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ARTICLE

Quantile regression analysis reveals widespread
evidence for gene-environment or gene-gene
interactions in myopia development
Alfred Pozarickij1, Cathy Williams2, Pirro G. Hysi 3,4, Jeremy A. Guggenheim 1

& UK Biobank Eye and Vision Consortium#

A genetic contribution to refractive error has been confirmed by the discovery of more than

150 associated variants in genome-wide association studies (GWAS). Environmental factors

such as education and time outdoors also demonstrate strong associations. Currently how-

ever, the extent of gene-environment or gene-gene interactions in myopia is unknown. We

tested the hypothesis that refractive error-associated variants exhibit effect size hetero-

geneity, a hallmark feature of genetic interactions. Of 146 variants tested, evidence of non-

uniform, non-linear effects were observed for 66 (45%) at Bonferroni-corrected significance

(P < 1.1 × 10−4) and 128 (88%) at nominal significance (P < 0.05). LAMA2 variant

rs12193446, for example, had an effect size varying from −0.20 diopters (95% CI −0.18 to

−0.23) to −0.89 diopters (95% CI −0.71 to −1.07) in different individuals. SNP effects were

strongest at the phenotype extremes and weaker in emmetropes. A parsimonious explana-

tion for these findings is that gene-environment or gene-gene interactions in myopia are

pervasive.
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The prevalence of refractive error has doubled in several
parts of the world in the past few decades1–3. By 2050 it is
predicted that 50% of the world population will be myopic

(near-sighted), with 4.8 billion individuals affected4. Myopia is
associated with axial elongation of the eye, which increases the
risk of retinal detachment, myopic maculopathy, glaucoma, and
other pathological complications, making it an increasingly
common cause of visual impairment and blindness5–7. Suscept-
ibility to myopia is determined both by genetic and environ-
mental factors. Genome-wide association studies (GWAS) have
identified ~150 genetic variants associated with refractive
error8–11, including some overlap with monogenic disease gene
loci12. The time children spend outdoors, time performing near-
viewing tasks, and the number of years in education are also
strongly associated with myopia development13–20.

In conventional GWAS analyses of quantitative traits, it is
assumed that each copy of a genetic variant shifts the phenotype
by the same amount in all individuals, i.e. genetic effect sizes are
assumed to be uniform. This assumption feeds forward into
metrics such as SNP-heritability, and polygenic risk scores (PRS)
used for genetic prediction. However, loci with gene-gene (GxG)
or gene-environment (GxE) interactions will violate this
assumption: for these loci the (marginal) effect size of a variant
varies from person to person, depending on their genotype at
other loci or their environmental exposure profile (for variants
involved in GxG and GxE interactions, respectively). Accordingly,
a number of elegant studies have used evidence of a non-uniform
effect size across individuals as a ‘signature’ to identify GxG or
GxE interaction loci21–24. A major advantage of this approach is
that it does not require the identity of the environmental risk
factor underlying a GxE effect to be pre-specified or measured,
nor the identity of the second genetic variant to be known when
detecting GxG interactions. Instead, the presence of GxG or GxE
interaction can be inferred using only genotype information for a
genetic marker and phenotype information for the trait of
interest.

Since GxE effects are implicated in myopia susceptibility25–28,
and yet currently very few such interacting variants have been
discovered, we aimed to comprehensively assess the known
genetic variants associated with refractive error for involvement
in interactions by testing for this ‘signature’ of non-uniform
genetic effect sizes across individuals. We compared our results
for refractive error with those for height, a highly polygenic trait
with little or no evidence of gene-environment or gene-gene
interactions.

Results
In the sample of 72,985 unrelated, European-ancestry participants
whose genotype data passed quality control and had phenotype
information available, the mean ± SD refractive error was −0.25 ±
2.67 diopters (D) and the average age was 57.8 ± 7.8 years.

We assessed 146 genetic variants that showed genome-wide
significant association (p < 5 × 10−8) with refractive error in a
recent meta-analysis carried out by the CREAM Consortium and
23andMe and that showed evidence of independent replication in
the UK Biobank sample11. We coded the risk allele as the allele
associated with a more negative refractive error.

