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Abstract

Background: Cardiovascular magnetic resonance (CMR) imaging is a standard imaging modality for assessing
cardiovascular diseases (CVDs), the leading cause of death globally. CMR enables accurate quantification of the
cardiac chamber volume, ejection fraction and myocardial mass, providing information for diagnosis and monitoring
of CVDs. However, for years, clinicians have been relying on manual approaches for CMR image analysis, which is time
consuming and prone to subjective errors. It is a major clinical challenge to automatically derive quantitative and
clinically relevant information from CMR images.

Methods: Deep neural networks have shown a great potential in image pattern recognition and segmentation for a
variety of tasks. Here we demonstrate an automated analysis method for CMR images, which is based on a fully
convolutional network (FCN). The network is trained and evaluated on a large-scale dataset from the UK Biobank,
consisting of 4,875 subjects with 93,500 pixelwise annotated images. The performance of the method has been
evaluated using a number of technical metrics, including the Dice metric, mean contour distance and Hausdorff
distance, as well as clinically relevant measures, including left ventricle (LV) end-diastolic volume (LVEDV) and
end-systolic volume (LVESV), LV mass (LVM); right ventricle (RV) end-diastolic volume (RVEDV) and end-systolic volume
(RVESV).

Results: By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high
performance in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on
long-axis CMR images. On a short-axis image test set of 600 subjects, it achieves an average Dice metric of 0.94 for the
LV cavity, 0.88 for the LV myocardium and 0.90 for the RV cavity. The mean absolute difference between automated
measurement and manual measurement is 6.1 mL for LVEDV, 5.3 mL for LVESV, 6.9 gram for LVM, 8.5 mL for RVEDV
and 7.2 mL for RVESV. On long-axis image test sets, the average Dice metric is 0.93 for the LA cavity (2-chamber view),
0.95 for the LA cavity (4-chamber view) and 0.96 for the RA cavity (4-chamber view). The performance is comparable
to human inter-observer variability.

Conclusions: We show that an automated method achieves a performance on par with human experts in analysing
CMR images and deriving clinically relevant measures.
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Background
An estimated 17.7 million people died from cardiovascu-
lar disease (CVD) in 2015, representing 31% of all global
deaths [1]. More people die annually from CVD than
any other cause. Technological advances in medical imag-
ing have led to a number of options for non-invasive
investigation of CVD, including echocardiography, com-
puted tomography (CT), cardiovascular magnetic reso-
nance (CMR) etc., each having its own advantages and
disadvantages. Due to its good image quality, excellent soft
tissue contrast and absence of ionising radiation, CMR
has established itself as the non-invasive gold standard for
assessing cardiac chamber volume and mass for a wide
range of CVD [2–4]. To derive quantitative measures such
as volume and mass, clinicians have been relying on man-
ual approaches to trace the cardiac chamber contours.
It typically takes a trained expert 20 minutes to analyse
images of a single subject at two time points of the cardiac
cycle, end-diastole (ED) and end-systole (ES). This is time
consuming, tedious and prone to subjective errors.
Here we propose a computational method which can

automatically analyse images at all time points across the
cardiac cycle and derive clinical measures within sec-
onds. The accuracy for clinical measures is comparable
to human expert performance. The method would assist
clinicians in CMR image analysis and diagnosis with an
automated and objective way for deriving clinical mea-
sures, therefore reducing cost and improving work effi-
ciency. It would also facilitate large-population imaging
studies, such as the UK Biobank study, which aims to con-
duct imaging scans of vital organs for 100,000 subjects
[5]. An automated method is crucial for analysing such a
large amount of images and extracting clinically relevant
information for subsequent clinical studies.
Machine learning algorithms, especially deep neural

networks, have demonstrated great potential, achieving
or surpassing human performance in a number of visual
tasks including object recognition in natural images [6],
Go game playing [7], skin cancer classification [8] and
ocular image analysis [9]. Previously, neural networks
have been explored for CMR image analysis [10–13].
Most of these studies either use relatively shallow net-
work architectures or are limited by the size of the dataset.
None of them have performed a comparison between
neural networks and human performance on this task.
In 2016, Kaggle organised the second Data Science Bowl
for left ventricular (LV) volume assessment [14]. Images
from 700 subjects were provided with the LV volumes,
however, none of the images were annotated. In 2017,
MICCAI organised the ACDC challenge [15], where a
training set of 100 subjects were provided with manual
annotation. Lieman-Sifry et al. curated a data set of 1,143
short-axis image scans [13], where most of the images
had LV endocardial and right ventricle (RV) endocardial

contours annotated but only 22% had LV epicardial con-
tours annotated.
In this paper, we utilise a large dataset of 4,875 subjects

with 93,500 images, one or two orders of magnitude larger
than previous datasets, and for which all the images have
been pixelwise annotated by clinical experts. We trained
fully convolutional networks for both short-axis and long-
axis CMR image analysis. By combining the power of deep
learning and a large annotated dataset for training and
evaluation, this paper demonstrated that the proposed
automated method can match human-level performance.

