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A�������: We investigate properties of generalized time-dependent q-deformed coher-

ent states for a noncommutative harmonic oscillator. The states are shown to satisfy a

generalized version of Heisenberg’s uncertainty relations. For the initial value in time the

states are demonstrated to be squeezed, i.e. the inequalities are saturated, whereas when

time evolves the uncertainty product oscillates away from this value albeit still respecting

the relations. For the canonical variables on a noncommutative space we verify explicitly

that Ehrenfest’s theorem hold at all times. We conjecture that the model exhibits revival

times to infinite order. Explicit sample computations for the fractional revival times and

superrevival times are presented.

1. Introduction

The algebras satisfied by the canonical variables resulting from q-deformed oscillator al-

gebras have been shown to be related to noncommutative spacetime structures leading

to minimal lengths and minimal momenta as a result of a generalized version of Heisen-

berg’s uncertainty relations [1, 2, 3, 4]. An important question to address in this context

is whether explicit states satisfying these relations actually exist and how they can be

constructed. Recently two of the present authors [5] have investigated this problem for

a nontrivial limit of the q-deformed oscillator algebra. Using generalized coherent states,

so-called Klauder-coherent states [6, 7, 8, 9], it was shown in [5] for a noncommutative

harmonic oscillator to first order perturbation theory in the deformation parameter that

these states not only satisfy the generalized uncertainty relations, but even saturate them

at all times. The main purpose of this paper is to extend this type of analysis to the case

for generic deformation parameter q.
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2. Generalized time-dependent q-deformed coherent states

Following [10, 11, 12, 13, 14], up to minor differences in the conventions, we consider a one

dimensional q-deformed oscillator algebra for the creation and annihilation operators A†

and A in the form

AA† − q2A†A = 1, for q ≤ 1. (2.1)

Defining a q-deformed version of the Fock space involving q-deformed integers [n]q as

|n�q :=
�
A†
�n

�
[n]q!

|0� , [n]q :=
1− q2n

1− q2
, [n]q! :=

n�

k=1

[k]q, A |0� = 0, �0|0� = 1, (2.2)

it follows immediately that the operators A† and A act indeed as raising and lowering

operators, respectively,

A† |n�q =
�
[n+ 1]q |n+ 1�q , and A |n�q =

�
[n]q |n− 1�q . (2.3)

Furthermore, one deduces from (2.1) and (2.2) that the states |n�q form an orthonormal

basis, i.e. q�n|m�q = δn,m. As was first argued in [10], the q-deformed Hilbert space Hq
is then spanned by the vectors |ψ� :=

�∞

n=0
cn |n�q with cn ∈ C, such that �ψ|ψ� =

�∞

n=0
|cn|2 <∞.

Using these states we can construct the Klauder-coherent states introduced in [6, 7,

8, 9]. In general, these states are defined for a Hermitian Hamiltonian H with discrete

bounded below and nondegenerate eigenspectrum and orthonormal eigenstates |φn� as a
two parameter set

|J, γ� = 1

N (J)
∞�

n=0

Jn/2 exp(−iγen)√
ρn

|φn� , J ∈ R+
0
, γ ∈ R. (2.4)

The probability distribution and normalization constant

ρn :=
n�

k=0

ek, and N 2(J) :=
∞�

k=0

Jk

ρk
, (2.5)

are expressed in terms of the scaled energy eigenvalues en resulting fromH |φn� = �ωen |φn�.
The key properties of these states are their continuity in the two variables (J, γ), the fact

that they provide a resolution of the identity and that they are temporarily stable satis-

fying the action angle identity �J, γ|H |J, γ� = �ωJ . The time evolution is governed by a

shift in the parameter γ, i.e. exp(−iHt/�) |J, γ� = |J, γ + tω�.
As a concrete system let us now consider the noncommutative harmonic oscillator

Hamiltonian H = �ω(A†A + 1), where the operators A† and A obey (2.1). With the re-

scaled eigenvalues en = [n]q and eigenstates |φn� = |n�q for this Hamiltonian, we obtain the

probability distribution ρn = [n]q!. We use standard conventions [0]q! = 1. Furthermore,

the normalization condition �J, γ|J, γ� = 1 yields the q-deformed exponential Eq(J) as the

normalization constant

Eq(J) :=
∞�

n=0

Jn

[n]q!
= N 2(J). (2.6)
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Thus our normalized coherent state

|J, γ�q :=
1

�
Eq(J)

∞�

n=0

Jn/2 exp(−iγen)�
[n]q!

|n�q , (2.7)

coincides with the coherent state |z�, as defined already in [10], for the specific choice��z2, 0
�
q
and z ∈ R, that is for t = 0. Let us now investigate some properties of these states

and in particular investigate to which kind of expectation values they lead for observables

and compare with the results for the nontrivial q → 1 limit studied in [5]. In the latter

case these states were found to be squeezed states up to first order in perturbation theory

in τ when parameterizing the deformation parameter as q = e2κ
2

6
τ , where κ6 is explained in

[4]. Most importantly we wish to investigate whether these states respect the generalized

uncertainty relations.

