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A CASH-FLOW APPROACH TO PENSION FUNDING
ABSTRACT

The problem of how to fund a defined-benefit pension plan is detached from the problem of
how the cost of such a plan should be recognized. An approach to funding based on the
projection of aggregate cash-flows and the explicit modeling of new entrants is presented. It
is shown that commonly used funding methods can be derived from the cash-flow approach.
A generalized funding method for a plan subject to a stationary distribution of new entrants is
derived. It is concluded that plan actuaries might need to modify existing funding methods to
incorporate useful information about the expected number and distribution of future entrants.

1. INTRODUCTION

On setting up a defined-benefit pension plan, the plan sponsor is immediately faced with the
question of what contributions should be paid into the plan. Before the advent of modern
pension accounting standards', there was no need to treat this as a separate problem from how
to recognize the cost of the plan, as the pension cost charged in the sponsor’s financial
statements could simply be taken as the contribution paid by the sponsor. Thus, the standard
actuarial texts dealing with pension mathematics use the term “actuarial cost method” as a
synonym for any method of funding a defined-benefit plan which satisfies certain
requirements. Anderson (1992), for example, defines an actuarial cost method as one which:

..assigns to each fiscal year a portion of the present value of future benefit payments in such a
way as generally to accrue costs over the working lifetimes of employees.

This principle of cost recognition is consistent with accruals accounting and obviously
excludes funding strategies such as “pay-as-you go”. Anderson points out, however, that there
are “many such cost methods in use, each with a different philosophical foundation”, and
goes on to derive actuarial formulas for several different methods in his textbook. Whilst
these “cost methods” are quite justifiable as alternative funding strategies for a defined
benefit plan, it was clearly not a satisfactory state of affairs that such discretion should be
permitted in the recognition of pension costs in published financial statements, where a key
objective is to allow comparisons to be made on a consistent basis. Thus, pension accounting
standards have greatly limited the scope for alternative methods of cost recognition, and these
restrictions are likely to be tightened further.?

Certainly, there are also regulatory constraints which apply to funding. Anderson writes that:

..in the US and Canada, and indeed in almost every modern industrialized country, it is not
generally legal for a private employer to establish a pension plan which is not properly funded.

“Properly funded” implies a minimum fund which is linked in some way to the accrued
liabilities of the plan, and an upper funding limit may also be prescribed by law to prevent the
abuse of tax privileges. Such restrictions, however, still allow considerable flexibility, and the

! such as SFAS 87 in the US and SSAP 24 in the UK.
2 See Thornton (1998) for a discussion of proposals for the new international pension accounting
standard IAS 19.



This equation states that the rate of increase of the fund assets is equal to the investment
income plus the contribution income less the benefit outgo.

For the purpose of projecting into the future, we shall adopt the standard actuarial approach of
assuming that some fixed investment return will be earned on the fund assets, by writing 8(f)
={. Hence equation (1) can be re-written as:

d _ &
E[F(t) x e 5’] = C@®) - B@t)|e™

We now define the current time to be #y, and project into the future by integrating both sides
of the above equation from #j to infinity, which gives:

[F(r) x e ]°° = TLC(:‘) — B() |e™ .dr

Consider now the value of the left-hand-side bracket at its upper limit. This value will only be
non-zero if the fund is increasing at rate equal to (or faster than) the assumed investment
return. Such an eventuality would imply that the plan is being over-funded, so we shall
impose the following restriction for all acceptable funding strategies:

Lim{F@®)x e-f"} =0

1>

On applying this condition to the integrated equation we obtain the following expression:

F(t,)+ ij(:)e-ﬁ“"'") dt =0]-B(z‘)e'5("‘“’ dt 2)

ly fy

The interpretation of above equation is clear: for any acceptable funding strategy we require
that the fund assets plus the present value of the future contribution income equals the present
value of the future benefit outgo. This simple equation-of-value could have been written
down immediately from first principles.

