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Lee-Carter Mortality Forecasting, a Parallel GLM Approach,
England & Wales Mortality Projections
A E. Renshaw, S. Haberman

Abstract

The paper contains ways of re-interpreting the model structure underpinning the Lee-Carter
mortality forecasting methodology, and proposes a parallel GLM based methodology. The gender and
age specific England & Wales mortality experiences of the past half-century are analysed and the
forecasts generated using both approaches compared.

Keywords: Mortality forecasting; Lee-Carter methodology; Generalised linear models; Mortality
reduction factors

1. Introduction

A generalised linear modelling (GLM) regression based methodology for the
construction of a class of temporal mortality reduction (adjustment) factors is
described in Renshaw and Haberman (2000). Although initially designed with a view
to the retrospective study of such factors, the methodology is also capable of a
prospective interpretation and application, generating forecasts. Noting that this
formulation also encompasses the model structure underpinning the Lee-Carter (LC)
approach to mortality forecasting (Lee and Carter (1992), Lee (2000)), Renshaw and
Haberman (2001) have investigated how the LC approach might be adapted to
construct reduction factors for use in an actuarial context. In this paper, we
investigate further how this GLM based approach to the construction of mortality
reduction factors might be adapted along parallel lines to the LC approach for the
purpose of mortality forecasting. A key difference between the two approaches
centres on the interpretation of time, which, under the LC methodology is modelled as
a factor and estimated by the singular value decomposition (SVD), and, under the
GLM approach, is modelled as a covariate.

By way of illustration, mortality forecasts for both males and females, based
on the England & Wales mortality experiences of the past half-century are made using
both methods, and the results compared: the forecasts being of interest in their own
right.

In Section 2, an outline of LC methodology is presented. This includes a
discussion of the singular value decomposition (SVD) residuals, the graphical
analysis of which would appear to have received little attention in this context. Lee
(2000) contains a particularly informative resumé of the current state of LC
methodology. In Section 3, a parallel GLM based methodology is described. Given
that the basis of the formulation depends on modelling over-dispersed Poisson
responses, it is possible to ensure that the actual total deaths equal the total expected
deaths, for each relevant calendar year, as in the LC fitting process, by suitably
augmenting the linear predictor. In Section 4, forecast mortality rates based on the
England & Wales experience of the past half-century, using both methodologies are
compared. This is conducted graphically. Model fitting is preceded by an
exploratory analysis of trends in the crude mortality rates as an aid to choosing model
structures, for the case of the GLM methodology. In Section 5, the forecasting of life
expectancies at birth is discussed, again under both methodologies. In Section 6, the
feasibility of extrapolating mortality rates beyond the available upper age limit is
examined. Section 7 contains some concluding comments. There are two
appendices, one containing the graphical exploratory analysis of log crude mortality



rates, the other including a discussion of issues concerning prediction errors under the
GLM methodology.

2. The LC Mortality Forecasting Methodology
The Model.:

The model underpinning the LC methodology (Lee and Carter (1992)), is the
following:

logm, =a, + f.x, +¢, 2.1
where
m,  denotes the central mortality rate for age x at time t

a,  describes the shape of the age profile averaged over time
B,  describes the pattern of deviations from the age profile
K, describes the variation in the level of mortality with t,
&,  denotes error.

X
The model is over-parameterised in the sense that the structure is invariant under
either of the parameter transformations

{a.p.x}{a,.p,/ccx}

{ax’ﬁx’l(z} = {ax —Cﬂx,ﬂx,l(" +C}
for any constant c. Thus x, is determined up to a linear transformation, /4, is
determined only up to a multiplicative constant, and @, is determined only up to a
linear adjustment.

Model Fitting:
It is envisaged that a rectangular array of crude mortality rates is available for
fitting the model structure. Let (d,,e,,) represent the data array, where

d

e, denote the appropriate matching central exposures,

denote the number of deaths at age x and time 7, and

xt

so that crude central mortality rates are given by #, =d, /e,,. For such an array, let
t=t, 4+, ..,y +h=1=t; x=1x,,x,,.,x, with x, <x,,

so that h=¢, -t +1 specifies the time range, and k specifies the number of age

categories.

Under the LC methodology, the parameter estimates are normalised by
stipulating that

‘, L
D&, =0and > B =1,s0that @, = log[ [m,," (2.2)

1=t all,x 1=t
is a least squares error estimator. Allowing for constraints, the number of free
parameters is 2k+%~2. The normalisation of 4, means that the resulting values
indicate the relative rate of change of log mortality rates at different ages. Then the
LC model fitting proceeds as follows:

t
o Estimate @, as &, =log] [ ;" , the logarithm of the geometric mean of the

=ty

crude mortality rates, averaged over all 7, for each age x.



¢ Compute the matrix of statistics [z, ]=[logr,, —@,], and then estimate &, and
B, as the respective 1% right and 1% left singular vectors in the SVD of the
matrix [ z,, ], subject to the above constraints.

¢ TFinally, the estimated x, are adjusted such that the actual total observed

deaths de, equals the total expected deaths Zeﬂ exp(d, + B.R,), Vt.

all x all x
It is possible to implement SVD using a variety of standard statistical packages
offering this facility, such as GENSTAT (Payne et al. (1993)).

