
              

City, University of London Institutional Repository

Citation: Rigoli, F. (2019). Reference effects on decision-making elicited by previous 

rewards. Cognition, 192, 104034. doi: 10.1016/j.cognition.2019.104034 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/22771/

Link to published version: https://doi.org/10.1016/j.cognition.2019.104034

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


1 
 

 

 

Reference effects on decision-making elicited by previous rewards 

 

Francesco Rigoli1 

 

1 City, University of London, Northampton Square, London, EC1V 0HB, UK 

 

 

 

 

Correspondence:  

Dr. Francesco Rigoli 

City, University of London 

Northampton Square,  

EC1V 0HB, London (UK) 

francesco.rigoli@city.ac.uk 

 

 

 

 



2 
 

ABSTRACT 

Substantial evidence has highlighted reference effects occurring during decision-making, whereby 

subjective value is not calculated in absolute terms but relative to the distribution of rewards 

characterizing a context. Among these, within-choice effects are exerted by options simultaneously 

available during choice. These should be distinguished from between-choice effects, which depend 

on the distribution of options presented in the past. Influential theories on between-choice effects 

include Decision-by-Sampling, Expectation-as-Reference and Divisive Normalization. Surprisingly, 

previous literature has focused on each theory individually disregarding the others. Thus, similarities 

and differences among theories remain to be systematically examined. Here we fill this gap by 

offering an overview of the state-of-the-art of research about between-choice reference effects. Our 

comparison of alternative theories shows that, at present, none of them is able to account for the 

full range of empirical data. To address this, we propose a model inspired by previous perspectives 

and based on a logistic framework, hence called logistic model of subjective value. Predictions of the 

model are analysed in detail about reference effects and risky decision-making. We conclude that 

our proposal offers a compelling framework for interpreting the multifaceted manifestations of 

between-choice reference effects.  
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1. INTRODUCTION 

Consider an individual who, right before closing a deal for buying a flat, discovers that the price of 

the flat is £10 more than expected. Compare this with a case of a person who, before buying a 

coffee, is asked to pay £10 more than predicted. Apparently, an objectively equivalent extra-cost is 

experienced by both individuals. However, many would agree that the second person will be more 

upset. Examples like this describe well how our emotions, feelings, and behaviours are not just 

determined by the objective circumstances we are experiencing, but also by the frame we use to 

interpret these circumstances. Helson was one of the first scholars proposing that our judgements 

are rarely constructed in absolute terms, but they are usually built relative to a frame of reference 

(Helson, 1948; see also the work of New Look psychology for a similar perspective; e.g., Bruner & 

Goodman, 1947). For example, they arise from a comparison with the average stimulus encountered 

in the past. Similar ideas have flourished in research on perception, emotion, social relations, and 

affect (e.g., Cash et al., 1983; Clifford, 2002; Crosby, 1976; Diener et al., 2009; Sherman et al., 1978; 

Thompson, 1981; Webster, 2015). Different terminologies are sometimes used across domains, but 

the processes involved are analogous as all describe judgments that are formed based on the 

position of a stimulus relative to some other stimuli in a context. Hence, the general term reference 

effect appropriately characterizes the common nature of the different processes described in the 

literature.  

One domain where reference effects have a dramatic impact is when individuals are inferring the 

subjective value (sometimes referred to also as incentive value or utility) of stimuli, and have to rely 

on this to make choice. The consideration that reference effects play a critical role in decision-

making is already implicit in classical economic theories such as Expected Utility Theory (EUT; 

Camerer et al., 2011; Von Neumann & Morgenstern, 1944). However, an explicit and systematic 

treatment of reference effects was first proposed by a psychological account, namely Prospect 

Theory (PT; Camerer et al., 2011; Kahneman & Tversky, 1979), where the concept of reference point 
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(intended as the status quo) plays a prominent role. Building on this and analogous ideas, theoretical 

and empirical work has probed reference effects further, for example examining the role of 

expectations (Hunter & Gershman, 2018; Kőszegi & Rabin, 2006; Rigoli et al., 2016a; 2017) memory 

retrieval (Brown & Matthews, 2011; Stewart, 2009; Stewart et al., 2006; 2015), and efficient coding 

(Louie et al., 2013; 2014; 2015; Rangel & Clithero, 2012). Moreover, analogous effects have been 

observed during multiattribute choice, generating conspicuous theoretical debate (Huber at al., 

1982; Noguchi & Stewart, 2018; Rigoli et al., 2017; Roe et al., 2001; Ronayne & Brown, 2017; 

Simonson & Tversky, 1992; Soltani et al., 2012; Trueblood et al., 2014; Tsetsos et al., 2010; Tversky, 

1972). 

A useful taxonomy of reference effects in decision-making can be built by considering two 

dichotomies (Louie et al., 2015; Simonson & Tversky, 1992; Rigoli et al., 2017). One views between-

choice effects (sometimes referred to as temporal effects (Louie et al., 2015) or background effects 

(Simonson & Tversky, 1992)), elicited by stimuli or options presented in previous trials, as opposed 

to within-choice effects (sometimes referred to as spatial effects (Louie et al., 2015)), which depend 

on stimuli and options currently available. The second dichotomy opposes multiattribute decision-

making, occurring when a trade-off between multiple attributes is required, versus non-

multiattribute contexts, where such trade-off is not at play. The combinations derived from the 

dichotomies generate four possible categories. The category that has attracted more attention 

comprises effects in within-choice and multiattribute contexts. On this, sophisticated theories exist 

that have been discussed in depth elsewhere (Noguchi & Stewart, 2018; Roe et al., 2001; Ronayne & 

Brown, 2017; Simonson & Tversky, 1992; Soltani et al., 2012; Trueblood et al., 2014; Tsetsos et al., 

2010). The category comprising within-choice and non-multiattribute effects and the category 

comprising between-choice and multiattribute effects remain poorly investigated (Louie et al., 2013; 

Rustichini et al., 2017; Simonson & Tversky, 1992; Vlaev et al., 2009). The last category comprises 

between-choice and non-multiattribute effects. Especially in recent years, these have received 
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substantial attention (e.g., Louie et al. 2014; Stewart et al., 2015; Rigoli et al., 2016c; 2016d), yet a 

systematization of the different theories and empirical evidence is lacking.  

