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Learning-Based Quality Control
for Cardiac MR Images

Giacomo Tarroni , Ozan Oktay , Wenjia Bai , Andreas Schuh, Hideaki Suzuki,
Jonathan Passerat-Palmbach, Antonio de Marvao , Declan P. O’Regan ,
Stuart Cook, Ben Glocker , Paul M. Matthews , and Daniel Rueckert

Abstract— The effectiveness of a cardiovascular mag-
netic resonance (CMR) scan depends on the ability of the
operator to correctly tune the acquisition parameters to the
subject being scanned and on the potential occurrence of
imaging artifacts, such as cardiac and respiratory motion.
In the clinical practice, a quality control step is performed
by visual assessment of the acquired images; however, this
procedure is strongly operator-dependent, cumbersome,
and sometimes incompatible with the time constraints in
clinical settings and large-scale studies. We propose a fast,
fully automated, and learning-based quality control pipeline
for CMR images, specifically for short-axis image stacks.
Our pipeline performs three important quality checks:
1) heart coverage estimation; 2) inter-slice motion detection;
3) image contrast estimation in the cardiac region. The
pipeline uses a hybrid decision forest method—integrating
both regression and structured classification models—to
extract landmarks and probabilistic segmentation maps
from both long- and short-axis images as a basis to perform
the quality checks. The technique was tested on up to
3000 cases from the UK Biobank and on 100 cases from
the UK Digital Heart Project and validated against manual
annotations and visual inspections performed by expert
interpreters. The results show the capability of the proposed
pipeline to correctly detect incomplete or corrupted scans
(e.g., on UK Biobank, sensitivity and specificity, respec-
tively, 88% and 99% for heart coverage estimation and
85% and 95% for motion detection), allowing their exclu-
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sion from the analyzed dataset or the triggering of a new
acquisition.

Index Terms— Image quality assessment, magnetic reso-
nance imaging, motion compensation and analysis, heart.

I. INTRODUCTION

CARDIOVASCULAR magnetic resonance (CMR) imag-
ing presents a wide variety of different applications for

the anatomical and functional assessment of the heart. The
success of a CMR acquisition relies, however, on the ability
of the MR operator to correctly tune the acquisition parameters
to the subject being scanned [2]. Moreover, CMR can be
negatively affected by a long list of imaging artefacts (caused
for instance by respiratory and cardiac motion, blood flow
and magnetic field inhomogeneities) [3]. Therefore, a quality
control step is required to assess the usability of the acquired
images. In the clinical practice this step is performed by visual
inspection, usually carried out by the same operator who set
up the acquisition, thus leading to highly subjective results.
In the last decades, several initiatives for the acquisition of
open access large-scale population studies have been launched.
For example, the UK Biobank (UKBB) is a population-based
prospective study, established to allow detailed investigations
of the genetic and non-genetic determinants of the diseases
of middle and old age. Of the 500,000 subjects enrolled in
the study, CMR will be collected from 100,000 of them [1].
At the time of submission the acquisition is ongoing, with
close to 20,000 subjects already scanned. Together with this
trend towards the implementation of large-scale multi-centre
imaging datasets, the need for fast and reliable quality control
techniques for CMR images has become evident, as high-
lighted also by several studies aiming to define standardized
criteria for this task [4]. In this scenario, quality control
through visual inspection is not only subjective, but simply
infeasible due to the very high throughput demanded by the
acquisition pipeline. On the other hand, failure to correctly
identify corrupted or unusable images could affect the results
of automated analysis performed on the dataset, with undesir-
able effects. Consequently, the need for fully automated quality
control pipelines for CMR images has arisen.

Many research efforts have been dedicated to the automated
identification of quality metrics from MR images. Most of
these efforts have focused on the automated estimation of noise
levels [5], [6]. Still, many aspects related to the usability of
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Fig. 1. Potential issues affecting CMR image acquisitions. In the first
two columns, the superimposition of long-axis two-chamber views (red)
and short-axis stacks (gray) is shown, while, in the last one, short-axis
slices are displayed.

the acquired images are inherently modality-specific. Several
automated pipelines for quality control have been proposed for
brain MR imaging [7]. However, to our knowledge, no com-
prehensive automated quality control pipelines have been
proposed so far for CMR images, in particular for the short-
axis (SA) cine image stacks, which are the reference images
for the structural and functional assessment of the heart. One
crucial aspect of the acquisition of SA image stacks is that it
requires the MR operator to identify the direction of the left
ventricular (LV) long axis - the line going from the apex to the
centre of the mitral valve - and to define a region of interest:
the correct planning will generate a SA stack encompassing
both those landmarks with slices perpendicular to the LV long
axis. If this selection is incorrect, the acquired SA stack may
include an insufficient number of SA slices to fully cover
the LV (see first column of Fig. 1). As a consequence, any
functional analysis performed on the stack (e.g. ventricular
volumes estimation) may be compromised. Another impor-
tant aspect involved in CMR acquisitions is that SA cine
stacks are generated during multiple breath-holds (with usually
1-3 slices acquired per each breath-hold). Although the
subjects are instructed to hold their breath at the same breath-
holding position, in practice the heart location can vary consid-
erably. If the differences between the breath-holding positions
are too pronounced, the acquired image stack will be affected
by inter-slice motion and thus will not correctly represent the
cardiac shape, introducing potential errors in the following
analyses and visualizations (see second column of Fig. 1).
Finally, the contrast of the obtained CMR images is directly
affected by the chosen acquisition parameters (as well as by
potential artefacts). If the different structures of the heart are
not properly contrasted, the assessment of the cardiac function
can be hampered (see third column of Fig. 1).

In this paper, we present a fully-automated, learning-
based quality control technique for CMR SA image
stacks. Our approach uses a hybrid decision forest method
to extract at once both landmark positions (LMs) and
probabilistic segmentation maps (PSMs) from long-axis

(LA) and SA images. LMs and PSMs are then used to
perform three quality checks: 1) heart coverage estimation,
2) inter-slice motion detection, 3) image contrast estimation
in the cardiac region. Our hybrid forest method is thus not
intended as a novel technique for landmark detection and
segmentation per se, but rather as an integral component of
our pipeline. The extraction of LMs from multiple LA views
and the probabilistic nature of PSMs allow the assessment of
the reliability of the pipeline for each scan using dedicated
sanity checks. The technique was tested on two datasets (up
to 3000 cases from the UKBB study and 100 cases from the
UK Digital Heart Project,1 UKDHP) and validated against
manual annotations and visual inspections.

