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1 Introduction

Relativistic invariance plays an important role in 1+1d integrable field theories. For exam-

ple, being able to express the S matrix in terms of a single parameter θ corresponding to

the difference of rapidities of the scattering particles substantially simplifies the analysis

of the system.

By contrast, integrable holographic theories are obtained from a light-cone gauge fixed

Green-Schwarz worldsheet action and consequently describe scattering in a non-relativistic

1+1-dimensional theory [1, 2]. In AdS3 integrable models [3, 4] (see also [5–23]) the exact

dispersion relation for massive and massless excitations is [24, 25]

E =

√(
m+

k

2π
p

)2

+ 4h2 sin2 p

2
. (1.1)

– 1 –
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Here, k ∈ Z is the WZW level, m is the mass of worldsheet excitations,1 and h is the

strength of the integrable interaction. In the spacetime supported by R-R charge only

(k = 0), h is related to the curvature of the geometry as

h =
R2

α′
+ . . . (1.2)

while, for the spacetime supported by NS-NS charge, h corresponds to turning on R-R

moduli [26], such as the axion C0

h = −gsC0k

2π
+ . . . . (1.3)

Turning on C0 in the NS-NS theory introduces a non-zero R-R three-form flux [26], since

the gauge-invariant R-R field-strength is

F3 = dC2 − C0 ∧H . (1.4)

Nonetheless, the charges of the background remains the same (QF1 and QNS5), as is ex-

pected for a modulus. Because of this we will refer to the theory with non-zero C0 as the

NS-NS theory.

In this paper we exploit the appearance of relativistic invariance in integrable AdS3

holography in two complementary contexts. Firstly, in the R-R theory (k = 0), it was

recently found in [27] that the massless S matrix can be written in a difference form when

expressed in terms of unconventional rapidity variables

γ = log tan
p

4
. (1.5)

We prove analytically that the dressing factor found in [21] is of γ-difference form as well.

Exploiting this simplification, we write down an exact TBA for the massless degrees of

freedom generalising in a straightforward manner the TBA found in [28] for the low-energy

excitations. We use the TBA to show that the vacuum remains supersymmetric in finite

volume. The S matrix and TBA correspond to a target-space supersymmetric massless

sine-Gordon theory with a non-conventional kinetic term.2

Secondly, we investigate the low-energy limit of the NS-NS theory. At zero modu-

lus (h = 0), the dispersion relation (1.1) reduces to a relativistic one upon shifting the

momentum

ps = p− 2πm

k
. (1.6)

The S matrix, however remains non-relativistic. By restricting to small momenta ps ∼ 0,

we investigate the low-energy limit of the integrable theory, generalising the R-R analysis

of [28]. As in that case, each excitation decomposes into a worldsheet left- and right-mover,

1In the case of strings on AdS3 × S3 × T4 the mass is m = ±1, 0.
2The S matrix is almost that of the massless N = 2 sine-Gordon model at β2

N=2 = 16π. The only

difference comes from certain constant phases since the fermions considered here are of the GS type, while

the usual N = 2 sine-Gordon model has RNS fermions. The former are anti-commuting scalars on the

worldsheet, while the latter are spinors.

– 2 –
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the S matrices become relativistic and the only non-trivial scattering is between excitations

of the same worldsheet chirality. As was argued on general grounds in [29], the trivialisation

of left/right scattering is expected for S matrices corresponding to (worldsheet) Conformal

Field Theories (CFTs). This should be contrasted with [30, 31], where the S matrix is

assumed to be trivial apart from a CDD dressing factor for scattering of excitations of

opposite worldsheet chirality. It would be interesting to see whether this conjectured S

matrix is somehow related to the pure NS-NS limit of the exact all-loop S matrix derived

in [25], and whether it can be reconciled with the general expectations for a CFT S matrix

discussed in [29].

We find that our low-energy S matrix coincides, up to dressing factors, with a restriction

to AdS3 of the relativistic q-deformed S matrices that have appeared in investigations of

q-deformations of integrable AdS5 models [32, 33] and their Pohlmeyer reductions [34].

The work of [33] is concerned with the AdS5 × S5 theory. Restricting to AdS3 × S3 can

be done in a straightforward way, and it is such restricted S matrices that we match to

our low-energy NS-NS S matrices. Even more closely related are the papers [34, 35] which

study the Pohlmeyer reduction directly in AdS3 × S3 and AdS2 × S2 (see also [35, 36] for

related work in AdS3). The matching with the corresponding S-matrices is reproduced with

the only difference being in the scalar factor, accounting for the differences in the physical

spectrum of the two cases.3 This connection gives a new string-theoretic interpretation on

the role of q-deformations in holographic integrability with q being related to the WZW

level of AdS3 × S3 by

q = e
2iπ
k . (1.7)

We determine the (two) dressing factors of the low-energy S matrices, write down the TBA

and show that the vacuum remains supersymmetric in finite volume. Finally, in light of

recent interest in the small-k limit of AdS3 geometries [37–39], we consider the relativistic

limit of the k ≤ 2 theories. We find that for k = 1, 2 the low-momentum S matrices reduce

to the well-known minimal N = 2 S-matrix of Fendley-Intriligator [40], equivalently the

Sine-Gordon S-matrix at the special value of the coupling β2 = 16π
3 . This suggests the

possibility of novel behaviour emerging from the low-k integrable system.

This paper is organised as follows. In section 2, we analytically prove that the dressing

factor found in [21] is of difference-form, and we analyse which implications the hidden

relativistic invariance has for a putative dressing factor. We write down the all-loop TBA

for the massless modes of the R-R theory and use it to show that the correction to the BMN

groundstate energy is zero. In section 3 we write down the low energy S matrices of the

NS-NS theory and relate them to relativistic q-deformed S matrices [33, 34]. In section 4 we

solve the crossing equations for the two dressing factors of the low-energy theory, obtain

the Algebraic Bethe Ansatz (ABA) in section 5 and write down the groundstate TBA

equations in section 6. In section 7 we comment on the relativistic limit for the k = 1, 2

integrable theories.

3We thank Ben Hoare for communication on this point, and the anonymous referee for a detailed

comment about these comparisons.
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2 Exact massless sector of R-R theory

In this section we use the hidden relativistic invariance found in [27] to analyse the exact

dressing factor, ABA and TBA for the massless sector of the R-R AdS3 theory.4

2.1 Proof of difference-form of massless dressing factor

In this section we give a full proof of the fact discovered in [27] that the non-relativistic

massless sector of string theory on AdS3×S3× T 4 can be entirely recast into a difference-

form in terms of the new variable

γ = log tan
p

4
. (2.1)

Equation (2.33) of [21] gives the massless dressing phase θ◦◦(x, y)

θ◦◦min(x,y) =
1

2
θHL(x±,y±)

∣∣∣
mx=my=0

=

1+i0∫
−1+i0

dz

4π
G−(z,y)

(
1

z−x
− 1

z− 1
x

)
−

1−i0∫
−1−i0

dz

4π
G+

(
z,

1

y

)(
1

z−x
− 1

z− 1
x

)

− i
4

(
G−(x,y)−G+

(
1

x
,
1

y

))
, (2.2)

where

G±(z, y) = log (±i(y − z))− log

(
±i
(
y − 1

z

))
. (2.3)

The above expression is obtained by analytically continuing the Hernandez-Lopez phase [41]

to zero mass and deforming the contour of integration [42] from the unit circle to the above

interval, taking care to avoid the log branch-cuts. Even though it is not immediately

manifest, the phase is in fact antisymmetric:

θ◦◦(x, y) = −θ◦◦(y, x) , (2.4)

as proved in appendix B of [21]. Given that

∂γ1 =
1

2
(x2 − 1)∂x , (2.5)

for massless Zhukovsky variable x = eip1/2, and similarly for y = eip2/2, we want to show

that

(x2 − 1)∂xθ
◦◦(x, y) = −(y2 − 1)∂yθ

◦◦(x, y) . (2.6)

To do this, we will use the explicit form of the dressing phase when computing the r.h.s.

of (2.6), and for the l.h.s. we will use antisymmetry.

