy CA1 CD CW

U.K. 3.05% 18.53% 0.3371 0.90 0.045 1.0
U.S. 2.65% 21% 0.07 096 0.058 1.0

Canada | 3.7% 18.5% 0.1 09 004 1.0

Table D.19: Parameters for long bond yields given by Wilkie (1995).
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Figure 1: Label ‘s’: spreading. Label ‘a’: amortization.
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Figure 2: Spreading (‘s’) is more efficient than amortization (‘a’).
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