The goal of the present paper is to discuss the state-of-the-art of research about reference effects in 

between-choice and non-multiattribute contexts (other forms of reference effects are not examined 

here), and to contribute to extend this research further. First, we describe between-choice reference 

effects and how they have been documented empirically. Also, we discuss how decision-making 

models interpret between-choice reference effects, with a specific focus on classical theories such as 

EUT and PT, and on recent proposals such as Expectation-as-Reference models (EaR) (Hunter & 

Gershman, 2018; Kőszegi & Rabin, 2006; Rigoli et al., 2016a; 2017), Decision-by-Sampling theory 

(DbS) (Brown & Matthews, 2011; Stewart, 2009; Stewart et al., 2006; 2015; Walasek & Stewart, 

2015; Vlaev, 2018; Vlaev et al., 2011), and Divisive Normalization theory (DNT) (Louie et al., 2013; 

2014; 2015; Rangel & Clithero, 2012). It is surprising that, so far, previous literature has largely 

considered each of these models in isolation, and that a systematic analysis of their similarities and 

differences is absent. To address this gap, we compare predictions of contemporary perspectives 

with respect to their fit with empirical data. This examination reveals that, so far, none of the 

available models fully fit with available evidence. To address this, we propose a model that 

integrates previous accounts and aims at providing a comprehensive explanation of all available 

empirical data. The theoretical and empirical implications of the model are discussed, and we 

conclude that it provides an improved description of available evidence.  

 

2. RESEARCH ON BETWEEN-CHOICEN REFERENCE EFFECTS 

2.1 Empirical observations 

Reference effects that depend on stimuli encountered in the past (i.e., between-choice effects) have 

been first documented in perceptive processes (e.g., Clifford, 2002; Jerger, 1957; Khon, 2007; 
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Schweinberger et al., 2008; Thompson, 1981; Webster, 2015; Watkinson et al., 2013). However, a 

large body of evidence supports their critical role also in emotional, affective, and social domains 

(e.g., Cash et al., 1983; Crosby, 1976; Diener et al., 2009; Sherman et al., 1978). For example, 

whether a facial stimulus is perceived as showing anger depends on whether preceding stimuli 

display angry faces or not (Webster et al., 2004). Specifically, the likelihood of perceiving anger 

increases if previous stimuli do not show angry faces. Analogous phenomena have been 

documented in social domains. For example, research has found that the self-reported well-being 

depends on a comparison between the current and the past level of wealth (Boyce et al., 2010; 

Brown et al., 2008; Diener et al., 1999; 2009; Rutledge et al., 2014) (or the wealth of other people in 

the reference group such as neighbours, colleagues, and individuals sharing the same ethnic origin 

(e.g., Crosby et al., 1976)).  

Given the ubiquity of reference effects in affective processes, it is not surprising that they have 

emerged also during value attribution and choice. For example, a field study (Simonsohn & 

Loewenstein, 2006) has reported that movers arriving from more expensive cities rent pricier 

apartments than those arriving from cheaper cities (presumably, here previous cities play the role of 

context). Research has attempted to shed light on the nature of this sort of effects. To this aim, 

recent laboratory experiments have systematically manipulated the features of the distribution of 

reward presented in previous trials (a contextual reward distribution), and have assessed the impact 

of this manipulation on value attribution and choice (Hunter & Gershman, 2018; Rigoli et al., 2016a; 

2016b; 2016c; 2018; Stewart et al., 2015; Walasek & Stewart, 2015). The simplest manipulation has 

targeted the average of the distribution. Evidence has shown that the same reward is attributed a 

higher incentive value when the contextual average is lower (e.g., Rigoli et al., 2016b; 2016c) (an 

influence sometimes referred to as contrast effect (Simonsohn & Loewenstein, 2006)). For example, 

a recent study (Rigoli et al, 2016c) has compared choice behaviour for a low-average context 

including £1, £3, and £5 as amounts against a high-average context including £3, £5, and £7 as 

amounts (fig 1a); note that £3 and £5 are common to both contexts. Data indicated that participants 
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attributed higher subjective value to common amounts during the low-value context. More recently, 

researchers have observed that, in addition to the average, the variability of the distribution also 

affects value attribution and choice (Rigoli et al., 2016a). A recent study (Rigoli et al., 2016a) has 

compared choice behaviour for a low-variability context including £3 and £4 as amounts against a 

high-variability context including £2, £3, £4, and £5 as amounts (fig 1b); note that £3 and £4 are 

common to both contexts. When comparing the low-variability versus high-variability context, data 

indicate that participants attributed higher subjective value to £4, but lower subjective value to £3. 

This finding suggests that, with lower variability, distances across rewards amounts are magnified in 

such a way that, subjectively, two different reward amounts will appear as farther apart from each 

other. 

In short, research has revealed at least two forms of reference effects on value attribution and 

choice, one dependent on the average and the other on the variability of the contextual reward 

distribution. A theory should be able to explain these two forms of effects. Below, we review 

classical and contemporary perspectives on reference effects in decision making and assess their 

ability to explain the two empirical effects introduced here. 

