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Abstract

In England and Verrall (1999), an appropriate residual definition was considered for use in a
bootstrap exercise to provide a computationally simple method of obtaining reserve
prediction errors for the chain ladder model. However, calculation of the first two moments
of the predictive distribution only was considered. In this paper, the method is extended by
using a two-stage process: bootstrapping to obtain the estimation error and simulation to
obtain the process error. This has the advantage of providing realisations from the whole
predictive distribution, rather than just the first two moments.
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1. Introduction

Although stochastic claims reserving methods were introduced about two decades ago, they
are still only used by a limited number of practitioners. A number of reasons for this could be
suggested, including: a general lack of understanding of the methods, lack of flexibility in the
methods, lack of suitable software for ease of use and so on. However, the main reason is
probably lack of need for the methods when traditional methods suffice. More recently, a
greater interest has been expressed in estimating the downside potential of claims reserves, in
addition to the best estimate. For this, it is necessary to be able to estimate the variability of
claims reserves, and ideally, to be able to estimate a full predictive distribution from which
percentiles (or other measures) of that distribution can be obtained.

To date, the primary focus of stochastic claims reserving methods has been obtaining the
reserve root mean square error of prediction (prediction error) in addition to the mean.
Essentially, this provides the first two moments of the predictive distribution only. Further
assumptions are usually necessary if other statistics are required. For example, in Mack
(1993), the distribution of the underlying data is not fully specified, only the first two
moments. Although formulae are developed for the reserve prediction errors, further
assumptions that the predictive distribution of the reserves is approximately Normal or
Lognormal are required in the calculation of confidence intervals.

One area where stochastic claims reserving models are required is dynamic financial analysis
(DFA), where cash flows of an insurance enterprise are simulated to help with business
planning, capital modelling, and risk profiling generally. One component of risk carried by an
insurance operation lies within its outstanding claims reserves, and simulating reserve
movements is an ingredient of a full DFA exercise. Methods are therefore required for DFA
which enable a predictive distribution of future claim payments to be obtained. Clearly, it is
desirable if this can be performed in a consistent manner, such that when the simulated future
claim payments are summed to give origin period reserves, or total reserves, the prediction
error of those sums matches their analytic equivalents.

This paper augments England and Verrall (1999) and extends the methods to obtain a full
predictive distribution of reserve estimates. This is achieved by simulating the process error
in addition to using bootstrapping to obtain the estimation error. The procedure is simple to
implement, and all calculations can be performed within a spreadsheet; there is no need for
sophisticated software.

2. Methodology

We focus on the model described by Renshaw and Verrall (1998), who proposed modelling
the incremental claims using an “over-dispersed” Poisson distribution. Adopting the notation
of England and Verrall (1999) where the incremental claims for origin year i in development
year j are denoted C,, then
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Equations 2.1, 2.2 and 2.3 define a generalised linear model in which the response is
modelled with a logarithmic link function and the variance is proportional to the mean (hence
“over-dispersed” Poisson). The parameter ¢ is an unknown scale parameter estimated as part
of the fitting procedure. With certain positivity constraints, predicted values and reserve
estimates from this model are exactly the same as those from the chain ladder model.

Obtaining reserve standard errors (the estimation error component of the prediction error)
using the bootstrap procedure involves sampling with replacement from an appropriate set of
residuals to obtain a large number of sets of pseudo data. The chain ladder model can be
fitted to each set of pseudo data, and reserve estimates obtained. The standard deviation of
the set of reserve estimates obtained in this way provides a bootstrap estimate of the standard
error (estimation error). The particular residual definition used in England and Verrall (1999)
is the unscaled Pearson residual, 7, , defined as

e 4

It is unscaled in the sense that it does not include the scale parameter ¢ which is not needed

when performing the bootstrap calculations, but is needed when considering the process error.
An estimate of the scale parameter consistent with the definition of residuals is the Pearson
scale parameter, given by
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n—p

?» @25)

where n is the number of data points in the sample, p is the number of parameters estimated
and the summation is over the number (n) of residuals. It can be seen that an increased
number of parameters used in fitting the model introduces a penalty (ceteris paribus).

In England and Verrall (1999), the reserve prediction error is given by

PE, (R)=\/¢PR+L(SEM (R (2.6)
n—p

where R is an origin year or total reserve, and SE, (R) is the bootstrap standard error of the
reserve estimate. The process variance, ¢,R, is calculated analytically and simply added to
the estimation variance (which is suitably scaled to take account of the degrees of freedom).