Methods
Dataset
The dataset consists of short-axis and long-axis cine CMR
images of 5,008 subjects (61.2±7.2 years, 52.5% female),
acquired from the UK Biobank. The baseline character-
istics of the UK Biobank cohort can be viewed in the
data showcase at [16]. For short-axis images, the in-plane
image resolution is 1.8×1.8 mm2 with slice thickness of
8.0 mm and slice gap of 2 mm. A short-axis image stack
typically consists of 10 image slices. For long-axis images,
the in-plane image resolution is 1.8×1.8 mm2 and only
1 image slice is acquired. Each cardiac cycle consists of
50 time frames. For both short-axis and long-axis views,
the balanced steady-state free precession (bSSFP) magni-
tude images were used for analysis. Details of the image
acquisition protocol can be found in [17].
Manual image annotation was undertaken by a team

of eight observers under the guidance of three princi-
pal investigators and following a standard operating pro-
cedure [18]. For short-axis images, the LV endocardial
and epicardial borders and the RV endocardial borders
were manually traced at ED and ES time frames using
the cvi42 software (version 5.1.1, Circle Cardiovascular
Imaging Inc., Calgary, Alberta, Canada). For long-axis
2-chamber view (2Ch) images, the left atrium (LA) endo-
cardial border was traced. For long-axis 4-chamber view
(4Ch) images, the LA and the right atrium (RA) endocar-
dial borders were traced.
In pre-processing, the CMR DICOM images were con-

verted into NIfTI format. The manual annotations from
the cvi42 software were exported as XML files and also
converted into NIfTI format. The images and annotations
were quality controlled to ensure that annotations cover
both ED and ES frames andwithoutmissing slices ormiss-
ing anatomical structures. For short-axis images, 4,875
subjects (with 93,500 annotated image slices) were avail-
able after quality control, which were randomly split into
three sets of 3,975/300/600 for training/validation/test, i.e.
3,975 subjects for training the neural network, 300 vali-
dation subjects for tuning model parameters, and finally
600 test subjects for evaluating performance. For long-
axis 2Ch images, 4,723 subjects were available after quality
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control, which were split into 3,823/300/600. For long-
axis 4Ch images, 4,682 subjects were available, which were
split into 3,782/300/600.

Automated image analysis
For automated CMR image analysis, we utilise a fully con-
volutional network (FCN) architecture, which is a type of
neural network that can predict a pixelwise image seg-
mentation by applying a number of convolutional filters
onto an input image [19]. The network architecture is
illustrated in Fig. 1. The FCN learns image features from
fine to coarse scales using convolutions and combines
multi-scale features for predicting the label class at each
pixel.
The network is adapted from the VGG-16 network

[20] and it consists of a number of convolutional lay-
ers for extracting image features. Each convolution uses
a 3×3 kernel and it is followed by batch normalisation1
and ReLU2. After every two or three convolutions, the
feature map is downsampled by a factor of 2 so as to
learn features at a more global scale. Feature maps learnt
at different scales are upsampled to the original resolu-
tion using transposed convolutions3 and the multi-scale
feature maps are then concatenated. Finally, three convo-
lutional layers of kernel size 1×1, followed by a softmax
function4, are used to predict a probabilistic label map.
The segmentation is determined at each pixel by the
label class with highest softmax probability. The mean
cross entropy between the probabilistic label map and the
manually annotated label map is used as the loss func-
tion. Excluding the transposed convolutional layers, this
network has in total 16 convolutional layers. Details of
the network architecture can be found in Table 1. This

architecture is similar to the U-Net [21]. The main differ-
ence is that U-Net performs upsampling step by step. It
iteratively upsamples the feature map at each scale by a
factor of 2 and concatenates with the feature map at the
next scale. In contrast to this, the proposed network may
be simpler on the upsampling path. It upsamples the fea-
ture map from each scale to the finest resolution in one go
and then concatenates all of them.

Network training and testing
Three networks were trained, respectively for segmenting
short-axis images, long-axis 2Ch images and 4Ch images.
For training each network, all images were cropped to
the same size of 192×192 and intensity normalised to the
range of [ 0, 1]. Data augmentation5 was performed on-
the-fly, which applied random translation, rotation, scal-
ing and intensity variation to each mini-batch of images
before feeding them to the network. Each mini-batch con-
sisted of 20 image slices. The Adammethod [22] was used
for optimising the loss function, with a learning rate of
0.001 and iteration number of 50,000. The method was
implemented using Python and TensorFlow. It took about
10 hours to train the VGG-16 network on a Nvidia Tesla
K80 GPU.
During the testing stage, it took∼ 2.2 seconds to analyse

the ED and ES time frames of short-axis images for one
subject and 9.5 seconds to analyse a full sequence of 50
time frames. For long-axis images, it took∼ 0.2 seconds to
analyse the ED and ES time frames for one subject and 1.4
seconds to analyse a full sequence. It took longer to anal-
yse the short-axis images, because each short-axis image
stack typically has 10 slices, whereas a long-axis image
stack has only 1 slice.