------------------------------------ 

FIG 1 around here 

------------------------------------- 

2.2 Theories 

EUT is the most influential economic theory of decision-making, based on the simple idea that 

subjective utility (which is the variable driving choice) is a concave function of wealth (Camerer et al., 

2011; Von Neumann & Morgenstern, 1944). An implication of this model is that, to produce the 

same utility experience, the increase of wealth required depends on the initial level of wealth. In 

other words, if the initial wealth is small, the same wealth increase will obtain a higher utility 
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compared to when the initial wealth is large. This property of the model can be viewed as an implicit 

attempt to conceptualize reference effects, being the notion of initial wealth close to the notion of 

contextual average reward as formulated by research on reference effects. However, EUT presents 

at least two shortcomings. First, while analogies may be proposed between initial wealth and 

contextual average reward, EUT does not provide any insight for explaining an influence of 

contextual variability. Second, reflecting the actual goods and assets owned by an individual, the 

concept of wealth refers to an objective quantity and not to subjective beliefs. On the contrary, 

empirical data have emphasized the psychological nature of reference effects (Simonsohn & 

Loewenstein, 2006). For example, in the experiment on movers mentioned above (showing that 

movers arriving from more expensive cities rent pricier apartments than those arriving from cheaper 

cities), the reference effect observed was not mediated by the individuals’ objective wealth 

(Simonsohn & Loewenstein, 2006). In other words, it was the psychological context, consisting in the 

representation of the apartments’ prices, that counted, and not whether an individual was 

objectively richer or poorer. 

An explicit emphasis on the psychological context characterizes PT, which is the most influential 

theory of decision-making proposed by psychologists (Camerer et al., 2011; Kahneman & Tversky, 

1979). This framework is an eminent example of a model created primarily for explaining reference 

effects. Inspired by Helson’s adaptation level model (Helson, 1948), PT proposes that the subjective 

value of a stimulus is not based on its absolute properties, but it is constructed by comparing the 

stimulus against a reference point. This allows the model to distinguish between gains and losses, 

experienced when the stimulus is better and worse than the reference point, respectively. The idea 

of reference point is analogous to the notion of contextual average reward, providing an elegant 

interpretation of reference effects elicited when the contextual average reward varies. However, 

two important shortcomings can also be identified for PT. First, as for EUT, PT is not sufficient to 

account for reference effects dependent on contextual variability. A second shortcoming is the 

notion that the reference point corresponds to the status quo. In other words, the reference point in 
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PT is conceived as corresponding to the current condition as assessed by an individual. This 

assumption has been criticized by EaR models for reasons described below. 

EaR models rely on a perspective analogous to PT (Hunter & Gershman, 2018; Kőszegi & Rabin, 

2006; Rigoli et al., 2016a; 2017). However, they do not interpret the frame of reference as the status 

quo, but as reflecting expectations about upcoming stimuli (Kőszegi & Rabin, 2006). This distinction 

is important, as sometimes individuals might believe that the status quo will remain invariant, but 

other times they might expect the future to be different. According to EaR, it is the beliefs about the 

future, and not the beliefs about the status quo, that play the role of frame of reference to which 

rewards are compared once they are experienced. In line with PT, a first version of EaR models 

conceives the frame of reference as a single point (Kőszegi & Rabin, 2006). According to this model, 

the subjective value of a stimulus corresponds to a reward prediction error (RPE), namely to the 

difference between the reward obtained and the reference point or expected reward. This enables 

the model to explain reference effects due to manipulations of the contextual average reward. 

However, this EaR model is unable to explain reference effects emergent when the contextual 

variability is manipulated. To address this shortcoming, a more recent EaR model has adopted a 

Bayesian account in which the reference frame corresponds to a Gaussian distribution, and 

therefore it is defined by the two parameters of average and variance (Rigoli et al., 2016a; 2017). In 

this way, the subjective value of a stimulus does not correspond simply to the difference between 

the reward and the reference point (as in PT and in previous EaR accounts), but it corresponds to 

this difference weighted by the variance, or to a weighted RPE. In its simplest form (assuming that 

the prior variance is equal to one; see Rigoli 2016a; 2017), the subjective value 𝑉𝑅 associated with a 

reward amount R is computed similarly to a z-score and corresponds to: 

 
𝑉𝑅 =

𝑅 − µ

𝜎2
 

 

(1) 
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Where the parameter µ corresponds to the expected reward (usually equal to the average of the 

contextual reward distribution), and the parameter 𝜎2 corresponds to the uncertainty (usually 

calculated as the variance of the distribution). In line with empirical evidence, in the model a smaller 

variance corresponds to a larger weight of the RPE, implying that perceived differences among 

reward amounts will be magnified. This aspect allows the model to explain, in addition to effects 

dependent on the contextual average, also effects elicited by the contextual variability. 

While EaR models adopt a perspective analogous to PT, a radically alternative approach 

characterizes DbS (Brown & Matthews, 2011; Stewart, 2009; Stewart et al., 2006; 2015; Walasek & 

Stewart, 2015; Vlaev, 2018; Vlaev et al., 2011). This theory can be described at two different levels. 

At a more abstract level, DbS proposes that relative ranking is the principle driving computation of 

subjective value. In other words, the subjective value 𝑉𝑅 of a stimulus R depends on its ranking 

within a contextual stimulus set (calculated by counting how many stimuli are considered as worse 

than the target stimulus) and on the number of stimuli in the set n:  

 
𝑉𝑅 =

𝑟𝑎𝑛𝑘(𝑅) − 1

𝑛 − 1
 

 

(2) 

For example, in a set of eleven objects, a stimulus better than three alternatives (hence having 

ranking equal to four) will be associated with 𝑉𝑅 = 0.3. This elegant idea is sufficient to explain both 

reference effects dependent on the contextual average and those dependent on the contextual 

variability. The higher level of analysis proposed by DbS is consistent with a lower level where the 

theory describes the fine-grained cognitive processes engaged. Specifically, when a set of options is 

offered, each option elicits retrieval from memory (in the form of random sampling) of stimuli 

encountered in the past, especially those associated with the current context. A set of binary 

comparisons follows between the option and the samples, and the number of comparisons in which 

the option is favoured over each sample is recorded. This number corresponds to the subjective 

value of the option and is computed for all options available, hence determining their relative 
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preference. Since samples are drawn from memory, they depend on past experience and therefore 

reflect the distribution of options and outcomes characterizing the environment or context, 

providing the conditions for reference effects to emerge.    