II. RELATED WORK

To the best of our knowledge, differently from brain
MRI [7], no comprehensive quality control techniques for
cardiac CMR images have been reported in the literature. One
of the few studies in this direction has been recently presented
by Albà et al. [8], who however focussed on assessing
segmentation quality rather than image quality. On the other
hand, automated heart coverage estimation alone has been
the aim of several studies. Zhang et al. [9], [10] proposed
to use convolutional neural networks (CNN) to perform slice
classification in order to detect the presence or absence of
the basal and apical slices. In their first work [9] they
proposed a 2D CNN trained on UKBB data, while in their
more recent one [10] they improved their previous results
by using a generative adversarial network. Differently from
these techniques, our approach to heart coverage estimation
is based on the detection of landmarks: in our previous
preliminary work [11], we proposed a decision forest method
to detect the cardiac apex and the mitral valve on long-axis
2-chamber (LA 2CH) view images, and used the position of
these landmarks with respect to the space encompassed by
the acquired stack to estimate the coverage. The technique was
applied to 3000 cases extracted from the UKBB, and was able
to detect SA stacks with insufficient coverage with relatively
high accuracy.

Motion detection and modeling in the thoracic area has been
a highly investigated subject for more than a decade [12].
As far as inter-slice respiratory motion in CMR is concerned,
most of the approaches reported in the last decade have
focussed on motion correction rather than motion detec-
tion [13]–[16]. All of the cited studies focused on the compen-
sation of inter-slice motion and in the generation of a corrected
SA stack by means of rigid in-plane registration. Unfortu-
nately, however, respiration causes a complex roto-translation
of the heart in all three dimensions [17]: while most translation
happens in the cranio-caudal direction (thus approximately
almost perpendicularly to the long axis of the LV), big differ-
ences in subsequent breath-holding positions can cause out-of-
plane motion, which would lead to an inaccurate representation
of the heart in the stack. Therefore, it is important to estimate
the amount of motion occurred during the acquisition of the

1https://digital-heart.org.
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Fig. 2. Overview of the proposed pipeline. Probabilistic segmentation maps (PSMs) and landmark positions (LMs) are extracted from LA and SA
images using hybrid random forests and exploited to perform three separate quality control checks.

stack to decide whether there are the grounds for the applica-
tion of a motion correction technique or it is instead advisable
to repeat the scan (or exclude it from subsequent analyses).

In the past, several research efforts have been made towards
the correct quantification of signal-to-noise (SNR) or contrast-
to-noise (CNR) ratios in MR images [5]. However, modern
acquisition techniques making use of parallel imaging produce
images with spatially-varying noise distributions, rendering
image-based estimators unreliable [18]. To overcome this lim-
itation, more elaborate methods have been proposed exploiting
information about coil sensitivity or reconstruction coeffi-
cients [19]. Unfortunately, these data are very often not avail-
able, making the estimation of noise, and consequently of SNR
and CNR, practically unfeasible in most scenarios. At the same
time, image contrast between two objects - simply defined as
the difference between their signal intensity - has long been
used to determine their visual differentiability in the acquired
MR image [20]. In CMR imaging, images with poor contrast
between the LV cavity and myocardium can potentially hinder
the assessment of cardiac structure and function: consequently,
contrast estimation in the cardiac region can provide a useful
metric for quality control purposes, either triggering the use
of contrast-enhancing techniques or a new acquisition.

In this paper, we present a fully-automated, learning-based
quality control pipeline for CMR SA stacks. The proposed
approach builds upon our previous work [11], which used
a hybrid decision forest method [21] to extract LMs from
LA 2CH view images in order to perform heart coverage
estimation. With respect to our previous approach as well as
to state-of-the-art techniques, the main contributions of the
present work can be listed as follows:

• We present the first comprehensive, fast, fully-automated
quality control pipeline specifically designed for CMR
SA image stacks. The checks incorporated in the pipeline
are 1) heart coverage estimation, 2) inter-slice motion
detection, 3) image contrast estimation in the cardiac
region. To the best of our knowledge, motion detection
and cardiac image contrast for the sake of quality control
have not been investigated before. As for heart cover-
age estimation, we build on our previously published
study [11] by extending LMs extraction to all long-
axis views. LMs are then combined together to substan-
tially increase the robustness and the reliability of this
quality check (for details please refer to the Discussion
section);

• We propose a different implementation of the previously
published hybrid decision forest [21] (adopted in our
previous work [11]) which allowed the joint extrac-
tion of LMs and probabilistic edge maps (PEMs). The
new implementation (based on a novel mapping) allows
instead the extraction of LMs and PSMs: PSMs are
required to perform both inter-slice motion detection
and cardiac image contrast estimation, and enable sanity
checks to assess the reliability of the pipeline;

• We validate this pipeline by applying it to up to
3000 cases extracted from the UKBB study and to
100 cases from the UKDHP, showing its accuracy and
robustness in real world scenarios. The pipeline could
be both applied retrospectively on large-scale datasets
to improve the reliability of clinical studies or deployed
prospectively at acquisition sites to allow almost real-time
assessment of the acquired scans.
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Fig. 3. Hybrid random forest. During training, randomly extracted samples with associated labels - consisting of segmentations and vector
displacements - are fed to the forest, and the learnt associations are stored in the leaf nodes. During testing, each sample extracted from the
test image is sent to the model, extracting both PSM and LMs at once.

III. METHODS

The proposed quality control pipeline is summarized in
Fig. 2. All of the three quality control steps are based on
the information extracted by hybrid decision forest models
from the acquired images. This section of the paper starts
with a brief recap on the theory behind decision forests and
is followed by the description of the implementation adopted
in the proposed pipeline, which allows the joint extraction of
LMs and PSMs. Finally, each specific quality control step is
described in detail.