Fig. 1 The network architecture. A fully convolutional network (FCN) is used, which takes the cardiovascular magnetic resonance (CMR) image as
input, learns image features from fine to coarse scales through a series of convolutions, concatenates multi-scale features and finally predicts a
pixelwise image segmentation
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Table 1 The network architecture

Scale Size Convolution

1 192 × 192 3 × 3, 16

3 × 3, 16

2 96 × 96 3 × 3, 32

3 × 3, 32

3 48 × 48 3 × 3, 64

3 × 3, 64

3 × 3, 64

4 24 × 24 3 × 3, 128

3 × 3, 128

3 × 3, 128

5 12 × 12 3 × 3, 256

3 × 3, 256

3 × 3, 256

upsample and concatenate scale 1 to 5 features

predict 192 × 192 1 × 1, 64

1 × 1, 64

1 × 1, K

The first two columns list the resolution scale and feature map size. The third
column lists the convolutional layer parameters, with “3 × 3, 16” denoting 3 × 3
kernel and 16 output features. The last convolutional layer outputs K features, with K
denoting the number of label classes

Evaluation of themethod
For quantitative assessment, we evaluated the perfor-
mance of the automated method in two ways, respectively
using commonly used metrics for segmentation accuracy
assessment, including the Dice metric, mean contour dis-
tance and Hausdorff distance, and using clinical measures
derived from segmentations, including ventricular volume
and mass.
Figure 2 illustrates the definitions of the Dice metric and

contour distance metrics. The Dice metric evaluates the
overlap between automated segmentation A and manual
segmentation B and it is defined as,

Dice = 2|A ∩ B|
|A| + |B| .

It is a value between 0 and 1, with 0 denoting no overlap
and 1 denoting perfect agreement. The higher the Dice
metric, the better the agreement.
The mean contour distance and Hausdorff distance

evaluate themean and themaximum distance respectively
between the segmentation contours ∂A and ∂B. They are
defined as,

Fig. 2 Illustration of the Dice metric and contour distance metrics. A
and B are two sets representing automated segmentation and
manual segmentation. The Dice metric calculates the ratio of the
intersection |A ∩ B| over the average area of the two sets
(|A| + |B|)/2. The mean contour distance first calculates, for each
point p on one contour, its distance to the other contour d(p, ∂), then
calculates the mean across all the points p. The Hausdorff distance
calculates the maximum distance between the two contours

mean dist. = 1
2|∂A|

∑

p∈∂A
d(p, ∂B) + 1

2|∂B|
∑

q∈∂B
d(q, ∂A),

Haus. dist. = max
(
max
p∈∂A

d(p, ∂B), max
q∈∂B

d(q, ∂A)

)
,

where d(p, ∂) denotes the minimal distance from point p
to contour ∂ . The lower the distance metric, the better the
agreement.
We also evaluated the accuracy of clinical measures,

which were derived from image segmentations. We cal-
culated the LV end-diastolic volume (LVEDV) and end-
systolic volume (LVESV), LV myocardial mass (LVM), RV
end-diastolic volume (RVEDV) and end-systolic volume
(RVESV) from automated segmentation and compared
them to measurements from manual segmentation. The
LV and RV volumes were calculated by summing up the
number of voxels belonging to the corresponding label
class in the segmentation, multiplied by the volume per
voxel. The LV mass was calculated by multiplying the LV
myocardial volume with the density of 1.05 g/mL [23].

Evaluation of human performance
For quantitative evaluation of human performance, we
assessed the inter-observer variability between manual
segmentations by different clinical experts. A set of 50
subjects was randomly selected and each subject was
analysed by three expert observers (O1, O2, O3) inde-
pendently. The Dice metric, contour distance metrics and
the difference of clinical measurements were evaluated
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between each pair of observers (O1 vs O2, O2 vs O3, O3
vs O1).

Qualitative assessment
As an additional qualitative assessment, two experienced
image analysts (respectively with over ten years and four
years experiences in cardiovascular image analysis) visu-
ally assessed the segmentations for 250 test subjects [see
Additional file 1]. According to an in-house standard
operating procedure for image analysis and experience,
the analysts visually compared automated segmentation
to manual segmentation and assessed whether the two
segmentations achieved a good agreement (visually close
to each other) or not. If there was a disagreement between
the two, the analysts would score in three categories:
automated segmentation performs better; manual seg-
mentation performs better; not sure which one is better.
The visual assessment was performed for basal, mid-
ventricular and apical slices.