Possible funding solutions

Equation (2) encompasses a wide range of possible funding strategies. At one extreme we
have the “pay-as-you-go” solution, given by:

e F(H=0 forall¢
o C(H)=B() forallt

At the other extreme we have a “pre-funded” plan for which no further contributions are
required, given by:



The structure of the population model is illustrated in the diagram below:

POPULATION MODEL

n(x,f).dx = size of active member cohort at time #

< »
< >

X x+dx

\ Decrements between ¢ and t+dz = n(x,t).px.dx.dl
/ New entrants between ¢ and r+drf = g(x,?).dx.d¢

n(x+dz,t+dr).dx = size of active member cohort at time +d¢

< >
< >

x+dt x+drdx

The above model leads directly to the following equation:
[A(x +dt,t +dt) — n(x,0)] dx = [g(x,0) = n(x,0)u, | dx.dt

The above equation states that the number of active members in any given age-cohort will
change over any element of time by the difference between the new entrants and service table
decrements affecting that particular age-cohort. The left-hand-side of the above equation can
be re-written as:

[nCx +dt,t +dit) = n(x + dt, 1)) dx + [n(x + dt, 1) — n(x,1)].dx

= @dt.dx +@dt.dx
ot dx

Hence our population model is represented by the following partial differential equation:

on oOn
— = ) — W, 3
a3 8(x, 1) —n(x,H)p 3)

3.1 SOLUTION FOR A PLAN WITH A FIXED RETIREMENT AGE

Following Bowers et al (1997), we shall assume that all the active member are within the age-
range a < x < r, where:

e g = youngest age at which employees are admitted to the plan

e 7 =fixed retirement age



We now write down the following identities:

op Op
X+di,t+dt)= p(x,t)+——dt +=—dt
1 )= p(x,0) PRy

on on
n(x +dt,t+dt) = n(x,t) +—dt + —dt
Ox ot

Using each of the above identities to substitute for p(x+d#,i+dr) and n(x+dt,t+dr) in equation
(5) leads to the following partial differential equation:

! (6—p+a—p—1)+—l—(@+@j+p1:0 (6)
p(x,t)\ox ot n(x,t)\ox ot

We assume that all active members have zero past service when the plan is established.
Furthermore, the average past service at the youngest age, x = @, must always be zero. This
leads to the following boundary conditions:

® p(x,0)=0forall x

e pla)=0forall ¢

It can be shown that these boundary conditions lead to the following solution of the partial
differential equation:

p(x,t) = L J.n(z’t_erZ).dz for t<x-a
n(x,t) 7, I
o ™
L n(z,t — x + z)
p(x,t) = D) J L dz for t>x-a

If we know the distribution of past service at time f; , the solution takes the following form in
therangex — ¢ + fp> a.

l n(x—t+1t,,t l Y on(zt-x+z
P(x,t) = p(x =t +1y,t) x —5—x ( wlo) L ( ) dz
X=t+1l, n(‘x’ t) n(x’[) X—l+ly lZ

3.3 EXAMPLE OF A STATIONARY POPULATION SOLUTION

We now use our population model to derive the new entrant density function and past service
distribution of a plan with a stationary population of active members modeled by a simple
parametric function. The active member population can only be stationary if the distribution
of new entrants is also stationary, hence we write:

o n(x,t) = n(x)

o g(x.n)=gx



Figure 1: Hypothetical active member density function
80 += ; ;

704
60+ o
50 T = ‘a1

n(x)
5

10 |

20 25 30 35 40 X 45 50 55 60 65
—*—mu_x=0.05 —# mu_x=0.04 —+— mu_x=0.03 |

35F|gure 3: Distribution of past service for constant forces of decrement

ol
S50

10 -

20 25 30 35 40 45 50 55 60 65

Fo—mu_x=0.05 —H-mux=004 —&— mu_x=0.0a




Ct)=C; forallt
where C;s is the “standard contribution” of our chosen funding strategy.

Putting #, = 0 in equation (2) gives:
C, =8 [B()e™ dt
0

Hence, the standard contribution is the present value of the future benefit outgo multiplied by
the assumed force of interest. As the active member population is stationary, the density
function n(x,f) doesn’t depend on time, so we can write:

n(x, £) = n(x)

Hence from equation (7), the average past service at the retirement age, x = r, is given by:

"t n(z)

p(r,t)z;’%';,:[—iz_.dz for t<r-a
p(r,t):%;[%zz).dz for tzr-a

Note that the distribution of past service becomes stationary when ¢ > » — a, so we can write:
pr,y=p(r)fort>r—-a.

Present value of projected benefit outgo

The benefit outgo of the plan at any time is simply the sum of the pensions then being paid to
retired employees. Thus, if the pension of a retired member aged  + z at time ¢ is b(z, f), the
total benefit outgo at time ¢ is given by:

B(t) = k.n(r)]‘b(z,t).z’l*—’.dz

The rate of benefit payment, b(z, t), will be zero for employees who attained retirement age
before the plan was established, and will otherwise be proportional to the average past service
at retirement of any age-cohort of pensioners.