Note first that

∂y

[
G−(x, y)−G+

(
1

x
,

1

y

)]
= 0, ∂x

[
G−(y, x)−G+

(
1

y
,

1

x

)]
= 0, (2.7)

4We focus on the AdS3 × S3 ×T4 background, but generalisation to the massless sector of AdS3 × S3 ×
S3 × S1 is straightforward.

– 4 –
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so that the terms on the last line of (2.2) do not contribute. Differentiating the remaining

terms on the r.h.s. of (2.2) w.r.t. y gives a simple integral of a rational function

∂yG−(z, y) = −∂yG+

(
z,

1

y

)
=

z2 − 1

(y − z)(yz − 1)
. (2.8)

The two integrands after the action of ∂y are therefore the same, and we can take the

integrals in (2.2) to the segment [−1, 1] without any danger. All in all, we get

(y2 − 1)∂yθ
◦◦(x, y) =

1

2π

∫ 1

−1
dz

(z2 − 1)(y2 − 1)(x2 − 1)

(yz − 1)(xz − 1)(z − y)(x− z)
. (2.9)

If we now compute (x2 − 1)∂xθ
◦◦(x, y) by switching x ↔ y on the r.h.s. of equation (2.2)

and changing sign, then an almost identical calculation produces

(x2 − 1)∂xθ
◦◦(x, y) = − 1

2π

∫ 1

−1
dz

(z2 − 1)(y2 − 1)(x2 − 1)

(yz − 1)(xz − 1)(z − y)(x− z)
, (2.10)

which completes the proof.

2.2 Constraints on dressing factor from hidden relativistic invariance

The massless dressing phase θ◦◦min is meant to be exact in α′, yet was derived from the

Hernandez-Lopez order (i.e. one-loop in α′) of the massive dressing phase, perhaps giving

one some pause.5 Nonetheless, it was shown in [21] that this is because higher-order terms

in the strong-coupling expansion of the DHM expression for the BES phase trivialize for

massless kinematics. At the AFS order, however, the dressing phase remains non-trivial

χAFS(x, y) =
1

x
− 1

y
+

(
y +

1

y
− x− 1

x

)
log

(
1− 1

xy

)
, (2.11)

but solves a homogeneous crossing equation, and so could be thought of as a CDD-type

factor. In [21], the possibility of having such a factor in the exact massless dressing phase

was not excluded.

It is easy to see that χAFS is not of γ-difference form(
(x2 − 1)∂x + (y2 − 1)∂y

)
χAFS(x, y) 6= 0 . (2.12)

Since the exact massless S matrix has to be of difference form [27], we see that one cannot

add χAFS as a CDD factor to θ◦◦min.

More generally, requiring such a difference form on the cr,s expansion of dressing phases

χ(x, y) =

∞∑
r,s=1

cr,s
xrys

, (2.13)

implies that the coefficients cr,s

(r + 1)cr+1,s − (r − 1)cr−1,s + (s+ 1)cr,s+1 − (s− 1)cr,s−1 = 0 . (2.14)

5We are grateful to Sergey Frolov and Tristan McLoughlin for asking us important questions about the

massless dressing phase which led us to revisit it in light of the hidden relativistic invariance.

– 5 –
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It is simple to check that the HL-order coefficients

cHL =
(−1)r+s − 1

π

1

r2 − s2
, (2.15)

satisfy this constraint, as expected. On the other hand, the AFS coefficients do not, nor

do any of the higher-order strong-coupling expansion coefficients, or the weak-coupling ex-

pansion ones. In appendix A we check numerically that the cBES
r,s coefficients which were

found in [43] as solutions of the Janik crossing equation [44], do not satisfy equation (2.14)

for intermediate values of the coupling either. We conclude that hidden relativistic invari-

ance places strong constraints on the form of any putative massless dressing factors, and

excludes all candidates suggested by higher-dimensional integrable holographic examples

continued to massless kinematics, apart from the HL-order term θ◦◦min.

A related argument based on gamma-relativistic invariance can be seen to equally call

for the absence of other CDD factors. If, in fact, we were to allow a CDD factor, this would

instantly violate the requirement of absence of poles in the physical strip Imγ ∈ (0, π). CDD

factors are of the form

CDD =
∏
i

[αi], [αi] ≡
sinh γ + i sinαi
sinh γ − i sinαi

, αi ∈ (0, π) ∀ i, (2.16)

and are typically utilised to add and subtract poles wherever the bound-state spectrum

should require it, which will fix the range of the index i and the value of the parameters

αi. The information required to establish the range of i and the specific values of αi is

normally determined by other physical considerations. Since two massless particles cannot

form a bound state, no place is left for bound-state poles in the massless S-matrix, and

the only CDD factor which would preserve this requirement would be a trivial one.6 Such

pole analysis of course relies on the spectral properties of a local field theory, and on

gamma-relativistic invariance. The only way a CDD factor could avoid this contradiction

is by breaking gamma-relativistic invariance, which is shown above to be the case for AFS.

We believe this to be an indication of how the full massless sector of the theory actually

appears to behave as a local relativistic QFT in the gamma variable, albeit one with a non-

standard dispersion relation, which puts a remarkable constraint on its description. The

above argument also shows that since both the expression (2.2) and the well-known sine-

Gordon one of Zamolodchikovs (2.19) are minimal solutions of the crossing equation, they

must be equal to each other in the physical strip as was already verified numerically in [28].

6Stricly speaking, the CDD factor could add a zero in the physical strip, but we confine ourselves to

consider this superfluous, as in our case we are already starting from an S-matrix which does not have any

pole to cancel in the physical strip. Adding zeroes in the physical strip via CDD factors does occur for

instance in Toda theories (Tim Hollowood, private communication), and it is only by computing physical

quantities (e.g. by means of the TBA) that one can absolutely pinpoint their necessity. Besides checking

the vanishing of the Witten index, later on in the paper we shall also compute the central charge of our

relativistic mixed-flux theory in the k = 2 case and find that it is consistent with general expectations.

Although far from conclusive, we take this as a further encouragement that CDD factors should not play a

role in our treatment. We thank Tim Hollowood for discussions about this point.

– 6 –
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2.3 Algebraic Bethe Ansatz and Bethe equations

Using the relativistic, γ-difference form of the S matrix and dressing factors, we perform

the ABA to obtain the Bethe equations and the Thermodynamic Bethe Ansatz (TBA). To

a large extent it is possible to simply import the results obtained for the relativistic case

in [28], with minimal changes.7

Following the procedure of appendix B of [28], which applies without modification

since the R-matrix is formally identical when written in γ-variables, we obtain the exact

massless Bethe equations

1 =

K0∏
j=1

tanh

(
β1,k − γj

2

)
,

e−iLpk = (−1)K0−1
K0∏
j=1

j 6=k

S2(γk − γj)
K1∏
j=1

coth

(
β1,j − γk

2

) K3∏
j=1

coth

(
β3,j − γk

2

)
,

1 =

K0∏
j=1

tanh

(
β3,k − γj

2

)
,

where β are the auxiliary Bethe roots, and S(γ) is the sine-Gordon scalar factor

S(γ) =

∞∏
`=1

Γ2(`− τ) Γ(1
2 + `+ τ) Γ(−1

2 + `+ τ)

Γ2(`+ τ) Γ(1
2 + `− τ) Γ(−1

2 + `− τ)
, (2.17)

with τ ≡ γ
2πi . The dressing factor (2.17) satisfies the crossing and unitarity conditions

