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On the Forecasting of Mortality Reduction Factors
A.E. Renshaw, S. Haberman

Abstract

Ways in which the so-called Lee-Carter time series approach to forecasting mortality patterns
can be modified to forecast the possible future behaviour of mortality reduction factors are described.
A comparison is drawn with an alternative regression type approach to the forecasting of mortality
reduction factors, based on the same model structure. Case studies, illustrating different aspects of the
methodology, making use of both the more recent mortality experience of UK male pensioner lives and
the historical mortality experience of UK male annuitants, are presented.
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1. Introduction

Using what are essentially regression methods, formulated within the
generalised linear modelling (GLM) framework, Renshaw and Haberman (2000) have
described a method for modelling mortality reduction factors. While the method can
be used for retrospectively monitoring the effectiveness of existing reduction factors,
established regression patterns are also capable of extrapolation, as a means of
predicting their possible future behaviour. As noted in Renshaw and Haberman
(2000), it transpires that the model structures used in their paper are similar to, and, in
certain circumstances, identical to those underpinning the Lee-Carter method for
forecasting mortality (Lee 2000), although the Lee-Carter method is concerned with
the forecasting of mortality trends without specific recourse to mortality reduction
factors. However, the methods of fitting and extrapolating differ appreciably under
the two approaches. In this paper, based on this common structure, we suggest ways
in which the Lee-Carter methodology of fitting and forecasting mortality trends might
be adapted for the construction of mortality reduction factors.

At the outset, we are faced with something of a presentational dilemma:
whether to focus primarily on formulating the method in terms of reduction factors for
the force of mortality or, alternatively, in terms of reduction factors for the probability
of death. Given that the Lee-Carter singular value decomposition (SVD) method is
formulated in terms of central mortality rates, and that the structure underpinning both
the Lee-Carter methodology and the regression methods formulated in Renshaw and
Haberman (2000) when targeting the force of mortality are identical, we opt for the
former. However, given that current UK actuarial practice uses the forecasting of
reduction factors for the probability of death, for practical reasons, we also address
this issue, as a secondary consideration.

In Section 2, mortality reduction factors are characterised. An example, based
on current UK usage, is reproduced. In Section 3, a brief summary of the core Lee-
Carter methodology for forecasting established mortality patterns is given. In Section
4, we suggest ways in which the methodology might be modified in order to forecast
mortality reduction factors. Given the close similarity between the model structures
formulated in Section 4 and the GLM based model structures formulated in Renshaw
and Haberman (2000), we have given a brief summary of the latter in Section 5. In
Section 6, a detailed case study is presented, based on the recent male UK pensioner
lives experience. In Section 7, the historical male UK annuitants experience is
investigated by these methods. In Section 8, issues concerning the alignment and

updating of mortality forecasts are discussed. Concluding comments are presented in
Section 9.



2. Mortality Reduction Factors

Let
x denote age,
t denote time, with a well defined origin t = 0, and

4, denote the force of mortality at age x and time ¢.

Then, in terms of x,, a mortality reduction factor (RF) is characterised by the
equation

M, = M RF(x,1), V20 2.1
subject to the constraint
RF(x,0)=1 Vx. 2.2)

The further constraints 1> RF(x,f)>0, Vx, ¢>0, with non-increasing mono-
tonicity for increasing t are implicit, otherwise, the reduction factor is an adjustment
factor. It is envisaged that u , is completely specified, typically in the form of a
standard mortality table, while the problem is to forecast RF, so that future reductions
in p, might be predicted.

Alternatively, in terms of the conditional probability of death q,,, between age

x and x+1 at time ¢, and in keeping with UK actuarial practice, a RF may be
characterised as

9u = 4 RF(x,0), V120
subject to the same constraints as above. Then typically, having determined u , by

graduating the appropriate crude mortality rates of a current base quadrennial period,
using methods described in Forfar ef al (1988) and Renshaw (1991), g,, is computed

by the numerical evaluation of the integral in the standard relationship:

1
oo =1 exXP(= [11,,,475) . (2.3)
0
By way of illustration, in this context, the mortality reduction factor
RF (x,1) = a(x) + {1 —a(x)} {1 - f(x)}'"™ 24
for which
a(x)=0.13; x<60
a(x)=1+0.87—($; 60<x <110
and
f(x)=0.55; x<60
f) = 0.55(110—x)5;0.29(x—60); 60<x<110

has recently been published by the UK Continuous Mortality Investigation (CMI)
Bureau (Section 6, pp 89-108, CMI Committee (1999)). This is designed to
accompany newly published mortality tables, constructed by graduating the crude
mortality rates of the base quadrennium 1991-1994. As explained, (CMI Committee
(1999)), the reduction factor is constructed without recourse to any detailed
modelling. It is designed rather with reference to a 20 year time span, with the origin
¢t = 0 located one and a half years into the base quadrennium 1991-94. It is intended
for application to all four of the pensioners’ and annuitants’, males-females, published
mortality tables for the quadrennium 1991-94.