A. Hybrid Decision Forests

A decision tree consists of a combination of split and leaf
nodes arranged in a binary tree structure [22]. Trees route
a sample x ∈ X (in our case an image patch) by recursively
branching left or right at each split node j until a leaf node k is
reached, where the posterior distribution p(y|x) for the output
variable y ∈ Y is stored. Each split node j is associated with
a binary split function h(x, θ j ) ∈ {0, 1} defined by the set of
parameters θ j : if h = 0 the node sends x to the left, otherwise
to the right. Usually h is a decision stump, i.e. a single feature
dimension n of x is compared with a threshold τ : θ = (n, τ )
and h(x, θ) = [x(n) < τ ]. A decision forest is an ensemble of
T independent decision trees: during testing, given a sample
patch x, the predictions of the different trees are combined
into a single output by means of an ensemble model. During
training, at each node the goal is to find the set of parameters
θ j which maximizes a previously defined information gain I j ,
usually defined as I j = H (Sj )−∑

i∈{0,1} |Si
j |/|S j |·H (Si

j ), where
Sj , S0

j and S1
j are respectively the training set (comprising of

samples x and associated labels y) arriving at node j , leaving
the node to the left and to the right. H (S) is the entropy of the
training set, whose construction depends on the task at hand
(e.g. classification, regression). Different types of nodes (max-
imizing different information gains) can be interleaved within
a single tree structure (hence named “hybrid”) in order to

perform multiple tasks. As in previous approaches [21], [23],
in the proposed technique structured classification nodes (aim-
ing at the detection of an object close to the desired landmarks,
in our case usually the LV cavity) and regression nodes
(aiming at landmark localization) are combined (see Fig. 3).
In particular, in the proposed framework, landmark localization
is conditioned on the results of the detection of the cavity [23].
This not only leads to the extraction of two different types
of information (PSMs and LMs) with only one model, but
improves landmark localization by implicitly incorporating
complementary information about cardiac position and shape.

1) Structured Classification and PSM Extraction: Structured
classification extends the concept of classification by using
structured labels for Y instead of integer labels. In our case,
each label y ∈ Y (associated with the image patch x) consists
of a segmentation of the LV cavity within x. To train a
structured classification node it is necessary to find a way to
cluster structured labels at each split node into two subgroups
depending on a similarity measure. The solution to this prob-
lem was first proposed by Dollar and Zitnick [24] and consists
of two steps. First, Y is mapped to an intermediate space Z by
means of the function � : Y → Z where the distance between
labels can be computed. Importantly, � must be chosen so
that similar labels y will be associated with vectors z close
to each other with respect to the distance defined in Z . Then,
PCA is applied to the vectors z to map the associated labels
y into a binary set of labels c ∈ C = {0, 1}, which is achieved
by applying a binary quantization to the principal compo-
nent of each z vector. Finally, the Shannon entropy can be
adopted [24]:

Hsc(S) = −
∑

c∈C
p(c)log

(
p(c)

)
, (1)

with p(c) indicating the empirical distribution extracted from
the training subset at each node. In our previous work [21],
this approach has been adopted for structured labels Y con-
sisting of edge maps (EMs) highlighting the contours of the
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myocardium. In the case of EMs, the mapping � can simply
encode for each pair of pixels whether they belong to the same
segment in the label y or not:

�E M : z = [ y( j1) = y( j2)] ∀ j1 �= j2, (2)

where j1 and j2 are indices spanning every pixel in y [24].
The resulting long binary vector z (which has a number of
dimensions equal to the number of pixel pairs in y) can be used
to compare this particular label to the other ones by simply
computing the Euclidean distance in Z . However, the same
choice for � cannot be adopted for our task, which aims at
using structured labels consisting of segmentation maps (SMs)
of the LV cavity. For example, let’s imagine two labels y1
and y2, the former completely outside the LV cavity and the
latter completely inside: using the mapping �E M , we would
obtain z1 = z2, which contradicts the requirement by which
only similar labels will be mapped close to each other in Z .
Consequently, we implemented a different mapping:

�S M : z = [ y( j1) = y( j2) = 0] ⊕ . . .

. . . [ y( j1) = y( j2) = 1] ∀ j1 �= j2, (3)

which encodes for each pair of pixels in y whether they are
both equal to 0, whether they are both equal to 1 and then
concatenates the two obtained binary vectors. This formulation
ensures the proper computation of the distance between labels,
and thus their clustering at each node based on their similarity.
At the end of the training process, the label ŷ stored in
each leaf node is the one whose ẑ is the medoid (i.e. that
minimizes the sum of distances to all the other z at the same
node). At testing time, each sample patch of the test image
is sent down each tree of the forest, and the segmentation
maps stored at each selected leaf node are averaged, producing
a smooth segmentation map (PSM) of the LV cavity. The
values in the PSM are actual probabilities (proportional to
the certainty in LV cavity detection), and can be used to
assess the reliability of the prediction. Of note, the introduced
formulation for �S M in Eq. 3 could be easily extended to
multi-label PSM generation by concatenating additional binary
vectors computed for each label ci and by performing a
channel-based averaging operation at testing time.

2) Regression and Landmark Detection: To train regression
nodes, it is necessary to associate with each sample patch x
an additional label D = (d1, d2, . . . , d L), where dl represents
for each of the L landmarks the N-dimensional displacement
vector from the patch centre to the landmark location. Instead
of the Shannon entropy defined in Eq. 1, regression nodes
are trained by minimizing the determinant of the covari-
ance matrix |�(S)| defined by the landmark displacement
vectors:

Hr(S) = 1

2
log

(
(2πe)d |�(S)|). (4)

Landmark positions are assumed to be uncorrelated, thus
only the diagonal elements of �(S) are used in Eq. 4 [25].
The location predictions are stored at each leaf node k using a
parametric model following a N · L-dimensional multivariate
normal distribution with dl

k and �l
k mean and covariance

matrices, respectively. At testing time, Hough vote maps are

generated for each landmark by summing up the posterior
distributions obtained from each tree for each patch (applying
normalization factors) [23]. Assuming that pixels belonging to
the LV are more informative for cardiac landmark detection
than background ones, the PSM values for the LV cavity are
used for each patch as weighting factor during the generation
of the L Hough vote maps, effectively restricting voting rights
only to pixels likely to belong to the LV cavity itself [21].
Finally, the location of a landmark is determined by identi-
fying the pixel with the highest value on each Hough vote
map.