To understand DbS, it is helpful to consider a more general framework called Range-Frequency 

Theory (RFT) (Parducci, 1965; 1995). RFT is a highly influential model applied to a variety of domains, 

from perception to affect, regarding how we build our judgements about magnitudes. The 

underlying idea is that judgements derive from integrating a ranking influence similar to DbS (see 

equation 2) combined with an influence of the range of the contextual distribution. Applied to the 

calculation of subjective value, RFT can be formulated as (Brown & Matthews, 2011): 

 
𝑉𝑅 = 𝑤 (

𝑟𝑎𝑛𝑘(𝑅) − 1

𝑛 − 1
) + (1 − 𝑤) (

𝑅 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
) 

 

(3) 

Where max reflects the largest reward amount within a set of n amounts characterizing a given 

context, min reflects the smallest amount, and where w (bounded between zero and one) 

represents the relative weight of the ranking component over the range-related component. The 

weight w is multiplied by the relative ranking of R (see equation 2), and the weight 1-w is multiplied 

by the range-related component.  

A third contemporary perspective on reference effects is offered by DNT (Louie et al., 2013; 2014; 

2015; Rangel & Clithero, 2012). Divisive normalisation was initially proposed in the sensory domain 

to explain phenomena such as neural adaptation within the retina to stimuli of varying intensity 

(Carandini & Heeger, 2012). This framework has been generalized to describe higher-order cognitive 

processes such as selective attention and perceptual decision-making (Carandini & Heeger, 2012; 

Cheadle et al., 2014). Its overarching principle is the notion of efficient coding, in other words the 

maximization of mutual information between the neural signalling and the statistics of the 

environment. Assuming noise in neural responding, it is postulated that an optimal signal-to-noise 
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ratio is achieved if the sensitivity of neurons is tuned to the distribution of stimuli within a context. 

The specific way DNT realizes efficient coding is by adjusting the neuronal gain based on the average 

of the contextual distribution. Recently, this framework has been extended to interpret reference 

effects in value-based decision-making (Louie et al., 2013; 2014; 2015; Rangel & Clithero, 2012). 

With regard to between-choice reference effects (Louie et al., 2014; 2015), it has been proposed 

that the subjective value 𝑉𝑡 of a reward amount 𝑅𝑡 presented at trial t is obtained by: 

 
𝑉𝑡 = 𝑉𝑀𝐴𝑋

𝑅𝑡 + 𝛽

𝜔 + (𝛴𝑗=1
𝑡−1𝛾𝑗𝑅𝑗)/(𝑡 − 1)

 

 

(4) 

Where 𝑉𝑀𝐴𝑋, β and ω are constant. The critical aspect of this proposal is that the denominator 

includes the mean of the rewards encountered in the past, calculated by weighting each reward by 

its temporal delay according to an exponential discounting governed by the parameter 0 < γ < 1. This 

enables the model to explain reference effects elicited by manipulations of the contextual average 

reward. Note that equation 3 does not implement any influence of the variance of the distribution, 

and thus it does not explain reference effects exerted by the contextual variance. However, DNT 

offers a promising framework, given its interest in the notion of efficient coding and its explicit 

connections with neurophysiological processes. 

In short, we have identified three main contemporary models that aim at explaining reference 

effects occurring in between-choice and non-multiattribute contexts. Below we consider the models’ 

predictions in more detail, and assess their fit with empirical data.   

 

2.3 Effects of skewness 

For research on reference effects occurring in between-choice and non-multiattribute contexts, an 

important step is now to compare contemporary theories in terms of their specific predictions and 

fit with empirical data. Here, we consider such comparison. To this aim, we consider all between-
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choice non-multiattribute effects reported by empirical research we are aware of, and we ask 

whether each of these effects is compatible with predictions arising from the different models. This 

approach is common in the literature investigating between-choice non-multiattribute effects (e.g., 

Stewart et al., 2015). Note this is different from an approach where model free parameters are fitted 

to data and models are compared based on model-fitting indexes. The latter approach is not 

applicable here, because some of the models (such as DbS; see equation 2) have no free parameters 

(see also Palminteri et al., 2017).  

Above, our focus has been on the influences of the contextual average and variability. We have seen 

that all models considered here explain the effect exerted by contextual average, but only the 

Bayesian version of EaR, DbS and RFT fit with an effect of contextual variability. Another important 

characteristic of a contextual reward distribution which has been recently examined is the skewness. 

That the latter exerts an influence is a specific prediction of DbS and RFT which is not shared by EaR 

and DNT. To our knowledge, to date one study alone has examined reference effects dependent on 

skewness (Stewart et al., 2015; experiment 1A, 1B and 1C). In one experiment of this study (1A), 

participants were offered monetary amounts ranging from £10 to £500, but one group experienced 

more often smaller amounts than a second group (amounts included £10, £20, £50, £100, £200, 

£500 for the first group and £10, £310, £410, £460, £490, £500 for the second group), resulting in a 

positively skewed distribution for the first group and a negatively skewed distribution for the second 

group (Stewart et al., 2015). Empirically, the subjective value attributed to these amounts was 

described by a concave function for the group associated with negative skew, and by a convex 

function for the group associated with positive skew (fig. 1c; similar observations emerged from 

study 1B and 1C of Stewart et al., 2015). These findings fit nicely with predictions of DbS and RFT, 

but they are hard to explain by EaR and DNT. 

These findings raise an important question of whether effects of contextual average can always be 

explained by relative ranking as proposed by DbS. This question can be addressed by examining the 
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same experiment (Stewart et al., 2015; Experiment 1A). Relying on the notion that ranking is the 

unique factor determining context effects, DbS predicts that in the experiment of Stewart et al. 