3. Generalized Heisenberg’s uncertainty relations

In order to verify the uncertainty relations projected onto these states we commence by

recalling [1, 15, 4] that the analogues of the canonical variables expressed in terms of the

q-deformed oscillator algebra generators

X = α
	
A† +A



, and P = iβ

	
A† −A



, (3.1)

with α = 1/2
�
1 + q2

�
�/(mω) and β = 1/2

�
1 + q2

√
�mω, satisfy the deformed canonical

commutation relations

[X,P ] = i�+ i
q2 − 1
q2 + 1

�
mωX2 +

1

mω
P 2
�
. (3.2)

The interesting feature about this version of a noncommutative spacetime is that it leads

to a minimal length as well as a minimal momentum. Let us first analyze the generalized

version of Heisenberg’s uncertainty relation for a simultaneous measurement of the two

observables X and P projected onto the normalized coherent states |J, γ�q as defined in

equation (2.7)

∆X∆P ||J,γ�
q
≥ 1

2

����
	
q�J, γ| [X,P ] |J, γ�q




η

���� . (3.3)

The uncertainty for X is computed as ∆X2 =
	
q�J, γ|X2 |J, γ�q




η
−
	
q�J, γ|X |J, γ�q


2
η

and analogously for P with X → P . The η indicates that we might have to change to a

nontrivial metric when X and/or P are non-Hermitian following the prescriptions provided

in the recent literature on non-Hermitian systems [16, 17, 18, 19, 20] or more specifically

for this particular setting in [5].

Notice that when we assume that the conjugation of A and A† yield A† and A, respec-

tively, the operators X and P can be seen as Hermitian. In that case the metric η is taken

to be the standard one, possibly with some change to ensure proper self-adjointness and
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the convergence of the inner products. Indeed, in [12, 21] such a representation on a unit

circle acting on Rogers-Szëgo polynomials [22] was derived

A =
i

�
1− q2

	
e−ix̌ − e−ix̌/2e2τp̌



, and A† =

−i
�
1− q2

	
eix̌ − e2τp̌eix̌/2



. (3.4)

Here we used the dimensionless quantities x̌ = x
�
mω/� and p̌ = p/

√
mω� with x, p being

the standard canonical coordinates satisfying [x, p] = i� and parameterize the deformation

parameter q = eτ . Evidently A† is the conjugate of A for q < 1 and consequently with (3.1)

follows that also the canonical variables satisfying (3.2) are Hermitian in this representation,

i.e. X† = X, P † = P . We notice further that for the representation (3.4) the PT -symmetry

of the standard canonical variables PT : x→ −x, p→ p, i→ −i is inherited by canonical

variables on the noncommutative space PT : X →−X, P → P , i→−i.
There exist also alternative representations [23]

A =
1

1− q2
Dq, and A† = (1− x)− x(1− q2)Dq, (3.5)

in terms of Jackson derivatives Dqf(x) := [f(x) − f(q2x)]/[x(1 − q2)] introduced in [24].

The operators in (3.5) commute to (2.1) when acting on eigenvectors constructed from

normalized Rogers-Szëgo polynomials. It is less obvious to see whether this representation

can be made Hermitian. For our purposes it is important that at least one such represen-

tation exists and we may compute expectation values on the q-deformed Fock space with

the standard metric.

In order to verify the inequality (3.3) for the states (2.7) we compute first the expec-

tation values for the creation and annihilation operators

q�J, γ|A |J, γ�q = J1/2
Fq(J,−γ)
Eq(J)

, and q�J, γ|A† |J, γ�q = J1/2
Fq(J, γ)

Eq(J)
, (3.6)

where we introduced the function

Fq(J, γ) :=
∞�

n=0

Jneiγq
2n

[n]q!
=

∞�

n=0

in

n!
Eq(q

2nJ)γn. (3.7)