Conventional ordinary least squares (OLS) analysis. A stan-
dard, ordinary least squares (OLS) linear regression analysis of
SNP effects under the assumption of constant effect size across all
individuals produced very similar results to those reported pre-
viously in UK Biobank participants11 (Supplementary Data 1). Of
the 146 variants tested, the strongest effect was for rs12193446

near LAMA2, which was associated with a −0.43 D more negative
refractive error (95% CI from −0.39 to −0.48, p= 1.1 × 10−77).

Conditional quantile regression and meta-regression (CQR-
MR). Figure 1 illustrates the CQR-MR analysis process, and
contrasts it with OLS regression. Whereas an OLS model seeks to
minimize the sum of squared residuals between data points and
the mean effect for each genotype class (AA, AB, and BB), a
quantile regression model seeks to minimize the absolute resi-
duals at a specific quantile of trait distribution for each genotype
class. Crucially, unlike OLS regression, CQR allows a variant’s
genetic effect size to vary between individuals, depending on their
position in the trait distribution (Fig. 1).

The type I error rate and statistical power of CQR-MR were
investigated (see Methods) and full results are presented in
the Supplementary Notes 1 and 2. The main finding was a
systematic inflation of the type I error rate of CQR-MR that was
independent of MAF (Supplementary Fig. 1), but that this could
be readily corrected using a ‘genomic control’ approach. This
correction was applied in all of the results presented below. The
statistical power of CQR-MR varied depending on the number of
different quantiles included in the meta-regression. The use of 9
quantiles spaced equally at 0.1 intervals was found to perform
well (Supplementary Fig. 1) and hence was applied in all of the
present analyses.

Widespread evidence of non-uniform effects sizes. CQR-MR
was used to determine if effect sizes for the 146 refractive error-
associated variants differed across individuals depending on their
position (i.e. their quantile) in the refractive error distribution.
Nearly all variants exhibited an inverse-U shaped effect size
profile, with the strongest effect size in individuals at the extremes
of the refractive error distribution and a minimum effect size in
emmetropic participants near the center of the distribution.
Representative results are presented in Fig. 2 (results for all var-
iants are shown in Supplementary Fig. 2). For instance, for
rs12193446 (LAMA2), which had the strongest effect in the
conventional OLS analysis, the effect size varied from −0.20 D
(95% CI from −0.18 to −0.23) for individuals near the centre of
the trait distribution to −0.89 D (95% CI from −0.71 to −1.07)
for the most highly myopic individuals (Fig. 1). Exceptions to the
inverse-U shaped effect size pattern were observed for variants
such as rs1649068 (BICC1) and rs9388766 (L3MBTL3), which
displayed non-constant, yet nearly linear changes in effect size
across quantiles of the refractive error distribution, along with
SNPs such as rs9680365 (GRIK1) and rs7449443 (FLJ16171-
DRD1), which had essentially flat effect size profiles similar to
those obtained under the OLS assumption of a constant effect size
in all individuals.

Quantitative analysis of non-uniform effects. We used a 3-
parameter model to quantify the non-uniformity of effect sizes (see
Methods). After correcting for multiple-testing by applying a Bon-
ferroni adjusted p-value threshold of 0.05/(3 × 146)= 1.1 × 10−4, a
total of 66 (45%) of the variants showed significant non-uniform
effects, i.e. p < 1.1 × 10−4 for the β1 (linear) or β2 (quadratic) model
coefficients (Table 1 and Supplementary Data 2). Thus, 45% of the
genetic variants showed statistically significant evidence of differing
effect sizes depending where in the refractive error distribution an
individual lay, suggestive of the variant’s involvement in either a
gene-gene or gene-environment interaction. For the rs12193446
(LAMA2) variant, p= 2.12 × 10−36 for the β1 component, and
p= 1.19 × 10−30 for the β2 component. Notably, only 18 (12%) of
the variants failed to show at least nominal evidence of an inter-
action effect (i.e. β1 component and β2 component, p > 0.05).
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For comparison, an analogous set of analyses to those
performed above were carried out for genome-wide significant
variants associated with height. For height, only 6% of variants
(nine out of 148) displayed at least nominal evidence of a non-
uniform effect size (Supplementary Note 3, Supplementary Data 3
and 4, and Supplementary Fig. 2).