3) Model Training: Each patch x is represented by several
features: multi-resolution image intensity, histogram of gradi-
ents (HoG) and gradient magnitude. For a detailed description,
please refer to [21]. The described hybrid random forest
approach is used to build five different models (I-V) for our
application (see Fig. 2): PSM estimation of LV cavity and
LMs extraction for apex and mitral valve for LA images,
PSM of LV cavity and LV myocardium for SA stacks. For
LA 3CH and 4CH images (models II and III) only one
mitral valve point is identified because in these images the
LV outflow tract of the aorta can partially occlude one side
of the mitral valve, making its localization inaccurate. Also,
the training of the models using SA images (models IV
and V) is performed by feeding the random forests with all
the slices extracted from the SA image stacks: consequently,
at testing time, the models are applied to each slice of the stack
independently.

B. Heart Coverage Estimation

Heart coverage is estimated exploiting the landmarks iden-
tified on LA 2CH, 3CH and 4CH images using the previously
trained hybrid forest models. The rationale is that a properly
scanned SA stack should encompass the whole portion of
space between the apex and the mitral valve. As highlighted
in Fig. 2, for a specific subject we identify three landmarks for
the apex (one per each LA image: l2CH

1 , l3CH
1 and l4CH

1 ) and
four for the mitral valve (l2CH

2 , l2CH
3 , l3CH

2 , l4CH
2 ) with values

in the coordinate systems of each respective LA image. Using
the orientation matrix extracted from the DICOM headers of
the acquired SA and LA images, it is possible to define the
coordinates of these landmarks in the coordinate system of
the SA stack itself. Two new “median” landmarks (la and
lm ) are then defined taking the medians of the coordinates
of the landmarks for the apex and for the mitral valve,
respectively, in the SA coordinate system. The extension in
the z direction (i.e. along the LV long axis) of the SA stack
can be easily computed from the slice thickness and slice
number, which are stored in the DICOM header of the stack
itself: the two extrema along this direction are defined ra

and rm , respectively. Finally, the relative coverage can be
computed by comparing the relative positions along the z
direction of la and lm (i.e. the space that is supposed to be
covered by the SA stack) to the portion of space between
ra and rm (i.e. the space that is actually covered). The steps
for coverage estimation are listed in Algorithm 1, including
the formula for the computation of the coverage (under the
assumption that the apex is located at higher z compared to
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Algorithm 1 Heart Coverage Estimation

Input landmarks:
Apex: l2CH

1 , l3CH
1 , l4CH

1
Mitral Valve points: l2CH

2 , l2CH
3 , l3CH

2 , l4CH
2

Change coordinate system:

Apex: l̂
2CH
1 , l̂

3CH
1 , l̂

4CH
1

Mitral Valve points: l̂
2CH
2 , l̂

2CH
3 , l̂

3CH
2 , l̂

4CH
2

Compute median landmarks:

la = median
(
l̂
2CH
1 , l̂

3CH
1 , l̂

4CH
1

)

lm = median
(
l̂
2CH
2 , l̂

2CH
3 , l̂

3CH
2 , l̂

4CH
2

)

with z-components la and lm , respectively
Extract SA stack extension in the z direction:

Apex: ra

Base: rm

Compute coverage CV:

CV =

⎧
⎪⎨

⎪⎩

max
(
0, min(ra, la)−max(rm, lm)

)

la − lm
if (condition)

ra − rm

la − lm
otherwise

(condition): ra < la or rm > lm

the mitral valve). Importantly, this technique can seamlessly
be applied even if only one LA image is available. Also,
while minor motion can occur between the acquisitions of LA
images and of the SA stack, it is generally negligible in the
z direction (the only one influencing coverage) [17] and thus
registration procedures between these images were found to
be unnecessary. Finally, a sanity check is performed to detect
cases in which landmark detection failed: for each LA view,
when either of the relative distances between the landmarks
was greater or smaller than reference values by a certain
threshold, the landmarks from that image were discarded, and
the automated coverage estimation was performed only on the
remaining landmarks (if available).

C. Inter-Slice Motion Detection

Inter-slice motion detection relies on the PSMs extracted
from the acquired images. The rationale is that while LV
cavity PSMs of motion-corrupted SA slices are misaligned,
PSMs extracted from the LA images represent sections of the
true shape of the LV cavity and can consequently be used
as reference. Moreover, the amount of misalignment between
the SA PSMs and LA PSMs can be used as an indicator
of motion. To perform this assessment, the LA PSMs are
initially rigidly registered (by 3D translation only, using sum
of squared differences as dissimilarity metric) to the SA PSM
stack to compensate for potential motion between different
acquisitions. Then, for each slice of the SA PSM stack,
the three registered LA PSMs are resampled and combined
into a single image (referred to as combined LA PSM)
containing the sections of the LA PSMs with respect to a
specific slice (see Fig. 4). Finally, in-plane rigid registration
(by translation only, using sum of squared differences as
dissimilarity metric) is performed between each SA PSM slice

Fig. 4. Motion detection technique. For each slice of the SA stack,
the corresponding portion of space in each LA PSM is resampled and
combined, producing the “asterisk-shaped” LA PSM comb image. In-
plane rigid registration is then performed between each SA PSM and LA
PSM comb, and the translation magnitude Ts used as proxy for inter-
slice motion for that slice. A color map, with the intensity of each slice
proportional to the respective Ts, can be also generated.

and the associated combined LA PSM, and the magnitude of
the translation Ts used as a metric for motion (i.e. differences
in breath-holding positions). Of note, this step is performed
only on the slices which are effectively covering the LV,
condition assessed using the LA LMs as in Algorithm 1. The
probabilistic nature of PSMs allows the application of a sanity
check performed to detect slices with a failed PSM estimation:
SA PSM slices (whose values range between 0 and 1024)
with a peak probability value below a user-defined threshold
are considered unreliable, and thus their Ts discarded. Also,
this technique could be applied even if only two LA images
were available. The steps for motion detection are listed
in Algorithm 2.