Residuals:

It would appear that little detailed attention has been given to the definition
and analysis of residuals in the cited references. One possibility, implied in
Tuljapurkar ez al. (2000), is as follows. Denoting the (well ordered) singular values
and the left and right singular vectors, generated under the SVD of the matrix [z, ] by

s;, u;(x) and v, () respectively, it follows that we can write

logm,, =a, + s, (v, (O)+ 3 24,y () 2.3)

i=2
where » =min(h, k). Given that S, and «, are estimated on the basis that
B, =su (x)v (1),
(subject to normalising constraints), comparison of (2.3) with (2.1) implies that the
residual errors are represented as

£ = Y50, (0) = logm,, —a, ~ B x,. @.4)
i=2

We refer to these as SVD residuals. Whereas it is possible to compute &, either
‘directly’, using the first version of (4.2), or ‘indirectly’, using

éxr = logrhx, _an _ﬁx’ez >
only this latter ‘indirect’ method of computation is available when the adjustments,
described above as part of the L-C estimating process, are made to «,, following the
SVDof[z,].

Alternatively, Renshaw and Haberman (2001) have used Pearson residuals,
normally associated with a Poisson response model, namely

S .
rxl = dﬂ ~ = > dxt =exr exp{ax +16th) (2'5)

d

xt

in the context of this model. It is of interest to note, that, while corresponding residual
types differ in magnitude, the trivially established identity

. d
gxl = ]'Og AXt 2
xt

crucially implies that they have identical signs.
Finally, either set of residuals may be standardised by dividing by \/3 , Where
the scale parameter ¢ is estimated according to
P 2
7 allxt 2 __allxt
=="— or ¢ =2
¢ v v
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as the case may be, with v=kh—2k —h+2 = (k—1)(h—2) degrees of freedom. This

assumes there are no empty cells in the rectangular data array (with an obvious
reduction, when this is not the case).

Model Forecasts:

Forecasts follow by modelling the values of x, as a time series using standard
methods, with typically, the ARIMA(0,1,0) process, or random walk with drift,
playing a central role in the approach. Denoting the resulting forecasts beyond the
data time horizon as {¥, ,. :s=123,...}, forecast mortality rates are then computed as

[
mx,t,,-h\' = €Xp {10g rhxt,, + Bx (K-‘I,,hr - ’el" )}
=i, expB(k, ., —& ); =123, ... (2.6)
thereby ensuring the forecasts are aligned to the latest available crude mortality rates.
If the latest data are judged to generate atypically shaped crude mortality rates (by
age), it is possible to average across a few years at the end of the observed period.

For a discussion of the complexity and nature of some of the errors in such
forecasts, see appendix B of Lee and Carter (1992).

Comment:

Whereas the method of model fitting is as described in the original paper by
Lee and Carter (1992), the method of forecast alignment differs from that described in
the original paper to reflect Lee’s current thinking (Lee 2000).

3. A GLM Based Regression Approach to Mortality Forecasting
Mortality Reduction Factors:

Our approach to modelling is motivated by the concept of a mortality
reduction factor, developed by UK actuaries (e.g. CMI Committee (1990)), and
designed to be a means of adjusting current standard mortality tables, in order to
predict future mortality trends.

In terms of u,,, the force of mortality at age x and time £, a mortality

reduction factor (RF) is characterised by the equation

Hy =My RE(x,), t 21, 3.1
subject to the constraint

RF(x,ty) =1 Vx. 3.2)
The further constraints

12 RF(x,t)>0, Vx, t > t,,
plus decreasing monotonicity with increasing ¢, Vx and ¢ > ¢, are implicit in the case
of a reduction factor. It is envisaged that Hy,» valid at time ¢, is completely
specified, possibly in the form of a standard mortality table, or estimated, as described
below. It is further envisaged, but not essential, that 7, and M, represent the current

state in a dynamic process. The objective is to target RF by focusing on the same

rectangular data array as above (Section 2), so that
t=t, 4+, ., +h-1=t; x=x,%,,.,%, With x, <x

i+l

but, this time, with a well defined time origin ¢,, ¢, <t, <¢,.



To estimate . , consider the sub-interval [t,,?,], such
that ¢, <7, <¢,<¢, <t,, with range g=¢, —¢, +1. It is envisaged that the sub-
interval is sited either at the extremity of the time interval so that m, = n or is sited to

coincide with a standard mortality table, such as an English Life Table, in which case
g =3. In general, g is small relative to 4. Then 4, may be estimated as

fmy ; Imy Im
~ ~1/g A
luxto - I Imxl or /uxl,, - : ‘,dxt : :exl (33)
t=t, n =,

t=lm]

Note that the structure of the LC model, equation (2.1), (but subject to an
additional constraint), is reproduced on taking logs of (3.1) and (3.2), and defining

a, =logu,, , logRF(x,t) = B,x,,st. x, =0.

The Model:

In keeping with current UK actuarial practice when targeting the force of
mortality (e.g. Forfar et al. (1988), Renshaw (1991), Renshaw ez al. (1996)), we
model the numbers of deaths D, , with matching central exposures e, as the
independent response variables of an over-dispersed Poisson GLM, with scale
parameter ¢, for which

ED,)=e,u, =e, oy RF(x,1), Var(D,,) = ¢E(D,,) .

