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We use the latest techniques in machine-learning to study whether from the landscape of Calabi-
Yau manifolds one can distinguish elliptically fibred ones. Using the dataset of complete intersections 
in products of projective spaces (CICY3 and CICY4, totalling about a million manifolds) as a concrete 
playground, we find that a relatively simple neural network with forward-feeding multi-layers can 
very efficiently distinguish the elliptic fibrations, much more so than using the traditional methods of 
manipulating the defining equations. We cross-check with control cases to ensure that the AI is not 
randomly guessing and is indeed identifying an inherent structure. Our result should prove useful in 
F-theory and string model building as well as in pure algebraic geometry.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction and summary

Ever since the birth of string theory its compactifications on 
compact Calabi-Yau manifolds have been a subject of constant in-
terest to theoretical physicists and algebraic geometers alike. Such 
compactifications provide a well-controlled setup to study super-
symmetric effective theories, many physical properties of which 
can be calculated via algebro-geometric tools without explicit Ricci 
flat metrics at hand. Tremendous efforts to find realistic models of 
string theory in this setup have been one of the most important 
aims of string phenomenology; see [1] for an earliest attempt. Fur-
thermore, in line with the so-called swampland program [2], geo-
metric origins of quantum gravity constraints have recently started 
to be addressed from the universal properties of general Calabi-Yau 
manifolds in various string theoretic setups [3–11].

More generally, non-Ricci-flat manifolds may also lead to super-
symmetric compactifications, with an appropriately varying axio-
dilaton profile turned on, in the framework of F-theory [12]. This 
provides arguably the most general geometric approach currently 
available to study non-perturbative string compactifications. Inter-
estingly, elliptically fibered Calabi-Yau manifolds of one-dimension 
higher, which are fictitious at least from the Type IIB point of 
view, can completely specify such compactifications. It is therefore 

E-mail addresses: hey@maths.ox.ac.uk (Y.-H. He), seung.joo.lee@cern.ch
(S.-J. Lee).
https://doi.org/10.1016/j.physletb.2019.134889
0370-2693/© 2019 Published by Elsevier B.V. This is an open access article under the CC
of utmost interest to string theorists to better understand elliptic 
Calabi-Yau manifolds.

Elliptic fibration structures often bring in a computational 
power as well. For instance, the first exact MSSM particle content 
directly from string theory compactifications arose from an ellipti-
cally fibred Calabi-Yau threefold, a quotient of the so-called Schön 
manifold, whose elliptic-fibration structure was what allowed the 
explicit computation of equivariant cohomology in order to obtain 
the matter representations [13–16].

In the meantime various dualities amongst Calabi-Yau compact-
ifications have been influential in exciting development in enu-
merative and algebraic geometry [17,18] as well as many other 
branches of pure mathematics. Interestingly, such string dualities 
oftentimes base on elliptic fibration structures within the internal 
Calabi-Yau manifolds; see e.g. [19].

While it still remains an open question if Calabi-Yau n-folds 
form a finite set for n ≥ 3, finiteness of elliptic ones with dimen-
sion n = 3 has been established [20,21] (see also [22] for relevant 
results for n = 4 and 5). At the same time, recent investigations 
of vast Calabi-Yau datasets have observed ubiquity of elliptic fibra-
tions [23–30]. Hence, also in the hope of providing a meaningful 
measure for the potential paucity of non-ellipticity, there arises 
a pressing question of distinguishing the elliptic Calabi-Yau man-
ifolds from the non-elliptic.

In principle, there are methods to determine whether a Calabi-
Yau manifold of dimension not bigger than 3 is an elliptic fibra-
tion [31,32], which were conjectured to work also for a higher-
128
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dimensional manifold [33]. However, the computation, as is with 
any computation in algebraic geometry, could often become rather 
intense in practice because one needs to first determine the Kähler 
cone of the geometry in question to apply the methods. Another 
source of difficulty is that manipulating high degree polynomials 
in many variables is a non-linear and complicated matter [34].

In [35,39] a paradigm was proposed to attempt to use artificial 
intelligence (AI) to bypass expensive algorithms in computational 
geometry, in particular to study the string landscape and beyond. 
It was found that central problems such as computing cohomol-
ogy of vector bundles appear to be machine-learnable to very 
high precision. Indeed, [35–39] brought machine learning to the 
landscape and there has subsequently been a host of activity suc-
cessfully addressing various problems in the string landscape using 
AI techniques and machine-learning [36–38,40–57] (cf. [58] for a 
pedagogical introduction). It is therefore natural to ask whether 
machine-learning techniques can be employed into our present 
problem of recognizing elliptic fibrations.