Notice that this function reduces to the q-deformed exponential Fq(J, 0) = Eq(J) and also

the duality in the derivatives with respect to the two parameters. The standard derivative

with respect to γ corresponds to a q-deformation in the parameter J

−i ∂
∂γ

Fq(J, γ) = Fq(q
2J, γ) (3.8)

and in turn the Jackson derivative acting on J is identical to a deformation in the second

parameter

DqFq(J, γ) =
Fq(J, γ)− Fq(q

2J, γ)

J(1− q2)
= Fq(J, q

2γ). (3.9)
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These identities are easily derived from the defining relations for Fq and will be made use

of below. Using the representations for X and P in terms of the creation and annihilation

operators (3.1), it follows directly with the help of (3.6) that

q�J, γ|X |J, γ�q =
αJ1/2

Eq(J)
[Fq(J, γ) + Fq(J,−γ)] , (3.10)

q�J, γ|P |J, γ�q =
iβJ1/2

Eq(J)
[Fq(J, γ)− Fq(J,−γ)] . (3.11)

To compute the expectation values for X2 and P 2, we use once again (3.1) to express them

in terms of the A† and A. Thus we evaluate

q�J, γ|A†A† |J, γ�q = J
Fq(J, γ(1 + q2))

Eq(J)
, (3.12)

q�J, γ|AA |J, γ�q = J
Fq(J,−γ(1 + q2))

Eq(J)
, (3.13)

q�J, γ|A†A |J, γ�q = J, (3.14)

q�J, γ|AA† |J, γ�q = 1 + q2J, (3.15)

and with X2 = α2(A†A† + A†A+ AA† + AA) and P 2 = −β2(A†A† − A†A− AA† + AA)

we assemble this to

q�J, γ|X2 |J, γ�q = α2


J
Fq(J, γ(1 + q2)) + Fq(J,−γ(1 + q2))

Eq(J)
+ 1 + J + q2J

�
, (3.16)

q�J, γ|P 2 |J, γ�q = −β2


J
Fq(J, γ(1 + q2)) + Fq(J,−γ(1 + q2))

Eq(J)
− 1− J − q2J

�
. (3.17)

From these expressions we find that the right hand side of the generalized Heisenberg’s

inequality (3.3) is always a constant value independent of γ, i.e. time,

1

2

����q�J, γ|�+
q2 − 1
q2 + 1

�
mωX2 +

1

mω
P 2
�
|J, γ�q

���� =
�

4
(1 + q2)

��1 + (q2 − 1)J
�� . (3.18)

The square of the left hand side of (3.3) can be written as

∆X2∆P 2
��
|J,0�

q

= α2β2
�
1 + (1 + q2)J +Gq −G2c(γ)

� �
1 + (1 + q2)J −Gq −G2s(γ)

�
,

(3.19)

where we introduced the functions

Gc(γ) :=
2
√
J

Eq(J)

∞�

n=0

Jn

[n]q!
cos(γq2n), Gs(γ) :=

2i
√
J

Eq(J)

∞�

n=0

Jn

[n]q!
sin(γq2n), (3.20)

and Gq :=
√
JGc(γ + γq2). Noting that limγ→0Gq = 2J , limγ→0Gc(γ) = 2

√
J and

limγ→0Gs(γ) = 0, it is easy to see that for γ = 0 the expression (3.19) becomes the

square of (3.18), such that the minimal uncertainty product for the observables X and P

is saturated. From the expressions in (3.20) we deduce that the range for these functions

is −2J ≤ Gq ≤ 2J , 0 ≤ G2c(γ) ≤ 4J and −4J ≤ G2s(γ) ≤ 0. Recognizing next that the
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inequality holds when each of the brackets in (3.19) is greater than 1 + (q2 − 1)J , this
requires that 2J ≥ G2c(γ) − Gq and at the same time 2J ≥ G2s(γ) + Gq. This means

4J ≥ G2c(γ) + G2s(γ), which by the previous estimates is indeed the case. Overall this

implies that for γ �= 0 the uncertainty relation (3.3) is always respected.

Next we verify Ehrenfest’s theorem. For the time evolution of the operator X we

compute directly

i�
d

dt
q�J, ωt|X |J, ωt�q = −

ω�αJ1/2

Eq(J)

�
Fq(q

2J, ωt)− Fq(q
2J,−ωt)

�
, (3.21)

and compare it to

q�J, ωt| [X,H] |J, ωt�q = −
ω�αJ1/2

Eq(J)

�

s=±ωt

s

ωt
Fq(J, s) +

s

ωt
J(q2 − 1)Fq(J, q2s), (3.22)

with H = A†A, which is easily computed from the expectation values

q�J, γ|A†A†A |J, γ�q = J3/2
Fq(J, q

2γ)