3. Lee-Carter Mortality Forecasting

The core structure of the so-called Lee-Carter mortality forecasting method
(Lee and Carter (1992)), is the following model:

logm, =a, +f,x, 3.1
where

m denotes the central death mortality for age x at time t

@ describes the shape of the age profile averaged over time

xt

x
B,  describes the pattern of deviations from the age profile
K, describes the variation in the level of mortality with t,

subject to an additive error term on the RHS. The model is over-parameterised in the
sense that the structure of the RHS is invariant under either of the following parameter
transformations

la, Bk} {a,, B, /ccx}

a.B.x}la, -, Bk, +c}
for any constant c. So x, is determined up to a linear transformation, S, is
determined only up to a multiplicative constant, and «,_ is determined only up to a

linear adjustment. It is envisaged that a rectangular array of crude mortality rates is
available for fitting the model structure. For this array, let

t=t,t+1,..., 4 +h-1=t,
where h=t, -1, +1 specifies the range, then the Lee-Carter method normalises the
parameter estimates by stipulating that
‘, I
Dk, =0and ) B, =1 sothat &, =log] [m." (3.2)
1=t all x =4
is a least squares error estimator. The normalisation of 4, means that the resulting

values indicate the relative rate of change of log mortality rates at different ages.
Let

(dx{ ? ext )
represent the data array, where
d,,  denote the number of deaths at age x and time ¢, and

e, denote the appropriate matching central exposures,
with crude central mortality rates
rxl = dxf /exl *

Then the Lee-Carter model fitting proceeds as follows:

‘N
o Estimate o, as &, =log] [, , the logarithm of the geometric mean of the
1=t

crude mortality rates, averaged over all ¢, for each age x.
¢ Compute the matrix of statistics [z,,]=[logr, —@&,], then either

1. estimate x,and f, as the respective 1% right and 1% left singular

vectors in the singular value decomposition (SVD) of the matrix [z,],

subject to the above constraints,
or, as an approximation to SVD,



2. estimate x, as K, = ZZX, , and then regress z,, on £, Vx (with no

all x
intercept term) to determine ,@X , as the estimated slope parameter.

o Finally the estimated x, are adjusted such that the actual total observed deaths
Zdﬂ equals the total expected deaths Zex, exp(a, + Bx 1::, ), Vt.
all . x all x
It is possible to implement SVD using a variety of standard statistical packages
offering this facility, such as GENSTAT (Payne et al. (1993)).

Forecasts follow by modelling the values of i, as a time series using standard
methods, with typically, the ARIMA(0,1,0) process, or random walk with drift,
occupying a central role in this respect. For example, Tuljapurkar et al (2000) report
that the factors x, “display highly linear long-term declines with superimposed short-
term fluctuations”. Denoting the resulting forecasts beyond the data time horizon as
{¥, .s :s=123,..}, forecast mortality rates are then computed as

my, s =exp(@, + B,K, ) s=1,23, ...

For an indication of the nature and complexity of the issues concerning the structure
and magnitude of the errors in such forecasts, see appendix B of Lee and Carter
(1992). In view of this discussion, we adopt the same stance as that taken by Lee and
Carter, focusing solely on the error generated by the time series predictions, while
ignoring the error generated by parameter estimation. For a fully comprehensive
discussion of commendations, criticisms and extensions of the Lee-Carter

methodology see Lee and Carter (1992), Bell (1997), Lee (2000), Lee and Miller
(2000).

4. Modified Lee-Carter Methodology for Forecasting Mortality Reduction Factors.

Taking logarithms of both equation (2.1) and the constraint (2.2) implies that
the reduction factor is characterised by

log u,, =log ., +log RF(x,1), s.t. logRF(x,0)=0 Vx; 120. (4.1)
Then, in the spirit of the Lee-Carter method, we note that it is possible to re-express
(4.1) as

logp, =a.,+p.k,,st k,=0, 120,
where

My =€Xpay, RF(x,1)=exp(f,x,). (4.2)

Unlike the original Lee-Carter formulation, however, here we have a well
defined origin 7 = 0, calibrated in calendar time, at which the age specific mortality
profile a,, is specified (and hence the introduction of the additional suffix to
highlight this feature). Thus, parameter uniqueness is specified by a different set of
conditions from (3.2), namely

Ky =0, Zﬂx =1, a,, =logu,,.

all x

Although the foregoing specifications are motivated by the desire to make

future adjustments to the values of a standard mortality table {u,}, it is possible to

generalise these model specifications by allowing any appropriate age profile s

valid at time ¢ = 0, whether graduated or not, and to introduce the potential for
smoothing within a more general framework, as required. Also, given the discrete



and potentially unordered nature of the /S, , there is the added need to incorporate a
mechanism for smoothing the £, s if a tractable and practicable formula for RF is to

result. These considerations, together with the recognition that, as in the UK
experience for instance, the age profile «,, may well derive from data grouped by

individual calendar year in the close vicinity of ¢ = 0, we adapt the Lee-Carter
methodology as described below.

We begin by focusing on the rectangular array of data, as defined in Section 3.
For this array, let

t=t, 4+, .., ty+h-g=t,, ,+h—g+1, .., t,+h-1=1,
where h=t, -t +1 specifies the range of the data array in calendar years and
g=t,—t,+1 is a small positive integer, specifying the range of a subinterval.
Typically g = 4 for the UK quadrennial graduated experiences. Site the origin in the
appropriate calendar year £, located at or adjacent to the centre of the subinterval
(t,-t,). Typically f, =¢, —[£] where [£] denotes the integer part of £. Obviously
t, <t, <t,, with equality iff g =1. Model fitting can then proceed as follows:

Stepl Estimate «,, as any of the following

(@) Q, =logp,,, where the standard mortality table {u,} is

based on the grouped experience observed for the g years from
t, to t,, inclusive.