(2015) £10 and £500 (which are the two amounts common for both contexts) will be considered as 

equally valuable across contexts. This is because in both contexts these are the worst and the best 

amounts encountered, respectively, and the number of amounts is equal across contexts. The same 

prediction arises from RFT because the two contexts have equivalent amount range and because 

£10 and £500, in addition to having equivalent relative ranking, also occupy the same position within 

the amount range. On the contrary, EaR and DNT predict a higher subjective value will be attributed 

to £10 and £500 in the positive-skew compared to negative-skew context. This is because, in that 

experiment, the positive-skew context is also characterized by lower contextual average. Although 

this question was not addressed in the paper of Stewart et al. (2015), the associated empirical data 

are freely available as supplementary material of that paper, allowing us to address this question 

here. In experiment 1A of Stewart et al. (2015), on each trial participants (positive-skew group: n = 

22; negative-skew group: n = 19; groups are obtained after discarding four participants who failed 

10% of catch trials or more; see Stewart et al., 2015) were presented with a choice between two 

option A and B, being option A associated with either amount 𝐴𝐴 with 𝑝𝐴 or with amount zero 

otherwise, and option B associated with either amount 𝐴𝐵 with 𝑝𝐵 or with amount zero otherwise 

(see Stewart et al., 2015, for details). Following an approach similar to Stewart et al. (2015), we 

examined choice data (excluding catch trials from analysis as in Stewart et al., 2015) to assess the 

subjective value attributed by participants to different amounts. Specifically, for each participant, 

each specific amount h was associated with a free parameter 𝜔ℎ estimated from choice data (hence, 

there were six free parameters overall for each participant). Considering a decision between £10 

with 𝑝𝐴 versus £500 with 𝑝𝐵 as an example, choice was described by the following logistic 

regression: 

 
𝑙𝑜𝑔 [

𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 𝐴)

1 − 𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 𝐴)
] = 𝑝𝐴𝜔10 − 𝑝𝐵𝜔500 

(5) 
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Note that the model fitted to data is unconstrained and does not correspond to any specific model 

such as DbS. Hence the model is suitable to assess predictions of reference effects models such as 

DbS in a qualitative way. Given our interest in comparing the subjective value for £10 and £500 

across contexts, a two-way mixed ANOVA having context as between-subject factor and amount as 

within-subject factor was run (fig. 1c). This revealed a main effect of context (F(1,35) = 6.56, p = 

0.015, 𝜂𝑃
2= 0.158), indicating that subjective value for £10 and £500 was higher in the positive-skew 

compared to the negative-skew context. A main effect of amount also emerged (F(1,35) = 82.66, p < 

0.001, 𝜂𝑃
2= 0.703) (indicating that subjective value was higher for £500 compared to £10), with no 

interaction (F(1,35) = 0.281, p = 0.599, 𝜂𝑃
2= 0.008). A larger subjective value in the positive-skew 

compared to the negative-skew context does not fit with DbS and RFT predictions. This is because 

the ranking of these two amounts and their position within the amount range do not change across 

contexts. On the contrary, EaR and DNT fit with this observation because the positive-skew context 

is also characterized by lower contextual average.  

Note that the study of Stewart et al. (2015) includes other experiments (1B and 1C in Stewart et al., 

2015) were the skewness of the distribution was manipulated. Also in these experiments the authors 

report a concave value function for the group associated with negative skew, and by a convex 

function for the group associated with positive skew. However, contrary to experiment 1A, these 

experiments are not suited for assessing any effect of average which is independent of relative 

ranking and of the relative position within the range. This is because in those experiments contexts 

had different numbers of amounts (e.g., in experiment 1B one context had six different amounts and 

the other context had seven different amounts) and hence the relative ranking and the relative 

position within the range of the best and worst amounts is not equal across contexts as in 

experiment 1A. 
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In summary, current EaR accounts fail to explain effects due to the skewness of the contextual 

distribution, and DNT has problems in accounting for effects elicited by either skewness or 

variability. Although DbS is able to explain both effects due to variability and skewness, the model 

sometimes appear to fail to account for the influence exerted by the average. The whole picture 

suggests that none of the theories considered so far is able to fully account for available empirical 

evidence. This motivated us to search for a model able to explain effects of average (beyond simple 

ranking), variability and skewness. Below we present a model which satisfies these requirements.     

 

4. A LOGISTIC MODEL OF SUBJECTIVE VALUE 

Our proposal aims primarily at explaining the full range of empirical data about reference effects in 

between-choice and non-multiattribute conditions. However, it is important to evaluate the 

proposal also outside this domain, especially in the realm of decision-making under risk, something 

which is discussed below. Our proposal builds on previous frameworks including PT, EaR, DbS and 

DNT, and aims at integrating them. Indeed, with just minimal adjustments, our model can be 

meaningfully interpreted within the frame of each previous theory. Analogies with the latter are 

highlighted below.  

The basic idea of the model is that the calculation of the subjective value 𝑉𝑅 associated with reward 

amount R depends on the following logistic function (hence the name Logistic Model of Subjective 

Value (LMSV)):  

 
𝑉𝑅 =

1

1 + 𝑒− 𝜆 
𝑅−µ

𝜎

 

 

(6) 

The model includes three parameters. As in equation 1, µ and σ are the expected reward and the 

uncertainty, respectively. If, in a given context, an agent is exposed to a sequence of reward 
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amounts, the parameter µ can be usually interpreted as the average amount and the parameter σ as 

the SD. The parameter λ (being λ > 0) is a constant (i.e., it does not change with context) which can 

be used to capture spontaneous fluctuations, or individual differences, in choice stochasticity. 

The proposal of a logistic function is primarily motivated by its simplicity, which (similar to a previous 

EaR model described in equation 1) allows one to interpret subjective value straightforwardly as a z-

scored RPE constrained to be between zero and one. A similar idea has been proposed for studying 

of perception (De Gardelle & Summerfield, 2011; Vandormael et al., 2017), and also to characterize 

decision-making (Woodford (2012) has proposed an account with many analogies to the one 

developed here). In addition, it turns out that relying on a logistic function offers several advantages, 

which are highlighted below when comparing LMSV with previous theories.  

The similarities between LMSV and PT are evident. In both, a prominent role is played by the 

reference point. In PT the reference point reflects the perception of the status quo, while, following 

EaR accounts, in LMSV it corresponds to the reward expected within a given context. However, in 

analogy with DbS, LMSV treats gains and losses as two separate attributes, and in this way it is able 

to account for reference effects affecting decision-making under risk (see below). In addition, LMSV 

does not view subjective value as an unbounded quantity, but as varying between zero and one. As 

in the EaR model described in equation 1, an important feature implemented in LMSV, but absent in 

PT, is a modulation of the steepness of the function, which is realized by weighting the RPE with the 

SD. We will see that this endows LMSV with the capacity of accounting for effects dependent on the 

variability of the contextual distribution. In short, LMSV can be viewed as an extension of PT built to 

explain a wider variety of reference effects found empirically (see below). 