It follows that:

o b(z,H)=0 ifz>¢

o b(z,0)=kxp(r,t—z) if t-rta<z <t
o b(z,0)=kxp(r) ifz<t-rta

Substituting the above expression for b(z, f) into the formula for the total benefit outgo gives:

10



Hence the total contribution at time u is given by:

Cu) =c, ]n(x,u).dx for usr—a

a+tu
Cu)=0 for uzr-a
where c; is the standard contribution per active member

To obtain a formula for ¢;, we must evaluate the present value of the projected contribution
income and the present value of the projected benefit outgo.

Present value of projected contribution income

The present value of the projected contribution income is given by:

r-a

TC(u).e‘s".du =c, ] ]n(x,u).e"a“.dx.du
0 0

atu

After the plan is closed to new entrants, the active member density function changes over
time for any age-cohort purely as a result of the service table decrements, thus:

x

n(x,u):n(x—u,O)xl for x=2a+u

x—u

Substituting the above formula into the double-integral gives:

¥ r

c, f n(x — u,O).L.e'a“ .dx.du
J. I I
0 x

a+u —u

On applying the substitution z = x — u for the first integration with respect to x, we obtain:

7

—a
|
0

We now reverse the order of integration, which gives:

j n(z,O).lzlJ.e'S”.dz.du

z

e, i[n(z,O)leli e dudz=c, ifn(z,O).cTzz:l .dz
a 0 z

The right-hand-side integral is the sum of the present value of the projected contributions for

each active member. This is the usual way of expressing the present value of the total future
contribution income under the “individual cost method” approach.

12



The above formula reflects the fact that the density function for any age-cohort is subject only
to service table decrements after the plan is closed to new entrants. The average past service
at retirement of this cohort is simply the past service prior to closure of the plan plus the
remaining service until retirement, thus:

prou—z)=plr—u+z0)+u—z

We can now deduce that the expression for the benefit outgo of the active members is:

Ba(u):k-[[p(r—u+z,0)+u—z].n(r—u+z,0). s dz for usr-a
0

r=u+z

B.(w=k ﬂp(r—u+z,0)+u——z].n(r—u+z,0). 28 .dz for uz2r-a

u-r+a r-u+z

Hence the present value of the active member benefit outgo is given by:

-

Q

[B,(w).e™ du=k
0

© ey

.[[p(r ~u+z,0)+u—z|n(r-u +z,0).l~lfi.e’5“ .dz.du
0 .

r-u+z

+k j '[[p(r —u+2,0)+u-z|n(r- u+z,0).l’i.e'5“.dz.du

r-au-r+a reu+z

It is demonstrated in Appendix 1 that the above expression simplifies to:
w© - ]

[B,().e™ du=k.a, [[p(x0)+r —x].n(x,O).l—’.e"s(’"‘).dx

0 a x

The integral on the right-hand-side of the above equation is the sum of the present value of
the future pensions of the active members, allowing for accrued service at the date of closure
and future service up to retirement.

Standard contribution per active member

Returning to the version of equation (2) given at the start of this sub-section, we can use the
results derived above to obtain the following expression for the standard contribution per
active member:

r @ l
k.a, -[[p(x,O) +r- x].n(x,O).j—’ 720 dx 4+ k.n(r). p(r) j—’;y a,,,.dy - F(0)
a x 0

¢, = . -
[n(2.0). . dz

a

This corresponds to the normal cost of the aggregate method.



Present value of projected benefit outgo

The first retirements will not occur until ¢ = r — a, so the benefit outgo prior to this time will
be zero. As all the active members enter at the youngest age, all will have the same past

service at retirement, given by p(#,f) = » — a. It follows that the projected benefit outgo of the
plan will be given by the following expression:

B(t)=0 for t<r-a
t—r+a
B(t)=k.(r—a).n, J‘%dz for t>r—a

0 r

Hence the present value of the projected benefit outgo is given by:

?B(r).e‘ﬁ’ .dt = k.(r —a).n, o]‘ [—Tal}ie‘ﬁ’dz.dt
[ r-a 0 r

Reversing the order of integration in the double-integral gives:

u]B(t).e's’.dt = k.(r—a).noa] ]. l}ie'f”dt.dz
0

0z¢r-a °r

We now use the substitution y = ¢ — z for the first integration with respect to #, which gives:
@ W o0 Z