l"
2.4,
I=

[

() &, =log="—, based on the grouped experience observed
e

t=t,

xt

for the g years from ¢, to ¢,, inclusive.
!y
(i) &, =log] [./¢, based on the geometric mean of the crude
1=t,

age specific mortality rates for years #,, to 7, , inclusive.
Step2 Allow for the further smoothing of &, as required, under Step 1(ii) or
Step 1(iii).
Step3 Estimate (f,,x,) by forming the statistics z, =logr, -&, and
applying either SVD, or its approximation, as described in Section 3.
Step4 Adjust the &, estimates such that the total observed deaths de,

all,x

equal the total expected deaths Zc;'x, , Vt. (See Step 7 below).

all x
Step5 Translate £, into &, —K, .
Step6 Allow for the smoothing of ,BX , if required.
Step7 Check for goodness of fit by computing and monitoring the residuals
d,-d

d

xt

,where d,, =e, exp(@,, + B,.K,).

xt



Comments:

1) The case g = 1, implies that Step 1(ii) and Step 1(iii) are identical and that
the forecasts match up with the most recent observed death rates, as
discussed on page 88 of Lee (2000).

2) Step 1(iii) is suggested, as a viable alternative to Step 1(ii), in the spirit of
the Lee-Carter method.

3) Step 1(ii), coupled with Step 2, is potentially equivalent to Step 1(i).

4) Tt is envisaged that the data cells are grouped and classified by individual
year of age (as well as by individual calendar year), so that the
introduction of the smoothing option at Step 6 is essential, if the resulting
predictions are to be well ordered with respect to individual year of age.

5) As reported later, we have experimented by making Step 4 optional, only
to find this unsatisfactory.

6) There is a total of 20 cases generated by Steps 1 to 3 and Step 6.
7) Although presented throughout in terms of the reduction factors for u,,,

these methods also apply equally for the reduction factors for g, .

Forecasts follow next by modelling the values of «,, as determined in Step 5,

as a time series, with the ARIMA (0,1,0) process playing a central role. For this
particular process

K,=K_+tA+¢&, 4.3)
where &, denotes error, so that x, is forecast to change linearly by incremental amounts
of 4. In general, denoting the forecasts as {«, ,, :s > 0}, the reduction factor is then
forecast by

log RF(x,t, +5) = /?jw .

Specifically, for the ARIMA (0,1,0) process

K., =K, +As (4.4)
so that

RF(x,t, +5) =exp{f,(k, +15)}. (4.5)

Other ARIMA processes might be more appropriate for modelling x, and

generating forecast values, such as the ARIMA (0,1,1) used in Section 7. Standard
methodology is used for estimating the forecasts and the associated prediction errors
(for example, see Hamilton (1994)).

5. Mortality Reduction Factors by Regression Methods

The regression methods for modelling mortality reduction factors described in
Renshaw and Haberman (2000) are given a GLM setting in order to conform with
current UK actuarial graduation practice as described in Forfar er al (1988) and
Renshaw (1991). Expressed in terms of the Lee-Carter notation of Section 4, the

structures underpinning the methods described in Renshaw and Haberman (2000),
have the form

-1
RF(x,t) - g {g(expaxﬂ)-'_ﬁx’(:} , K',
expa,, ’

=0 5.1



where g is a pre-specified link function. We have then proceeded to fit such
structures by setting «, = ~¢, and using quasi-likelihood methods to estimate { £, }.
This is done on the basis of either Poisson or binomial over-dispersed response
models, as the case may be. A detailed account of these methods, together with a
number of illustrative case studies, is given in Renshaw and Haberman (2000). In
particular, when targeting reduction factors for u,, the log link function is selected,
so that the structure (5.1) reduces trivially to
RF(x,1) = exp(B,k,) (52)

which is identical to the Lee-Carter structure of equation (4.2).

6. An Analysis of the Recent UK Male Pensioners Experience
6.1 Introduction

By way of illustration, we consider the UK male pensioner lives experience.
The data comprise the numbers of deaths with matching exposures, cross-classified by
individual year of age, from age 60 to age 100, and by individual calendar year, from
1983 to 1994, both inclusive. The data are analysed relative to the base quadrennium
1991-94, for which the standard mortality table (PML92) applies (CMI Committee
1999), based on the formula
x-70

5 6D

The formula has been determined using the graduation techniques described in Forfar
et al (1988), applied to the quadrennial crude mortality rates, with central exposures,
(as represented by Stepl (ii) above), but including a small amount of data outside the
age range 60 to 100. For completeness, the parameter estimates are reproduced in
Table 1. As already noted in Section 2, this is accompanied by the reduction formula
(2.4), centred mid-way through 1992. This, however, operates on g, rather than z ,,
a complication which we address later in this study. Instead, to begin with, we focus
on the construction of a reduction factor foru,,. In the notation of Section 4,
t,=1983, t,=1994, 1, =1992, ¢, =1991, h =12, g=4.

Lo =GM(23)=a, +ax' +exp{b, +bx' +b,2x* -1)}, x' =

6.2 Forecasting a RF for the Force of Mortality
To investigate the performance of a variety of the options discussed in Section
4, we present results for the following cases:

method of determining expa case
graduated mortality rates (Table PML92) 1 (AorB)
smoothed grouped crude mortality rates 2 (AorB)
smoothed geometric mean of annual crude rates 3(AorB)

where A or B indicates whether {f,,k,} are determined in Step3 by SVD (coded A)
or by its approximation (coded B). In all six cases, the sequence { 8, } is smoothed
by parametric methods, thereby resulting in a simple formula for RF. Also, in all six
cases, the method of determining expea,, relates to the quadrennium 1991-94.