S(γ)S(γ + iπ) = i tanh
γ

2
, S(γ)S(−γ) = 1, (2.18)

and is a pure phase for real γ. The asymptotic spectrum also follows from the relativistic

case, with the appropriate replacement of variables.8

2.4 Exact massless TBA for R-R theory

Given that the structure of the spectrum is the same as the relativistic one, and, in par-

ticular, the solutions to the auxiliary Bethe equations localise on the same locus in the

7Our results are for the massless sector. In the non-relativistic regime the full set of scattering matrices is

non-trivial, and this includes the scattering between massive and massless modes, which we do not consider

in the present paper. Massive modes and the coupling between them and massless modes will have to be

included in the all-loop ABA and TBA.
8It would be extremely interesting to revisit perturbation theory for the massless sector of AdS3 away

from the BMN limit in the light of γ-relativistic invariance. In contrast to the strict BMN limit in fact, one

can compare with perturbative computations [8, 13, 45–47] as all of the modes have a group velocity which

is strictly less than the speed of light. Since several mismatches were found in comparing with perturbative

calculations, precisely as regards to the S-matrix and to the dispersion relation of massless modes, it would

be interesting to see whether γ-relativistic invariance is indeed observed in perturbation theory and can

play a role in reconciling these differences (Lorenzo Bianchi, private communication).

– 7 –
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complex γ plane as in the relativistic variable θ [28], the TBA analysis performed there

continues to hold as long as we update the particle-energy in terms of γ:

E =
2h

cosh γ
. (2.19)

We obtain for the total energy

Ẽ = 2h

∫
dγ

1

cosh γ
ρr0(γ), (2.20)

ε0 = ν0(γ)−
∑
n=1,3

φ ∗ (L+n + L−n), ε±n = −φ ∗ L0, n = 1, 3 , (2.21)

where

ν0(γ) ≡ 2hR

cosh γ
, εA ≡ log

ρhA
ρrA

, LA ≡ log(1 + e−εA) , φ(θ) ≡ 1

2π cosh θ
,

with A = 0,±n. The density and kernel we have introduced maintain the same meaning

as in [28]. The exact ground-state energy is then obtained from the solution of the TBA as

E0(R) = −h
π

∫
dγ

1

cosh γ
log(1 + e−ε0(γ)) . (2.22)

Taking into account that one has two massless momentum-carrying roots in the full theory

(due to the presence of an additional symmetry, dubbed su(2)◦ in [17, 19], which effec-

tively works as to add a second equal and independent copy of the system of Bethe ansatz

equations), we conclude that the total ground state energy is 2E0(R), with E0(R) given

by (2.22).

As one can see, besides the one-particle energy, the other main difference with respect

to [28] is that we do not have the distinction between worldsheet left- and right-movers. In

the exact non-relativistic case considered here, both left- and right-movers are combined

into one particle type by taking the physical region of momenta to be

p ∈ (0, 2π), (2.23)

and write a single TBA for this individual particle. The would-be left and right- branches

of the dispersion relation do interact, but this is clearly taken into account by the TBA,

which now has the non-relativistic dispersion relation (2.19). This is in many respects

reminiscent of a massive TBA, with the physical region precisely encompassing

γ ∈ (−∞,∞) (2.24)

monotonically, as a massive relativistic rapidity would do.

This analogy is reinforced by noting that we are not in a scale-invariant setting any

longer. A relativistic massless dispersion of the type E = Meθ would imply that any

rescaling

E → λE simply amounts to θ → θ + log λ,

– 8 –
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hence a purely difference-form R-matrix is insensitive to rescalings, if one can transfer the

rescaling onto a shift of rapidity. This is clearly not possible for (2.19). We do not have

therefore a conformal field theory any longer, and the TBA is significantly more difficult

to solve — in particular, the ground-state energy is expected to depend non-trivially on R,

and not simply display the 1
R dependence dictated by dimensional analysis as it happens

for a CFT. The effective central charge itself will be a function of R:

ceff(R) = −6R

π
E0(R). (2.25)

Nonetheless, one can still evaluate the Witten index since the calculation is independent

of the different expression for the energy now featuring in the TBA. Adding a chemical

potential which corresponds to a shift in the auxiliary pseudo-energies εn → εn ± iπ, the

same constant solutions to the TBA described at the end of section (5.3) of [28] are still

valid, and the new energy term does not affect them. The integral is again zero thanks to

the evaluation of the integrand on these solutions.9 The Witten index is exactly zero, which

means that the massless sector on its own preserves supersymmetry of the ground state.

This puts a constraint on the massive sector: if supersymmetry is preserved in the ground

state of the complete TBA, the massive modes should also contribute exactly zero to it.

3 Relativistic limit of mixed flux case

In this section we study the relativistic limit of the symmetry algebra and S-matrix, which

is more involved in the mixed-flux case with respect to the pure R-R case. In particular,

thanks to the peculiar momentum-dependence of the dispersion relation

E =

√(
m+

k

2π
p
)2

+ 4h2 sin2 p

2
(3.1)

it is possible to obtain a much wider set of massless particles participating in the scattering,

even starting from those which are initially massive. The prescription to obtain a massless

relativistic scattering theory goes as follows:

• Take the limit h→ 0 — this eliminates the sin p
2 dependence of the dispersion relation,

and makes it natural to shift momenta to reabsorb a constant;

• Shift momenta as p → p − 2π|m|
k for representation ρL, and p → p + 2π|m|

k for repre-

sentation ρR;

• Rescale all momenta as pi = εqi and take the limit ε→ 0;

• Set qi = eθi , with i = 1, 2.

9We remark that we are working with the direct theory, as opposed to the mirror one familiar from

the AdS5 × S5 string theory work of [48–50] and [51–53]. The integration contour and expression for the

single-particle energy will change in mirror kinematics, however the value of the integral evaluated with the

chemical potentials turned to ±iπ should still be zero. We will return to the interesting question of the

interplay between γ-relativistic invariance and mirror transformation in the TBA in future work.
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The small-h expansion of the variables x± depends on the sign of 2π ± kp, which

physically corresponds to the worldsheet chirality of the relativistic particles. For |m| = 1,

one finds

x+
L ∼ +

1 + k
2πp

h sin p
2

e+ ip
2 , x−L ∼ +

1 + k
2πp

h sin p
2

e−
ip
2 , 2π + kp > 0,

x+
L ∼ −

h sin p
2

1 + k
2πp

e+ ip
2 , x−L ∼ −

h sin p
2

1 + k
2πp

e−
ip
2 , 2π + kp < 0,

x+
R ∼ +

1− k
2πp

h sin p
2

e+ ip
2 , x−R ∼ +

1− k
2πp

h sin p
2

e−
ip
2 , 2π − kp > 0,

x+
R ∼ −

h sin p
2

1− k
2πp

e+ ip
2 , x−R ∼ −

h sin p
2

1− k
2πp

e−
ip
2 , 2π − kp < 0,

(3.2)

One has to then calculate the limit of the algebra and S-matrix for all possible combina-

tions of representations ρL and ρR and choices of sign of shifted momenta. In particular

this means that each exact non-relativistic representation degenerates into two distinct

relativistic representations, much as we saw in the R-R theory. As a consistency check,

we have also rederived all the relevant S-matrices directly starting from the intertwining

equation with the limiting algebra generators, suitably rescaled to maintain their finiteness.