The purpose of this letter is to report that this problem of rec-
ognizing elliptic fibrations within Calabi-Yau manifolds (and pre-
sumably more arbitrary dataset of algebraic varieties), using com-
plete intersection 3-folds and 4-folds within products of projective 
spaces as a playground, appear to belong to the class of problems 
which can be addressed by machine-learning to high precision. 
Thus, like computing cohomology of bundles over varieties, distin-
guishing elliptic fibrations appears to be a pattern recognizable by 
the likes of a neural network - completely without any knowledge 
of algebraic geometry or expensive algorithms needed to determin-
istically address the problem.

The outline of the letter is as follows. In Section 2, we briefly 
set the scene by reminding the reader of the CICY (complete in-
tersection Calabi-Yau manifolds in products of projective spaces) 
dataset on which we will focus for concreteness, and of the elliptic 
fibration structures within the set. Then, in Section 3, we estab-
lish a neural network to efficiently learn and identify which of the 
set are (not) elliptically fibred, for the 3-fold and 4-fold cases, as 
well as a contrived control case which gives a good sanity check. 
Finally, in Section 4, we end with conclusions and outlook.
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2. CICYs and elliptic fibrations

As stated in the introduction, we will focus on the so-called 
CICY dataset for concreteness. These are smooth Calabi-Yau mani-
folds embedded as complete intersection in products of projective 
spaces; we start by briefly recalling their construction.

Let us first consider a complete intersection M of K polynomi-
als, pα=1,··· ,K , in the product ambient space, A =Pn1 × · · · ×Pnm . 
By construction the complex dimension n of M is given as n =
m∑

r=1
nr − K . Denoting the degrees of the defining polynomials pα in 

the r-th projective spaces by ar
α , we can describe a family of such 

geometries by a configuration matrix M of the form,

M := [ n | {aα} ] =

⎡
⎢⎢⎣

Pn1 a1
1 · · · a1

K
...

...
. . .

...

Pnm am · · · am

⎤
⎥⎥⎦ , (1)
1 K
Table 1
Obvious elliptic fibrations (OEF) and elliptic fibrations (EF) in the CICY3 and CICY4 
datasets with SU (3) and SU (4) holonomies, respectively.

Total not OEF not EF Remark

CICY3 7,868 53 53 h1,1 > 4 ⇒ OEF
CICY4 905,684 462 not known h1,1 > 12 ⇒ OEF

with non-negative integer entries ar
α (cf. see [59] for a generaliza-

tion to include “negative degrees”, dubbed as gCICYs, and also [60]
for an example study of fibration structures thereof). Such a com-

plete intersection is a Calabi-Yau n-fold when 
K∑

α=1
ar
α = nr + 1 for 

every r = 1, . . . , m.
In this letter, we will be concerned with CICY 3-folds and 

4-folds, for which 7, 890 and 921, 497 configurations were clas-
sified, respectively, in [61] and [62]. In particular, we will focus 
on elliptic fibration structures that those CICYs may admit. As 
first studied systematically in [23], there is a simple combinatorial 
method to find elliptic fibrations in terms of their configuration 
matrices (1). That is, a CICY M has an obvious elliptic fibration 
(OEF) if, via row and column permutations, its configuration M can 
be put in the form,[
A1 0 F
A2 B T

]
, (2)

with the sub-configuration F := [A1 |F ] describing a subvariety 
of dimension one. Here, A1 and A2 are products of m1 and 
m2 := m − m1 projective spaces, respectively, while F , B and T
are sub-block matrices.

While not every elliptic fibration is necessarily an OEF, upon a 
classification of fibrations [24], it has been observed that all ellip-
tic CICY 3-folds do admit an OEF. To be specific, 99.33% (all but 
53) of the 7, 868 CICY 3-fold configurations with genuine SU (3)

holonomy admit an OEF structure, where the 53 not only lack an 
OEF but also cannot be elliptic at all. This classification of ellip-
tic fibrations (EFs) within the CICY3 dataset, as opposed to OEFs, 
was achieved based on the following topological criteria conjec-
tured in [33]:
A Calabi-Yau n-fold M is elliptic iff there exists a (1, 1)-class D ∈
H2(M, Q) such that (a) D · C ≥ 0 for every algebraic curve C ; (b) 
Dn−1 �= 0; (c) Dn = 0.
This has been proven for the 3-fold case subject to the constraints 
that D is effective or D · c2(M) �= 0 [31,32].