Exemplar clinical study
We demonstrated the application of the method on an
exemplar clinical study. Using automatically derived clini-
cal measures, we investigated the association between car-
diac function and obesity, similar to a previous research
[24]. We compared the ventricular volume and mass
between two groups of subjects, the normal weight
group (18.5 ≤ body mass index (BMI) < 25) and the
obese group (BMI ≥ 30). Pathological cases with CVD
were excluded. The normal weight group and the obese
group were matched for sex, age, height, diastolic blood
pressure and systolic blood pressure using the nearest

neighbour propensity score matching, implemented using
the MatchIt package in R. After matching, each group
consisted of 867 subjects. The clinical measures were then
compared between the matched groups using two-sided
t-tests.

Results
Short-axis image analysis
Figure 3a illustrates the predicted segmentation of the LV
and RV on short-axis images. It shows that automated
segmentation agrees well with manual segmentation by a
clinical expert at both ED and ES time frames. Additional
movie files demonstrate automated segmentation across a
cardiac cycle [see Additional files 2, 3 and 4].
Table 2(a) reports the Dice metric, mean contour dis-

tance and Hausdorff distance between automated and
manual segmentations, evaluated on a test set of 600 sub-
jects, which the network has never seen before. The table
shows a mean Dice value of 0.94 for the LV cavity, 0.88 for
the LV myocardium and 0.90 for the RV cavity, demon-
strating a good agreement between automated and man-
ual segmentations. The mean contour distance is 1.04 mm
for the LV cavity, 1.14 mm for the LV myocardium and
1.78mm for the RV cavity, all of which are smaller than the
in-plane pixel spacing of 1.8 mm. The Hausdorff distance
ranges from 3.16 mm to 7.25 mm for each class.
Of the 600 test subjects, 39 are with CVD. These patho-

logical cases were selected using the following criteria:
cases with the International Classification of Diseases
code, 10th Revision (ICD-10) of I21 (acute myocardial
infarction), I22 (subsequent myocardial infarction), I23
(certain current complications following acute myocardial

a b c

Fig. 3 Illustration of the segmentation results for short-axis and long-axis images. The top row shows the automated segmentation, whereas the
bottom row shows the manual segmentation. The automated method segments all the time frames. However, only end-diastolic (ED) and
end-systolic (ES) frames are shown, as manual analysis only annotates ED and ES frames. The cardiac chambers are represented by different colours.
a short-axis. b long-axis (2 chamber view). c long-axis (4 chamber view)
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Table 2 The Dice metric, mean contour distance (MCD) and
Hausdorff distance (HD) between automated segmentation and
manual segmentation for short-axis images

(a) The full test set (n = 600)

Dice MCD (mm) HD (mm)

LV cavity 0.94 (0.04) 1.04 (0.35) 3.16 (0.98)

LV myocardium 0.88 (0.03) 1.14 (0.40) 3.92 (1.37)

RV cavity 0.90 (0.05) 1.78 (0.70) 7.25 (2.70)

(b) Cases with CVDs (n = 39)

LV cavity 0.94 (0.04) 1.19 (0.41) 3.62 (1.14)

LV myocardium 0.87 (0.04) 1.23 (0.40) 4.28 (1.18)

RV cavity 0.90 (0.04) 2.02 (0.88) 8.19 (2.94)

The mean and standard deviation (in parenthesis) are reported
CVD: cardiovascular diseases, LV: left ventricle, RV: right ventricle

infarction), I25 (chronic ischaemic heart disease), I42 (car-
diomyopathy), I50 (heart failure); cases where participants
had self-reported heart attack. Table 2(b) reports the Dice
and distance metrics on these pathological cases. It shows
a consistent segmentation performance as on the full test
set for the Dice metric and just slightly larger errors for
the contour distance metrics.
For evaluating human performance, Table 3 compares

the Dice and distance metrics between automated seg-
mentation and manual segmentation, as well as between
segmentations by different human observers. It demon-
strates that the computer-human difference is close to or
even smaller than the human-human difference for all the
metrics.
As an additional qualitative assessment, two image ana-

lysts visually compared automated segmentation to man-
ual segmentation for 250 test subjects. Table 4 shows that
for mid-ventricular slices, automated segmentation agrees
well with manual segmentation for respectively 84.8% and
91.6% of the cases by visual inspection of the two analysts.
For basal slices where the ventricular contours are more
complex and thus more difficult to segment, the percent-
age of agreement is lower. For example, Analyst 1 scored
that automated segmentation agrees well with manual
segmentation for only 40.0% of the cases. When discrep-
ancy occurs, however, automated segmentation performs
similarly to manual segmentation. Analyst 1 scored that
automated segmentation performs better for 26.2% of the
cases, whereas manual segmentation performs better for
20.6% of the cases.
Next, we evaluate the accuracy of clinical measures for

the LVEDV, LVESV, LVM, RVEDV and RVESV. Table 5
reports the mean absolute difference and relative differ-
ence between automated and manual measurements and
between measurements by different expert observers. It

shows that for the clinical measures, the computer-human
difference is on par with the human-human difference.
Figure 4 shows the Bland-Altman plots of the clini-

cal measures. The Bland-Altman plot is commonly used
for analysing agreement and bias between two measure-
ments. The first column of the figure compares auto-
mated measurements to manual measurements on 600
test subjects. These subjects were annotated by a group
of eight observers and each subject was annotated only
once by one observer. The first column shows that the
mean difference is centred close to zero, which suggests
that the automated measurement is almost unbiased rel-
ative to the group of observers. Also, there is no evi-
dence of bias over hearts of difference sizes or volumes.
By contrast, the bias between different pairs of human
observers (second to fourth columns) is often larger than
that, especially for RVEDV and RVESV. This indicates
that individual observers may be biased. As the auto-
mated method is trained with annotations from multi-
ple observers, it learns a consensus estimate across the
group of observers and thus it may be less susceptible
to biases.