The values of «,,, plotted against x, for all cases are displayed in the separate
frames of Fig. 1. In Case 1, the log crude mortality rates for the quadrennium 1991-



94, have been superimposed. In Cases 2 & 3, we have superimposed quadratic
curves, fitted by weighted least squares, against the background of the computed
values of a,,. When fitting the quadratics, the outlying points at ages 97 to 100

(inclusive) have been zero weighted. Thus, in all cases, the values of «,, are
effectively generated as

O =log f,
where u,, is given by equation (6.1), and where the non-linear refinement
coefficients a, and q,, are pre-set to zero in Cases 2 & 3. Details of the fitted curves

are reproduced in Table 1. Obviously in Cases 2 & 3, the detailed refinements,
normally associated with the graduation of a standard mortality table (Forfar ez al
(1988)), have been ignored.

The values of «x,, determined immediately after Step 4, but prior to Step 5, are

presented next in Table 2. It is of interest to note that in all six cases the ‘natural’ zero
occurs closest to in the year 1993. In keeping with current UK practice (Section 6, pp
89-108, CMI Committee (1999)) however, we set the origin in the year 1992, before
translating the values of x, accordingly.

As implied in the comments to Section 4, we have experimented by omitting
Step 4, in order to assess its impact. For comparison purposes with Table 2, we
reproduce the values of «,, determined in Step 3, prior to Step 4, in Table 3. Here, by

comparison with Table 2, there is less consistency between the cases and the trends
are much more erratic, thereby illustrating the material impact of Step 4.

In Fig. 2, the values of f,, as determined in Step 3, are plotted against x, for
each case separately. Then, the plotted points are smoothed, by fitting the straight
line

B, =c, +c,x+error 6.2)
using the method of weighted least squares. The outliers at ages 60, 61, 64 and 100
are omitted when fitting the straight lines in Case 1A, together with the additional
points at ages 96 & 98 in Cases 1B and 1C; while the outliers at ages 60, 64, 96, 97,
99 and 100 are omitted in Cases 2A, 2B and 2C. Details of the fitted lines are
reproduced in Table 4.

Finally at the model fitting stage, diagnostic checks on the quality of the fit are
conducted. These take the form of a graphical analysis of the residuals defined in
Step7. By way of example, separate residual plots against both calendar year and age,
for the CaselA, are reproduced in the upper frames of Fig. 3. The satisfactory, well
balanced (between positive and negative residuals), trend free nature of these plots is
representative of the other five cases. In general, we have found that such plots are
particularly sensitive to the choice of options at the various modelling steps, as
illustrated by the other residual plots in this paper.

Forecasts are made next, using the time-series analysis outlined at the end of
Section 4. In keeping with UK actuarial practice, we focus on 20 year forecasts,
fitting an ARIMA (0,1,0) process in each case. By way of illustration, the estimated
values of x,, together with the 20 year forecasts and prediction intervals, for the Case

1A, are reproduced in the lower left hand frame of Fig. 3. For this process, equation

(4.5) coupled with equation (6.2) implies that the predicted reduction factor is given
by

RF(x,t, +s)y=expiy, +yx+(y, +7;%)s} (6.3)



where y, =¢x, , i=0,1; y,=¢_,4, i =2, 3. The estimates of 1, as defined in
equation (4.3), and the estimates of {y, }, for all six cases, are reproduced in Table 5
and Table 6 respectively.

It is interesting to compare these parameter estimates for A with the
corresponding values for national populations. Tuljapurkar et a/ (2000) thus find that
A is in the range of 0.26 to 0.50 for the U.S., Canada and European G7 countries but
0.79 for Japan. The figure for the UK. is 0.34. The estimates in Table 5 are higher
than this level- this is not unexpected given the particular nature of the subpopulation
investigated here and the underlying selection processes operating (males with
pensions from insured pensions schemes).

The 20-year predicted log reduction factor for the Case 1A, together with its
prediction limits are illustrated in the lower right hand frame of Fig. 3. The predicted
values are calculated on substituting s = 18 in equation (6.3) and selecting the relevant
values y, from Table 6. In addition, the equivalent regression based predictions,
using the methods described in Renshaw and Haberman (2000), have been
superimposed for comparison purposes. These latter predictions are obtained by
setting «, = —1, in equation (5.2), so that

log RF (x,t, +s5)= .5, t, =1992, s =20
and where f, is parameterised as

B.=v,+tyx. (6.4)

The estimates for y, and y,, presented in Table 7, are determined by the quasi-
likelihood methods associated with over-dispersed independent Poisson response
variables. At an interim stage in this analysis, the graph of equation (6.4) is
superimposed against the background of the individually estimated values of { S, },
also obtained by these methods, in the upper frame in Fig. 4. Unlike Fig. 2, none of
the data cells are zero weighted when fitting equation (6.4) under this approach. For

completeness, the residual plots associated with the fitted version of equation (6.4) are
reproduced in the lower frames of Fig. 4.