The purpose of this paper is to describe a methodology which replaces the analytic calculation
of the process error with a simulation approach, thereby providing a way of simulating a
complete predictive distribution. The methodology proceeds by interrupting the bootstrapping
procedure at each iteration and drawing a random observation from the underlying process
distribution, conditional on the bootstrap value. To explain the procedure, it is necessary to
focus on the triangle of observed data (the past triangle), and the triangle of unknown future
payments (the future triangle). The bootstrap procedure involves sampling with replacement
from the residuals to obtain a new past triangle of residuals, from which a past triangle of
pseudo data is obtained. The chain ladder model is then fitted to the pseudo data and a future
triangle of (incremental) payments obtained. For each cell in the future triangle, a random
observation is drawn from the underlying process distribution, where the mean is the value
obtained from the bootstrap iteration, and the variance is given in equation 2.1, with the scale
parameter calculated using equation 2.5. Strictly, a random sample should be drawn from an
over-dispersed Poisson distribution (see Section 3). The simulated values in the future
triangle can then be summed to provide a realisation of the origin period and total reserves.
The process is then repeated a large number of times to provide a predictive distribution. An
example showing the computations required can be found in Appendix A. The procedure is
performed by completing the following steps:

¢ Obtain the standard chain ladder development factors from cumulative data
e Obtain cumulative fitted values for the past triangle by backwards recursion as
described in Appendix A
e Obtain incremental fitted values for the past triangle by differencing
¢ Calculate the unscaled Pearson residuals for the past triangle using equation 2.4
e Calculate the Pearson scale parameter, ¢, using equation 2.5
Adjust the Pearson residuals using equation 3.1 (see Section 3)
Begin iterative loop, to be repeated N times (N=1000, say)
e Resample the adjusted residuals with replacement, creating a new past triangle of
residuals
e For each cell in the past triangle, solve equation 2.4 for C, giving a set of pseudo
incremental data for the past triangle
Create the associated set of pseudo cumulative data
Fit the standard chain ladder model to the pseudo cumulative data
Project to form a future triangle of cumulative payments
Obtain the corresponding future triangle of incremental payments by differencing,
to be used as the mean when simulating from the process distribution
e For each cell (i,j) in the future triangle, simulate a payment from the process
distribution with mean #; (obtained at the previous step), and variance ¢

i bl
using equation 2.1 and the value of ¢ calculated previously

e Sum the simulated payments in the future triangle by origin year and overall to
give the origin year and total reserve estimates respectively

e Store the results, and return to start of iterative loop.

The set of stored results forms the predictive distribution. The mean of the stored results
should be compared to the standard chain ladder reserve estimates to check for bias. The
standard deviation of the stored results gives an estimate of the prediction error.



It can be seen that essentially the bootstrap procedure provides a distribution of “means” in
the future triangle, and the process error is replicated by sampling from the underlying
distribution conditional on those means. The result is a simulated predictive distribution of
future payments which when summed appropriately provides a predictive distribution of
reserve estimates, from which summary statistics can be obtained.

3. Practical Issues

In England and Verrall (1999), an adjustment was made to the bootstrap standard error to take
account of the degrees-of-freedom (see equation 2.6 above). This was to enable a comparison
to be made with the results obtained analytically. It is desirable to make a similar adjustment
here too, but to enable the adjustment to follow through to the predictive distribution
automatically, it is suggested that the residuals are adjusted prior to implementing the
procedure. That is, replace r, by r;, where

n C—-m
r' = X . (3.1
’ Vn—p \m )

Since the mean of the residuals should be close to zero, this has the effect of inflating the
variance while leaving the mean largely unchanged.

To simulate from an over-dispersed Poisson distribution requires a trick. To obtain a
realisation from an over-dispersed Poisson distribution with mean m and variance ¢m,
sample from a Poisson distribution with mean m/¢ and multiply by ¢. This has a few
disadvantages. Observations will always be multiples of ¢, which for large ¢ may not be
desirable. Furthermore, for non-integer values of ¢, observations will be non-integer.