Polygenic risk score interaction with educational attainment.
We used the 146 refractive error-associated variants to create a
polygenic risk score (PRS) and examined whether this too
exhibited a non-uniform effect size in different individuals. As
shown in Fig. 3, the PRS effect size displayed the inverted-U
pattern across quantiles of the trait distribution as was observed
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Fig. 1 Conditional quantile regression (CQR) and meta-regression (MR) can identify if genetic effect size varies in individuals depending on their position in
the trait distribution. In conventional ordinary least squares (OLS) linear regression, SNP effect size is estimated under the assumption that it is the same
for every person in the sample. Thus, the effect size is calculated as the slope of the regression line (dashed blue line in top-left graph) obtained by
minimizing the sum of squared residuals between data points and the mean, for each genotype class (0, 1 or 2 copies of the minor allele). Alternatively, in
CQR, the SNP effect size is estimated at a specific quantile of the outcome distribution. Analogous to OLS, the effect size is calculated as the slope of the
quantile regression line (in the top-left graph, the nine red lines correspond to quantile regression fits for quantiles 0.1, 0.2, 0.3, …, 0.9 of the trait
distribution). For the variant shown, rs12193446, the effect size (slope) differs for individuals in different quantiles of the trait distribution; this can be
visualized more readily by plotting the effect size at each quantile (black circles with error bars in middle-right graph). OLS analysis assumes the effect size
is constant across quantiles of the trait distribution (horizontal red line in middle-right graph, with dotted red lines indicating 95% CI). After using CQR to
estimate the SNP effect size at a range of quantiles, the uniformity of the SNP effect sizes can be quantitatively assessed using MR (solid blue line in
bottom-left graph, with dashed blue lines showing 95% CI)
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for the majority of individual SNPs. In addition, the PRS effect
size differed across educational attainment strata. For participants
from the myopic tail of the refractive error distribution, more
time spent in education was associated with a larger PRS effect
size. For example for those in refractive error quantile 0.1, a 1 SD
increase in PRS was associated with a −0.82 D (95% CI from
−0.73 to −0.90) more negative refractive error in the lowest
educational stratum, yet a −1.11 D (95% CI from −1.02 to
−1.18) more negative refractive error for those in the highest
education stratum (p= 8.9 × 10−83 and p= 1.17 × 10−155,
respectively). The largest change in PRS effect size due to such an
interaction with education was 0.57 D (at quantile 0.2). The PRS
effect size difference associated with educational attainment was
smallest in emmetropes. For example, the PRS effect size was
within a narrow range of −0.25 to −0.37 D for participants in

quantile 0.6, irrespective of their level of education. For partici-
pants in the hyperopic tail of the refractive error distribution
(quantiles > 0.8), the PRS effect size was smaller in those with
greater educational attainment, opposite to the relationship seen
in the myopic tail. Thus, for example, for hyperopic participants
in quantile 0.9, a 1 SD reduction in PRS was associated with a
+0.62 D (95% CI from +0.55 to +0.69) effect on refractive
error in those in the lowest education stratum, yet only a +0.41 D
(95% CI from +0.38 to +0.44) effect in those from the highest
education stratum (p= 6.55 × 10−68 and p= 9.53 × 10−193,
respectively).

Discussion
Evidence of effect size heterogeneity—a signature of involvement
in GxG or GxE interactions—was found for 88% of the refractive
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Fig. 2 Changes in genetic effect size across the refractive error distribution for a representative subset of genetic variants associated with refractive error.
Genetic effect size estimates from conditional quantile regression (CQR) are represented by the solid black line and their 95% confidence intervals are
shown by the shaded grey region. The solid red line is the effect size estimate from conventional linear regression analysis with its 95% confidence
intervals shown by the red dashed lines. Effect size estimates from meta-regression are shown with the solid blue line with corresponding 95% confidence
intervals given by the dashed blue lines
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error-associated variants tested. Furthermore, the impact of this
phenomenon was dramatic: genetic effect sizes were as much as
four-fold higher in certain individuals compared to others. Pre-
vious studies of refractive error genetics have always assumed that
genetic effect sizes are the same in every person in the sample,
and thus this important source of inter-individual variation has
remained hidden.