Similarly, OEFs of CICY 4-folds were classified [23], resulting in 
the observation that 99.95% (all but 462) of the 905, 684 4-fold 
configurations with SU (4) holonomy admit an OEF. Although an 
analogous classification of EFs have not been undertaken (and 
hence, it is a priori not clear whether or not there exists an elliptic 
CICY 4-fold lacking an OEF), we will nevertheless use the existence 
of an OEF as a measure for the ellipticity of a CICY 4-fold when 
training AI. Table 1 summarizes relevant statistics and characteris-
tic features [23,24] on OEF and EF for the CICY3 and CICY4 cases.

Finally, it is worth noting that not every elliptic fibration ad-

mits a section. For instance, the bi-cubic 3-fold, 

[
P2 3
P 2 3

]
, can 

be viewed as a fibration of elliptic curves over either of the two P 2

factors, and hence is elliptic. However, it does not admit a section 
but only a tri-section. Such elliptic fibrations with only a multi-
section are sometimes called genus-one fibrations to emphasize 
the absence of a section. In this letter, however, an elliptic fibra-
tion refers to any fibration of elliptic curves over a base manifold, 
whether there exists a section or not.
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3. Machine-learning elliptic fibrations

As already discussed, elliptic fibrations are typical within the 
landscape of known Calabi-Yau manifolds. For instance, all CICY 
3-folds with h1,1 > 4 are elliptic; see Table 1 for relevant statis-
tics for both CICY3 and CICY4 datasets. With small Hodge num-
ber, however, there are distinguished ones which are not elliptic. 
In particular, any cyclic manifold with h1,1 = 1 (e.g. the Quintic 
3-fold) clearly cannot be elliptic.

In the meantime most model-building approaches in string 
phenomenology have based on manifolds of small h1,1 (or the mir-
ror case of small h2,1). This is because there are fewer parameters 
for them which enter into the effective potential [63–68]. We will 
also focus especially on small-h1,1 manifolds since those with big 
enough h1,1 are essentially all elliptic; information on (non-)ellip-
ticity can thus be thought of as being learnable mainly through 
such simpler manifolds. Specifically, the training set will consist of 
the ellipticity data for CICYs with h1,1 up to a certain upper bound, 
as detailed in the following.

3.1. CICY threefolds

There is a total of 643 CICY 3-folds with h1,1 ≤ 4, 53 of 
which are not elliptically fibred [24]. Let us test whether stan-
dard machine-learning algorithms can distinguish these. Because 
we have an unbalanced dataset, where those which are elliptic 
exceed those which are not by one order of magnitude, some en-
hancement is needed. Luckily, any CICY configuration is equivalent 
to an arbitrary row and/or column permutation; this gives us a 
natural way to enhance the number 53. We take 10 random per-
mutations of the rows and the columns each for the 53 configu-
ration matrices and 3 such permutations for the 643 − 53 = 590. 
This gives us a total of 102 · 53 = 5300 cases of 0 (non-elliptic) and 
32 · 590 = 5310 cases of 1 (elliptic). Furthermore, we note that the 
maximal number of row and columns are respectively 6 and 7 for 
these configuration matrices, so we pad with zeros where neces-
sary so that each data-point is of the form

M6×7 −→ 1 or 0 . (3)

In fact, the above counting of enhanced dataset is only an upper 
bound due to symmetries in the configurations. Nevertheless, we 
end up with a total labelled dataset D of size around 10K.

We now have a binary classification problem, for which we per-
form supervised machine-learning on a training set T of size x%
and validate on the unseen or complementary (100 −x)% validation 
set . By validation we mean to construct a 2 × 2 confusion matrix 
C where we record the number of false/true positives/negatives 
of the actual values compared to those predicted by the machine 
[69]:

Actual
True False

Predicted True True Positive (tp) False Positive ( f p)
Classification False False Negative ( f n) True Negative (tn)

From C we have certain “goodness-of-prediction/fit”. There is the 
obvious “precision”:

Precision := tp

tp + f p
(4)

which is the percentage of correct prediction. However, to avoid 
assigning too much weight to false positives, the standard accuracy 
measure to use is the Matthew’s correlation coefficient φ for C :
Fig. 1. A graphical schematic of the neural network used (we have combined the 
element-wise Tanh and Sigmoid layers).

Fig. 2. The learning curve for the (enhanced) 10K data for h1,1 ≤ 4 CICY 3-folds on 
distinguishing elliptic fibrations.