Clear similarities also exist between LMSV and EaR models, especially the version described in 

equation 1. Essentially, both adopt calculations similar to z-scoring, where a RPE score is divided by a 

measure of variability. A key difference is the use of a sigmodal function in LMSV, implying that the 

subjective value is bounded between zero and one. A critical consequence of this is that the function 
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mapping the reward amount to subjective value is not linear as in equation 1. We will see that such 

non-linearity enables LMSV to explain effects of skewness, and not only effects of average and 

variability as previous EaR accounts do. Altogether, LMSV extends previous EaR models by relying on 

a logistic function to explain also effects of skewness. 

We can also interpret LMSV within a DbS framework, modified with some specific assumptions. In a 

way analogous to DbS, LMSV can be conceived as relying on the notion that subjective value results 

from binary comparisons between a current reward and fictive reward samples. However, LMSV 

requires assuming that these samples are drawn from a logistic distribution described by the 

probability density function: 

 

𝑓(𝑅, µ, 𝜎) =
𝑒− 𝜆 

𝑅−µ
𝜎

𝜎 (1 + 𝑒− 𝜆 
𝑅−µ

𝜎 )
2 

 

(7) 

This derives because equation 7 corresponds to the cumulative distribution function (CDF) of 

equation 6 (the same parameters are present in both equation 6 and 7) (Bhui & Gershman, 2018). 

Hence, processes including sampling and binary comparison, initially proposed in the context of DbS, 

are compatible as well with the computations underlying LMSV. 

Finally, LMSV has important analogies with DNT. The latter was originally proposed as a description 

of how the brain realizes efficient coding, consisting in maximizing the mutual information between 

neuronal spiking rates and the distribution of relevant environmental stimuli (Carandini & Heeger, 

2012). A similar rationale can be proposed for LMSV, provided we assume that the brain embodies 

believes that the probability of reward amounts follows the logistic distribution described by 

equation 7. This because equation 6, which calculates the subjective value according to LMSV, 

corresponds to the CDF associated with equation 7, and in general CDFs have been proved to realize 

efficient coding (Bhui & Gershman, 2018; Laughlin, 1981). In other words, spiking rates that reflect 

the subjective value as calculated by LMSV are consistent with efficient coding, under the 
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assumption of a logistic distribution. We emphasize that, to establish a link between LMSV and 

efficient coding, brain regions implicated in the computation of subjective value must represent 

logistic distributions (note that this implication is not necessary for other regions, for example those 

implicated in abstract reasoning). This prediction remains to be empirically tested, as it is not yet 

fully understood in detail how subjective value is represented in the brain. In short, although relying 

on different algorithms and therefore implying distinct predictions, DNT and LMSV both represent 

possible realizations of efficient coding in the brain. 

In sum, we have introduced a simple model of subjective value aimed at explaining a large set of 

reference effects. This model integrates features of previous accounts including PT, EaR, DbS and 

DNT. Below we explore how the model can account for empirical evidence on reference effects, and 

we also evaluate its implications for risky decision-making. In Supplementary Material, we explore 

three other interesting aspects of the new model. First, we derive some novel predictions of the 

model regarding reference effects. Second, we examine the normative principles potentially 

supported by the model, consisting in realizing optimal choice adaptation. Third, we extend the 

model to interpret between-choice-reference effects occurring in multiattribute contexts, namely 

when several attributes need to be traded-off against each other. 

 

4.1 Reference effects 

It is instructive to simulate LMSV to assess the ensuing general predictions. The model includes two 

parameters µ and σ, which reflect beliefs about the average and variability of the context, 

respectively. We assessed the impact of varying these parameters. Fig. 2a plots the subjective value 

as a function of reward amount, comparing contexts characterized by different average, captured by 

the parameter µ (the parameter σ was kept constant). The figure shows that the same reward 

amount becomes more valuable when the average contextual reward is smaller. This can potentially 
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explain empirical observations about the effect of contextual average (Rigoli et al., 2016b, 2016c). 

Fig 2b compares the value function for contexts characterized by equal average (hence the 

parameter µ was kept constant) but different variability, captured by the parameter σ. The figure 

shows that the steepness of the function decreases with variability. This can potentially explain 

empirical data indicating that, with higher compared to lower variability, distances across different 

reward amounts decrease (Rigoli et al., 2016a). 

A critical question is whether LMSV predicts any effect of contextual skewness (Stewart et al., 2015). 

We can address this question by simulating experiment 1A of Stewart et al. (2015) adopting LMSV. 

Remember this experiment compared a positive-skew contextual distribution, including the amounts 

£10, £20, £50, £100, £200, and £500, against a negative-skew distribution including £10, £310, £410, 

£460, £490, and £500. To model this scenario, we estimated the value function according to LMSV, 

assuming that the expected reward µ was equal to the contextual average (i.e., µ = 147 and µ = 363, 

respectively) and the uncertainty was equal to the contextual SD (SD is equal across contexts; hence 

σ = 187 for both). Focusing specifically on the £10-£500 range common across contexts, LMSV 

predicts a concave function for the positive-skew context, and a convex function for the negative-

skew context (fig. 2c). Note also that, according to LMSV, the subjective value attributed to £10 and 

£500 (which are the two amounts common across contexts) is predicted to be higher in the positive-

skew compared to the negative-skew context (fig. 2c). This is consistent with the novel analysis of 

empirical data reported above. These simulations show that LMSV predicts contextual effects of 

skewness. Ultimately, these effects are predicted as a consequence of changes in the contextual 

average. In experiments investigating the influence of skewness (Stewart e al., 2015), when the 

contextual skewness changes, also the contextual average changes (positive and negative skew 

implicate lower and higher average, respectively). This has important implications when LMSV is 

adopted. The sigmoid function postulated by LMSV is non-linear and presents one region which is 

convex (when the subjective value is close to zero) and one region which is concave (when the 

subjective value is close to one). When the average of the contextual distribution varies, the convex 
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and concave regions will move. Therefore, a specific range of reward amounts may initially map to 

the concave region of the function. But, when the contextual average changes (specifically, when it 

increases), the same amount range may now map to the concave region of the function. In other 

words, in some conditions LMSV predicts that when the contextual distribution has lower average 

(and positive skew) one amount range may appear as being associated with a concave function; 

when the contextual distribution has higher average (and negative skew) the same amount range 

may appear as being associated with a convex function.  