Algorithm 2 Inter-Slice Motion Detection

Input PSMs:
LA images: PSM2CH , PSM3CH , PSM4CH

SA slices: PSM S A−Cav
s , s = (1, . . . , numSlices)

Perform rigid registration of LA PSMs to SA PSM:

Output: PSM
2CH

, PSM
3CH

, PSM
4CH

for s = 1 to numSlices do
Resample LA PSMs:

Output: PSM
2CH
s , PSM

3CH
s , PSM

4CH
s

Combine resampled LA PSMs:

Output: PSM
L A_comb
s

Perform in-plane rigid registration of PSM S A−Cav
s

to PSM
L A_comb
s :

Output: Translation magnitude Ts

end
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D. Cardiac Image Contrast Estimation

Cardiac image contrast is estimated using the LV cavity and
LV myocardium PSMs extracted from the SA stack. The ratio-
nale is to transform the PSMs into hard segmentations (SMs)
and to use them to estimate the difference between average
pixel intensity in the LV cavity and in the LV myocardium.
Each cavity PSM slice is thresholded selecting the Ncav pixels
with the highest probability values: this will maximize the
probability of measuring the intensity in the actual cavity.
The same happens to each myocardium PSM, thresholded
selecting Nmyo pixels. To exclude potential spurious regions
from the obtained segmentation, the average centroid for the
cavity segmentation is computed among the different slices,
and for each slice only the connected component closest to
the average centroid is kept, both for the cavity and the
myocardium segmentations. Of note, this step is performed
taking into account the slice-by-slice rigid transformation
estimated using Algorithm 2, which amounts to performing
the average centroid computation and connected components
analysis on a motion-compensated stack. Finally, in order to
exclude potential papillary muscles from the cavity intensity
computation, a Gaussian mixture model is fitted to the dis-
tribution of intensity values inside the cavity segmentation.
Since only some slices show papillary muscles, both a two-
component and a one-component models are used, and only
one is selected based on the Akaike information criterion [26].
If the two-component model yields the best fit, since the cavity
distribution is always higher than that of papillary muscles,
the mean of the component with the highest mean is used as
average intensity value for the cavity. For the myocardium,
the mean intensity of the pixels masked by the segmentation
is computed. Cardiac image contrast is finally defined as the
difference between these two values. A double sanity check
is performed leveraging the probabilistic nature of PSMs: if
either the peak value of either the cavity or the myocardium
PSM was below a user-defined threshold or the size of either of
the final hard segmentations for the cavity or the myocardium
was less than a defined number of pixels, the obtained contrast
was deemed unreliable. The steps for cardiac image contrast
estimation are also listed in Algorithm 3.

E. Performance Evaluation

1) Image Acquisition: To train and test the proposed quality
control pipeline, images from two different datasets were used:
the UKBB [1] and the UKDHP1. CMR imaging for the UKBB
was performed using a 1.5T Siemens® MAGNETOM Aera
system equipped with a 18 channels anterior body surface coil
(45 mT/m and 200 T/m/s gradient system). 2D cine balanced
steady-state free precession (b-SSFP) SA image stacks were
acquired with in-plane spatial resolution 1.8×1.8 mm, slice
thickness 8 mm, slice gap 2 mm, image size 198×208 and
average number of slices 10. 2D cine b-SSFP LA images
were acquired with in-plane spatial resolution 1.8×1.8 mm,
slice thickness 8 mm and image size 162×208. Further
acquisition details can be found in [1]. CMR imaging for the
UKDHP was performed on healthy volunteers using a 1.5T
Philips® Achieva system equipped with a 32 element cardiac

Algorithm 3 Cardiac Image Contrast Estimation

Input PSMs:
LV cavity: PSM S A−Cav

s

LV myocardium: PSM S A−Myo
s

with s = (1, . . . , numSlices)
for s = 1 to numSlices do

Threshold PSM S A−Cav
s and PSM S A−Myo

s :
Output: SM S A−Cav

s and SM S A−Myo
s

Estimate centroids Ps for SM S A−Cav
s

end
Estimate mean centroid: P = mean(Ps)
for s = 1 to numSlices do

Exclude all but one connected component per SM
based on distance to P:

Output: SM
S A−Cav
s and SM

S A−Myo
s

Fit Gaussian Mixture Model to SM
S A−Cav
s to

exclude papillary muscles:
Output: μS A−B P

s
Compute contrast CT:

CT = μS A−B P
s - mean

(
S As

(
SM

S A−Myo
s

))

with S As the s-slice of the SA stack
end

phased-array coil (33 mT/m and 160 T/m/s gradient system).
2D cine balanced steady-state free precession (b-SSFP) SA
image stacks were acquired with in-plane spatial resolution
1.2×1.2 mm, slice thickness 8 mm, slice gap 2 mm, image size
288×288 and average number of slices 12. 2D cine b-SSFP
LA images were acquired with in-plane spatial resolution
1.5×1.5 mm, slice thickness 8 mm and image size 256×256.
In both datasets, only end-diastolic frames were considered.

2) Experimental Design: A series of experiments was con-
ducted to assess the accuracy of each portion of the pipeline.
First of all, the five hybrid random forest models were trained
using a randomly-generated subset of 500 cases from the
UKBB. For each LA image-based model, the 500 images
were used together with manually-annotated landmarks and
segmentations of the LV cavity. The segmentations were
obtained with a CNN-based automated tool proven to reach
human-level performance [27], and then visually checked for
accuracy. Each training set was quadrupled in size through
data augmentation applying random rescaling (following a
normal distribution with μ = 1, σ = 0.1) and random rotation
(μ = 0◦, σ = 30◦). For each of the two SA stack-based
models, the slices extracted from the 500 stacks were used (for
a total of 5165 images) together with segmentations of the LV
cavity and of the LV myocardium, respectively (obtained using
the same process described for LA images). Details regarding
forest training include image patch size 48×48 px for LA
models and 32×32 px for SA ones, segmentation label size
16×16 px, number of samples 4·106, number of trees T = 8.