The limit behaves differently for m = 0 and for m 6= 0. Let us first discuss the

case of |m| = 1. The limiting S-matrix becomes a relativistic one, depending only on the

difference of the massless rapidities θi, or, equivalently, only on the ratio q1
q2

. In the case

of L-L scattering representations, and for the choice of all positive shifted momenta, the

resulting S-matrix is10,11

RLL|φ〉 ⊗ |φ〉 = |φ〉 ⊗ |φ〉,

RLL|φ〉 ⊗ |ψ〉 =
e
iπ
k (q1 − q2)

e
2iπ
k q1 − q2

|φ〉 ⊗ |ψ〉+
(e

2iπ
k − 1)

√
q1q2

e
2iπ
k q1 − q2

|ψ〉 ⊗ |φ〉,

RLL|ψ〉 ⊗ |φ〉 =
(e

2iπ
k − 1)

√
q1q2

e
2iπ
k q1 − q2

|φ〉 ⊗ |ψ〉+
e
iπ
k (q1 − q2)

e
2iπ
k q1 − q2

|ψ〉 ⊗ |φ〉,

RLL|ψ〉 ⊗ |ψ〉 = −e
2iπ
k q2 − q1

e
2iπ
k q1 − q2

|ψ〉 ⊗ |ψ〉.

(3.3)

On the other hand for m = 0 we find

RLL|φ〉 ⊗ |φ〉 = |φ〉 ⊗ |φ〉,

RLL|φ〉 ⊗ |ψ〉 = −q1 − q2

q1 + q2
|φ〉 ⊗ |ψ〉+

2
√
q1q2

q1 + q2
|ψ〉 ⊗ |φ〉,

RLL|ψ〉 ⊗ |φ〉 =
2
√
q1q2

q1 + q2
|φ〉 ⊗ |ψ〉+

q1 − q2

q1 + q2
|ψ〉 ⊗ |φ〉,

RLL|ψ〉 ⊗ |ψ〉 = −|ψ〉 ⊗ |ψ〉,

(3.4)

10These expressions give a good small-momentum approximation to the exact S-matrix for k > 2, and in

most of the rest of the paper we will only consider k > 2.
11For brevity, in most of the explicit formulas in this paper we only write down one of the two identical

su(2)◦ terms that the AdS3 × S3 × T4 theory has.
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which coincides with the one studied in [28] for the relativistic massless sector of the pure

R-R-fux background. From the point of view of worldsheet scattering theory, the above

S matrices should be interpreted as non-perturbative, algebraic objects which provide an

integrable description of the low-momentum effective CFT in the sense of [29].

The algebra of symmetries undergoes an interesting reduction in the relativistic limit.

First, we notice how, in the m = 0 case, the algebra generators become proportional to the

one studied in [28] by constant factors, and the coproduct trivialises. On the other hand for

|m| = 1, because of the shift in momenta (1.6) the braiding of the coproduct survives in the

relativistic limit. The braiding factors reduce to constant matrices proportional to identity.

Explicitly, one gets for example supercharges in the ρL representation with positive shifted

momentum

QL ∼ e−
iπ
2k

+iξ

√
kεq

2π

(
0 0

1 0

)
, SL ∼ e

iπ
2k
−iξ
√
kεq

2π

(
0 1

0 0

)
,

QR ∼ e−
iπ
2k

+iξh sin
π

k

√
2π

kεq

(
0 1

0 0

)
, SR ∼ he

iπ
2k
−iξ sin

π

k

√
2π

kεq

(
0 0

1 0

)
, (3.5)

and for supercharges in the ρR representation with negative shifted momentum

QL ∼ ie
iπ
2k

+iξ

√
−kεq

2π

(
0 1

0 0

)
, SL ∼ ie−

iπ
2k
−iξ
√
−kεq

2π

(
0 0

1 0

)
,

QR ∼ ie
iπ
2k

+iξh sin
π

k

√
2π

−kεq

(
0 0

1 0

)
, SR ∼ ihe−

iπ
2k
−iξ sin

π

k

√
2π

−kεq

(
0 1

0 0

)
, (3.6)

with a coproduct which has retained a non-trivial braiding

∆(QL) = (QL ⊗ 1 + U ⊗QL), ∆(SL) = (SL ⊗ 1 + U−1 ⊗SL),

∆(QR) = (QR ⊗ 1 + U ⊗QR), ∆(SR) = (SR ⊗ 1 + U−1 ⊗SR), (3.7)

with U an invertible central element of the algebra, equal to e−
iπ
k (respectively e

iπ
k ) for ρL

with positive momentum (respectively for ρR with negative momentum). This defines a

consistent relativistic Hopf algebra with ∆op 6= ∆.12

3.1 Comparison with the q-deformed S-matrix

It is interesting to notice that the |m| = 1 relativistic S-matrix coincides with the relativistic

q-deformed S-matrix of [33] — and the closely related S-matrix computed in [34] in the

context of the Pohlmeyer reduction — upon the following identification of the parameters:

q = e
2iπ
k , (3.8)

12As we had anticipated, the generators have to be suitably rescaled to remain finite in the relativistic

limit. This rescaling does not introduce any ambiguity in the calculation of the R-matrices, since the

representations involved have a corresponding dependence on the small parameters, and so the rescaling

does not affect the intertwining relation.
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where q is the parameter used in [33], while k is the WZW level used in this paper.

This gives a simple string-theory embedding for these models.13 In this respect, even

more closely related is a comparison with the Pohlmeyer Reduction of the AdS3 × S3

S-matrix studied in [34, 35]. The matching there is reproduced with the only difference re-

siding in the scalar factor, which takes into account the differences in the physical spectrum

of the two situations.14 This underlines how a web of connections is reachable starting from

the class of relativistic S-matrices we study in this paper.15

4 Crossing and braiding unitarity

In this section we show that the relativistic S matrices found above are unitary and satisfy

Hopf-algebra crossing relations. We solve the corresponding crossing equations for the

dressing factors of the theory.

4.1 Crossing

One starts by imposing the fundamental crossing equation for the algebra generators:

ρL,posΣ(a) = C−1[ρR,nega]st(θ + iπ)C, a = QL,SL,QR,SR, (4.1)

where pos and neg indicate positive and negative shifted momentum, respectively, the apex

st denotes supertransposition, and C is the charge conjugation matrix. Σ is the Hopf alge-

bra antipode, which is uniquely fixed from the knowledge of the coproduct (3.7), and reads

Σ(QL) = −U−1QL, Σ(SL) = −USL, Σ(QR) = −U−1QR, Σ(SR) = −USR. (4.2)

One finds that the four equations (4.1) are solved for a common

C = diag(1,−i). (4.3)

This then allows us to derive all the required crossing equations. We remark that

the ρL representation correlates with positive shifted momentum, and the ρR representa-

tion with negative shifted momentum. Both combinations are considered worldsheet right

13We remark that a series of work, primarily [54, 55] and culminated in [56], pointed out the appearance

of a lack of unitarity in the S-matrix studied in the context of q-deformations of AdS5 × S5. In [56] it was

shown how this could be rectified by a specific vertex to IRF transformation. We will construct a particular

scattering matrix directly in the relativistic limit and massless kinematics for the particular sub-algebra

we are concerned with, which we will be using in the TBA, and which does not seem to suffer from those

issues. We shall, in the particular case of k = 2, show that the matrix we will use in the TBA reduces to the

N = 2 scattering matrix of Fendley and Intriligator, and we will derive the central charge from the TBA

in that case. We also remark that, while the transformation mentioned in [56] does generically affect the

TBA, in our case we do not have strings as we do not have bound states, neither in the direct nor in the

mirror theory. It would be very interesting to investigate whether our findings indicate a possible lift to a

unitary theory parallel to the one traditionally studied in q deformations, at least for the specific subsector

we focus on and perhaps restricting to the massless sector. We thank Tim Hollowood for discussion about

these issues.
14This particular comparison also highlights that no problems with unitarity are encountered when the

parameter q is taken to be a phase.
15We thank the anonymous referee for a detailed and very helpful explanation of these facts.
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movers. This stems from considering that the small-h small-momentum behaviour of the

supercharges naturally pairs up if we inspect (3.5) and (3.6) and allows to build a consis-

tent set of intertwining and crossing equations in the strict relativistic limit, without being

upset by different scaling behaviours of the algebra generators.