Under the log link, the linear predictor

M, =loge, +logp, +logRF(x,t),s.t. logRF(x,t,)=0
contains the offset

loge,, +logu,, .

Parameterised structures of potential interest, include

log RF (x,1) = (1 —1,) (34
logRF(x,t) = B.(t—1,) +7,(t-1,) (3.4a)
log RF (x,8) = B (t—1;)_ + B.(t~1,) (3.5)
log RF (x,8) = B(t=1;)_+ B.(t=t,) +7,(t1,) (3.52)

for te[z,,1,], with

h<t <ty <t,, ()=t t<0; (£)_=0,¢>0.
Thus (3.4) is representative of a pencil of lines (with a different slope parameter S,
for each age x), focused at ¢#,, and (3.5) is representative of a family of lines, hinged at
t;, also with a common focus at ¢,. The extra term y,(¢—¢,), in the respective

augmented versions (3.4a) and (3.5a), ensures that the adjustment made under the LC
fitting process, whereby the total actual deaths equal the expected total deaths for each
year is also accommodated under the GLM approach, while at the same time adhering
to the constraint (3.2). In addition to satisfying this constraint, the specific form of
this term is motivated by the close association between the independent Poisson
response GLM and the analysis of contingency tables, which requires that the actual
and expected column and row totals are identical under the independence hypothesis,
the so-called Poisson trick (e.g. pp 248-249 Francis et al. (1993)). We note that the
terms y, play no direct role in forecasting.



Model Fitting, Residuals:

Model fitting is conducted by optimising the over-dispersed Poisson quasi-
likelihood. Under this formulation, and as an alternative to Pearson residuals
(expression (2.5)), we have the choice of standardised deviance residuals

sign(d,, —d_,)\Jdev(x,1)
V8

where, for an over-dispersed Poisson GLM
dev(x,t) =2{d, log(d, /d ) ~(d, ~d,,)}.
Similarly, the scale parameter is estimated as
Z dev(x,t)
‘3 _ allxt

v

with v degrees of freedom, determined, in part, by the degree of parameterisation in
the model structure.

Model Forecasts:

Forecast mortality rates are again computed by alignment with the latest
available crude rates, as under the LC methodology of Section 2, so that, for the
parameterised structures represented by (3.4), (3.4a), (3.5) and (3.5a)

My, s =M, €xpf.s,s>0. (3.6)

Comment:

By adopting the same method of forecast alignment, forecasts under the two
methodologies may be assessed, relative to each other, by comparing the respective
mortality reduction (adjustment) factors

exp B, (%, ,,—#&,),s>0;and expB,5,5>0, (3.7
based on the respective expressions (2.6) and (3.6).

4. Forecasting mortality rates for England & Wales
The Data:

The data comprise the number of deaths with matching central exposures to
the risk of death as supplied by the Office for National Statistics. For each gender,
these are cross classified by age, categorised in years as {<1, 1-4, 5-9, 10-14, ..., 80-
84, 85+}, and by individual calendar years, form 1950 to 1998 inclusive. Thus k=19
and s = 49.

Exploratory Data Analysis (EDA):

Time trends in the raw data, over the past half-century, are displayed by
plotting the log crude mortality rates for each age separately in Appendix A. These
plots are augmented by graphical displays of the first and second differences, of the
log crude mortality rates. In addition, the first difference means, split at 1974, and the
second difference (un-split) means, are superimposed on the respective graphs.
Noteworthy features include the following:



e For males, there is a pronounced increase in the rate of mortality
improvement, stemming from the 1970s, in the age range 40 to 80 years. This
feature is less in evidence for females, being restricted to the age range 40 to
60.

e For each gender, there is a pronounced decrease in the rate at which mortality
has been improving over the past quarter century, compared with the
preceding quarter century, essentially in the age range 20 to 34 years. The
increases in mortality rates observed during the 1990s at ages 25-34 for males
and ages 20-24 for females are widely attributed to increases in the number of
suicides and deaths related to HIV infection and AIDS (Daykin, (2000)).

e Outside the above age ranges, mortality trends are essentially linear (log scale)
over the whole time span.

LC Modelling and Forecasting:

We follow the LC procedures exactly as described in Section 2, for each
gender separately.

Although only the first right and left singular vectors, under the SVD of the
matrix [z,] generate the model structure, it is informative to view the first few such
normalised vectors individually. We denote these as

{B,(x),k,(8):i=12,...,k} subjectto Y B(x)=1, > K,()=0, Vi

all x allt
where

B0, (t) = su,(x)v,(2)
with singular values s, > 5, 25, >...2 0 and

:Hx = ﬂl (%), K, =K ®
(prior to the adjustment to «,), and the first five such sets of vectors are depicted in
Fig 4.1(a & b). In addition to the well-defined structural patterns of the first SVD
component, we also note that there are arguably well-defined patterns associated with

the second component. However, on the basis of the proportion of the temporal

variance in the transformed death rates explained by the first ¢ components, measured
by

c k
100x > s7 /357,
i=1 i=l

the first component (¢ = 1) accounts for over 94% (Tuljapurkar et al (2000)). Details
of the first five singular values, together with the cumulative percentages of the
temporal variance explained, are as follows:
I*. five singular values
males:  7.51 (94.6%); 1.41 (97.9%); 0.56(98.4%); 0.42 (98.7%); 0.39 (99.0%)
females: 8.17 (94.7%); 1.42 (97.6%); 0.73(98.4%); 0.59 (98.8%); 0.47 (99.2%)

The modelling results are presented graphically in the various frames of Fig
4.2(a & b). Thus the SVD values of £, and «, are depicted in the two uppermost LH
frames, the latter after adjustment to ensure that the actual and expected total deaths
are identical in each year. The magnitude of this adjustment may be ascertained by
reference to the upper RH frame, in which the differences between the actual and
expected total deaths, prior to adjustment, are depicted. In addition, the second RH
frame supplements the matching LH frame by depicting the first differences in «, and



their split means. Thus for males, the pattern in the estimated «, essentially

comprises two linear segments, hinged in the mid 1970s. For females however, the
pattern in the estimated x, is essentially linear throughout the time span concerned.