6.3 Forecasting a RF for the Probability of Death

Given the practical importance of forecasting reduction factors for the
probability of death, we investigate this case next. It involves working with initial
exposures, formed by adding half the number of deaths to the corresponding central
exposures, and applying the methods of Section 4 to g, rather than to x,, . However,
there is an additional complication, which means that Case 1 (A or B), involving the
estimation of &, =logg,, from standard mortality tables, is no longer viable. This is

because the standard mortality table {g ,} (PML92Base: CMI Committee (1999)) is

constructed using equation (2.3) and not via the direct graduation of the actual
quadrennial crude mortality rates, based on initial exposures, as is effectively the case
with Cases 2 & 3 (A or B). The manifestation of this effect is vividly demonstrated in
the lower frames of Fig. 5, in which the residual plots for Case 1A, are reproduced.
Given that these plots display a disproportionate number of negative residuals (336
negatives to 156 positives, representing 68.3% of all residuals), coupled with the
above explanation as to why this happens, the study proceeds on the basis of Cases 2
& 3 (A or B). In addition, the separate curves for a,(=logqg,,) and S, against x,

used in the construction of these residuals, are given in the upper frames of Fig. 5.



Notably, in the upper left hand frame, with the exception of just four of the
superimposed log crude mortality rates (at ages 60, 65, 95 and 96), all of the plotted
log crude mortality rates lie below their smoothed standard values: a feature which
largely explains the unsatisfactory nature of the associated residual plots.

Turning therefore to Cases 2 & 3 (A or B), the corresponding values of «,,,
together with fitted quadratics, in which the outliers at ages 97 to 100 are again
excluded from the least squares fitting process, are presented in the separate upper
frames of Fig. 6. Hence, the values of «,,, used in the subsequent modelling process,
are generated as
,_x=70

50
where the parameter values are tabulated in Table 8.

The values of «,, generated immediately after Step 4, but prior to Step 5, are
presented in Table 9. Although the ‘natural’ origin is again closest to 1993, we set the
origin at 1992 in order to conform with current UK practice and translate the entries

of Table 9 accordingly, before proceeding with the time series analysis of all four
cases.

o, =logg,, =b, +bx' +b,(2x"* 1), x

(6.5)

The values of f,, determined in Step 3, are plotted against x together with the
fitted straight line, equation (6.2), in the middle and lower frames of Fig. 6. The
outliers at ages 60,61,64,96,98,100 are omitted when fitting the straight lines in Cases
2A and 3A, and the outliers at ages 60,64,96,97,99,100 are omitted in Cases 2B and
3B. Details of the fitted lines, equation (6.2), are presented in Table 10, for all four
cases.

The residual plots for Case 2A are reproduced in the upper frames of Fig. 7.
These plots may be considered as typical of the other three cases. While it is
reasonable to suggest that there is potential for improvement in the distribution of
residuals, when plotted against age (particularly at the highest ages: where the
outlying nature of the plotted a,, values in the upper right hand frame of Fig. 6 is
probably responsible for this effect), we recall that the whole data set, comprising a
total of 492 cross-classified cells, is modelled by just six parameters. In addition,
there are 220 negative residuals, representing 44.7% of all residuals, which is an
improvement on the situation discussed earlier for Fig. 5.

We again focus on 20 year forecasts in the time series analysis of {x,}, while
illustrating the Case 2A in detail. Thus, in the lower left hand frame of Fig. 7, the
values of x, together with their 20 year forecasts and prediction limits, generated by

the ARIMA(0,1,0) process, are plotted against . The values of the drift parameter 1,
of equation (4.3), together with the parameters y, of equation (6.3), which define the
predicted reduction factors, are tabulated in Table 11 and Table 12 respectively, for
all four cases.

The predicted reduction factor for the Case 2A is illustrated in the lower right
hand frame of Fig. 7. Here, together with the prediction limits, we have plotted the 20
year predicted values of the log reduction factor based on equation (6.3) with s = 18
and the values of 7, selected from the first column of Table 12. In addition, both the
20 year log reduction factor prediction of the CMI Bureau based on equation (2.4) and
the regression based prediction of Renshaw and Haberman (2000) have been
superimposed for comparison purposes. The latter is again obtained by setting
K, =t —1,, this time in equation (5.1), so that



log RF (x,t, +5) =log[g " {g(expa,,) + B.s}] -, 1, =1992, 5 =20
where 3, is given by equation (6.4). This time, modelling proceeds on the basis of

over-dispersed independent binomial responses, in combination with the log-odds link
function

g(qxo)=log{ L } whereq,, = expa,.
1- RN

The estimates for y, and y, are presented in Table 13. The predicted reduction
factors in the lower right hand frame of Fig. 7 are of a similar shape with respect to
age for the Lee-Carter and GLM based methods. The non-linear form of the CMI
Bureau reduction factor is highlighted. As in the previous analysis, the graph of
equation (6.4) is superimposed against the background of the individually estimated
values of { S, }, in the upper frame in Fig. 8, and the residual plots associated with the
fitted version of equation (6.4) are reproduced in the lower frames of Fig. 8. As in the

previously reported GLM regression analysis, none of the points in the upper frame of
Fig. 8 have been zero weighted.

7. An Analysis of the Historical UK Male Annuitants’ Experience
7.1 Introduction

In this study, we focus on the UK male lives annuitants’ experience for policy
duration 1+ years. The data, comprising the numbers of deaths with matching central
exposures, are again cross-classified by individual year of age, from age 60 to age
100, and by individual calendar year, this time ranging from 1946 to 1994, with the
exception of 1968, 1971 and 1975, for which the data are missing. In addition, unlike
the previous male pensioner study, there are a small number of empty data cells
together with a few other cells with exposure but no reported deaths, occurring at the
extremities of the age range. As a consequence, it is necessary to allocate zero
weights to such cells, as part of the SVD process. Subject to this provision, modelling
can proceed as before. Thus for this study r =1946, ¢, =1994, ¢, =1992,

t,=1991,h=49 and g=4.