It is then just a matter of evaluating the abstract Hopf-algebra equation

(Σ⊗ 1)R = R−1 (4.4)

in all possible representations. We have first derived all the R-matrices in the appropriate

representations by solving the intertwining equation

∆op(a)R = R∆(a), a = QL,SL,QR,SR, (4.5)

for the coproduct (3.7) in all possibile combinations of representations. Noticed that

we have conventionally normalised the R-matrices RLL and RRR such that the entry

|φ〉 ⊗ |φ〉 → |φ〉 ⊗ |φ〉 always equals Φ(θ), this being the corresponding dressing factor. Like-

wise, we have conventionally normalised the R-matrices RRL and RLR such that the entry

|φ〉 ⊗ |ψ〉 → |φ〉 ⊗ |ψ〉 always equals Φ(θ), this being the corresponding dressing factor.

Focusing on the worldsheet right movers, we therefore get the crossing equations:

RLL,pos-pos(θ)C
−1
1 Rst1RL,neg-pos(θ+iπ)C1 =

1

f(θ)
1⊗1, hence ΦLL(θ)ΦRL(θ+iπ) = f(θ),

RRL,neg-pos(θ)C1R
st1
LL,pos-pos(θ+iπ)C−1

1 =
1

g(θ)
1⊗1, hence ΦRL(θ)ΦLL(θ+iπ) = g(θ),

(4.6)

where

f(θ) =
sinh θ

2

sinh( θ2 −
iπ
k )
, g(θ) =

cosh( θ2 + iπ
k )

cosh θ
2

, (4.7)

st1 means supertransposition in the first factor and C±1
1 ≡ C±1 ⊗ 1.

4.2 Braiding and physical unitarity

Braiding unitarity is obtained by evaluating the abstract Hopf-algebra equation

R21R12 = 1⊗ 1 (4.8)

in all possible representations. We simply state the result we obtain:

RLL,pos-pos(θ)R
op
LL,pos-pos(−θ) = 1⊗ 1, hence ΦLL(θ)ΦLL(−θ) = 1,

RRR,neg-neg(θ)RopRR,neg-neg(−θ) = 1⊗ 1, hence ΦRR(θ)ΦRR(−θ) = 1,

RLR,pos-neg(θ)RopRL,neg-pos(−θ) = 1⊗ 1, hence ΦLR(θ)ΦRL(−θ) = 1,

RRL,neg-pos(θ)R
op
LR,pos-neg(−θ) = 1⊗ 1, hence ΦRL(θ)ΦLR(−θ) = 1. (4.9)

All the equations (4.6) and (4.9) will need to be solved simultaneously to determine

the dressing factors to insert in the TBA.
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Finally, we mention physical unitarity — starting with

R†LL,pos-pos(θ)RLL,pos-pos(θ) = 1⊗ 1, R†RR,neg-neg(θ)RRR,neg-neg(θ) = 1⊗ 1, (4.10)

for θ real. Given that the matrix parts, (3.3) and RR-analog, turn out to be unitary by

itself for real θ, we shall need to impose for instance

|ΦLL(θ)| = 1, |ΦRR(θ)| = 1, (4.11)

for real θ. By carefully resolving some ambiguities in the conjugation of square-root factors,

one can also show

RRL,pos-neg(−θ)
[
R†LR,neg-pos(θ)

]−1
= 1⊗ 1, RLR,neg-pos(−θ)

[
R†RL,pos-neg(θ)

]−1
= 1⊗ 1,

for the matrix parts themselves for real θ, which in turn implies that the dressing factors

have to satisfy
ΦRL(−θ)
Φ∗LR(θ)

= 1,
ΦLR(−θ)
Φ∗RL(θ)

= 1, (4.12)

for real θ. Using the conditions on the dressing factors descending from braiding unitar-

ity (4.9), one can see that the mixed L− R physical unitarity conditions (4.12) reduce to

the corresponding dressing factors being pure phases for real momenta.

In later sections we shall focus on RLL (and omit the pos-pos index) for the Bethe

ansatz and the TBA. The R-matrix RLL satisfies in addition the generalised physical

unitarity condition for any θ

R†LL(θ∗)RLL(θ) = 1⊗ 1. (4.13)

4.3 Dressing factors

By adopting the same procedure which was employed in [57], we single out two dressing

factors. Eventually, L ↔ R symmetry might be invoked to obtain the other two. If we

focus on ΦLL and ΦLR, we see that we can define two combinations

σ+(θ) ≡ ΦLL(θ)ΦRL(θ), σ−(θ) ≡ ΦLL(θ)

ΦRL(θ)
, (4.14)

which satisfy two decoupled crossing equations:

σ+(θ)σ+(θ + iπ) = f(θ)g(θ), (4.15)

σ−(θ)

σ−(θ + iπ)
=
f(θ)

g(θ)
=

sinh θ

sinh θ − i sin 2π
k

. (4.16)

We can notice that the function appearing on the r.h.s. of the crossing equation for σ+ is

given by

f(θ)g(θ) =
sinh θ

2 cosh( θ2 + iπ
k )

cosh θ
2 sinh( θ2 −

iπ
k )
. (4.17)
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We can compare this with the dressing phase (5.41) and (5.42) in [33], which satisfies

σhhm(θ)σhhm(θ + iπ) =
sinh θ

2 cosh( θ2 + iπ
2khhm

)

cosh θ
2 sinh( θ2 −

iπ
2khhm

)
, (4.18)

σhhm(θ) and khhm respectively being what are called σ(θ)|magnon and k in (5.41) and (5.42)

of [33]. Comparing with (4.15), we see that we can borrow the solution provided in [33],

which is meromorphic in the entire complex θ-plane. We report the explicit expression here

below:

σ+(θ) =
cosh( θ2 + iπ

k )

cosh( θ2−
iπ
k )

∞∏
`=0

Γ(τ+ 1
2 +`)

Γ(−τ+ 1
2 +`)

Γ(τ+ 1
k+1+`)

Γ(−τ+ 1
k+1+`)

Γ(−τ+1+`)

Γ(τ+1+`)

Γ(−τ− 1
k+ 1

2 +`)

Γ(τ− 1
k+ 1

2 +`)

Γ(−τ+1+`)

Γ(τ+1+`)

Γ(−τ+ 1
k+ 3

2 +`)

Γ(τ+ 1
k+ 3

2 +`)

Γ(τ+ 3
2 +`)

Γ(−τ+ 3
2 +`)

Γ(τ− 1
k+1+`)

Γ(−τ− 1
k+1+`)

, (4.19)

where we have defined

τ ≡ θ

2πi
. (4.20)

We have verified by hand, using the properties of Gamma functions under integer shifts,

and the product representation of sin and cos, that (4.19) satisfies (4.15). We can also

notice that, for real θ, σ+ given by (4.19) is a pure phase.

We can provide a solution to the crossing equation for σ− by making use of Fourier

transforms. If we define

F̃ (ω) ≡ 1√
2π

∫ ∞
−∞

dθeiωθ log σ−(θ), (4.21)

we can use the properties of the Fourier transform under shift of argument to re-write the

(logarithmic version of) crossing equation (4.16) as

F̃ (ω)− eωπF̃ (ω) = G̃(ω), (4.22)

where G̃(ω) is the Fourier transform of the logarithm of the r.h.s. of (4.16):

G̃(ω) ≡ 1√
2π

∫ ∞
−∞

dθeiωθ log
sinh θ

sinh θ − i sin 2π
k

. (4.23)

In the region Im[ω] ∈ (−1, 0) one has for example for k = 4

G̃(ω) =
1√

2π ω2

[
2− πω − πω coth

πω

2
+ 2iωe−

πω
2

(
B(−i, 1 + iω, 0)−B(i, 1− iω, 0)

)]
,

where B(a, b, c) is the incomplete Beta function.