These findings, which are further supported by an analysis of the second differences
in «,(not shown), are both consistent with the patterns in the two uppermost RH

frames and much of the conclusions of the EDA described above.

The standardised SVD residuals are depicted in the third pair of frames,
comprising 442 positive and 489 negative residuals for males, and 454 positive and
477 negative residuals for females. We remark that a plausible explanation of the
somewhat unsatisfactory nature of the residual plot against calendar year for males is
provided shortly (Fig 4.4a). We also note that the apparent discontinuity in these
plots for both males, and, to a greater extent for females, between the adjacent years
1963 and 1964, (a feature which also surfaces in Fig 5.1), would appear to be intrinsic
to the data.

The forecasts (and prediction limits), also featured in the second LH frame, are
generated using the ARIMA(1,1,0) process, which is found to provide the most
satisfactory fit to the x,,

Vi, -A=p(Vk_ —A)+é&, 4.1
where V is the differencing operator and {¢,} denotes white noise. Such processes

are selected and fitted using standard time series methodology (e.g. Hamilton (1994))
and then used to generate forecast values. Details are as follows:
ARIMA(1,1,0) parameter estimates (standard errors)

] A
males: -0.532 (0.128) -0.3041 (0.0629)
females: -0.572 (0.122) -0.3525 (0.0725)

For comparison purposes, we note that Tuljapurkar ez al. (2000) using the LC
model with ¢ =0, so that an ARIMA (0,1,0) process is fitted, obtain a parameter

estimate of 4 =-0.3427 for UK males and females combined, based on data for
1950-94, which is comparable to the above estimates. Renshaw and Haberman
(2001) in modelling data on UK male annuitants and pensioners at ages 60-100
(provided by the CMI Bureau) fit a range of LC models and obtain 4 estimates as
follows:

Annuitants 1946-94, ARIMA (0,1,1)

A=-0457
Pensioners 1983-94, ARIMA (0,1,0)

A in the range —0.770 to —0.889 depending on the model used.

These estimates are dramatically larger in magnitude than those for the national
population and highlight the pace of mortality decline and the importance of the
selection processes operating in these sub-populations.

In addition, the temporal profiles of the product ﬁxl?, for each age x are
depicted in the lower LH frames of Fig 4.2(a & b), where

K, =k, fort, <t<t; and& =&, fort>¢,
and their translations 3, (%, —&, ) in the lower RH frames. Thus for ¢ > ¢, , the lower
RH profiles depict the log mortality reduction factors for each age x.



GLM Modelling and Forecasting:

The offset term logu,, is computed first using either version of (3.3), with
reference to the latest available English Life Table ELT15 (Registrar General (1997)),
centred on ¢, =1991, and based on the data of the triennium 1990-92: the choice of
formula being of negligible consequence in this context. For males, we illustrate in
detail the hinged line mortality reduction factor structure, focused at ¢, equation
(3.5a), siting the hinge ¢, at 1975, in accordance with the earlier findings of the
exploratory data analysis and the following deviance profile generated by re-siting the
hinge as follows

Deviance profile, hinge sited in the year ¢,
year ¢; 1970 1972 1974 1975 1976 1978 1980
deviance 9674 9472 9384 9380 9389 9433 9596

For females, in accordance with the bulk of the findings in the EDA, we illustrate the
pencil of lines, focused at ¢#,, equation (3.4a). In both cases, the adjustment, which
equates actual and expected total deaths annually, is applied.

The results are again presented in graphical form. Thus the estimated values
of B, and the differences between the actual and expected total deaths, prior to

adjustment, are depicted in the upper frames of Fig 4.3(a & b). Then, since «, has

been replaced by a covariate # (with or without a hinge), there is no equivalent to the
second pair of frames in Fig 4.2 (a & b) under the current formulation. Consequently,
the pair of standardised deviance residuals plots is depicted next, comprising 426
positive and 505 negative residuals for males, and 434 positive and 497 negative
residuals for females. Finally the temporal profiles

log RF (x,6) = B.(t—t,)+7,(t—1,), t, <t<t,, or

logRF (x,0) = Bi(t 1))+ B,(t—t) + 7.t —1,), t, <t<t,,
as the case may be, and
log RF(x,t) =log RF (x,t,) + B,t, t > 1,
for the log reduction factor, estimated and projected, for each age x, are depicted in
the lower LH frames, together with their translation
log RF(x,t) —log RF (x,t,)
in the lower RH frames.