By way of illustration, we focus on a mortality reduction factor for u,,,
defined, in the first instance, relative to the standard mortality table u,, (IML92)
based on the 1991-94 quadrennium (CMI Committee 1999) and which is again given

by formula (6.1). The parameter estimates for the standard table IML92 are
reproduced in Table 14 and the corresponding values of

axO = log/uxl) >

together with the matching log crude mortality rates for the quadrennium 1991-94 are
illustrated in the top left hand frame of Fig. 9.

7.2 Modified Lee-Carter Method

The analysis proceeds on the basis of the approximation to SVD (therefore
coded 1B) in order to facilitate readily the allocation of zero weights, where
appropriate. The resulting values of S, , plotted against x in the upper right hand
frame of Fig. 9, are again smoothed by fitting the straight line (6.2) by the method of
least squares, in which the relative outliers at ages 60, 61, 63, 64, 81 and 98 have been



zero weighted. The parameter estimates for the fitted line, together with their
standard errors, are given in Table 15.

The values of «, are estimated in accordance with Step 3, Step 4 and Step 5 of

Section 4, and plotted against 7 in the bottom left hand frame of Fig. 9.

The resulting residual plots against both calendar year and age are reproduced
in the central frames of Fig. 9. Note in particular the gaps in the first of these plots
corresponding to the missing data, while it is plausible to conjecture that the shearing
effect at the lower ages, in the second plot, is caused by the obvious outliers in this
age range, displayed in the upper two frames of Fig. 9.

The 20 year forecasts for the time series {x,} are also displayed in the bottom
left hand frame of Fig. 9, by way of illustration. Such forecasts are potentially of
considerable interest in the pricing and reserving of annuity contracts. This time,
however, analysis of the time series {«,} suggests that a more appropriate model is the
ARIMA (0,1,1) process, for which

K =Kk_+A+& —0s 7.1
and this model has been used to generate the forecast values for x,. The parameter

estimates and their standard errors are presented in Table 16. The main effect of
introducing the highly significant moving average parameter & in this particular
analysis, is to narrow the prediction interval by an appreciable amount. As with the
ARIMA (0,1,0) process used previously, x, is forecast to change linearly by

incremental amounts of 2 under this process also, but with the exception of the first
year beyond the time horizon. Finally in this analysis, we display the resulting 20
year forecast for the log mortality reduction factor, in the bottom right hand frame of
Fig. 9.

7.3 Original Lee-Carter Method

It is of interest to compare these forecasts, centred on the standard mortality
table IML92, with those obtained using the ‘original’ Lee-Carter methodology, as
outlined in Section 3. Firstly, the a,s are estimated as the logarithms of the

geometric means of the crude mortality rates, averaged over all ¢, for each age x. The
resulting values are displayed in the upper left hand frame of Fig. 10. Not
surprisingly in view of their mode of construction, we note that these display a more
regular pattern at the extremities of the age range, than their counterpart in Fig. 9.
Deviating slightly from the Lee-Carter methodology, it is further possible to smooth
the plotted values of «,, as shown. This is done using the method of weighted least
squares to fit the cubic
x—=70
< (7.2)

to the plotted points, with the exception of the final point at age 100. The details are
presented in Table 17. Recall that this describes the shape of the age profile, averaged
over the whole time range, from 1946 to 1994, but unlike the age profile of the
standard mortality table IML92, is not associated with an identifiable location in
calendar time.

The individual values of p,, comesponding to the un-smoothed a,, are

displayed in the upper right hand frame of Fig. 10. We remark that these display a
greater degree of dispersion than their counterparts in Fig. 9. The straight line,
equation (6.2), is again fitted to the plotted points by the method of weighted least

@y = by +byx"+b,(2x"* —1)+b,(4x" -3x"), x' =




squares, this time on omitting the points in the age ranges ages 60 to 64 and 98 to 100,
both inclusive. Details of the fitted line are given in Table 18.

The residual plots in the central frames of Fig. 10 relate to the fitted model
under the smoothed versions of &, and S, (displayed in the upper frames of Fig. 10).
These plots are also representative of the fitted model using the un-smoothed versions
of a, and f,. Indeed, the residual plots are potentially ‘better’ in this latter case,
since a greater number of parameters are involved in the fit.

The values of x,, which are near identical whether the @, s and g, s are

smoothed or not, are displayed in the lower frame of Fig. 10. The time series {x,}is

modelled as an ARIMA (0,1,1) process, details of which, for both the ‘smoothed’ and
‘un-smoothed’ versions of x,, are presented in Table 19. The resulting (common)
forecasts, together with the prediction limits, are added to the lower frame in Fig. 10.

Given that there is no basis for comparing mortality reduction factors under
the modified and original Lee-Carter methodology, we compare instead the year 2012
forecasts for the force of mortality. This is done graphically, on the log scale, in Fig.
11. Here the predicted force of mortality is depicted, together with the prediction
limits, for the modified Lee-Carter method centred on the 1992 CMI standard table
IML92. In addition, the predictions based on the original Lee-Carter method, for both
the smoothed and un-smoothed separate versions of ¢, and f, (of the upper frames
of Fig. 10), have been superimposed in Fig. 11, for comparison purposes. It is
apparent that the main source of variation in Fig. 11, between the predictions
generated by the ‘smoothed’ and ‘un-smoothed’ original versions of the original Lee-
Carter method, at the extreme ages, is largely attributable to the lack of smoothness in
the estimated point £, s, as depicted in the upper right hand frame of Fig. 10.