J’B(;).e'ﬁ’ dt = k.(r —a).n, j j %e'sy.e'&dy.dz

0 Or-a °r

e——S(rfa)

8

= J'B(t).e's’.dt =k.(r—a).n,.a,.
0

Standard contribution per active member

As there is no fund at time ¢ = 0, we set the present value of the projected contribution income
equal to the present value of the projected benefit outgo, which gives:

a -8(r-a)
- _ e
cl..nU.Léhla—=k.(r—a).no.a,. 5
k.(r—-a).a,.
L kt-ag,
Seirmal

This formula is recognizable as the normal cost of the entry age normal method, where the
assumed entry age is at x = a. As we have assumed a population structure in which all active
members enter at age x = a, we have once again obtained a result which is consistent with the
appropriate individual cost method.

16



Benefit outgo for stationary population of active members

We now assume that the active member population is stationary, thus we write:

n(x,t) = n(x)

If we have a new plan, the population of deferred pensioners will not initially be stationary,
but will become so when ¢ 2 r—a. The same is true of the distribution of past service for the
deferred pensioners, so we can write:

o n'(r,t-z)=n(r) for 0 z<i-r+a

o pY(r,t=2)=p(r) for 0< z<t-r+a

Thus, our expression for the benefit outgo can be re-written as:

»

t ZW

B"()= kInw(r,t—z)pw(r,t—z).;—;’.dz for t<r-a
0
t—r+a

B"()=k jnW(r)pW(r).%.duk j’nW(r,t—z).pW(r,z—z).%:wi.dz for tzr-a

0 r t-r+a r

It is demonstrated in Appendix 1 that the present value of the above benefit outgo is:

k'ar f =8(r-x) ' lz w er
S ;[n(x).e sz.pz .E.dz.dx

Standard contribution for withdrawal benefit

We now define C” as the level standard contribution required to fund the withdrawal benefits

of the plan. From equation (2), the present value of this standard contribution paid as a
perpetuity must equal the present value of the deferred pensioner benefit outgo. Hence, using
the result derived above:

o
8

= % ,[n(x).e'S(r_X) .[%'l-lw-l*-dz'dx

z w
L

= C = k.a, [n(x).e?" jj—Z.p:.%.dz.dx

x “x z

Thus, the standard contribution is the present value of the annual accrual rate of withdrawal
benefits summed for all the active members, which is the result we would obtain when
calculating the normal cost of the unit credit method for withdrawal benefits. Similar results
can be derived for other service table decrements which give rise to ancillary benefits, such
disability retirement and death.

18



PVBy+ PVB, = (PVCy+ PVC))x cs

From the properties of the unit credit method, we know that the unit credit standard
contribution per member, ¢y, is the contribution that would fund the future service benefits of
a stationary population.

It follows that:

PVBy=PVCyx ¢

Hence the standard contribution per member for our generalized funding method is given by:

_ PVC, xc, + PVB,

c, an
PVC, + PVC,

Note that ¢ is simply the total unit credit contribution for the plan, as derived at the end of
Section 4.1, divided by the initial number of active members,

Present value of benefit outgo and contribution income from surplus new entrants

The present value of the benefit outgo from the surplus new entrants is given by:

k

PVB, =

a, L serr
= J.gl(x).(r—x).l#.e 8= iy (12)

And the present value of future contributions of one unit per surplus new entrant is given by:
PVC, = L a dx 13
1 -g.‘-gl(x)'ax::l' ( )

Each of the above formulas are derived in Appendix 2. However equations (12) and (13) can
also be obtained directly from first principles, as follows.

In both of the above integrals, we can replace 1/8 with the symbol for a perpetuity, ie:

1 7 s -
g:{!e .alt:am

Hence equations (12) and (13) can be written as:

PVB, =7 | {k.c‘zr %-(f - X)f“’"‘)}gl ().
PVC =agfa (x).dx

a8

20



We shall simplify the mathematics required by assuming that the active members are subject
to a constant force of decrement given by pu = vy, which leads, from equation (9), to the
following formula for go(x):

2 (x) - Ae—u(x—a)
As the force of decrement is a constant, we can write:

!