Comparison of Results:

As noted in Section 3, by adopting the same method of alignment, forecasts
under the two methodologies may be compared by means of their respective mortality
reduction (adjustment) factors (3.7), which we re-express as

log RF,c (%, +5) = B, (%, ., &, ),5>0 (4.22)

log RF g, (x,t, +s)=B,s,5>0 (4.2b)
and which are depicted as part of the respective lower RH frames in Figs 4.2 & 4.3.

We remark that for an ARIMA(0,1,0) process, (equation (4.1) with ¢ preset
to zero), which has been used for forecasting US mortality (Lee and Carter (1992) and
mortality in G7 countries (Tuljapurkar et al. (2000)), equation (4.2a) reduces to

log RF, . (x,t, +5) = ﬁxls ,8>0,



the same form as (4.2b), while under an ARIMA (1,1,0) process, as used here, this
expression represents the asymptotic form of (4.2a). Thus under the LC approach as
here, the asymptotic form of the predictions in the lower RH frame of Fig 4.2 (a & b)
is derived from the 3, displayed in the corresponding upper LH frame by multiplying

by the (negative valued) general mean A of the particular ARIMA(1,1,0) process
concerned. On the other hand, under the GLM approached, the gradients of the
predictions in the lower RH frame of Fig 4.3 (a & b) are as displayed in the
corresponding upper LH frames. Hence the upper LH frame in Fig 4.2a might be
loosely interpreted as a scaled mirror image of the upper LH frame in Fig 4.3a.

For males, a comparison of the projected portions of the lower RH frames in
Fig (4.2a) and Fig (4.3a) indicates a different pattern of forecasts, across ages, under
the two methodologies. Thus, the LC approach is based on a multiplicative
decomposition of time effects which allows for their collective modelling across all
ages and results in a more focused pencil of predictions than under the GLM
approach. The GLM approach is designed to capture and project the more recent age
specific time trends in mortality, depending crucially on the siting of the hinge (1975)
and origin (1991). The likely source for these differences would appear to depend on
two inter-related features involving the apparent lack of response in the time series
forecasts to the significant hinge feature in the estimated «, (second RH frame in Fig

4.2a), coupled with a degree of inflexibility induced by the collective modelling of
time effects across all ages, which may, or may not, be judged to be appropriate.
Thus, for example, under an ARIMA(0,1,0) process, forecasts are generated by
projecting the straight line joining the first and final estimated values of x,,
irrespective of the intermediate values and hence of any hinge effect, which is then
transmitted to each age x on multiplying x,by S, , producing effects similar to those

depicted in the lower frames of Fig 4.2a. On the other hand, under the GLM approach
using the linear predictor (3.5a), forecasts are generated by projecting the more
flexible age specific ‘hinged lines’ of best fit that have been perturbed to ensure that
total actual and total expected annual deaths are identical (within the fitting period).
Further evidence for this is to be found in the respective residual plots against time
(the penultimate RH frames in Figs 4.2a & 4.3a), which are elaborated upon in Fig 4.4
(a & b) by plotting the residuals against time for each age separately. In particular,
while there are quite distinctive U-shaped patterns in the age bands <1, 1-4, 25-29,
30-34 in Fig 4.4a under the LC methodology, these patterns are largely dispersed in
Fig 4.4b under the GLM methodology.

Specifically for the male experience, reference to the upper LH and lower RH
frames in Fig 4.3a indicates a small predicted increase in mortality rates in the age
band 25-29 accompanied by no change in predicted mortality in the adjacent age band
30-34, reflecting the recent trends identified earlier as being attributable to deaths for
suicides or HIV and AIDS related causes. A cross-reference to the upper LH and
lower RH frames in Fig 4.2a, indicates that this would appear to be an important
consideration overlooked under the LC approach. Another different feature is the
more rapidly decreasing mortality rate projections at the very youngest ages, below
one year of age in particular, under the GLM approach.

For females, comparison of the respective upper LH and lower RH frames of
Fig (4.2b) and Fig (4.3b) indicates very similar patterns of forecasts by age.
However, a somewhat less focused pencil of predictions does result when the hinged
linear predictor (3.4a) is utilised, thereby capturing some of the finer detail identified
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in the exploratory data analysis. Details are omitted but are available from the
authors.

One clear difference between the two methodologies concerns the different
time spans used in the estimation of «_, or equivalently log H,, > as the case may be.

Thus, while all the annual crude mortality rates covering the compete time span 1950-
98 were used in the estimation of @, under the LC methodology, only the annual

crude mortality rates of the triennium 1990-92 were used in the estimation of log My

under the GLM methodology. To investigate this and other associated issues for the
data sets in question, it is possible to reverse the roles of these different time spans
and to then re-fit the models accordingly. Thus, in the upper two frames of Fig 4.5,
the projections obtained for the respective male and female experiences under the LC
methodology are displayed, using only the annual crude mortality rates of the
triennium 1990-92 to estimate o, in the first instance. The similarity of these

diagrams with their respective counterparts, the lower RH frames of Fig 4.2 (a & b), is
noteworthy. Then in the lower two frames of Fig 4.5 the projections using the
perturbed hinged line (HL) and perturbed lines (L) for the respective male and female
experiences are displayed, on the basis that the whole of the available time span was
used in the estimation of the offset term log u,, (using the first version of (3.3)) while

siting the origin in 1974. We recall that this point is immediately adjacent to the
location of the hinge for the male experience. Comparison with the respective
counterparts in Fig 4.3 (a & b) reveals major differences for the male experience,
thereby demonstrating the critical role played by the relative positioning of the hinge
and origin, while relatively modest local differences across ages are revealed for the
female experience.