Long-axis image analysis
We further demonstrate the performance of the method
on long-axis CMR images, which are commonly used for
assessing the cardiac chambers from a different angle.
Figure 3b and c illustrate the segmentations of the LA and
RA for the long-axis 2Ch and 4Ch images respectively.
Additional movie files demonstrate automated segmenta-
tion across a cardiac cycle [see Additional files 5–6].
We evaluate the Dice metric and the contour distances

on a test set of 600 subjects, as reported in Table 6.
The mean Dice metric is 0.93 for the LA (2Ch), 0.95
for the LA (4Ch), 0.96 for the RA (4Ch), whereas the
mean contour distance is smaller than the in-plane pixel
spacing of 1.8 mm, demonstrating a good segmenta-
tion accuracy on long-axis images. Table 7 demonstrates
that for long-axis images, the computer-human difference
is also on par with or smaller than the human-human
difference.

Exemplar clinical study
The proposed automated method enables us to perform
clinical studies on large-scale datasets. Table 8 compares
the ventricular volume and mass, which are derived from
automated segmentation, between two groups of subjects,
the normal weight group and the obese group. The table
shows that obesity is associated with increased ventricu-
lar volume and mass with statistical significance. This is
consistent with a previous finding in [24], which was per-
formed on a dataset of 54 subjects with manual segmen-
tation. Now we can confirm the finding with automated
analysis on a much larger dataset with 1,734 subjects.
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Table 3 The Dice metric and contour distance metrics between automated segmentation and manual segmentation for short-axis
images, as well between segmentations by different human observers

(a) Dice metric

Auto vs Manual O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LV cavity 0.94 (0.04) 0.94 (0.04) 0.92 (0.04) 0.93 (0.04)

LV myocardium 0.88 (0.03) 0.88 (0.02) 0.87 (0.03) 0.88 (0.02)

RV cavity 0.90 (0.05) 0.87 (0.06) 0.88 (0.05) 0.89 (0.05)

(b) Mean contour distance (mm)

LV cavity 1.04 (0.35) 1.00 (0.25) 1.30 (0.37) 1.21 (0.48)

LV myocardium 1.14 (0.40) 1.16 (0.34) 1.19 (0.25) 1.21 (0.36)

RV cavity 1.78 (0.70) 2.00 (0.79) 1.78 (0.45) 1.87 (0.74)

(c) Hausdorff distance (mm)

LV cavity 3.16 (0.98) 2.84 (0.70) 3.31 (0.90) 3.25 (0.96)

LV myocardium 3.92 (1.37) 3.70 (1.16) 3.82 (1.07) 3.76 (1.21)

RV cavity 7.25 (2.70) 7.56 (2.51) 7.35 (2.19) 7.14 (2.20)

The first column shows the difference between automated and manual segmentations on a test set of 600 subjects. The second to fourth columns show the inter-observer
variability, which is evaluated on a randomly selected set of 50 subjects, each being analysed by three different human observers (O1, O2, O3) independently. The mean and
standard deviation (in parenthesis) of the metrics are reported

Discussion
By training and evaluating on a large-scale annotated
dataset, we demonstrate that the proposed method
matches human expert performance on CMR image seg-
mentation accuracy and clinical measurement accuracy.
In terms of speed, it can analyse the short-axis and
long-axis images for one subject in a few seconds. The
method is fast and scalable, overcoming limitations asso-
ciated with current clinical CMR image analysis routine,
which is manual, time-consuming and prone to subjective
errors. The method has a great potential for improving
work efficiency and assisting clinicians in diagnosis and
performing large-scale clinical research.

Table 4 Qualitative visual assessment of automated
segmentation

Agreement (%)
Disagreement (%)

Auto. betterMan. better Not sure

Analyst 1 Basal 40.0 26.2 20.6 13.2

Mid-ventricular 84.8 12.2 2.4 0.6

Apical 44.0 29.0 22.0 5.0

Analyst 2 Basal 33.0 27.4 17.4 22.2

Mid-ventricular 91.6 6.6 1.8 0.0

Apical 80.8 8.8 9.6 0.8

Two experienced image analysts visually compared automated segmentation to
manual segmentation for 250 test subjects and assessed whether the two
segmentations achieved a good agreement (visually close to each other) or not. If
there was a disagreement between the two, the analysts would score in three
categories: automated segmentation performs better; manual segmentation
performs better; not sure which one is better. The visual assessment was performed
for basal, mid-ventricular and apical slices. The percentage of each score catetory is
reported