We can therefore immediately solve the crossing equation as

F̃ (ω) =
G̃(ω)

1− eωπ
, (4.24)

hence

σ−(θ) = exp
1√
2π

∫ ∞
−∞

dωe−iωθ
G̃(ω)

1− eωπ
. (4.25)
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To improve convergency at ω = 0, one might want to evaluate

dm log σ−(θ)

dθm
=

1√
2π

∫ ∞
−∞

dω(−iω)me−iωθ
G̃(ω)

1− eωπ
(4.26)

for some natural number m. If we consider our example of k = 4, since the incomplete

Beta function is analytic in all its three arguments, we conclude that, for an appropriate

value of m, the integrand of (4.26) has no poles on the real axis, and is meromorphic in

the ω complex plane with all the potential poles located along the imaginary axis.

It is interesting to note that upon setting k = 2 we recover the Fendley-Intriligator

(minimal N = 2) supersymmetric scattering theory [40]. One can see that σ− = 1 in

this case, and one can check directly that σ+ reduces for k = 2 to the square of S(θ),

the famous Zamolodchikov phase factor for Sine-Gordon at the same special value of the

coupling β2 = 16π
3 , namely

S(θ) =
∞∏
`=1

Γ2(`− τ) Γ(1
2 + `+ τ) Γ(−1

2 + `+ τ)

Γ2(`+ τ) Γ(1
2 + `− τ) Γ(−1

2 + `− τ)
, (4.27)

as for the massless sector. We will analyse the consequences of this observation in the future.

5 Algebraic Bethe Ansatz

In this section we construct the ABA corresponding to the R-matrix (3.3). We will follow

the treatment in appendix B of [28] and use the same conventions adopted there. The

Bethe ansatz can be performed explicitly along similar lines as in the pure R-R case. We

begin by writing the R-matrix (3.3) as

RLL(θ) =E11⊗E11+c(θ)E22⊗E22+b(θ)(E11⊗E22+E22⊗E11)+a(θ)(E21⊗E12−E12⊗E21),

with the assignement

a(θ) =
e
θ
2 (e

2πi
k − 1)

e
2πi
k

+θ − 1
, b(θ) =

e
πi
k (eθ − 1)

e
2πi
k

+θ − 1
, c(θ) =

eθ − e
2πi
k

e
2πi
k

+θ − 1
, (5.1)

where we have parameterised as usual qi = eθi , i = 1, 2, and set θ = θ1 − θ2.

As in [28], we can use the pseudo-vacuum

|0〉 = |φ〉 ⊗ . . .⊗ |φ〉 (5.2)

to implement the algebraic Bethe ansatz method. The central object is the transfer matrix

T (θ0|~θ ) = str0M(θ0|~θ ),M(θ0|~θ ) =

N∏
i=1

R0i(θ0 − θi),

M(θ0|~θ ) being the monodromy matrix. We refer to [28] for a description of the notation

and of the method.
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In particular, the crucial relations satisfied by the monodromy matrix (the so-called

RTT relations) is utilised to derive “commutation” relations between its entries. The

monodromy matrix is in fact regarded as a matrix in the auxiliary 0 space with entries

being operators on a chain of particles of length N , each particle having rapidity θi. The

vector notation ~θ compactly denotes ~θ = (θ1, . . . , θN ). Specifically,

M(θ0|~θ ) = E11 ⊗A(θ0|~θ ) + E12 ⊗B(θ0|~θ ) + E21 ⊗ C(θ0|~θ ) + E22 ⊗D(θ0|~θ ), (5.3)

where the matrix-unities Eij in (5.3) are taken in space 0, and the operators A,B,C,D act

on the chain of N particles.

Among the RTT relations, those which are needed to build the spectrum are the

following:

A(β1|~θ )B(β2|~θ ) = X(β1 − β2)B(β1|~θ )A(β2|~θ ) + Y (β1 − β2)B(β2|~θ )A(β1|~θ ),

D(β1|~θ )B(β2|~θ ) = X(β1 − β2)B(β1|~θ )D(β2|~θ ) + Y (β1 − β2)B(β2|~θ )D(β1|~θ ). (5.4)

The coefficient functions X,Y are now different from [28], and read for the case at hand:

X(β) =
a(β)

b(β)
=

2i e
β
2 sin π

k

eβ − 1
, Y (β) =

c(β)

b(β)
=
e−

iπ
k (eβ − e

2iπ
k )

eβ − 1
. (5.5)

The relations (5.4) allow us to postulate that a generic eigenstate of the transfer matrix

T (θ0|~θ ) = A(θ0|~θ )−D(θ0|~θ ), (5.6)

will be given by

|β1, . . . , βM 〉 = B(β1|~θ ) . . . B(βM |~θ )|0〉, (5.7)

provided one imposes a set of conditions on the rapidities. More precisely, one first notices

that the pseudo-vacuum itself is an eigenstate of the transfer matrix (as can be proven

using a recursive argument):

[
A(θ0|~θ )−D(θ0|~θ )

]
|0〉 =

[
1−

N∏
i=1

b(θ0 − θi)

]
|0〉. (5.8)

Then, using the relations (5.4) and making use of special relations between the coefficient

functions, one manages to find that[
A(θ0|~θ )−D(θ0|~θ )

]
|β1, . . . , βM 〉 = Λ(θ0|~β|~θ ) |β1, . . . , βM 〉

+

M∑
j=1

X(θ0 − βj)

 M∏
k 6=j

Y (βj − βk)

[1−
N∏
i=1

b(βj − θi)

]
|β1, . . . , βj−1, θ0, βj+1, . . . , βM 〉,

(5.9)

with

Λ(θ0|~β|~θ ) =

[
M∏
i=1

Y (θ0 − βi)

][
1−

N∏
s=1

b(θ0 − θs)

]
(5.10)
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and ~β = (β1, . . . , βM ). We have verified this explicitly up to M = 3 (with N being kept

generic and larger than 3). The relation

Y (θ − α)X(θ − β) +X(θ − α)X(α− β) = X(θ − β)Y (β − α) (5.11)

is especially useful in obtaining (5.9).

At this point we can see that the state |β1, . . . , βM 〉 is a transfer-matrix eigenstate if

we kill the unwanted terms in the second line of (5.9), which we can do by means of the

auxiliary Bethe equations

N∏
i=1

b(βj − θi) = 1, j = 1, . . . ,M, (5.12)

with the function b(θ) given in (5.1).

The main set of Bethe equations (so-called momentum carrying) are then obtained by

imposing

eie
θkLΛ(θk|~β|~θ ) = 1, k = 1, . . . , N. (5.13)

Considering that we still need to take into account the dressing factor — which we denote

as Φ — and that b(0) = 0, we get as a momentum-carrying equation

eie
θkL

N∏
j=1

Φ(θk − θj)
M∏
i=1

Y (θk − βi) = 1, k = 1, . . . , N, (5.14)

with the function Y (θ) given in (5.5).

6 TBA for relativistic limit of mixed-flux theory

In this section we perform the TBA analysis, closely following section 5.2 in [28]. The first

thing to notice by experimenting with the numerics, is that the solutions to the auxiliary

Bethe equations (5.12) still localise along two lines in the complex β-plane.16 However

these two lines are not any longer at β = z± iπ2 with z real, as in the pure R-R case of [28],

but instead they localise at

β = z + iπ

(
1− 1

k

)
, β = z − iπ

k
, z real. (6.1)

This means that there will still be two separate kernels for the densities of auxiliary Bethe

roots (5.12), however they will be given by the following formulas:

φ+ =
1

2πi

d

dθ
log b

(
θ + iπ

(
1− 1

k

))
, φ− =

1

2πi

d

dθ
log b

(
θ − iπ

k

)
, (6.2)

with the function b(θ) given in (5.1). This produces the kernels

φ± = −
sin π

k

2π(cos πk ± cosh θ)
. (6.3)

The two kernels are not simply one the opposite of the other, as in [28].