5. Forecasting Life Expectancy at Birth

Two different approaches are of interest for forecasting life expectancies on a
period basis: one involving the direct computation of life expectancies from forecast
mortality rates, the other involving the time series analysis of the annual life
expectancies at age x {e,(x):¢=t¢,¢ +1,..,¢,}, as computed using crude mortality
rates, to generate forecasts directly. While the first approach leads to compatible
mortality rate and life expectancy forecasts, the second approach does not.

Both approaches are illustrated in Fig 5.1 for the case x = 0: life expectancies
at birth. Thus, under the second approach, annual life expectancies for 1950 to 1998
are displayed, together with the forecast life expectancies at birth and their limits,
generated by an ARIMA(1,1,0) process

Ve, (0)- 4= (Ve (0)~A) +¢,,
operating on the annual life expectancies, for which

ARIMA(1,1,0) parameter estimates (standard errors)

0] A
males: -0.460 (0.133) 0.1841 (0.0277)
females: -0.568 (0.123) 0.1818 (0.0407)

In addition, forecast life expectancies, computed directly from the respective forecast
mortality rates arising from both the fitted LC and fitted GLM models of Section 4
have been superimposed for comparison.
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For the female experience, in which log-linearity over time is a dominating
influence (as discussed in Section 4), the forecasts based on both the LC and GLM
models are, for all practical purposes, identical, with both forecasts understating the
equivalent time-series based forecast. For the male experience, higher life
expectancies are forecast under the GLM model than under the LC model, reflecting
the differences in the model structures that generate the respective forecast mortality
rates. Here, the time series forecast is intermediate between both these forecasts. (By
switching from the perturbed hinged-line structure (3.5a) to the perturbed linear
structure (3.4a), the resulting life expectancy forecast also understates the time-series
based forecast, being slightly more conservative than the LC forecast). The
conservative nature of the life expectancy forecasts under the LC approach, compared
with the forecasts under the direct time-series approach (both genders), is consistent
with the findings of Lee and Carter (1992) in their forecasting of US life expectancies.

6. An Extreme Age “Closing Out” Procedure

As noted by Lee and Carter (1992) and Lee (2000), a widely accepted
procedure in demography for “closing out” model life tables (by age), in which
observed mortality rates at extreme ages 85+ are replaced by a sequence of
extrapolated mortality rates at ages 85-89, 90-94, ...,105-109 is the method of Coale
and Guo (1989). The procedure uses the assumption of a steady decrease, rather than
Gompertzian constancy, in the rate of increase in mortality with ages above 75. Thus,
for the format of abridged age specific central mortality rates, which is of immediate
interest in relation to the national data for England and Wales, the Coale-Guo
assumption requires that

IOg(s mso) - log(_.; m75) =k

log(5mgs) —log(smg) =k —R

log(smy45) —log(smye) =k —5R
which, on summing, imply

log(smye5) —log(sm,s) = 6k —15R.
Then, given a set of central mortality rates up to and including ,my, , by additionally
assigning

sMhgs = sMas = 0.66 (6.1
as suggested in Coale and Guo (1989), the above equations uniquely determine k, R
and smgs, Mg, ...y sMyg5.

Empirical evidence supportive of the Coale-Guo assumption for the England
and Wales national experience is provided by the graphical analysis of the crude
mortality rates, Fig 6.1, for the triennium 1990-92 which were used in the
construction of ELT15 (Registrar General 1997). Thus, in the upper and central LH
frames of Fig 6.1, log crude mortality rates, by individual year of age (75 to 94
inclusive), are plotted against age, for the respective genders. The matching residual
plots, displayed as the RH frames in Fig 6.1, are derived as a result of fitting quadratic
curves (also displayed in the RH frames), using the method of ordinary least squares.
Details of the fitted curves

logr, =a+bx+cx® +error

are as follows
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Parameter estimates with (standard errors)

male experience female experience
a  -11.77 (0.930) -13.31 (0.424)
b 0.149 (0.022) 0.158 (0.010)
c -0.000381 (0.000131) -0.000338 (0.0000595)

in which the statistically significant, negative valued parameters c, are supportive of
the underpinning Coale-Guo assumption.

This graphical analysis is supplemented by the two lower frames in Fig 6.1, in
which the respective first differences of the log crude mortality rates for each gender
are displayed, together with least squares fitted lines, both horizontal (for implied
Gompertzian constancy) and general (consistent with the Coale-Guo assumption).
Details of the fitted lines

log,,, —logm, = A+ Bx+error
are as follows

Parameter estimates with (standard errors)

male experience Jfemale experience
A 0.168 (0.0594) 0.154 (0.0306)
B -0.000991 (0.000702) -0.000633 (0.000361)

in which the negative valued slope parameters B, are supportive of the underpinning
Coale-Guo assumption.