φ := tp · tn − f p · f n√
(tp + f p)(tp + f n)(tn + f p)(tn + f n)

(5)

which is related to the chi-squared χ2 of C as |φ| =
√

χ2

n where 
n is the total validation size (i.e., sum of entries of C ). A value of 
φ = +1 means completely accurate prediction, −1, complete anti-
correlation and 0, random guess [70].

For the actual AI, we choose a neural network which was found 
to be highly efficient in binary problems in computational geom-
etry in [35,39], viz., a 4-layer-perceptron consisting of (1) a fully 
connected linear layer L5 taking the 6 × 7 matrix input by lin-
ear transformation to 5 nodes; (2) an element-wise layer of the 
sigmoid function σ(z) = (1 − exp(−z))−1; (3) an element-wise 
layer of the hyperbolic tangent function [74]; (4) another fully-
connected linear layer L5 and (5) a summation layer of the 5 nodes 
into a single real output between 0 and 1, on which we then use 
integer round to return 0 or 1. Schematically, our multi-layer per-
ceptron [75] looks like

INPUT =
M6×7

−→ L5 −→ σ5 −→ tanh5 →

−→ L5 −→ Round(�1) −→ OUTPUT
= 0 or 1

(6)

A graphic representation of the layers of the neural network is 
given in Fig. 1.

We cross-checked this neural network with other methods such 
as a classifier with an optimized mixture of decision trees and re-
gressions (implemented in the vanilla version of Classify[ ] function 
in [71]) and find these also to perform to comparable precision.

We present the learning curve of the accuracy φ versus the per-
centage x of seen training set in Fig. 2. The error bars come from 
the fact that each training set at a given percentage is randomly 
chosen 10 times for statistical stability. We see from the figure 
that the neural network works very well with respect to both of 
the accuracy measures. Initially, up to about 25% there is a lot of 
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Fig. 3. The learning curve for the (enhanced) 10K data for h1,1 ≤ 4 CICY 3-folds on 
a control set of a randomly chosen property.

fluctuation because too few data has been seen to learn anything 
meaningful. However, starting from around 30%, we see that both 
naive precision (% of agreement of 0s and 1s) and Matthews’ φ
approach 1. What is remarkable is that even at a relatively low per-
centage of seen data, we are achieving high accuracy. For example, 
having seen only about 30% of the total 10K of data of what is an 
elliptic fibration, the neural network correctly predicts the unseen 
70% of cases to over 99% accuracy. Importantly, the computation 
for each training takes only a few seconds, a vast improvement 
over any brute-force check of whether a manifold admits an ellip-
tic fibration structure. In summary, determining whether a CICY is 
elliptically fibred indeed seems to be a machine-learnable problem.

3.2. Control case

It was argued in [35,39] that computational problems in alge-
braic geometry tend to fall into the machine-learnable category be-
cause essentially any problem therein boils down to finite steps of 
finding kernels and cokernels of integer matrices, a task in which 
the likes of neural networks excel (problems in number theory, 
in contrast, seem much less amenable to AI). The machine cer-
tainly knows nothing about manifolds or bundle fibrations, all it 
is doing is to catalogue the positive/negative cases together and 
to manage to spot a pattern not immediately obvious to the hu-
man eye (or, for that matter, to the standard methods of algebraic 
geometry). One might question then whether if one divides any 
random property into any random subsets, the machine might pick 
up something, whereby making any specific queries such as elliptic 
fibration structures rather ineffectual.

It is therefore a good and important thing to test a “control 
case” as follows. Suppose of the 643 CICY 3-fold configurations, 
we select 53 arbitrarily and randomly and assign a property as “0” 
while all other cases we will call “1” in complete imitation to the 
above problem and repeat the machine-learning procedure. If el-
liptic fibration is truly not a random property, then the AI should 
perform poorly in accuracy to this artificial problem.

The learning curve is presented in Fig. 3. It is reassuring that 
the results are in agreement with complete randomness. The naive 
precision stays at 50%, consistent with a random guess and subse-
quently, the φ coefficient remains essentially at 0. The control case 
thus shows that a random assignment of a property does not and 
should not allow the machine to spot any inherent pattern.

3.3. CICY fourfolds

Since the machine knows nothing about algebraic geometry, 
there is no reason to stop at CICY 3-folds. The next dataset, which 
is even more significant to realistic F-theory vacua, is the Calabi-
Fig. 4. The learning curve for the (enhanced) 1.54 M data for h1,1 ≤ 12 CICY 4-folds 
on distinguishing elliptic fibrations.