16The number of such solution is also what is expected to build the spectrum from the ABA as in appendix

B.2.2 of [28].
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However, this is not the only difference with respect to the pure R-R case. The

momentum-carrying Bethe equations have a different function controlling the contribution

from the auxiliary roots, which is not simply the reciprocal of b. The function appearing

in (5.14) is the function Y given in (5.5). This means that we need to compute two more

kernels:

ξ+ =
1

2πi

d

dθ
log Y

(
θ + iπ

(
1− 1

k

))
, ξ− =

1

2πi

d

dθ
log Y

(
θ − iπ

k

)
, (6.4)

which results in

ξ± = −
sin π

k

2π(cos πk ± cos(2π
k + iθ)

, (6.5)

with the same Θ variable as in (6.3). The equations for the densities are

ρr0(θ) + ρh0(θ) =
eθ

2π
+ 2φ0 ∗ ρr0 −

∑
n=1,3

(ξ− ∗ ρr−n + ξ+ ∗ ρr+n),

ρr±n(β) + ρh±n(β) = ∓φ± ∗ ρr0, n = 1, 3, (6.6)

where

φ0 =
1

2πi

d

dθ
log ΦLL(θ) . (6.7)

Minimising the free energy subject to the constraint (6.6) leads to the TBA equations:

Rε(θ) = ε0(θ) + 2[φ0 ∗ log(1 + e−ε0)](θ) +
∑

a=±,n=1,3

ā[φa ∗ log(1 + e−εa,n)](θ),

εa,n(β) = [ξa ∗ log(1 + e−ε0)](β), a = ±, n = 1, 3, (6.8)

where we have used the same notational conventions as in [28] for the pseudo-energies,

ε(θ) = eθ, and the same trick of variable-change has been used to free the density-variations

from the convolutions and put them in evidence, which is an essential step to obtain, for

generic variations, the above TBA equations. We have also denoted +̄ = − and −̄ = +.

If we compute the Witten index based on the above TBA, we just need to shift all the

auxiliary pseudo-energies by ±iπ in the L-functions. An exact solution of the TBA is given

by ε0 =∞ and εa,n = 0, so that Witten’s index is zero. A little experimenting displays in

fact that the integral of the kernels
∫∞
−∞ dθ āφa(θ) is a strictly positive quantity for k > 1.

Supersymmetry of the ground state is then preserved.

7 The relativistic limit for small k

The WZW level k enters as a simple parameter into the integrable S matrix construction

of the NS-NS theory. As such, one is free to set it to small values like k = 1, 2 and consider

the resulting integrable system in the same way as one does for other values of k. Since the

relativistic limit captures the low-momentum infra-red physics of the gapless excitations,
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it should be already interesting to consider k = 1, 2 in the relativistic limit. Here we find

an interesting subtlety. Setting k = 2 in equation (3.3) gives the S matrix

RLL|φ〉 ⊗ |φ〉 = |φ〉 ⊗ |φ〉,

RLL|φ〉 ⊗ |ψ〉 = −eiϕ q1 − q2

q1 + q2
|φ〉 ⊗ |ψ〉+

2
√
q1q2

q1 + q2
|ψ〉 ⊗ |φ〉,

RLL|ψ〉 ⊗ |φ〉 =
2
√
q1q2

q1 + q2
|φ〉 ⊗ |ψ〉+ e−iϕ

q1 − q2

q1 + q2
|ψ〉 ⊗ |φ〉,

RLL|ψ〉 ⊗ |ψ〉 = −|ψ〉 ⊗ |ψ〉 ,

(7.1)

where ϕ is a constant phase that is the relativistic limit of the (string) frame-factor, and

can be set to zero by a simple redefinition of the two-excitation states.17 The above S

matrix can be also obtained by first setting k = 2 and then taking the low-momentum

relativistic limit.

Turning to k = 1, we see immediately that setting k = 1 in equation (3.3) gives a

constant S matrix whose entries are ±1 and 0. However, if one is more careful and first

sets k = 1 in the full non-relativistic S matrix and then takes the low-momentum limit one

obtains the k = 2 relativistic S matrix (7.1)!18 A similar analysis can be carried out for

the dressing factors and tells us that minimal solutions to the relativistic limit of crossing

equations are the same for k = 1 and k = 2, and can be obtained simply by setting k = 2

in ΦLL (see the discussion at the end of section 4) to obtain

ΦLL(θ) =

∞∏
`=1

Γ2(`− τ) Γ(1
2 + `+ τ) Γ(−1

2 + `+ τ)

Γ2(`+ τ) Γ(1
2 + `− τ) Γ(−1

2 + `− τ)
, (7.2)

with τ = θ
2πi .

The S matrix one obtains from the R-matrix (3.3) by setting k = 2 and dressing fac-

tor (7.2) can be easily recognised as the minimalN = 2 S-matrix of Fendley-Intriligator [40],

namely the sine-Gordon S-matrix at the special value of the coupling β2 = 16π
3 . Fendley

and Intriligator used this S-matrix, coupled with a suitable mixed left-right scattering ma-

trix, to describe a massless integrable flow between a UV c = 3 CFT and an IR c = 1 CFT,

in the context of Landau-Ginzburg models.

In our setting, the left-right scattering matrix is trivial, and the low-momentum gapless

theory we are describing using a massless purely left-left and right-right S-matrix is a

CFT [29]. This is exactly analogous to the CFT(0) we introduced in [28] to describe the

low-energy gapless part of the spectrum of the m = 0 modes in the pure R-R theory. As we

have seen, in the NS-NS theory, excitations with m = 0, 1,−1 all give rise to such CFTs,

and we will refer to them as CFT
(0)
m . The m = 0 case is identical to the R-R case [28], and

17Frame factors, conventionally denoted by ν = (x+Lp/x
−
Lp)

1/2 = e
i
2
p, are of course present for any k,

and can be similarly removed. Nonethless, one needs to be particularly careful with them for k = 1, 2 when

taking the relativistic limit. This is because upon shifting the momentum, in the relativistic limit they

acquiring a factor ν ∼ (e−
2iπ
k )1/2, which has a discontinuity at k = 2.

18This is because in a low-momentum expansion at generic values of k, higher-order momentum terms

are divergent when one sets k = 1.
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the relativistic TBA was used there to show that the theory has central charge

cm=0 = 6 . (7.3)

In a forthcoming publication we will determine the central charge of CFT
(0)
m=±1 using the

TBA found in section 6 for generic values of k. At present however, we can use the fact

that at k = 2, 1 the theory reduces precisely to the one considered in [40]. As in [28], the

central charge of interest to the relativistic limit considered in this paper is what is referred

to in [40] as the UV limit, so

cm=±1 = 3 . (7.4)

In total then, we find a central charge of 12, and this should be interpreted as coming

from the 8 transverse free bosons and their fermionic superpartners, as expected in the

BMN limit of the NS-NS theory [58]. This as an important consistency check of our

relativistic TBA analysis. In particular, it confirms the absence of CDD factors in the

dressing factors.19 As one goes away from the relativistic limit, by considering excitations

with higher momentum, these free bosons and fermions will re-couple with one another and

we will need the exact non-relativistic TBA involving the massive and massless excitations

to find the spectrum.