In addition, it is possible to monitor the suitability of the constraint (6.1), by
noting that the separate curve and line fitting exercises imply that we can write either
logm,,, —logm, =(b+c)+2cx 6.2)
or

logm ,, —logm_= A+ Bx, 6.3)
as the case may be. Then, typically (6.3), say, implies that

logm, s —logm, =54+10B +5Bx

x+5

1/5
x+i

4
which, subject to the approximation sm_ = Hm implies that

i=0
log ;m, s —log sm, =5A4+20B+5Bx
and which, in turn, implies that
sMygs — sMys = stys {exp(304 +2745B) -1}
with an obvious equivalent expression based on (6.2). The values of sm,; — sm;
generated by these methods are as follows
Values of smyy — smys

male experience Sfemale experience
fitted quadratic 0.675 0.676
fitted line 0.654 0.665

We note that this analysis is sensitive to both the quality of the available data
at elderly ages and the attendant potential for outliers. However, we conclude that
this simple analysis, together with unreported similar analyses of equivalent data sets
used in the construction of certain previous ELTs, is generally supportive of the
conditions underpinning the Coale-Guo extrapolation technique.
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By applying the procedure for each calendar year, thereby projecting (age-
wise) both observed and forecast mortality rates in the age range 80-84, the technique
somewhat arbitrarily emphasises the importance of the mortality pattern in the age
range 80-84 by translating it to higher age groupings, while disregarding the available
data for the age band 85+. On this basis we have recomputed the life expectancies at
birth for both genders and both modelling approaches, to obtain the following results:

Life expectancy at birth: 2020 projections

Male experience Female experience

LC GLM diffce LC GLM diff'ce

without C-G 7821 79.83 -1.62 83.40 83.43 -0.03

with C-G 77.81 78.79 -1.28 82.12 82.12 0.00
difference 0.70 1.04 1.28 1.31

To compute these values, we have found it necessary to interpolate linearly ,m,, and
the Coale-Gue projections’ sMgs s Mgy, ... Prior to mapping the force of mortality to
the probability of death (equation (B.1) Appendix B). On this basis, the net effect of
applying the Coale-Guo extrapolation procedure in these experiences is to reduce the
forecast life expectancies at birth by the amounts shown.

As we note from Fig 4.2 (a & b) and Fig 4.3 (a & b) (top LH frames), the

estimated ,éx values are different at ages 75-79, 80-84 and 85 and over, implying a

more rapid decrease in mortality over time at ages over 85 than ages 75 and 84. With
the Coale-Guo technique, the mortality rate for the 85 and over age group is replaced
by an estimated sequence of ;m, for y = 85, 90,...,105 whose values we effectively

determined by m,; and ;my, (as described above). This has the effect of reducing

the impact of the downward trends in mortality at these advanced ages and hence
leads to the reduced forecasts of life expectancy at birth, shown by the numerical
estimated above.

In the recent literature, Lindbergson (2001) has suggested a Makeham model
for mortality in Sweden, with the exponential growth with age replaced by a linear
term at very high ages, viz

U, =a+b(x—-w,) for x>a,.

The relative effectiveness of this approach and the established method of Coale and
Guo (1989) remains to be tested.

7. Concluding Comments

e The use of a GLM regression based methodology for forecasting mortality
rates is perhaps unusual and is suggested on purely pragmatic grounds, given
the similarities in structure to the LC time-series methodology. As stated in
the introduction, the idea has its roots in the retrospective study of UK
actuarial mortality reduction factors (Renshaw and Haberman (2000)).

¢ Both the GLM and LC approaches attempt to capture underlying trends in the
raw data and to extrapolate these, thereby generating plausible mortality
projections under the crucial assumption that existing trends continue into the
future. In this respect, we identify closely with the sentiment (not always
practised), expressing a preference for the term ‘projection’ over the term
‘forecast’ in Section 9.29, pp 211-12 of Benjamin and Pollard (1993), on the
grounds that “there is no implication that [established trends] will be
maintained”.
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The status of «,, describing the shape of the base age profile averaged over

time, is similar under the two approaches. It is subtracted from the log crude
mortality rates as a first stage in the fitting process under the LC methodology
and subtracted from the linear predictor as an integral part of the fitting
process under the GLM methodology. There is a wide choice of possible time
bases on which to construct the estimates.

The key difference between the methodologies concerns the treatment of time.
Under the LC approach, time is modelled as a multiplicative factor and
estimated, together with the S, by SVD. Under the GLM approach, time is
modelled as a known covariate, having first established a well-defined origin,
and only the B, are estimated accordingly. (Under the LC approach, a time

origin is generated naturally as a consequence of the normalising constraints
(2.2), but unlike the GLM approach, no specific use is made of its exact
location).

It is possible to ensure that the total actual deaths and the total expected deaths
match for each year in both approaches. This is done without compensating
adjustments to the S, under the LC approach, but with compensating

adjustments to the £, under the GLM integrated fitting approach.

Forecasts are generated by extrapolated, age specific, straight lines (on the log
scale), either exactly (under the GLM or LC approach in combination with an
ARIMA(0,1,0) process, as used exclusively in Lee and Carter (1992), Lee
(2000) and Tuljapurkar et al. (2000)), or asymptotically (under the LC
approach in combination with an ARIMA(1,1,0) process, as discussed in
Section 4).

There is a possible concern, with the GLM approach, as expressed in Section
4.4.6 pp 122-24 of McCullagh and Nelder (1989), that such predictions might
be sensitive to the choice of link function, but this has been allayed, in the
current context of projecting mortality rates, by a practical investigation
conducted in Renshaw and Haberman (2000).