If this feature of the over-dispersed Poisson distribution is considered unacceptable, a
pragmatic alternative is to sample from a Gamma distribution parameterised such that the
mean is m and the variance is¢gm. The variance remains proportional to the mean, but the
simulated values have the advantage of being on a continuous scale and not simply multiples
of ¢. However, this changes the shape of the predictive distribution, while leaving the first
two moments unchanged.

The bootstrap procedure can occasionally result in a negative mean from which the process
error is simulated. Again, this is undesirable and a number of adjustments can be suggested.
A practical approach is to simulate an observation from a distribution with mean abs(m),

then subtract 2 xm to retain the appropriate scale.

4. Example

Following the example in England and Verrall (1999) the data from Taylor and Ashe (1983)
is used, shown here in incremental form.



357848 766940 610542 482940 527326 574398 146342 139950 227229 67948
352118 884021 933894 1183289 445745 320996 527804 266172 425046

290507 1001799 926219 1016654 750816 146923 495092 280405

310608 1108250 776189 1562400 272482 352053 206286

443160 693190 991983 769488 504851 470639

396132 937085 847498 805037 705960

440832 847631 1131398 1063269

359480 1061648 1443370

376686 986608

344014

The chain ladder reserve estimates together with the means of 1000 simulations of the
bootstrap approach of England and Verrall (1999), and the approach adopted here, are shown
in Table 1. The results are very close, as expected, with differences due to random variation.

The reserve prediction errors as a percentage of the means are shown in Table 2. The analytic
estimates and the bootstrap estimates are taken from England and Verrall (1999). The
estimates obtained after simulating the process error as described in this paper are also shown.
Again, the results are reassuringly close.

The advantage of the two-stage simulation approach outlined in this paper is the availability
of the full predictive distribution. Summary statistics of the predictive distribution of the total
reserves (using 1000 simulations) are shown in Table 3. A histogram of the distribution is
also shown in Figure 1, together with a smoothed density line.

5. Conclusions

Most papers on the topic of stochastic claims reserving consider measures of variability of
claims reserves in addition to a “best estimate”. This has the advantage of highlighting
precision of the estimates, but falls short of providing the full predictive distribution. The
predictive distribution of reserve estimates has been considered by very few authors, although
some related papers exist, for example Zehnwirth et al (1998), which considers predictive
aggregate claims distributions for the collective risk model used in risk theory.

In this paper, one method of obtaining a predictive distribution for the basic chain ladder
model is proposed. The method has the advantage of simplicity, and all calculations can be
performed in a spreadsheet. The method involves a two-stage procedure: first simulate a
forecast mean using the bootstrap, then simulate an observation conditional on the mean.

Recent interest in dynamic financial analysis requires the ability to simulate the full predictive
distribution of likely outcomes. Various methods are likely to be proposed, depending on the
underlying stochastic model adopted. Whatever method is proposed, it is important that
simulated results are consistent with their analytic counterparts. For example, if future
payments in individual cells of the future triangle are simulated, it is important that they are
simulated in such a way that the variability of their sum is consistent with equivalent results
obtained analytically.

Although the bootstrap/simulation procedure provides prediction errors which are consistent
with their analytic counterparts, the predictive distribution produced in this way might have



some undesirable properties. For example, for some origin year reserves, the minimum
values of the predictive distribution could be negative. A number of other practical and
theoretical difficulties exist (such as those outlined in Section 3), and alternative adjustments
and improvements are likely to be suggested.

It is not suggested that the method proposed here is the only one which is consistent with the
chain ladder model. Other approaches are likely to be suggested which provide a different
predictive distribution while also having the same first two moments.



Appendix A — Calculations required

The first seven triangles in this Appendix are similar to those appearing in England and
Verrall (1999) except the residuals in Triangle 4 have been adjusted to take account of the
degrees-of-freedom, as described in Section 3.

Triangle 1 below shows the cumulative paid claims from the Example, together with the
traditional chain ladder development factors.

Triangle 1 — Observed Cumulative Data

357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463
352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085

290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315

310608 1418858 2195047 3757447 4029929 4381982 4588268

443160 1136350 2128333 2897821 3402672 3873311

396132 1333217 2180715 2985752 3691712

440832 1288463 2419861 3483130

359480 1421128 2864498

376686 1363294

344014

Development Factors

3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177 1.0000

The first stage is to obtain the cumulative fitted values, given the development factors. The
fitted cumulative paid to date equals the actual cumulative paid to date, so we can transfer the
final diagonal of the actual cumulative triangle to the fitted cumulative triangle. The
remaining cumulative fitted values are obtained backwards by recursively dividing the fitted
cumulative value at time ¢ by the development factor at time #—1. The results of this
operation are shown in Triangle 2. The incremental fitted values, obtained by differencing in
the usual way, are shown in Triangle 3.