Refractive error-associated variants typically had inverse-U
shaped effect size profiles, with the strongest effects observed at
the phenotype extremes, and effects closer to zero in emmetropes.
Very few SNPs had constant effects across all quantiles of the
sample distribution that matched those assumed in conventional
analyses. One potential explanation for these findings is the
process of ‘emmetropization’, in which the rate of axial eye
elongation during infancy is fine-tuned by a visual feedback loop
in order to maintain a sharp retinal image29. We speculate that
emmetropization may act as a buffer against the myopia- or
hyperopia-predisposing effects of genetic risk variants. Thus,
suppose that, during childhood, a myopia-predisposing risk allele
led to a small increase in axial eye length. This might subse-
quently be countered by a slowing of the rate of axial elongation
via visually-mediated feedback. Furthermore, suppose there exists
a limit to the amount of axial elongation that the emmetropiza-
tion system can compensate for (as has been proposed for the
axial elongation-countering effects of crystalline lens thinning30)
then in those individuals whose emmetropization limit is sur-
passed, genetic variants would have free reign to attain much
higher effects than in those individuals whose emmetropization
limit is not exceeded. Finding evidence to support a direct role for
emmetropization in causing the observed genetic effect size het-
erogeneity of refractive error-associated variants would likely
require studies in animal models; the recent discovery of a genetic
locus for susceptibility to visually-induced myopia is a first step in
this direction31.

Prior to this work, only a handful of specific GxE interactions,
and no GxG interactions had been reported for refractive error25–28.
The current work suggests that such interaction effects are likely to
be widespread. Applying our same analysis methods to a different
trait, height, yielded far fewer variants with signatures of a GxG or
GxE interaction (6% for height vs. 88% for refractive error). Given
that height and axial eye length share genetic determinants in
common (genetic correlation 0.1–0.2)32,33, it would be interesting to
examine genetic effect sizes across quantiles of the axial length
distribution, for example in samples of emmetropes and myopes.

The PRS findings confirmed the dramatic difference in
phenotypic effect exerted by refractive error-associated genetic
variants in different individuals, which contrasts starkly with the

simple deterministic effects expected of high risk genotypes.
Individuals who reached adulthood as emmetropes appeared to
have been ‘buffered’ against their genetic risk burden, and thus
genetic effect sizes in these individuals were correspondingly
small. By contrast, genetic effect sizes were often several-fold
larger in individuals who became highly myopic or highly
hyperopic by the time they reached adulthood. Time spent in
education appeared to further modify the phenotypic effects of
risk SNPs.

Our strategy for detecting inter-individual differences in
genetic effect sizes was based on a statistical test for variance
heterogeneity across genotypes. While variance heterogeneity is a
signature of GxG and GxE interactions21,34–36, it is not the only
cause. Parent-of-origin effects will give rise to increased variance
heterogeneity in heterozygous individuals at loci in which the
effect size varies dependent on which parent transmitted the risk
allele34. Similarly, ‘genetic nurture’, whereby untransmitted alleles
in parents (as well as transmitted alleles) influence the pheno-
type37 may also lead to variance heterogeneity. For example, if the
environment of the child is partly determined by the parents’
genotype, then risk alleles inherited by the child will potentially
show interactions with untransmitted parental alleles, i.e. an
inter-generational GxG interaction mediated via a GxE interac-
tion for the child. Allelic heterogeneity, whereby multiple geno-
types in linkage disequilibrium influence the same phenotype, can
also give rise to variance heterogenity38–40. Finally, examples of
genetic variants with striking inter-individual genetic effect het-
erogeneity exist for which mechanistic explanations are currently
lacking or incomplete. For instance, rs3825942 in LOXL1 is
associated with an increased risk of exfoliation syndrome in
certain populations, but a reduced risk in others41 (so called risk
allele ‘flipping’), and rs6817105 near PITX2 is associated with an
~1.6-fold increased risk of atrial fibrillation overall; however, the
level of risk varies widely across populations42. Explanations
based on simple GxG or GxE interactions have not been able
to account for the observed effect size heterogeneity at these
loci41,42.