8 Conclusions

In massive integrable theories, finite size corrections to the spectrum are exponentially

suppressed in powers of

e−mL . (8.1)

The degrees of freedom of integrable AdS3/CFT2 theories include excitations which, from

the point of view of the worldsheet, are massless (m = 0). As a result, including finite size

corrections order-by-order in α′ seems challenging in this setting [59]. On the other hand,

in massless relativistic theories a TBA for finite size corrections is well-known [29]. In

this paper, we use relativistic invariance to calculate finite size corrections due to massless

excitations in integrable AdS3/CFT2 in two settings. Firstly, building on the hidden-

relativistic invariance found in [27], we construct the exact in α′ TBA for AdS3 R-R charge

backgrounds, and show how it reduces to the low-energy TBA of [28]. We use this exact

TBA to show that the BMN vacuum does not receive finite size corrections. Secondly, we

generalise the low-energy limit of [28] to AdS3 backgrounds with NS-NS charge. In this

limit, we find the dressing factors, ABA and TBA of the system, showing that NS-NS and

hence mixed-charge AdS3 backgrounds’ finite size corrections do not spoil integrability.

It would be interesting to extend our NS-NS analysis away from the low-energy limit

to obtain exact in α′ expressions like the ones we found for the R-R case. Further, com-

puting finite size corrections to excited states in both R-R and NS-NS theories is likely

to be a useful step in developing a TBA and a Quantm Spectral Curve (QSC) [60–63] for

the combined massive-massless theory. Given the simple way in which moduli enter the

19We would like to thank Tim Hollowood for emphasizing this point to us.
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integrable S matrix and BEs [26] incorporating them into the TBA and QSC should also

be possible and would allow to compare with string field theory computations [64].

Following recent results on low-k WZW strings in AdS3 backgrounds [37–39], we have

shown that the relativistic limit of the low-k integrable S matrices is well-defined. We found

that in this limit the k = 1, 2 S matrices and dressing factors are both equal to the minimal

N = 2 S-matrix of Fendley-Intriligator [40], equivalently the Sine-Gordon S-matrix at the

special value of the coupling β2 = 16π
3 . The equivalence of the k = 1 and k = 2 theories is

a consequence of the relativistic limit: already at the next order in the expansion the two

S matrices are different from one another, and so the spectra of the two theories will be

different from one another as is expected on general grounds [37–39].

It is important to contrast our results with the ones of [30, 31]. In that context, the S

matrix is assumed to be trivial apart from a CDD dressing factor for opposite worldsheet

chirality excitations. It would be interesting to see how the approach of [30, 31] compares

with the one which we have developed in this paper, and whether the analysis of [30, 31]

can be reconciled with the general expectations [29] for an S-matrix description of a two-

dimensional CFT.

Finally, we observe that mixed-flux S matrices (both relativistic and exact) are

well defined in the psu(1|1)2 sub-sector: indeed for the most part we wrote down ex-

plicit expressions just for such a sector. Viewed as a stand-alone object, these S ma-

trices appear to be well-suited for describing mixed-flux AdS2 string backgrounds such

as the AdS2×S2×S2×T4 background considered in [65], whose M-theory origin comes

from [66, 67]. In light of this it would be very interesting to investigate the potential

integrable structure of this string theory background.20
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A BES coefficients and relativistic invariance

The coefficients cr,s(g) for the BES dressing factor in the large x, y expansion (2.13) are

cr,s(g) = 2 sin
[π

2
(r − s)

] ∫ ∞
0

dt
Jr(2gt)Js(2gt)

t(et − 1)
, (A.1)

where g is the ’t Hooft coupling, and Jn are Bessel functions. We want to show that

the BES coefficients (A.1) do not satisfy the relativistic invariance condition (2.14). The

relativistic invariance condition for the BES coefficients is the following

2(r + 1) cos
[π

2
(r − s)

] ∫ ∞
0

dt
Jr+1(2gt)Js(2gt)

t(et − 1)

+ 2(r − 1) cos
[π

2
(r − s)

] ∫ ∞
0

dt
Jr−1(2gt)Js(2gt)

t(et − 1)

− 2(s+ 1) cos
[π

2
(r − s)

] ∫ ∞
0

dt
Jr(2gt)Js+1(2gt)

t(et − 1)

− 2(s− 1) cos
[π

2
(r − s)

] ∫ ∞
0

dt
Jr(2gt)Js−1(2gt)

t(et − 1)
= 0 (A.2)

The above equation is always satisfied when r − s = 2k + 1, for k ∈ Z, and when r = s.

However, we expect that it is not satisfied when r−s = 2k, for k 6= 0. Indeed we considered

the cases (r, s) = (3, 1), (5, 1), (18, 10) and we numerically computed the l.h.s. of (A.2) for

values of the coupling g = 0.1, 0.2, . . . , 1 (increment of 0.1), and we found that the l.h.s. is

always not zero. Since equation (2.14) must hold for any values of r, s in order for a given

dressing factor to be relativistic invariant, this shows that the BES dressing factor is not

relativistic invariant.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99

(2012) 3 [arXiv:1012.3982] [INSPIRE].

[2] G. Arutyunov and S. Frolov, Foundations of the AdS5 × S5 Superstring. Part I, J. Phys. A

42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].
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[61] A. Cavaglià, D. Fioravanti, N. Gromov and R. Tateo, Quantum Spectral Curve of the N = 6

Supersymmetric Chern-Simons Theory, Phys. Rev. Lett. 113 (2014) 021601

[arXiv:1403.1859] [INSPIRE].

[62] N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary

state/operator in AdS5/CFT4, JHEP 09 (2015) 187 [arXiv:1405.4857] [INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevD.73.086006
https://doi.org/10.1103/PhysRevD.73.086006
https://arxiv.org/abs/hep-th/0603038
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603038
https://doi.org/10.1007/JHEP08(2013)023
https://arxiv.org/abs/1304.4281
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4281
https://doi.org/10.1007/JHEP07(2013)088
https://doi.org/10.1007/JHEP07(2013)088
https://arxiv.org/abs/1304.1798
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1798
https://doi.org/10.1007/JHEP08(2014)097
https://doi.org/10.1007/JHEP08(2014)097
https://arxiv.org/abs/1405.7947
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7947
https://doi.org/10.1088/1126-6708/2009/05/068
https://arxiv.org/abs/0903.0141
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0141
https://doi.org/10.1007/JHEP05(2010)031
https://arxiv.org/abs/0911.2224
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.2224
https://doi.org/10.1007/JHEP04(2010)069
https://doi.org/10.1007/JHEP04(2010)069
https://arxiv.org/abs/1002.1711
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1711
https://doi.org/10.1103/PhysRevLett.103.131601
https://arxiv.org/abs/0901.3753
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3753
https://doi.org/10.1088/1751-8113/42/37/375401
https://arxiv.org/abs/0902.3930
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3930
https://doi.org/10.1007/s11005-010-0374-8
https://doi.org/10.1007/s11005-010-0374-8
https://arxiv.org/abs/0902.4458
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4458
https://doi.org/10.1007/JHEP10(2012)090
https://arxiv.org/abs/1208.3478
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3478
https://doi.org/10.1007/JHEP02(2013)012
https://arxiv.org/abs/1210.8185
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.8185
https://doi.org/10.1007/JHEP10(2013)050
https://arxiv.org/abs/1303.1447
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1447
https://doi.org/10.1103/PhysRevD.88.066004
https://arxiv.org/abs/1306.2512
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2512
https://doi.org/10.1088/1126-6708/2002/04/013
https://arxiv.org/abs/hep-th/0202021
https://inspirehep.net/search?p=find+EPRINT+hep-th/0202021
https://doi.org/10.1103/PhysRevD.93.106006
https://arxiv.org/abs/1512.08761
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08761
https://doi.org/10.1103/PhysRevLett.112.011602
https://arxiv.org/abs/1305.1939
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1939
https://doi.org/10.1103/PhysRevLett.113.021601
https://arxiv.org/abs/1403.1859
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1859
https://doi.org/10.1007/JHEP09(2015)187
https://arxiv.org/abs/1405.4857
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.4857


J
H
E
P
0
7
(
2
0
1
9
)
1
0
5
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