Residual networks
We also experimented with a deeper network by replac-
ing the convolutional layers from scale 3 to 5 in Table 1
with residual blocks as described in [25] and constructed
a residual network which has 33 convolutional layers. In

Table 5 The difference in clinical measures between automated
segmentation and manual segmentation, as well between
measurements by different human observers

(a) Absolute difference

Auto vs Manual O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LVEDV (mL) 6.1 (5.3) 6.1 (4.4) 8.8 (4.8) 4.8 (3.1)

LVESV (mL) 5.3 (4.9) 4.1 (4.2) 6.7 (4.2) 7.1 (3.8)

LVM (gram) 6.9 (5.5) 4.2 (3.2) 6.6 (4.9) 6.5 (4.8)

RVEDV (mL) 8.5 (7.1) 11.1 (7.2) 6.2 (4.6) 8.7 (5.8)

RVESV (mL) 7.2 (6.8) 15.6 (7.8) 6.6 (5.5) 11.7 (6.9)

(b) Relative difference

LVEDV (%) 4.1 (3.5) 4.2 (3.1) 6.3 (3.3) 3.4 (2.2)

LVESV (%) 9.5 (9.5) 6.8 (7.5) 12.5 (8.5) 11.7 (5.1)

LVM (%) 8.3 (7.6) 4.4 (3.3) 6.0 (3.7) 6.7 (4.6)

RVEDV (%) 5.6 (4.6) 8.0 (5.0) 4.2 (3.1) 5.7 (3.6)

RVESV (%) 11.8 (12.2) 30.6 (15.5) 10.9 (8.3) 16.9 (9.2)

The first column shows the difference between automated and manual
segmentations on a test set of 600 subjects. The second to fourth columns show
the inter-observer variability, which is evaluated on a randomly selected set of 50
subjects, each being analysed by three different human observers (O1, O2, O3)
independently. The mean and standard deviation (in parenthesis) of the absolute
difference and relative difference are reported
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Fig. 4 Bland-Altman plots of clinical measures between automated measurement and manual measurement, as well between measurements by
different human observers. The first column shows the agreement between automated and manual measurements on a test set of 600 subjects.
The second to fourth columns show the inter-observer variability evaluated on the randomly selected set of 50 subjects. In each Bland-Altman plot,
the x-axis denotes the average of two measurements and the y-axis denotes the difference between them. The dark dashed line denotes the mean
difference (bias) and the two light dashed lines denote ± 1.96 standard deviations from the mean

experiments, we found the residual network achieves a
similar performance as the VGG-16 network. Thus, we
only reported the results from the VGG-16 network in the
paper.
Other clinical measures
The LV and RV volumes are directly calculated from the
image segmentations. There are also some other clini-

Table 6 The Dice metric, mean contour distance (MCD) and
Hausdorff distance (HD) between automated segmentation and
manual segmentation for long-axis images

Dice MCD (mm) HD (mm)

LA cavity (2Ch) 0.93 (0.05) 1.46 (1.06) 5.76 (5.85)

LA cavity (4Ch) 0.95 (0.02) 1.04 (0.38) 4.03 (2.26)

RA cavity (4Ch) 0.96 (0.02) 0.99 (0.43) 3.89 (2.39)

The mean and standard deviation (in parenthesis) are reported on a test set of 600
subjects
LA: left atrium, RA: right atrium

cal measures for assessing cardiac function, which are
derived from the LV and RV volumes, including the LV
stroke volume (LVSV), LV ejection fraction (LVEF), LV
cardiac output (LVCO), RV stroke volume (RVSV), RV
ejection fraction (RVEF) and RV cardiac output (RVCO).
Table 9 reports the difference between automated and
manual measurements and between measurements by
different expert observers on these measures. It shows
that for these derived clinical measures, the computer-
human difference is also comparable to the human-human
difference.

Limitations
A major limitation of our work is that the neural network
was trained on a single dataset, the UK Biobank dataset,
which is a relatively homogeneous dataset. The majority
of the data are healthy subjects in middle and later life and
only a small proportion are with self-reported CVD [26].
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Table 7 The Dice metric and contour distance metrics between automated segmentation and manual segmentation for long-axis
images, as well between segmentations by different human observers

(a) Dice metric

Auto vs Manual O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LA cavity (2Ch) 0.93 (0.05) 0.92 (0.02) 0.90 (0.04) 0.90 (0.04)

LA cavity (4Ch) 0.95 (0.02) 0.95 (0.03) 0.94 (0.02) 0.94 (0.03)

RA cavity (4Ch) 0.96 (0.02) 0.95 (0.02) 0.95 (0.02) 0.95 (0.02)

(b) Mean contour distance (mm)

LA cavity (2Ch) 1.46 (1.06) 1.57 (0.39) 1.94 (0.68) 1.95 (0.57)