To conclude, our study provides evidence that most of the
currently-known refractive error-associated variants have differ-
ent effect sizes in different individuals. A parsimonious expla-
nation is that the variants are involved in GxG or GxE
interactions. The phenotypic effect imparted by risk alleles was
found to vary as much as four-fold, with greater effects observed
for individuals in the phenotype extremes compared to those in
the center. This variation in inter-individual effects remains
hidden when conventional analysis methods are used to detect
genetic effects. Widespread GxG or GxE interactions will

Table 1 Summary statistics for the 10 strongest associations with refractive error based on conditional quantile regression-meta-
regression (CQR-MR)

SNP Gene(s) β0 β1 β2

Beta [95% CI] P Beta [95% CI] P Beta [95% CI] P

rs12193446 BC035400_LAMA2 −1.130 [−1.272; −0.988] 8.07 × 10−55 2.995 [2.529; 3.461] 2.12 × 10−36 −2.363 [−2.765; −1.961] 1.19 × 10−30

rs524952 GOLGA8B_GJD2 −0.673 [−0.758; −0.588] 4.83 × 10−54 1.797 [1.534; 2.06] 7.47 × 10−41 −1.417 [−1.634; −1.200] 1.68 × 10−37

rs7744813 KCNQ5 −0.543 [−0.631; −0.455] 7.24 × 10−34 1.402 [1.132; 1.672] 2.15 × 10−24 −1.092 [−1.314; −0.870] 5.75 × 10−22

rs11602008 LRRC4C −0.669 [−0.79; −0.548] 2.60 × 10−27 1.612 [1.250; 1.974] 2.71 × 10−18 −1.131 [−1.421; −0.841] 2.25 × 10−14

rs1550094 PRSS56 −0.521 [−0.624; −0.418] 4.77 × 10−23 1.441 [1.118; 1.764] 2.08 × 10−18 −1.142 [−1.409; −0.875] 4.90 × 10−17

rs72621438 SNORA51_CA8 −0.441 [−0.530; −0.352] 2.06 × 10−22 1.089 [0.817; 1.361] 4.46 × 10−15 −0.821 [−1.044; −0.598] 5.85 × 10−13

rs2326823 BC035400 −0.680 [−0.830; −0.530] 6.17 × 10−19 1.815 [1.341; 2.289] 6.45 × 10−14 −1.429 [−1.831; −1.027] 3.09 × 10−12

rs10500355 RBFOX1 −0.400 [−0.490; −0.310] 3.63 × 10−18 1.011 [0.734; 1.288] 8.39 × 10−13 −0.775 [−1.003; −0.547] 2.76 × 10−11

rs6495367 RASGRF1 −0.374 [−0.459; −0.289] 7.17 × 10−18 1.009 [0.747; 1.271] 4.38 × 10−14 −0.833 [−1.049; −0.617] 3.89 × 10−14

rs2573210 PRSS56 −0.501 [−0.621; −0.381] 2.91 × 10−16 1.414 [1.037; 1.791] 1.94 × 10−13 −1.121 [−1.434; −0.808] 2.26 × 10−12

Confidence intervals and p-values have been corrected for the inflated type I error rate of CQR-MR
SNP single nucleotide polymorphism, CHR chromosome, BP base pair, EA effect allele, β0 meta-regression intercept effect size in diopters per copy of the risk allele, β1 and β2 meta-regression coefficients
for the linear and quadratic terms, respectively, CI confidence interval
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contribute to the ‘missing heritability’ for refractive error, and
adversely impact the accuracy of genetic prediction of children
at-risk of developing myopia.