Zro_ e-u(r-X)
l

X

We now assume that the surplus new entrants are some fixed multiple of the new entrants
required for a stationary population, ie:

gi(0) =1 xg(x)=fxAxe?
where fis a parameter in the range -1 < f< o

Thus, the initial population of active members will evolve over a period of » — a years into a
stationary population of the same shape as the initial population, but multiplied in number by
the factor 1 + f'. When = —1 we will be modeling a plan closed to new entrants, thus the
standard contribution will be as for the aggregate method. When f'= 0 we will be modeling a
stationary population, and it is clear from equation (14) that the standard contribution will be
as for the unit credit method. As f tends to infinity we will move towards the standard
contribution required for a plan with no initial population of members.

r

o . /
Substituting our expressions for n(x,z), T

x

and gi(x) into equation (14) gives:

T8 =18
) fxUag + Da)
Fx @+ x5y -t + ()

(15)

CS

The ratio ¢y/cy is shown in the table below for different values of f and &, where the other
parameters have the following fixed values:

o k=1

o g=20,r==65

o n=y=0.05

Ratio of standard contribution to unit credit contribution
fl -1 -0.5 0 1 2 5 ©
3

0.01 1.29 1.03 1.00 0.98 0.98 0.97 0.97
0.02 1.30 1.05 1.00 0.97 0.95 0.94 0.93
0.03 1.31 1.07 1.00 0.95 0.93 0.91 0.88
0.04 1.32 1.08 1.00 0.94 0.91 0.88 0.84
0.05 1.32 1.09 1.00 0.92 0.89 0.85 0.80
0.06 1.31 1.10 1.00 0.91 0.87 0.82 0.76
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Figure 4: Active member population which doubles in size
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Figure 6: Projected cash-flows per active member
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The most obvious further refinements to the generalized funding method presented in this
paper would be:

e a non-stationary new entrant density function which could accommodate scenarios in
which major short-term changes in the workforce were expected (eg a temporary
recruitment drive);

e non-stationary service table decrements which might allow for anticipated changes such as
improvements in mortality experience over time;

e the inclusion of alternative strategies for the amortization of surplus or deficit in the
projection of the contribution income stream.
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The final stage of the derivation is to substitute the expressions for p(r, y) and p(r) given at
the start of Section 4.1, which gives:

k.a, r_f ]n(z).?i.e'sy.dz.dy + k.a,. e-w_a) 'J'n(z)

0 r-y

Reversing the order of integration in the double-integral gives:

r-a =8(r-a) 1

k.c_zr]’]. g n(z) dy dz + k.a, jn(z) L.dz

~8(r-a) r

jn(z)

—B(r z) _ 6(: a)
= aj[ jn(z) dz+kae

n(z) ’. 32 gy

z

|
O’JIN‘

r

n-——.

which is the required formula for the present value of the projected benefit outgo.

Plan closed to new entrants

The expression derived for the present value of the active member benefit outgo was:

r-au

IB (wy.e™.du=k I '[[p(r—u+20)+u z] n(r—u+zO) l e dz.du

r—u+z

+k I I[p(r —u+2z,0) +u—z].n(r - u+Z,0).L.e_§",dz,du

r-au-r+a r-u+z

Reversing the order of integration in both of the above double-integrals gives the following
three double integrals, because the second of the above double-integrals must be split into
two regions:

E floo e rumspote-us 20 oause @
+ | ([ —u+z0) +u- z]n(r—u+z0) e duds @
+kf _‘.[P(r*u+20)+u Z]n(r—u+20) e dudz ®
0 r-a r-u+z

If we inspect the limits of @ and ®, we see that their sum can be expressed one double-
integral, which in turn can be combined with @ to give the following double-integral:
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Reversing the order of integration in the double-integral gives:

r-a

k.a, In(z).p:'.%[ Ie'sy.p(z,y—r+z).dy).dz + k.?z,.e

r-z

-8(r-a) r

w l:y
. In(z).p(z).pz .l—w.dz

We now focus our attention on the first-integral of the double-integral, shown in brackets. If
we use equation (7) to substitute for p(z ,y —r + z) we obtain:

Te’sy.p(z,y—r+z).dy——rf i Jn(x) dx.dy

-z r-y

Reversing the order of integration in the double-integral above gives:

r-a

Ie'sy.p(z,y—r+z).dy—l—”.[n(x) dxj ¥ dy

n(2) ; .
r-a lz n(x) =8(r-x) _ e*S(rﬂz)
= ,'[ p(z,y—r+z).dy= n(z) ; (T .dx

Hence the present value of the deferred pensioner benefit outgo becomes:

r w 8(r-x) _ =8(r-a) -8(r-a) r w
k.a, JZ NTAG l’w n(x) [——%}dx.dz + kﬁ,.e 5 In(z) (). pz.jw .dz