LA cavity (4Ch) 1.04 (0.38) 1.08 (0.40) 1.21 (0.33) 1.23 (0.35)

RA cavity (4Ch) 0.99 (0.43) 1.13 (0.35) 1.22 (0.37) 1.16 (0.37)

(c) Hausdorff distance (mm)

LA cavity (2Ch) 5.76 (5.85) 5.66 (1.97) 7.16 (3.12) 6.78 (2.53)

LA cavity (4Ch) 4.03 (2.26) 3.89 (1.85) 4.29 (1.97) 4.06 (1.44)

RA cavity (4Ch) 3.89 (2.39) 4.31 (2.20) 4.20 (2.16) 4.08 (2.06)

The first column shows the difference between automated and manual segmentations on a test set of 600 subjects. The second to fourth columns show the inter-observer
variability, which is evaluated on a randomly selected set of 50 subjects, each being analysed by three different human observers (O1, O2, O3) independently. The mean and
standard deviation (in parenthesis) of the metrics are reported

Although we have demonstrated that the method works
well on a subset of pathological cases in Table 2(b), in the
clinical environment, there can be a variety of pathological
patterns, which are not currently represented in the UK
Biobank cohort.
In addition, the UK Biobank dataset was acquired using

a standard imaging protocol and the same scanner model
[17]. This guarantees that the derived image phenotypes
are consistent across the UK Biobank study, without being
biased by the imaging protocol or the scanner model.
However, this also means that the neural network that
we have learnt is adapted to the image patterns in the
UK Biobank dataset and might not generalise well to
other vendor or sequence datasets. We explored how the
network works on two additional datasets, the MICCAI
2009 Left Ventricle Segmentation Challenge (LVSC 2009)

Table 8 An exemplar study of cardiac function on large-scale
datasets using automatically derived clinical measures

Normal Obese
p-value

(n = 867) (n = 867)

LVEDV (mL) 143 (31) 158 (34) < 0.001

LVESV (mL) 60 (19) 67 (20) < 0.001

LVM (gram) 85 (20) 103 (26) < 0.001

RVEDV (mL) 152 (36) 167 (38) < 0.001

RVESV (mL) 67 (20) 75 (22) < 0.001

It compares the normal weight group (18.5 ≤ BMI < 25) to the obese group (BMI ≥
30). The mean and standard deviation (in parenthesis) are reported
BMI: body mass index, LVEDV: left ventricular end-diastolic volume, LVESV: left
ventricular end-systolic volume, LVM: left ventricular mass, RVEDV: right ventricular
end-diastolic volume, RVESV: right ventricular end-systolic volume

dataset [27] and the MICCAI 2017 Automated Cardiac
Diagnosis Challenge (ACDC 2017) dataset [28]. These
two datasets were acquired using different scanners or dif-
ferent protocols [15, 29] from the UK Biobank dataset. In
addition, most of the LVSC 2009 and ACDC 2017 data are
pathological cases.
Figure 5 shows the segmentation results of four exem-

plar cases, two from the LVSC 2009 dataset and two from
the ACDC 2017 dataset. The four cases are respectively
of heart failure, LV hypertrophy, dilated cardiomyopathy
and abnormal RV. The top row shows the segmentation
results by directly applying the UK Biobank-trained net-
work to the LVSC and ACDC data. It shows that without
any tuning, the network performs well for Cases 1 and 3,
but fails for Cases 2 and 4. This is probably because the
image patterns or intensity distributions in Cases 2 and 4
are not covered by UK Biobank.
Then, we performed fine-tuning for the network by

training it for another 10,000 iterations on the new
datasets, which took about 2 hour. For LVSC 2009, we
fine-tuned using the challenge training set (15 subjects)
and evaluated the performance on the challenge vali-
dation set (15 subjects). The LVSC 2009 training set
only annotates the LV cavity and myocardium. As a
result, during fine-tuning, we only trained the network
to segment the LV and ignored the RV. For ACDC
2017, we randomly split the challenge training set (100
subjects) into 80 subjects for fine-tuning and 20 sub-
jects for evaluation. The bottom row of Fig. 5 shows
the segmentation results on LVSC or ACDC data after
fine-tuning. It shows that the segmentation performance
is substantially improved for Cases 2 and 4 after the
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Table 9 The difference in derived clinical measures between automated segmentation and manual segmentation, as well between
measurements by different human observers

(a) Absolute difference

Auto vs Manual O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LVSV (mL) 6.1 (5.6) 6.6 (4.1) 5.6 (4.1) 4.2 (3.2)

LVEF (%) 3.2 (2.9) 3.1 (2.1) 3.0 (2.4) 3.8 (1.8)

LVCO (L/min) 0.4 (0.3) 0.4 (0.2) 0.3 (0.2) 0.3 (0.2)

RVSV (mL) 8.1 (6.8) 7.1 (5.5) 5.3 (4.2) 5.4 (4.8)

RVEF (%) 4.3 (3.6) 7.8 (4.4) 3.7 (2.7) 5.7 (3.9)