Methods
Study participants and quality control. The UK Biobank project is an ongoing
cohort study of ~500,000 UK adults aged 40–70-years-old when recruited
(2006–2010)43. Ethical approval for the study was obtained from the National
Health Service National Research Ethics Service (Ref 11/NW/0382) and all parti-
cipants provided written informed consent. Participants provided a blood sample,
from which DNA was extracted and genotyped using either the UK BiLEVE Axiom
array or the UK Biobank Axiom Array44. We analysed data from the July 2016 data
release for genetic variants in 488,377 individuals imputed to the HRC45

reference panel.
Participants self-reported whether they had a university or college degree. An

ophthalmic assessment was introduced towards the latter stages of UK Biobank
recruitment, hence only about 25% of participants were examined. Refractive error
was measured using non-cycloplegic autorefraction (Tomey RC5000; Tomey
GmbH Europe, Erlangen-Tennenlohe, Germany). The mean spherical equivalent
(MSE) refractive error was calculated as the sphere power plus half the cylinder
power, and averaged between the two eyes (avMSE). Individuals who self-reported
any of the following eye disorders were excluded from the analyses: cataracts,
“serious eye problems”, “eye trauma”, a history of cataract surgery, corneal graft
surgery, laser eye surgery, or other eye surgery in the past 4 weeks. Individuals
whose hospital records (ICD10 codes) indicated a history of the following were also
excluded: cataract surgery, eye surgery, retinal surgery, or retinal detachment
surgery. Of 488,377 individuals with genetic information, samples were excluded
due to: ocular history (n= 48,145, see above), withdrawal of consent (n= 8), self-
report of non-white British ethnicity or genetic principal components indicative
of non-European ancestry (n= 69,938), outlying level of genetic heterozygosity
(n= 648), or refractive error not measured (n= 283,352). The remaining 86,286
individuals were tested for relatedness using the --rel-cutoff command in PLINK
v1.946. A genetic relationship matrix was created using a linkage disequilibrium
(LD)-pruned set of well-imputed variants (with IMPUTE2 r2 > 0.9, minor allele
frequency (MAF) > 0.005, missing rate ≤ 0.01, and ‘rs’ variant ID prefix). LD-
pruning was accomplished by using the --indep-pairwise 50 5 0.1 command in
PLINK v246. One member of each pair with genomic relatedness greater than 0.025
was excluded. This resulted in a final sample size of 72,985 unrelated individuals
of European ancestry.

Selection of genetic variants
Variants associated with refractive error. We originally assessed 149 genetic variants
that showed genome-wide significant association (p < 5 × 10−8) with refractive
error in the CREAM Consortium and 23andMe meta-analysis and that replicated

in a UK Biobank sample11. The risk allele was coded as the allele associated with a
more negative refractive error. Of the 149 genetic variants tested, reliable results
could be obtained for 146 (for rs74764079, rs73730144, and rs17837871, with
MAFs of 3%, 1% and 1%, respectively, there were fewer than 50 participants
homozygous for the minor allele; hence these variants were excluded).

Variants associated with height. For comparison, we also examined genetic variants
associated with height. GWAS summary statistics were obtained from Wood
et al.38. We restricted our analyses to the 149 genetic variants with the strongest
association (i.e. those with the lowest p-values). Reliable results could be obtained
for 148 height SNPs (Supplementary Note 3).

Statistical analysis. A ‘conventional’ OLS regression analysis was carried out to
quantify the effect size of each of the 146 variants under the assumption of a
constant effect size across the full sample. Refractive error averaged between the
two eyes (avMSE) was the dependent variable and genotype, age, age-squared, sex,
and a binary variable indicating genotyping array were fitted as covariates. Con-
ditional quantile regression (CQR)47 was carried out using the quantreg package
v5.36 in R version 3.5.1, using the same set of covariates as above. We used 10,000
Markov-chain-marginal-bootstrap replicates to calculate standard errors. As a
sensitivity analysis, we also tested linear regression and quantile regression models
with the first 10 principal components included as covariates. However, including
principal components in the models did not change parameter estimates sub-
stantially, hence only the results of the original analyses are reported.

SNP effect estimates and their standard errors from quantile regression at 9
different quantiles (0.1, 0.2, 0.3, …, 0.9) were meta-regressed using a mixed-effects
model (metafor package v2.0.0 in R48) with the estimated SNP effect at each
quantile modelled as the dependent variable and the quantile at which these
estimates were obtained as the independent variable. A term for quantile-squared
was also included in the meta-regression model to test for non-linear genetic effects
across quantiles, resulting in the model: y= β0+ β1q+ β2q2+ e (where, β0 is an
intercept term, β1 and β2 are coefficients describing the linear and quadratic change
in SNP effect across quantiles of the trait distribution, respectively, q are the
quantiles, and e is the error term). Figure 1 illustrates the conditional quantile
regression and meta-regression model fitting strategy.