In addition to considering simulations, it is important to examine in detail how well LMSV fits with 

empirical data on between-choice and non-multiattribute reference effects. To this aim, we consider 

all such effects we are aware of as they have been described in the literature. These include an 

effect of the average of the contextual reward distribution (Rigoli et al., 2016b, 2016c), an effect of 

variability (Rigoli et al., 2016a), and one of skewness (Stewart et al., 2015). Fig. 3 shows empirical 

evidence on between-choice and non-multiattribute reference effects in conjunction with 

predictions derived from LMSV regarding this evidence. Here, LMSV is implemented by assuming 

that, for any context condition, µ and σ correspond to the actual average and SD, respectively, 

characterising that context in the experiment. A comprehensive list of between-choice and non-

multiattribute reference effects is also provided in tab. 1. Also, for the other theories of choice 

discussed above, tab. 1 indicates whether their predictions fit with each specific reference effect. 

From fig. 3 and tab. 1, we can see that LMSV is able to replicate all empirical observations 

considered. Specifically, it is consistent with studies on the effect of contextual average (fig. 3a; 

Rigoli et al., 2016b, 2016c), contextual variability (fig. 3b; Rigoli et al., 2016a), and contextual 

skewness (fig. 3c; Stewart et al., 2015). When considering experiment 1A of Stewart et al. (2015), 

LMSV predicts higher subjective value for £10 and £500 in the positive-skew compared to negative-

skew context (fig. 3c).  
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In summary, we argue that our discussion and simulations indicate that LMSV offers a 

comprehensive explanation of known reference effects in between-choice and non-multiattribute 

scenarios (see SI for novel predictions arising from LMSV regarding reference effects). In fact, this 

model predicts effects of skewness which are not contemplated by EaR and DNT, and it explains 

effects of average in scenarios where these effects emerge empirically but are not predicted by DbS 

nor by RFT. To date, in between-choice and non-multiattribute domains, we are not aware of any 

form of reference effect found empirically which does not fit with LMSV. In Supplementary Material, 

we have identified novel and specific predictions of LMSV about reference effects which remain to 

be examined by future research. 

 

------------------------------------ 

TAB 1, FIG 2, and FIG 3 around here 

------------------------------------- 

4.2 Decision-making under risk 

For a theory of subjective value, a fundamental question regards its ability to reproduce empirical 

data about risk-sensitive decision-making. Here, we ask this question for LMSV, with the aim of 

offering a broad overview of this new theory. We do not discuss EaR and DNT in this context, though 

we consider DbS because the latter has offered a new compelling perspective on risky-decision 

making which also inspires LMSV (Stewart, 2009; Stewart et al., 2006; 2015; Walasek & Stewart, 

2015; Vlaev, 2018; Vlaev et al., 2011).  

Contemporary literature often relies on PT for interpreting decision-making under risk (Camerer et 

al., 2011; Kahneman, D., & Tversky, 1979). The specific value function proposed by this theory is 

concave for gains and convex for losses, hence predicting risk aversion for gains and risk seeking for 
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losses. In addition, the value function is steeper for losses, generating loss aversion, expressed for 

example in a preference for a null outcome over a 50/50 gamble returning either a monetary 

amount gained or the same amount lost. A concave function for gains, a convex function for losses, 

and loss aversion have been reported by several empirical investigations (Camerer et al., 2011; 

Kahneman, D., & Tversky, 1979).  

Although PT has been remarkably successful in explaining empirical data on decision-making under 

risk (Camerer et al., 2011), recent studies, originally aimed at testing predictions of DbS, have 

emphasized a new compelling perspective, where reference effects play a central role (Stewart, 

2009; Stewart et al., 2006; 2015; Walasek & Stewart, 2015; Vlaev, 2018; Vlaev et al., 2011). This 

perspective relies on treating gains and losses as two separate attributes, meaning that decisions 

requiring a trade-off between gains and losses are considered in the realm of multiattribute choice. 

It follows that, for options characterized by both a potential gain and loss, the former is evaluated 

with respect to the contextual distribution of gains and irrespective of losses, and the latter with 

respect to the distribution of losses irrespective of gains. Eventually, the total option value is 

obtained by summing the subjective value of the gain and the value of the loss.  

An analogous approach can be proposed for LMSV. We used simulations to assess the implications 

of this approach when applied to LMSV. First, we tested predictions for gain and loss contexts 

separately. While risk aversion and risk seeking have been usually observed empirically for gains and 

losses, respectively (Camerer et al., 2011; Kahneman, D., & Tversky, 1979), recent evidence raises 

the possibility that these findings are the product of reference effects (Stewart et al., 2015). This 

evidence corresponds to the study examined above when discussing reference effects dependent on 

skewness (Stewart et al., 2015), opposing a positive-skew contextual distribution including amounts 

£10, £20, £50, £100, £200, and £500 to a negative-skew distribution including £10, £310, £410, £460, 

£490, and £500. As seen above, a concave function describes subjective value in the positive-skew 

condition (fig. 1c). This implies risk aversion, as for example a sure gain will be favoured over a 50/50 
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gamble returning either a double gain or no gain. On the contrary, a convex function characterises 

subjective value in the positive-skew condition (fig. 1c). This implies risk seeking, as for example a 

sure gain will be avoided in favour of a 50/50 gamble returning either a double gain or no gain. In 

other words, the study of Stewart et al. (2015) implicates that risk sensitivity in the gain domain 

depends on the context. We have already seen that this scenario is captured by LMSV (fig 2c, fig 3c), 

which predicts a concave and convex function in the negative-skew and positive-skew condition, 

respectively. Hence this captures context-dependent changes in risk sensitivity as emerged 

empirically (Stewart et al., 2015).  