A first series of experiments was performed by evaluat-
ing the trained pipeline on a separate testing set consisting
of 3000 cases randomly extracted from the UKBB. To evaluate
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the accuracy of the proposed heart coverage estimation tech-
nique, two experiments were conducted. First, for each of the
three LA views, the positions of the landmarks were manually
annotated on 100 randomly selected cases. The automatically
detected LMs were compared to the manually identified ones
by measuring the Euclidean distance between the two sets
of points. Then, the 3000 SA stacks were visually inspected
(sometimes using LA images as reference) to identify cases
with insufficient coverage, defined as such when at least one
full slice was missing. Automated heart coverage estimation
was then performed on the same dataset. To instruct the
previously described sanity check, the mean and standard
deviation of the relative distances between manually annotated
landmarks were computed on the 100 images (l2 − l1 =
89 ± 12 mm, l3 − l2 = 32 ± 5 mm, l3 − l1 = 87 ± 12 mm):
then, for each LA view, when either of the relative distances
between the automatically detected LMs was over 2 standard
deviations greater or smaller than the respective mean distance
value (thus covering roughly 95% of the measured variability),
the LMs from that image were discarded and the automated
coverage estimation was performed only on the remaining ones
(if available). Finally, the accuracy of the technique was
assessed against the performed visual inspection performing
a standard binary classification test using a threshold for
insufficient coverage optimized automatically with an ROC
analysis. To evaluate the accuracy of the motion detection
technique, two experiments were conducted. First, for each of
the three LA views as well as for the SA stacks, the auto-
matically extracted PSMs were compared to hard segmen-
tations obtained using the previously-described CNN-based
automated tool [27] on 1000 randomly selected cases. While
this experiment was aimed at assessing the accuracy of
the PSMs, it is worth noting that the PSMs are never directly
thresholded for segmentation purposes in the pipeline, which
on the contrary exploits their probabilistic nature. For the
sake of this comparison, the PSMs were turned into hard
segmentation by applying a global threshold and compared to
the reference ones by computing the Dice coefficient (DSC).
The global threshold was optimized automatically using an
ROC analysis. Then, 1500 SA stacks were visually inspected
(sometimes using LA images as reference) to identify cases
with noticeable motion corruption. Automated motion detec-
tion was then performed on the same dataset. To implement
the previously described sanity check, PSM slices with peak
probability values below 600 were considered not reliable
for motion detection, and thus their Ts (i.e. the estimated
translation magnitude) discarded; if less than 2 Ts values
were left, the motion detection analysis was not performed
on the specific stack. Accuracy of the automated technique
was assessed against visual inspection with a standard binary
classification test using the following criterion: a stack was
deemed motion-corrupted if either the average Ts was above a
first threshold TA or at least two Ts were above a second
threshold TB . This double criterion aimed at the detection
of both stacks with a few, clearly misaligned slices as well
as stacks with poor general alignment. Both TA and TB

were optimized automatically using an ROC-like approach. To
evaluate the accuracy of the cardiac image contrast estimation

technique, 100 random slices from as many random SA
stacks were manually annotated selecting regions of interests
(ROIs) within the LV cavity and the LV myocardium. Cardiac
image contrast was estimated both from the original images
and from the images after contrast normalization using a
randomly selected reference image stack. Automated contrast
estimation was then performed on the same dataset, both
before and after normalization, using Ncav = 450 px and
Nmyo = 200 px. To implement the previously described sanity
check, contrast extracted from slices with PSMs (either for the
cavity or for the myocardium) with peak values below 150
or with respective hard segmentations with a size of less
than 32 mm2 (i.e. 10 pixels) was deemed unreliable and
excluded from the analysis. Automatically estimated and man-
ually computed contrast values were compared using Pearson’s
correlation coefficient, linear regression and Bland-Altman
analyses.

A second series of experiments was then performed by
evaluating the pipeline trained on UKBB on a separate test-
ing set consisting of 100 cases randomly extracted from
the UKDHP. Since the scans in UKDHP were acquired with
a different scanner and with different parameters from those
used for UKBB, these experiments were aimed at assessing
the generalization properties of the proposed pipeline. To har-
monize the differences between training and testing datasets,
the images in UKDHP were pre-processed through intensity
normalization [28], spatial resampling and image reorientation.
The 100 cases were then visually inspected and manually
annotated following the same criteria described for the pre-
vious experiments to provide the ground truth for estimation
coverage, motion detection and contrast estimation. Since the
visual assessment for heart coverage estimation returned no
sub-optimal cases, a procedure was implemented to simulate
coverage issues and allow a more meaningful evaluation of the
pipeline. Stacks were randomly picked following a uniform
distribution (10% chances of being picked), and a number
of slices were deleted (either from the top or the bottom of
the stack with equal probability), with this number randomly
selected from a normal distribution (μ = 1, σ = 2). Coverage
was then visually re-assessed on the whole dataset. It is
important to note that while this corruption procedure altered
the properties of the dataset with respect to coverage, it did
not affect the images on which the learning-based portion of
the pipeline is applied (i.e. the LA images) but only the SA
stacks, which influence the coverage estimation by means of
their size and spatial orientation. The pipeline was applied with
the same settings used for the previous dataset except for the
threshold for the sanity check for contrast estimation relative
to the peak PSM value, which was moved from 150 to 100 to
account for the slightly lower overall response in the PSMs.
The evaluation strategy for the three checks was the same as
for the previous set of experiments.

For all the experiments, manual annotations and visual
inspections used as ground truth were performed internally by
G. T. (medical imaging researcher with 10 years of experience
in cardiac imaging) and H. S. (experienced cardiologist),
both blinded to the results of the automated analyses: more
specifically, H. S. visually inspected the 3000 SA stacks from
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the UKBB dataset to identify cases with insufficient coverage,
and G. T. performed all of the remaining assessments.

IV. RESULTS

The experiments were initially run on a single core of an
Intel® Xeon CPU E5-1650 v3 @ 3.50GHz with 64 GB of
memory to assess the speed of the current pipeline. Average
time required to extract PSMs and LMs (when included in
the model) was 1.3s per SA stack (of roughly 10 slices) and
0.85s per LA image. Average times required to perform the
quality control checks were 0.26s per SA stack for coverage
estimation, 9s per SA stack for motion detection (in this case
using parallelization on 6 cores to evaluate multiple slices from
one stack at once) and 0.6s per slice for contrast estimation.

In Table I are reported the localization errors for land-
mark detection on UKBB for the three LA views.2 Of
note, the landmarks extracted from one image per LA
view were identified as outliers and thus excluded from
the reported results. Mean DSC values between thresholded
PSMs (using a threshold of 450) and reference segmen-
tations were respectively 0.90 ± 0.07 for the SA stacks,
0.94 ± 0.08 for LA 2CH, 0.94 ± 0.08 for LA 3CH, and
0.94 ± 0.07 for LA 4CH.