Yau 4-folds arising as complete intersections in products of projec-
tive spaces. As reviewed in Section 2, 921, 497 CICY 4-fold config-
urations were classified in [62] and their OEF structures in [23]; 
see Table 1 for the relevant statistics.

Up to h1,1 = 12, there is now a total of 767,642 configura-
tions, 767,180 of which admit elliptic fibrations. Here, everything 
is a 12 × 16 integer configuration matrix, upon padding with 
zeros where necessary as in the 3-fold case. Again, due to the 
paucity of non-elliptic fibrations, we enhance data by permuta-
tions: we randomly permute the non-elliptic ones by row/columns 
1402 = 19600 times and the elliptic ones by 12 = 1, thereby ob-
taining a more balanced ∼ 767K for 1 (elliptic) and 774K for 0 
(non-elliptic) upon removal of redundancies. The learning curve 
for the CICY 4-folds is presented in Fig. 4. The (small) error bars 
are due to the fact that each training set at a given percentage 
x = 10%, . . . , 90% is randomly chosen 5 times for stability. Impres-
sive is the fact that even better than the 3-fold case, the neural 
network correctly predicts the unseen cases to over 96% accuracy 
already at x = 10%.

We performed a similar control case for the CICY 4-folds, i.e., 
taking a random sample of 767642 − 767180 = 462 cases and 
declaring them to have property “0” and the remainder, property 
“1”. After data enhancement by permutation, more on the “0” than 
the “1”, we find a training curve identical to Fig. 3. That is, when 
there is no pattern, the neural network will give a completely ran-
dom guess with Matthew’s phi equalling 0.

Interestingly, if we train, on the CICY 3-fold set, on which ones 
are elliptically fibred and attempt to predict which CICY 4-folds 
are elliptic, the network consistently (over repeated trials) predicts 
that all CICY 4-folds are elliptically fibred. This is actually not too 
far from the truth since non-elliptic fibration is comparatively rare. 
However, working within the same dataset (using 3-folds to predict 
about 3-folds, and 4-folds, about 4-folds) actually picks out which 
of the specific rare cases that are not elliptic.

4. Conclusions and outlook

In this letter, we have demonstrated that distinguishing whether 
a complete intersection Calabi-Yau manifold is elliptic is a problem 
well suited for machine-learning. The fact that we have used a 
large dataset of specific Calabi-Yau manifolds is only for the pur-
poses of being concrete; it is expected that the general problem of 
identifying fibration structure for arbitrary varieties should also be 
addressable by the likes of neural networks.

On another matter, distinguishing the elliptic fibrations with a 
section from those without one is in general a complicated task in 
algebraic geometry [72]. It will be interesting to see if machine-
learning techniques can be employed into such a task. Yet another 
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interesting aspect of elliptic CICYs is that they in general admit 
more than one fibration structures [19], which was fully analyzed 
for CICY 3-folds [24]. Machine-learning aspects of such an enumer-
ation problem, we leave to future investigation.

In some sense, the key question of [35,39] is “what class 
of problems in mathematics and computation can be machine-
learned”. In particular, it was found that typical problems in al-
gebraic geometry, such as cohomology calculation or toric variety 
combinatorics, seem to be better suited for a neural network than 
for traditional methods. After all, as far as the AI is concerned, 
it only knows a trainable set of inputs (configuration matrices 
of manifolds or bundles, etc.) and outputs (ranks of cohomology 
groups, dimensions of loci, yes/no answer of existence of fibra-
tions), perfectly adapted for supervised learning. From this, the AI 
finds some optimal arrangement, by regression, classifiers, neural 
networks, decision trees, etc., in order to guess the answer in gen-
eral.

This is at once mysterious and invigorating. As is well-known, 
computational problems in algebraic geometry ultimately suffers 
from the exponentially expensive steps of finding Groebner bases 
and syzygies, because of the high degree multi-variate polynomi-
als involved. Very quickly, one would find the desired problem 
intractable even with the most advanced algorithms and comput-
ers. That the neural network is able to find the correct answer in a 
matter of seconds (precisely because it knows nothing of the math-
ematics) suggests that there is some underlying method/structure 
which is yet to be discovered. In this sense, our “control experi-
ment”, not emphasized in previous studies, is important. We found 
that for a random assignment of fictitious property, the AI gives 
completely random guesses (φ 	 0, precision 	 50%). This suggests 
that there truly exists an underlying pattern to meaningful proper-
ties such as whether a manifold is an elliptic fibration.
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