RVCO (L/min) 0.5 (0.4) 0.4 (0.3) 0.3 (0.2) 0.3 (0.3)

(b) Relative difference

LVSV (%) 7.0 (5.8) 7.4 (4.1) 6.5 (4.8) 4.8 (3.3)

LVEF (%) 5.4 (4.8) 5.1 (3.7) 4.9 (3.8) 6.6 (3.2)

LVCO (%) 7.0 (5.8) 7.4 (4.1) 6.5 (4.8) 4.8 (3.3)

RVSV (%) 9.6 (8.3) 8.1 (6.9) 6.1 (4.4) 7.1 (8.5)

RVEF (%) 7.5 (6.2) 12.3 (6.6) 6.5 (5.0) 10.7 (7.9)

RVCO (%) 9.6 (8.3) 8.1 (6.9) 6.1 (4.4) 7.1 (8.5)

LVSV: left ventricular stroke volume, LVEF: left ventricular ejection fraction, LVCO: left ventricular cardiac output, RVSV: right ventricular stroke volume, RVEF: right ventricular
ejection fraction, RVCO: right ventricular cardiac output
The first column shows the difference between automated and manual segmentations on a test set of 600 subjects. The second to fourth columns show the inter-observer
variability, which is evaluated on a randomly selected set of 50 subjects, each being analysed by three different human observers (O1, O2, O3) independently. The mean and
standard deviation (in parenthesis) of the absolute difference and relative difference are reported

network has adjusted its parameters to adapt to the
new data. Table 10 reports the Dice overlap metrics
before and after fine-tuning. On both LVSC6 and ACDC
datasets, the Dice metrics are substantially improved after
fine-tuning.

Although the network works well after fine-tuning, this
still means each time when we have some new data that
are acquired using a different protocol or from a dif-
ferent scanner model, we might need to label some of
the new data for fine-tuning the network parameters. It

a b

Fig. 5 Segmentation results on other datasets. The first two cases come from the LVSC 2009 dataset, whereas the last two cases come from the
ACDC 2017 dataset. The four cases are respectively of heart failure, LV hypertrophy, dilated cardiomyopathy and abnormal right ventricle. The top
row shows the segmentation results by directly applying the UK Biobank-trained network to the LVSC and ACDC data. The bottom row shows the
segmentation results after fine-tuning the network to the new data
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Table 10 Dice overlap metrics for segmentations on LVSC 2009
and ACDC 2017 datasets

LVSC 2009 ACDC 2017

validation set (n = 15) training set split (n = 20)

w.o. fine-tune w. fine-tune w.o. fine-tune w. fine-tune

LV cavity 0.72 (0.22) 0.90 (0.08) 0.74 (0.29) 0.94 (0.04)

LV myocardium 0.56 (0.18) 0.81 (0.05) 0.65 (0.24) 0.88 (0.05)

RV cavity - - 0.60 (0.35) 0.88 (0.08)

The performances using the UK Biobank-trained network without fine-tuning and
after fine-tuning are compared. The mean and standard deviation (in parenthesis)
are reported

would be interesting to explore whether we could create
a large-scale heterogeneous dataset for training and eval-
uation, which covers typical CMR imaging protocols and
scanner types, or to develop novel machine learning tech-
niques that are more generalisable, which is an important
research topic on its own [30].

Future directions
Future research will explore developing more general-
isable methods for analysing a wider range of CMR
images, such as multi-site images acquired from different
machines and using different imaging protocols, and inte-
grating automated segmentation results into diagnostic
reports. The current method trains networks for short-
axis images and long-axis images separately. It would be
interesting to combine the two views for image analysis,
which can provide complementary information about the
anatomy of the heart. Finally, we believe that a benchmark
platform based on this annotated dataset is needed, which
would benefit the whole community and greatly advance
the development of CMR image analysis algorithms.

Conclusions
We have proposed an automated method using deep
FCN for short-axis and long-axis CMR image analysis.
It has demonstrated a human-level performance on the
UK Biobank dataset. We anticipate this to be a starting
point for automated CMR analysis, facilitated by machine
learning.

Endnotes
1 Batch normalisation [31] is a technique which helps

address optimisation issues in training deep neural net-
works, i.e. networks with many layers. It normalises the
layer input for each training mini-batch.

2 ReLU stands for rectified linear unit. It is a type of acti-
vation function for a neuron in artificial neural networks.

3A transposed convolution is a convolution whose
weight matrix has been transposed [32]. It is often used
for upsampling an image or a feature map.

4 Softmax regression is a generalisation of logistic
regression to the case where we have multiple classes. It is
used for mapping a feature vector to a probability vector.

5Data augmentation is a technique to increase the size
of the training set by applying random spatial transfor-
mation or intensity transformation to the original training
samples.

6We evaluated the Dice metric between automated and
manual segmentions in 3D. Previous studies on LVSC
may report the Dice metric for good contours only (with
distance error less than 5mm) [33].
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