First are reported the results for quality control on UKBB.
For accuracy assessment of heart coverage estimation, 3 of the
3000 cases were excluded from the analysis: one due to the
lack of LA images, and two for failing the sanity check on all
the LA images. The ROC analysis performed on the remaining
2997 images returned an optimal threshold of 90%. The results
of the binary classification test are reported in Table II. For
accuracy assessment of motion detection, 3 of the 1500 cases
were excluded from the analysis: one due to the lack of the
SA stack and two for failing the sanity check. An ROC-like
analysis was performed on the remaining 1497 images to
select the thresholds TA and TB . The results of the binary
classification test, obtained for TA = 3.4 mm and TB = 6 mm,
are reported in Table III. For accuracy assessment of contrast
estimation, 3 of the 100 images were excluded from the
analysis for failing the sanity check. In Table IV are reported
Pearson’s correlation coefficients as well as the results of linear
regression and Bland-Altman analyses between automatically
and manually estimated contrast values.3 In Figs. 5, 6, 7 are
shown examples of the results obtained for the three checks.4

2A box plot is also presented in Fig. 8 (Media/Supplementary Material).
3Plots are also presented in Fig. 10 (Media/Supplementary Material).
4Further examples are also presented in Fig. 9 (Media/Supplementary

Material).

TABLE I
LANDMARK LOCALIZATION ERRORS IN mm (MEAN ± STD)

TABLE II
CLASSIFICATION RESULTS FOR HEART COVERAGE ESTIMATION ON

UKBB USING A 90% COVERAGE THRESHOLD. POSITIVE

CASES CORRESPOND TO CASES WITH

INSUFFICIENT COVERAGE

TABLE III
CLASSIFICATION RESULTS FOR MOTION DETECTION ON UKBB

USING TA = 3.4 mm AND TB = 6 mm. POSITIVE CASES

CORRESPOND TO MOTION-CORRUPTED CASES

TABLE IV
CORRELATION COEFFICIENT (R), BIAS AND STD FOR BLAND-ALTMAN

ANALYSIS, LINEAR REGRESSION COEFFICIENTS (A AND B) AND MEAN

MEASURED VALUE BETWEEN AUTOMATICALLY AND MANUALLY

ESTIMATED CARDIAC IMAGE CONTRAST ON UKBB, BOTH

ON ORIGINAL IMAGES AND AFTER HISTOGRAM

NORMALIZATION, IN A.U.

Then are reported the results on UKDHP. For accuracy
assessment of heart coverage estimation, all cases passed the
sanity check. The ROC analysis returned an optimal threshold
of 92% coverage, and the results of the subsequent binary
classification test are reported in Table V. For accuracy assess-
ment of motion detection, 1 of the 100 cases was excluded
from the analysis for failing the sanity check. The ROC-
like analysis was performed on the remaining 99 images to
select the thresholds TA and TB . The results of the binary
classification test, obtained for TA = 3 mm and TB = 6
mm, are reported in Table VI. For accuracy assessment of
contrast estimation, 9 of the 100 images were excluded from
the analysis for failing the sanity check, and in Table VII are
reported the results obtained on the remaining ones.3

V. DISCUSSION

The results obtained for the landmark localization experi-
ment show that the average localization error is around 3.9 mm
(roughly two pixels) and is thus small compared to the recon-
structed slice thickness in both datasets (10 mm), suggesting
the reliability of the landmark detection technique for the sake
of heart coverage estimation. The proposed hybrid decision
forest method is based upon a previous implementation [21]
which consisted of a multi-stage approach devised to increase
the robustness to large variations in distances and orientation
of the landmarks. It is worth mentioning that initial experi-
ments performed using this approach showed no measurable
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Fig. 5. Results for heart coverage estimation on UKBB in two cases, one with sufficient (case #1) and one with insufficient coverage (case #2).
In the first three columns, the results for landmark detection in the three LA views. In the last column, a mix view with the LA two-chamber view and
the SA stack together with the median landmarks for the apex and the mitral valve.

TABLE V
CLASSIFICATION RESULTS FOR HEART COVERAGE ESTIMATION

ON UKDHP USING A 92% COVERAGE THRESHOLD.
POSITIVE CASES CORRESPOND TO CASES WITH

INSUFFICIENT COVERAGE

TABLE VI
CLASSIFICATION RESULTS FOR MOTION DETECTION ON UKDHP

USING TA = 3 mm AND TB = 6 mm. POSITIVE CASES

CORRESPOND TO MOTION-CORRUPTED CASES

TABLE VII
CORRELATION COEFFICIENT (R), BIAS AND STD FOR BLAND-ALTMAN

ANALYSIS, LINEAR REGRESSION COEFFICIENTS (A AND B) AND MEAN

MEASURED VALUE BETWEEN AUTOMATICALLY AND MANUALLY

ESTIMATED CARDIAC IMAGE CONTRAST ON UKDHP, BOTH

ON ORIGINAL IMAGES AND AFTER HISTOGRAM

NORMALIZATION, IN A.U.

improvement with respect to the single-stage one (perhaps
due to the size of the training set and to the consistency of
the orientation of the images), which was thus preferred.5

The high DSC values obtained for the PSMs suggest their
reliability for both motion detection and contrast estimation.
The fact that the PSMs of the SA stacks are slightly worse than
those of the LA images (0.90 vs 0.94) is mainly due to a lower
response of the model in the apical slices, where a different

5A more in-depth comparison between the two implementations is presented
in Fig. 11 (Media/Supplementary Material).

Fig. 6. Results for motion detection on UKBB in two cases, one with
(case #1) and one without motion corruption (case #2). In the second
column, the color maps of the translation magnitude for each slice are
overlaid on top of the SA stacks.

thresholding value would have been beneficial. However, this
does not cause a direct problem on the proposed pipeline,
which never thresholds PSMs for segmentation purposes and
instead exploits their probabilistic nature.

The first set of experiments involving the whole pipeline
was aimed at assessing its accuracy on UKBB. The binary
classification test on coverage estimation performed on
2997 cases from UKBB indicates the high accuracy of
the proposed technique, with sensitivity = 88% and speci-
ficity = 99%. The interpretation of these results is hindered
by the strong class imbalance between cases with sufficient
and insufficient coverage, and thus a more detailed analysis
of the reported confusion matrix is required. By applying
the proposed automated technique, it is possible to correctly
detect 88% of the cases with insufficient coverage, and thus to
lower the percentage of undetected wrongly imaged cases from
1.9% to 0.2%. This comes at the price of having to visually
check an additional 0.5% of cases that actually featured
a sufficient coverage. Notably, several of the 15 FP cases
actually had a sub-optimal coverage, but not of the amount
required to be considered as wrongly imaged following the
criterion adopted during visual inspection. Compared to our
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Fig. 7. Results for contrast estimation on UKBB in two cases, one with
high (case #1) and one with low contrast (case #2). The ROIs from which
the mean intensities are estimated are shown in red and cyan.