8. Updating Mortality Reduction Factors Forecasts

The updating of mortality reduction factor forecasts, on the basis of new data,
is of potential interest. One method of proceeding is by refitting the model to the
augmented data sets sequentially, as the latest data become available. Data to the year
1996 are available to illustrate this, for the male pensioner experience of Section 6.

We begin by reproducing the (Case 1A) values of x,, together with their
ARIMA (0,1,0) forecasts, in the upper frame of Fig. 12. Recall that the same details
are also depicted in the lower left hand frame of Fig. 4. Then, in the middle two
frames of Fig. 12, the values of x, together with their ARIMA (0,1,0) forecasts, for
the respective augmented data sets (from 1983) to 1995 and to 1996, are depicted.
Note in particular the alignment of the forecasts with the most recent estimated value
of x,, viz £k ,K, ,,K, ,,, as the case may be: a noteworthy feature of the
methodology, implicit in equation (4.4) and leading to equation (4.5). Finally, the
resulting sequential generated 20 year mortality reduction factor forecasts, which are
visibly sensitive to the alignment of the x, forecasts, are depicted in the lower frame
of Fig. 12.

9. Concluding Comments

o TForecasts of mortality rates (particularly at the older ages) have important
implications for the financing of public programmes of retirement pensions



and support for the elderly and for private financial security systems aiming to
provide pensions, annuities and long term care insurance. It is important,
therefore, to have available scientifically sound methods of modelling time
dynamics and of forecasting.

e The Lee-Carter method for forecasting mortality is flexible. It can be
modified, as described in this paper, to provide an alternative method to GLM
regression methods for predicting mortality reduction factors. It has an
immediate potential to offer greater flexibility for dealing with calendar year
effects than the equivalent regression method. The results of Section 6,
however, between the modified Lee-Carter method and the GLM approach,
are similar.

o Both the Lee-Carter method and GLM approach provides a formal statistical
model for mortality change so that prediction intervals for forecasts can be
determined. The computation of prediction errors under the Lee-Carter
method would appear to be more complex than under the equivalent GLM
approach.

e Unlike the other published applications of the original Lee-Carter method, in
which, to our knowledge, the raw data are grouped and classified by
quinquennial year of age, in this paper the raw data are classified by individual
year of age. Hence provision for smoothing the values of {a,} and {f,}is
necessary if the resulting mortality predictions are to be well ordered with

respect to age. The method of smoothing is not however necessarily restricted
to parametric methods, as here.

e The adjustment to «,, involving the equating of the total observed and total
expected deaths in each calendar year (Step 4 of Section 4), is shown to be
critical in establishing both a trend the time series {x,} and consistency
between the different methods of determining {x,}. This constraint is not
imposed under the GLM approach.

e The computed {x,} are naturally supportive of a time origin sited in the third,

rather that the second year into the base quadrennium, for the case studies
investigated.
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Table 1

Parameter estimates and (standard errors): equation (6.1)

Case 1
Case 2

Case 3

Case
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

Case
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

1004,
-0.0081

1A
6.987
5.787
6.142
4278
4.956
3.532
2.080
0.856
1.428
0.444
-0.044
-2.253

1A
5.320
2.412
7.717
3.369
3.407
1.560
3.231
-3.156
0.934
1.657
1.572
-2.293

100g, b, b, b,
-0.07 -4.67509 5.629188 -1.2
0 -4.470 5.499 -0.9896
(0.1347)  (0.1040) (0.1395)
0 -4.540 5.568 -1.050
0.1217) (0.0939) (0.1261)
Table 2

Step 4 x, estimates
1B 2A 2B 3A 3B
7.375 6.578 7.509  6.731 7.551
6.114 5.492 6.282  5.639 6.339
6.495 6.815 6.663 5.963 6.713
4.528 4118 4728 4257 4801
5249 4730 5437 4871 5.501
3.744 3429 3949 3.561 4.029
2207 2102 2427 2221 2.519
0.909 0.978 1.131 1.085 1.233
1.517 1.485 1.720 1.597 1.817
0.472 0.577 0.670 0.674 0.769
-0.047 0.125 0.145 0.222 0.253
-2.400 -1.892 -2204 -1.829 -2.091

Table 3

Step 3 x, estimates
1B 2A 2B 3A 3B
5784  4.874 5.361 5.202 5.637
5.899 1.889 5.475 2.187 5.752
6.985 6.875 6.561 7279  6.837
4.863 2.845 4.439 3.143 4716
5.606 2.908 5.182 3.274 5.459
3.357 1.428 2933 1.697 3.210
1.755 3.024 1.331 3.231 1.608
-1.167 -2.661 -1.591 -2.604 -1.314
0.907 0.934  0.483 1.104 0.759
-1.879 1912 -2.303 2.025 -2.026
-1.642 1.735 -2.066 1.825 -1.789
-2914 -1.847 -3.338 -1.801 -3.061



Table 4
Parameter estimators and (standard errors): equation (6.2)

Co < Co G

Case 1A 0.07153  -.000608 Case1B 0.07198  -.000631
(0.0103)  (.000126) (.00945)  (.000119)