Triangle 2 — Cumulative Fitted Values

270061 942678 1647172 2400610 2817960 3110531 3378874 3560909 3833515 3901463
376125 1312904 2294081 3343423 3924682 4332157 4705889 4959416 5339085

372325 1299641 2270905 3309647 3885035 4288393 4658349 4909315

366724 1280089 2236741 3259856 3826587 4223877 4588268

336287 1173846 2051100 2989300 3508995 3873311

353798 1234970 2157903 3144956 3691712

391842 1367765 2389941 3483130

469648 1639355 2864498

390561 1363294

344014



Triangle 3 — Incremental Fitted Values

270061
376125
372325
366724
336287
353798
391842
469648
390561
344014

672617
936779
927316
913365
837559
881172
975923
1169707
972733

704494
981176
971264
956652
877254
922933
1022175
1225143

753438
1049342
1038741
1023114

938200

987053
1093189

417350
581260
575388
566731
519695
546756

292571
407474
403358
397290
364316

268344 182035 272606
373732 253527 379669
369957 250966

364391

67948

The unscaled Pearson residuals, shown in Triangle 4, can be obtained using equation 3.1,
together with the observed and fitted incremental data.

Triangle 4 — Unscaled Pearson Residuals (adjusted for degrees-of-freedom correction)

208.80
-48.38
-165.74
-114.54
227.79
87.97
96.74
-198.70
-27.44
0.00

142.16
-67.38
95.60
252.05
-194.98
73.62
-160.52
-123.50
17.39

-138.36
-59.00
-56.50

-228.06
151.41
-97.06
133.53

243.69

-385.19
161.62
-26.79
659.00
-215.29
-226.45
-35.37

210.42
-219.70
285.86
-483.12
-25.45
266.13

644.02
-167.45
-499.07

-88.71

217.73

29111 -121.92 -107.42
311.51 31.04 91.03
256.12 72.64

-323.74

0.00

A crucial step in performing the bootstrap is resampling the residuals, with replacement. One
such sample is shown in Triangle 5. Notice that residuals may appear more than once when
resampled with replacement . Care must be taken to ensure that all residuals have an equal
chance of being selected.

Triangle 5 — Example set of resampled residuals

31.04
-385.19
-114.54

644.02
227.79
-88.71
-323.74
256.12
-291.11
-323.74

142.16
-215.29
133.53
0.00
-88.71
161.62
95.60
133.53
227.79

96.74
-228.06
208.80
217.73
243.69
227.79
95.60
-26.79

243.69
227.79
311.51
-198.70
311.51
161.62
73.62

-165.74
-27.44
-59.00

-228.06

133.53
659.00

-483.12
151.41
-88.71

-138.36
-56.50

-114.54  142.16 96.74

-198.70 31.04  142.16
7264 21042

644.02

0.00



Using the resampled residuals in Triangle 5, together with the original incremental fitted
values in Triangle 3, a bootstrap data sample can be calculated by solving equation 2.4. The
bootstrap sample associated with the resampled residuals in Triangle 5 is shown in Triangle
6. The associated cumulative sample is shown in Triangle 7, together with development
factors obtained by applying the standard chain ladder to the bootstrap data. The bootstrap
reserve estimate is obtained from the development factors and cumulative bootstrap sample in
the usual way.