previous work [11], the present approach makes use of three
LA images instead of just one. The redundancy offered by
exploiting all the available LA views allows a more robust and
reliable estimation: this is suggested by the higher sensitivity
and specificity achieved (88% vs 73% and 99% vs 98%,
respectively, although a direct comparison is not completely
fair since the UKBB subset used in [11] was different from
the present one) and by the lower number of cases excluded
due to failing the sanity check (down from 89 to 3). Of note,
this check is able to indirectly detect and exclude LA images
with high noise levels, wrong acquisition planning or wrong
file naming that make the landmark localization unreliable,
and in the present implementation only cases in which all
the three LA views yielded bad landmark detection had to
be excluded from the coverage assessment. Zhang et al. [9]
addressed coverage estimation by performing fully-supervised
CNN-based slice classification to detect stacks with missing
basal (MBS) or apical slices (MAS). In their later work [10],
they acknowledged the need for a large amount of labelled
data during training to achieve good generalization: to mitigate
this issue, the authors have increased the size of the training
set using generative networks (reaching average accuracies
of 93% for MAS and 89% for MBS on a dataset of 3400 cases
from UKBB). The use of different subsets of data from
the UKBB and the different validation strategies (detection
of missing slices separately in the apical and in the basal
region vs detection of overall non-optimal cases) make the
comparison between the two approaches not straightforward.
The main advantage of the approach of Zhang et al. is that it
can detect problematic scans using only the SA stack, while
our pipeline relies on the presence of at least one of the LA
views (which are, however, routinely acquired in most CMR
protocols). On the other hand, we believe there is a clinical
and practical advantage in measuring the relative coverage
instead of performing binary classification: cases with only
slightly sub-optimal coverage could still be included in the
following analyses, especially when the lack of coverage is
in the apical area. Moreover, while their approach completely
relies on feature extraction from single slices and thus small
image perturbations can potentially lead to misclassification,
our approach is designed to exploit the redundancy offered by
the multiple LA views for greater robustness.

The reported results on UKBB for motion detection indicate
that the proposed approach achieves sensitivity = 85% and
specificity = 95% over 1497 cases. By applying the proposed
automated technique, it is possible to lower the percentage of
undetected motion-corrupted cases from 16.8% to 2.6%. This
comes at the price of having to visually check 3.9% cases that
were visually deemed motion-free. It is worth to note that the
binary classification of stacks based on the visual assessment
of motion is a difficult task in itself, limiting the measurable
accuracy of any technique.

The accuracy of the contrast estimation technique on UKBB
is indicated by very high correlation coefficients and regression
lines near unity both for images before and after contrast nor-
malization. Bland-Altman analyses show negligible biases and
narrow limits of agreement with respect to the mean measured
values, suggesting the high accuracy of the technique.

The second set of experiments was aimed at assessing the
accuracy of the pipeline (trained on UKBB) on the UKDHP
dataset, thus testing its generalization properties, and yielded
encouraging results. Regarding heart coverage estimation, our
technique was able to correctly identify all sub-optimal cases.
Regarding motion detection, it returned slightly lower values
for sensitivity and specificity than those obtained on UKBB:
while this might be due to a lower accuracy of the extracted
PSMs, we noted that motion in the UKDHP dataset is con-
siderably less pronounced than on UKBB, so it is easier to
misclassify borderline cases. Regarding contrast estimation,
the technique showed again very high correlation coefficients
and regression lines near unity. The increased difficulty in
dealing with a testing dataset different from the training one
can be seen in the slightly higher number of cases failing the
sanity check (up from 3 to 9) and in bigger biases, still how-
ever negligible when compared to the mean measured values.
In general, the small size of the UKDHP dataset should be
taken in consideration when evaluating these results, especially
for binary classification tests where the misclassification of a
single case can have a very large influence on the accuracy
figures. However, we believe the reported results show that
the proposed approach generalizes well to previously unseen
datasets, coping with differences in the acquisition protocols.

Our approach to quality control does not attempt to directly
classify sub-optimal cases for three reasons. First, this allows
the complete circumvention of any potential class-imbalance
issues, since the only learning-based portions of our pipeline
aim at the identification of structures that are present in every
image. Second, landmark extraction and probabilistic segmen-
tation allow the assessment of the reliability of the pipeline
by means of simple sanity checks, less trivial to implement in
classification approaches like [9]. Third, our pipeline does not
work as a “black-box”: each quality check produces quantita-
tive metrics with a clear meaning, which can be of great value
in informing the MR operators on the type and the entity of the
identified issues. Importantly, the proposed pipeline could be
adopted also using different techniques for landmark detection
and probabilistic segmentation. One major requirement for
these alternative methods would be the generation of fuzzy
segmentations maps providing a probabilistic representation
of the target structures: this allows the assessment of their
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reliability for both motion detection and contrast estimation,
otherwise unfeasible with standard, hard segmentations.

The main limitation affecting our approach is that no quality
check is performed on the manual selection of the imaging
planes for LA and SA images, which can be subject to error.
However, countermeasures have been implemented to deal
with this issue. Regarding coverage estimation, the redundancy
offered by exploiting all the three LA views and the adoption
of a sanity check helps to minimize the issue. Regarding
motion detection, a slightly off-axis LA image still correctly
represents the cardiac anatomy, and the initial 3D registration
step will position it correctly with respect to the SA stack.

VI. CONCLUSION

In this paper, a fully-automated, learning-based pipeline
for quality control of CMR images has been presented. The
implemented quality checks are heart coverage estimation,
inter-slice motion detection and cardiac image contrast esti-
mation for short-axis image stacks. The pipeline uses hybrid
random forests to extract probabilistic segmentation maps and
identify landmarks on long- and short-axis images, and then
leverages these information to perform the quality checks.
It was tested on up to 3000 cases from the UKBB as well as
on 100 cases from the UKDHP, and compared to the results
of visual or manual analyses to evaluate its accuracy. The
results suggest that the proposed approach is able to perform
the quality checks with a high accuracy across different
datasets. With the recent launch of several initiatives for the
acquisition of large-scale CMR datasets, there is a strong need
for robust quality control tools in order to facilitate and ensure
the reliability of the analyses performed as part of clinical
studies. In addition, the low computational time required by
the proposed pipeline makes it potentially deployable at the
acquisition site, allowing the almost real-time assessment of
the scan and the potential triggering of a new acquisition.
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