And reversing the order of integration in the double-integral gives:

=§(r-x) _ —B(r a) l —S(r—a) r

a

We now turn our attention to the second term in the above expression, again using equation
(7) to substitute for the stationary past service function, p(z), of the active members. Thus:

_ e—&(r—a) r l S(rfa) r " r n(x)
ka,. 5 Jn(z) pE).p, ~—.dz=k.a,. 5 _[l py l—w I Ldx.dz

Reversing the order of integration in the double-integral gives:

~8(r-a) r ~8(r-a) *

ka.l 5 jn(z) (2. b odr=ka.l jn(x)j— pz. " o

Hence the expression for the present value of the deferred pensioner benefit outgo becomes:
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r-au 0 u- r+al

jB(u) e du=1k J jp(r u-z).n(r,u— z) be: e dz.du+ k. p(r).n(r) I j 2 7™ dz.du

00 r-a 0 I‘

+ kj jp(rt—z)n(ru z). ’”. ™ dz.du

r—au-r+a

Reversing the order of integration in each of the above double-integrals gives the following
Jfour double-integrals (because the third double-integral above must be split into two regions):

r—ar-

k j. Je au.p(r,u—z).n(r,u—z).lri.du.dz O]
0 z l"
+ k.p(r). n(r).f I e, bee .du.dz @)
0 z+r-a r

+ kJ J- e'?”‘.p(r,u—z).n(r,u—z).l—’li.du.dz ®

0 r-a r

+ kj. J. e'a".p(r,u~z).n(r,u—~z).l’li.du.dz @

r-a z r

On inspecting the limits of ® and @, we see that their sum can be expressed as one double-
integral, which in turn can be combined with @ to give another double-integral. Hence, the
present value of the projected benefit outgo can be written as:

k?mja  p(ru—z).n(ru— z) b .du.dz + k.p(r).n(r). J _[ o l”’ .du.dz

0 =z 0 z+r-a

Applying the substitution y = u — z for the integration with respect to u in each of the above
double-integrals gives:

r-a

kJ‘e"SZ - dz Ie ¥ p(r,y).n(r,y).dy + k.p(r). n(r)j - lrz” .dz I Y dy
0 0

r r r-a

r-a -8(r-a)

= k.a, je’ay.p(r,y).n(r,y).dy + k.p(r).n(r).a,.

=3

We now use equations (4) and (7) to obtain expressions for p(r,y)xn(r,y) and p(r)xn(r), each
of which will be substituted into the above expression for the present value of the benefit
outgo arising from the surplus new entrants.

From equation (4) the active member density function for the surplus new entrants is given
by:
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= pr)nry=I J-de

x

On substituting the above expressions for p(r,y)xn(r,y) and p(r)xn(r) into the formula for the
present value of the benefit outgo we obtain:

T = -8(r-a) r _
PVB, =ka, | [e -ayLMde_dy L kg Ilr-gl(X).(r 9,
0 y 6 l

x a x

r—

Reversing the order of integration in the double-integral gives:

rr=

PVB, =k.a j

(o 1-&(X).(r %) k.a,.e*" "l . g, (x).(r ~ %)
Ie hd dx o+ 5 )

r- x a X

r _ =8(r~x) _ ,-8(r-a) = -3(r-a) r _
—ta ..[l,.gl(x).(r x)(e e b + k.a,.e J-l,.gl(x).(r x)dx
" l ) ) l

X a X

(x).(r - x).ll—’.e"a("” .dx as required.

Present value of contributions of one unit per surplus new entrant

Projecting u years into the future, we define:
* n(x,u) = density function for active members arising from surplus new entrants
¢ N(u) = total active member population arising from surplus new entrants

N(u) will increase over the first » — g years and then attain its ultimate value. Allowing for the
fact that n(x,u) is stationary for all values of x below a + u, the expression for N(u) can be
written as:

N = [ no).ds+ | [neeuwax for usr-a

a atu

N(u):]n(x).dx for u>r-a

a

Hence the present value of future contributions of one unit per surplus new entrant is given
by:

PVC, = ’].N(u).e's".du = rfa]un(x).e's".dx.du + T ].n(x,u).e’a".dx.du + ]‘ ]n(x).e“a”.dx.du
0 0 a 0 a+u r-aa

Reversing the order of integration in each of the above double-integrals gives:
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