Case2A  0.07790  -.000658 Case2B  0.07731  -.000695
(0.0087)  (.000108) (.0096)  (.000121)

Case 3A  0.08328  -.000729 Case3B  0.08287  -.000763
(0.0084)  (.000105) (0.0094)  (.000119)

Table 5
Parameter estimates and (standard error): ARIMA(0,1,0)
Case 1A 1B 2A 2B 3A 3B

72 -0.840 0889 -0770 -0.883 -0.778  -0.877
0298) (0.316) (0271) (0.313) (0.274) (0310)

Table 6
Parameter values: equation (6.3)
Case 1A 1B 2A 2B 3A 3B

y, -0.1612 -0.1728 -0.1544 -0.1704 -0.1523  -0.1733
7 .00137 .00151 .00130 .00153 .00133 .00160
y, -0.0601  -0.0640  -0.0600 -0.0683  -0.0648  -0.0727
y, 000511  .000567 .000507 .000614 .000567 .000669

Table 7
Parameter estimates and (standard errors): equation (6.4)
Y ¥

-0.0578 0.000495
(.00622)  (.0000801)

Table 8
Parameter estimates and (standard errors): equation (6.5)
bO bl b2
Case 2 -4.637 5.412 -1.143
(0.1338)  (0.1032) (0.1386)
Case 3 -4.708 5.481 -1.205

(0.1207)  (0.0931)  (0.1250)



Table 9
Step 4 x, estimates

Case 2A 2B 3A 3B
1983 6447  7.151 6.588  7.202
1984 5393 5991 5529  6.053
1985 5700 6.339 5835  6.395
1986  4.046  4.506 4.175  4.582
1987 4662  5.198 4793  5.266
1988 3399 3.794 3523 3.875
1989  2.086 2333 2201 2425
1990 0990 1.109 1.095 1.209
1991 1.485 1.665 1595  1.761
1992 0.600 0.674 0.697 0.771
1993 0.141  0.159 0239 0.264
1994 -1.848 -2.081 -1.778 -1.972

Table 10
Parameter estimators and (standard errors): equation (6.2)
Co ¢ o ¢
Case2A  0.08583  -.000767 Case2B  0.08406  -.000778
(.00811)  (.000100) (.00958)  (.000120)
Case3A  0.09069  -.000830 Case3B  0.08947  -.000844
(.00785)  (.000097) (.00937)  (.000118)
Table 11
Parameter estimates and (standard error): ARIMA(0,1,0)
Case 2A 2B 3A 3B

A 0754 -0839 -0760 -0.834
(0.266)  (0.297)  (0.268)  (0.295)

Table 12
Parameter values: equation (6.3)
Case 2A 2B 3A 3B

y, -02101  -0.2315  -0.2244  -0.2035
7 .00188 .00214 .00205 00192
y, -0.0647 -0.0705 -0.0689  -0.0746
7, 000578  .000653 .000631 .000704

Table 13
Parameter estimates and (standard errors): equation (6.4)
Vo L4

20.0590  0.000483
(.00483)  (.0000865)



Table 14
Parameter estimates and (standard errors): equation (6.1)
100a, 100q, b, b b,
Case 1 0.014429 -0.040629 -4.399861 5.568973  -0.654909

Table 15
Parameter estimators and (standard errors): equation (6.2)
Co ¢

0.07992  -0.000703
(.00323)  (.0000393)

Table 16
Parameter estimates and (standard error): equation (7.1)
A g
-0.457 0.742
0.124) (0.117)

Table 17
Parameter estimates and (standard errors): equation (7.2)
¢ c, cy
-1.775 0 1.601  -1.419
(.0587) - (.0612) (.0236)
Table 18
Parameter estimators and (standard errors): equation (6.2)
¢, ¢

0.05010  -0.000291
(0117)  (.000143)

Table 19
Parameter estimates and (standard error): equation (7.1)
smoothed un-smoothed
A 1 A 7
0382 0762 -0381  0.768
(.0993) (.113) (.0971) (.112)



Fig. 1. RF for u, , various «,
Fig. 2. RF for i, , various f3,
Fig. 3. RF for u, , specific residuals, x, , forecasts

Fig. 4. RF for 4, , regression approach, 3, residuals

Fig. 5. RF forg,, specific a,, B, , residuals
Fig. 6. RF forg,, various a_, 3,
Fig. 7. RF forgq,, specific residuals, «, , forecasts

Fig. 8. RF forg,, regression approach, £, , residuals

Fig. 9. RF for 4, , specific «,, B, , residuals, «,, forecasts
Fig. 10. Forecasting £, , L-C approach, «,, £, , residuals, x,
Fig. 11. Forecasting x, , comparative forecasts

Fig. 12. Case 1A: estimated «, values with various forecasts



Case1(A or B): alpha(x) vs x
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Case2(A or B): alpha(x) vs x Case3(A or B): alpha(x) vs x
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Fig. 1. RF for g, , various a,



Case 1A: beta(x) vs x Case 1B: beta(x) vs x
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Case 1A: residuals vs year Case 1A: residuals vs age
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regression method: beta(x) vs x
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Case 1A: alpha(x) vs x
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Case 2A: residuals vs year
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regression method: beta(x) vs x
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Case1(A or B): alpha(x) vs x
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L-C: beta(x) vs x

L-C: alpha(x) vs x
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year 2012 forecast, log(mu) vs x
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pensioners, kappa(t): estimates to 1994
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