Eq(J)
, (3.23)

q�J, γ|A†AA† |J, γ�q = J1/2
Fq(J, γ)

Eq(J)
+ q2J3/2

Fq(J, q
2γ)

Eq(J)
, (3.24)

q�J, γ|A†AA |J, γ�q = J3/2
Fq(J,−q2γ)

Eq(J)
, (3.25)

q�J, γ|AA†A |J, γ�q = J1/2
Fq(J,−γ)
Eq(J)

+ q2J3/2
Fq(J,−q2γ)

Eq(J)
. (3.26)

The equality of (3.21) and (3.22) follows from the identities (3.8) and (3.9). Similarly we

verified the validity of Ehrenfest’s theorem also for the operator P .

4. Revival times

As previously argued [25, 9, 5], revival time structures are very interesting and important

quantities of time dependent states as in principle they are measurable quantities, see for

instance [26]. The structure is directly linked to the dependence of the energy eigenvalues

En on the quantum number n, i.e. the existence of the k-th derivative dkEn̄/dn̄k with

respect to some average value n̄ at which the wave packet ψ =
�

cnφn is well localized.

For the case at hand these derivatives exist to all orders, such that we expect infinitely

many revival times to exist.

At the smallest scale one obtains the classical period Tcl = 2π�/ |E′n̄|, thereafter at

larger scale the fractional revivals for the revival time Trev = 4π�/ |E′′n̄|, then the superre-

vival time Tsuprev = 12π�/ |E′′′n̄ |, etc. For the case at hand the peak of the wave packet is

computed to n̄ := �n� = Jd lnN 2(J)/dJ . Noting that dkEn/dn
k = �ω2kq2n lnk q/(q2 − 1)

we obtain the times

Tcl =
π

ω

����
q2 − 1
q2n̄ ln q

���� , Trev =
π

ω

����
q2 − 1
q2n̄ ln2 q

���� , and Tsuprev =
3π

2ω

����
q2 − 1
q2n̄ ln3 q

���� . (4.1)
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Figure 1: Autocorrelation function as a function of time at different scales for � = 1, ω = 1,

q = e−0.005, J = 6 and n̄ = 6.1875. (a) Classical period at Tcl = 6.65, (b) fractional revival times

for Trev = 1330.19 and (c) fractional superrevival times for Tsuprev = 3999056.

In figure 1 we present the autocorrelation function A(t) := |�J, 0, φ |J, tω, φ�|2 as a function
of time at different scales. In panel (a) the revival after the classical period is clearly visible.

The parameters have been chosen in a way that Trev/Tcl ≈ 200, such that at the revival

time scale the revivals due to the classical periods have died out and only the revival due

to Trev are exhibited as clearly visible in the computation presented in panel (b). With

Tsuprev/Trev ≈ 300 this type of behaviour is repeated at the superrevival time scale as seen

in panel (c). Due to the aforementioned dependence of the energy eigenvalues on n, we

conjecture here that this behaviour is repeated order by order. However, the verification

of this feature poses a more and more challenging numerical problem which we leave for

future investigations.

5. Conclusions

By extending the analysis of [5], from a perturbative treatment to the generic case for q < 1,

we have computed time dependent q-deformed coherent states for a harmonic oscillator on

a noncommutative space. We demonstrated that all key requirements for coherent states

are satisfied. A direct comparison with the results obtained in [5] is not possible as the

analysis in there relates to a nontrivial limit q → 1, which is not directly obtainable from

the setting presented here, see [1, 4]. However, qualitatively we found a somewhat differ-

ent behaviour with regard to the key question addressed in this manuscript. Whereas the

perturbative treatment in [5] indicated a saturation for the generalized version of Heisen-

berg’s uncertainty relation at all times, the generic q-deformed states exhibit this feature

only for t = 0, but do respect the inequality thereafter. We have also presented explicit

computations for the verification of Ehrenfest’s theorem for the coordinate and momentum

operator at all times. By computing the autocorrelation functions we have shown that

besides a fractional revival time structure this system also exhibits a superrevival structure

at a much larger time scale.

Clearly there are various open problems left for future investigations, such as the

study of different types of models on the type of noncommutative spaces investigated

here. Especially an extension to higher dimensional models would be very interesting. It

would also be interesting to study representations for which the operators X and P are

non-Hermitian, as for instance in (3.5), in analogy to the analysis presented in [5]. More

— 7 —
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computational power should also allow to confirm our conjecture about the existence of

revival time structure at much larger time scales, such as supersuperrevival time structures,

etc.
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