On the basis that, under the GLM approach, time is modelled as a known
covariate and «, is modelled as a known offset, the only source of error

generated, from within the model, under the fitting process, involves the ,ﬁ,‘s .

On this basis, as described in Renshaw and Haberman (2000), it is possible to
construct the prediction limits for logRF quoted in Appendix B, which
readily map into prediction limits for RF. Also under this limited error
perspective, it is possible to construct approximate prediction limits for life
expectancy as described in Appendix B. A realistic criticism of such limits
however, concerns their relative narrowness. A possible way of increasing
such limits might be by incorporating the error in fir, , used in the alignment

of forecasts, as defined when stipulating the variance of the response in
specifying the model. Just how this might be achieved remains a challenge.
Issues concerning the construction of prediction limits for the LC method are
discussed in Appendix B of Lee and Carter (1992).

There is evidence from the male mortality study reported in Section 4 that the
GLM approach is more successful at capturing age specific mortality trends in
the data, a feature intrinsic to the respective approaches.
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Different approaches to forecasting life expectancy are described and
illustrated for e,(0). Direct modelling of e,(0) using time series methods is
compared with methods based on forecasting the underlying mortality rates by
either LC or GLM approaches. While an improvement in life expectancy at
birth is forecast, for each gender, the established gap between female and male
life expectancy at birth is forecast to decrease under the GLM approach.
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Appendix B
(Some issues concerning prediction limits under the GLM approach)

Prediction limits for log(RF):
Prediction limits for
log RF;,, (x,t, +5) = ,Bxs ,8>0
are computed as
ﬁxs t Za/ZSe(/?x)(s +t, —1)
where ®(z,) =1-a is the cumulative distribution function of N(0,1).

Approximate prediction limits for life expectancy at birth:
Consider the following age grouping

[x,x+W,); X=X, X500 X3 W, =X, =%, >0,i=0,,..,k-Lx, =0.
Focus on a specific time epoch ¢ and write m,, =m_. Suppose x,_, does not exceed
85 years, say, so that the approximation
~ wxmx
T+ flwm,)
applies. Then the following steps are used to compute life expectancy, given {m,}

q, s X=Xgu Xy Xy G, =1 (B.1)

Lo =L(=9q,), x=X),X,%,, B.2)

d.=l,—1,, =1 %Xq,, x=%0,%,.,%, 55 d, =1 (B.3)
lx

Lo=w (. —fld), x=X3,%,.sX,_5} L =—* B4

with life expectancy at age x,
T Xg-1
e, :l—x' ,where T, =) L, B.5)

X,

3 X=x;

and where the proportions f, and f; =1- f, locate the data within each age cell
[x,x+w,) (f, being apportioned relative to x). Expression (B.2) implies

i-1 -1
L=LI]0-q,), x=x,x,xy, [[=0) (B.6)
j=0 Jj=0
and (B.3) and (B.4) imply
l
L =w,(f o+ fily)s x=X0,% X, 55 L, ==, (B.7)
m

Then from (B.5) and (B.7) we have that
k-1
Txo = Z (WIH fx'rl + wxi f:‘. )lxi (BS)
i=0

subject to defining

w fo,=0w,  f. = ! , (B.9)

Xk-1

Xg-1
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so that (B.5), (B.8) and (B.6) imply that life expectancy at age x, is given as

k-1 i-1
e, =2 A0m, fi +w O[]0 -4} (B.10)
i=0 j=0
where
1-g, =i Wl (B.11)
1+w, fim,

from (B.1). Treating the forecast é =e, as a random variable, we seek to

Xooby+S X
express the RHS of (B.10) as a linear function of the parameter estimates ﬁx by
approximation. Introducing
Myyss =M, =C exp s 2c (14 f,5)
where ¢, =m,, , the most recently observed crude mortality rate at age x, we have
that
1-q, =d.(1-b,0,s) (B.12)
on ignoring second and higher powers of f,, where
,_1-wfie, w,e,
U ltwfle, T (-w fie )+ w fle,)
Finally, defining

i
—_— — ’ —_ —_—
x,=0,a,= I 0I a,,a,=1b =b,
J=

and re-instating the full notation, (B.10), together with (B.12) and (B.9), imply
T
éO,l,,H =4 + ZBiﬂxiS
i=0
on ignoring second and higher powers of ,l;’x'_ , where

k=2
A= zwx‘- (/s +fx’,.ai) +e A,

k-1
i=0

k=3
B =-b a;(w, f +w, [, )+a,w, fr el )}i=01.,k-3

J=i
—_ i -1

By, =-b_0a,, (Wx,,_z X +cxk_l)
_ -1

By =-a,,c, -

Thus, these results lead to
-1 .
E(é0,1n+s) = A + {ZBxE(ﬂx, )}S

i=0
and

Var(é,, ,,) = {f BVar(B,)+2 ) BB,Cov(B B, )s*.

i=0 alli,j; i>j

The case {x}={0,1,510,...85},0=120, {w,}=1{14,55,.,535}, i=0,],..,18 and
k=19, in which we set f, =0.15 for males, Sy, =0.16 for females (Registrar
General (1987): Appendix B), f, =0.5(i=1,.2,..,k -2), is of immediate interest.
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