Triangle 6 — Incremental Bootstrap data sample

286193
139894
302436
756727
468386
301033
189191
645170
208635
154134

789203
728404
1055902
913365
756374
1032889
1070369
1314124
1197400

785688

755277
1177041
1169610
1105502
1141774
1118833
1195494

964966
1282688
1356228

822131
1239931
1147627
1170167

310280
560338
530633
395047
615957
1034042

31251
504122
347018
310083
330217

209011
252260
414137
753151

242686
269157
356376

323113
467262

Triangle 7 — Cumulative Bootstrap data sample together with development factors

286193
139894
302436
756727
468386
301033
189191
645170
208635
154134

Resampled Development Factors

3.686

1075396

868299
1358338
1670092
1224760
1333922
1259560
1959294
1406035

1.786

1861085
1623575
2535379
2839702
2330262
2475696
2378394
3154788

1.498

2826050
2906263
3891607
3661833
3570192
3623322
3548560

1.168

3136330
3466601
4422241
4056880
4186149
4657364

1.079

10

3167581
3970723
4769259
4366963
4516365

1.100

3376592
4222983
5183396
5120115

1.068

3619278 3942391
4492140 4959402

5539772

1.097

1.017

67948

4010339



The forecast cumulative values are obtained by applying the appropriate development factors
from Triangle 7 to the latest diagonal of cumulative payments in Triangle 7, and are shown in
Triangle 8. The associated incremental values are shown in Triangle 9.

Triangle 8 — Forecast cumulative payments

5044878
6079567 6184349
5120115 5467873 6000661 6104084
4968309 5305757 5822748 5923105
5025417 5528301 5903783 6479046 6590714
4145720 4473340 4920978 5255211 5767277 5866677
4724649 5519724 5955926 6551923 6996930 7678709 7811053
2511177 3760769 4393639 4740852 5215259 5569479 6112168 6217513

568160 1014732 1519676 1775410 1915714 2107415 2250551 2469844 2512413

Triangle 9 — Forecast incremental payments

85476

539794 104783

347758 532788 103423

451944 337447 516992 100356

368053 502884 375482 575263 111668

597160 327620 447638 334233 512067 99400

1569861 795074 436202 595998 445006 681779 132344

1105142 1249592 632871 347212 474408 354220 542689 105345

414026 446573 504943 255734 140304 191702 143136 219293 42568

Finally, for each cell in the future triangle, an observation is drawn at random from the
process distribution given in equation 2.1, where the means are taken from Triangle 9 and the
scale parameter is 52,601, calculated using equation 2.5. In this example, the Gamma
distribution has been used with the appropriate means and variances (as discussed in Section
3), with the random observations shown in Triangle 10. This final step is the crucial part in
incorporating the process error, having incorporated the estimation error in the bootstrap
procedure.
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Triangle 10 - Forecast incremental payments (including process error)

51625

523596 51561

449818 303542 210615

509740 224982 579429 72698

437494 745695 266993 617457 14791

779073 336479 437257 224980 353175 45208

1308427 1295911 433980 915332 229602 802984 116554

878549 1733080 643355 350541 319135 479250 161422 87312

391039 404381 388433 175682 212715 101511 136093 89687 88928

The associated reserve estimates for this simulation are obtained by summing the values in
Triangle 10, as shown below.

Simulated Reserve estimates (1 simulation)

51625
575157
963975

1386848

2082430

2176172

5102789

4652644

i=10 1988369

Total T 18980009

s.-.\.s
TR TR
© oo ~N o 9 s w N

The process is completed by repeating N times, where N is large (e.g. N = 1000), each time
creating a new bootstrap sample and new simulated reserve estimates. The simulated
prediction errors of the reserve estimates are simply the standard deviations of the N
simulated reserve estimates.

12
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Table 1 : Estimated Reserves (000°s)

Chain Bootstrap Mean | Bootstrap/Simulation

Ladder (E&V 1999) Mean
= 95 96 94
i=3 470 474 475
i=4 710 712 719
=5 985 996 996
i=6 1419 1425 1422
= 2178 2171 2164
i=8 3920 3903 3943
= 4279 4268 4246
i=10 4626 4645 4629
Total 18681 18690 18688
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Table 2 : Prediction Errors as % of Reserve Estimate

Poisson Bootstrap Bootstrap/
GLM (E&V 1999) Simulation
Analytic
= 116 117 117
i= 46 46 47
=4 37 36 37
= 31 31 31
= 26 26 27
= 23 23 23
=8 20 20 21
=9 24 24 25
=10 43 43 44
Total 16 16 16
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Table 3: Sample Statistics from Predictive Aggregate Distribution of Total Reserves

Number of Observations 1,000
Mean 18,688
Standard Deviation 2,956
Coefficient of Variation 0.158
Skewness 0.350
Kurtosis 0.229
50th Percentile 18,532
75th Percentile 20,640
90th Percentile 22,620
95th Percentile 23,827
99th Percentile 25,967
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Figure 1. Predictive Aggregate Distribution of Total Reserves

18000 22000 26000 30000 34000
Total Reserves

14000

10000
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