Permutation-based assessment of type I error rate and power. To assess the
type I error and power of the CQR-MR model we used the gold-standard method
of permutation. The type 1 error rate was assessed in two ways. Firstly, we
simulated genotypes for ‘null’ SNPs and tested for an association between the true
phenotype and the null SNP genotype. Secondly, we permuted phenotype values
amongst individuals in the sample, and tested for an association between the null
phenotype and the observed (true) SNP genotypes.

Null phenotype: The avMSE phenotype of the 72,985 individuals in the analysis
sample was permuted 100 times. For each permutation, the association between the
null phenotype and the genotype of each of the 149 variants was assessed using
CQR-MR. The type 1 error rate was calculated as the proportion of SNPs with
P < 0.05 for each of the three meta-regression coefficients (β0, β1, and β2) from the
total of (100 × 149)= 14,900 permutations. Null SNPs: The 72,985 individuals in
our analysis sample were independently assigned genotypes for a biallelic SNP with
MAF ranging from 0.05 to 0.45, simulated from a binomial distribution.
Association between avMSE and the genotype of the null SNP was assessed using
CQR-MR. The type 1 error rate was calculated as the proportion of SNPs with
P < 0.05 for each of the three meta-regression coefficients (β0, β1, and β2) after
simulating 10,000 null SNPs.

To obtain a relative indication of statistical power, the 149 refractive error-
associated variants were tested for association with the observed avMSE phenotype
in samples of varying size. Specifically, from the full sample of 72,985 individuals,
we selected a random sample of 10,000–70,000 individuals, in steps of 10,000, and
tested each of the 149 variants for association. This procedure was repeated 20
times. Power was computed as the proportion of replicates in which the null
hypothesis was rejected at a nominal significance level of α= 0.05 (i.e. under the
assumption that all 149 variants truly had non-linear effect sizes across quantiles).
The total number of tests used for these power evaluations was 149 × 7 × 20=
20,860. The same set of covariates as in original analysis was included in the CQR
step when assessing power and type 1 error.

In the analyses described above, CQR-MR was performed by carrying out
quantile regression at 9 different quantiles (q= 0.1 to 0.9 in steps of 0.1) followed
by meta-regression of the resulting genetic effect size estimates. In preliminary
work, we explored the effect on type 1 error rate and power of selecting more or
fewer than 9 quantiles, by testing: (a) 19 quantiles, q= 0.05–0.95 in steps of 0.05;
(b) 10 quantiles, q= 0.05–0.95 in steps of 0.1; (c) 5 quantiles, q= 0.1–0.9 in steps of
0.2. For simplicity, we refer to these CQR-MR models by the number of quantiles
included in the meta-regression, i.e. 5, 9, 10, or 19. CQR-MR analysis with 9
quantiles performed optimally (Supplementary Notes and Supplementary Fig. 3).

Gene-environment interaction with education. To test for the presence of gene-
environment interaction, we constructed a polygenic risk score (PRS) by counting
the number of risk alleles (0, 1, or 2) carried by each individual. We did not weight
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these by SNP effect sizes in order to avoid introducing bias by using weights
obtained from, and applied in, the same sample (UK Biobank). ‘Age completed
full-time education’ (EduYears) was selected as an exemplar environmental
variable. UK Biobank participants with a university degree were not asked the age
they completed full-time education, hence these individuals were assumed to have
completed their education at the age of 21 years. Age completed education cate-
gories with low counts were merged with adjacent categories, resulting in four
final EduYears categories: 13–15, 16, 17–20, and 21–26 years. We carried out a
CQR-MR analysis stratified by EduYears category.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Individual-level data from UK Biobank can be accessed by applying to the UK Biobank
Central Access Committee (http://www.ukbiobank.ac.uk/register-apply/).

Code availability
The R code for performing these analyses is available upon request.
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