Whether context affects risk sensitivity in the loss domain remains to be explored empirically. In this 

domain, LMSV offers a similar interpretation which we describe using simulations (fig. 5a). We 

simulate a scenario considering a negative-skew contextual distribution including losses -£10, -£20, -

£50, -£100, -£200, and -£500, and a positive-skew distribution including -£10, -£310, -£410, -£460, -

£490, and -£500. A convex function is obtained by LMSV in the negative-skew condition which 

implies risk seeking, as for example a sure loss is avoided in favour of a 50/50 gamble returning 

either a double loss or no loss (fig. 4a). A concave function is obtained in the positive-skew condition 

which implies risk aversion, as for example a sure loss is favoured over a 50/50 gamble returning 

either a double loss or no loss (fig. 4a). In short, inspired by a perspective pioneered by DbS, LMSV 

views risk sensitivity for both gains and losses as the product of reference effects. Therefore, the 

commonly observed risk aversion for gains and risk seeking for losses are interpreted not as intrinsic 

phenomena, but as emergent from the fact that, in most ecological contexts, smaller gains and 

losses are more frequent than larger gains and losses. 

Next, we evaluated LMSV in contexts where information about gains and losses need to be 

integrated. A recent study has shown that reference effects are critical also in this domain (Walasek 

& Stewart, 2015). This study involved repeated choices between a null outcome and a 50/50 gamble 

returning either a gain of amount x or a loss of equivalent amount -x. Crucially, the range of the 
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contextual distribution of gains and losses varied across conditions. Four conditions were compared: 

one involving a [£0 £20] range for both gains and losses, one having a [£0 £40] range for both gains 

and losses, a third having a [£0 £40] range for gains and a [£0 £20] range for losses, and finally one 

characterized by a [£0 £20] range for gains and a [£0 £40] range for losses. Evidence indicated that, 

when an equal range characterizes gains and losses, the gamble and the sure option were equally 

preferred, implying an equal weight for gains and losses (fig. 4b). Loss aversion, expressed as an 

avoidance of the gamble, emerged when the loss range was smaller than the gain range (fig. 4b). The 

opposite of loss aversion, expressed is favouring the gamble over the sure option, was evident when 

the loss range was larger than the gain range (fig. 4b). 

We simulated this scenario using LMSV, estimating (for each option) the subjective value of the gain 

and of the loss using their respective contextual average and SD. The total value of the safe option 

was estimated as the subjective value associated with no gain plus the value associated with no loss. 

This was subtracted from the total subjective value of the gamble, calculated as the subjective value 

of the gain x plus the value of the loss -x divided by two (to account for the 50/50 chance). 

Simulations replicate the empirical findings described above (fig. 4b). Interestingly, simulations also 

highlight a novel prediction that, when losses and gains have different range, there will be a specific 

monetary amount x (located between the average of losses and the average of gains) for which the 

value difference between the gamble and the sure option will be maximal (fig. 4c). In short, for 

LMSV, differences in the relative weight attributed to losses compared to gains are not intrinsic, but 

they are the product of reference effects. An implication is that the usual observation of loss 

aversion is interpreted as the consequence of a smaller variability of losses compared to gains 

characterizing many ecological contexts (Stewart, 2009; Stewart et al., 2006). 

Altogether, the approach to risk sensitivity adopted by LMSV follows the approach proposed 

originally by DbS (which is extensively discussed elsewhere; Stewart, 2009; Stewart et al., 2006; 

2015; Walasek & Stewart, 2015; Vlaev, 2018; Vlaev et al., 2011). The key idea consists in treating 
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losses and gains as distinct attributes, and in viewing risk sensitivity not as intrinsic but as the 

consequence of reference effects. Although DbS and LMSV share this common perspective, 

nonetheless it is possible to identify specific predictions distinguishing the two models. For instance, 

consider the task described above involving choices between a null outcome and a 50/50 gamble 

returning either a gain x or loss -x. Keeping the context for gains constant, compare a low-variability 

context where the distribution of losses includes -£5, -£9, -£11, and -£15 against a high-variability 

context where the distribution of losses is -£5, -£6, -£14, and -£15. Given the influence of the SD 

postulated by LMSV, this model predicts that, in the low- compared to high-variability context, the -

£5 loss will be perceived as relatively better, and the -£15 as relatively worse. No such prediction 

derives from DbS. Analogous scenarios remain to be examined empirically. 

------------------------------------ 

FIG 4 around here 

------------------------------------- 

 

5. GENERAL DISCUSSION 

In this paper, we offer a general overview of research about reference effects occurring during 

decision-making in between-choice and non-multiattribute contexts. Although these effects were 

implicitly acknowledged already by EUT (Von Neumann & Morgenstern, 1944), their explicit and 

systematic treatment can be found for the first time in PT (Kahneman & Tversky, 1979). More 

recently, theoretical and empirical research on these effects has flourished. Although contemporary 

models already provide a compelling description of the underlying processes, we note that none 

accounts fully for empirical data. Motivated by shortcomings of previous accounts, we propose 

LMSV as a model able to explain a broader set of empirical data.  
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LMSV can be usefully interpreted within the perspective offered by each previous theory. Its core 

principles are inspired by PT and EaR (Hunter & Gershman, 2018; Kahneman & Tversky, 1979; 

Kőszegi & Rabin, 2006; Rigoli et al., 2016a; 2017), and consist in conceiving subjective value 

essentially as a “squashed” z-score. Different from PT and EaR, reliance on a logistic function enables 

LMSV to implement efficient coding in a similar way as DNT (Louie et al., 2013; 2014; 2015; Rangel & 

Clithero, 2012), and potentially to fit with memory sampling processes analogous to those proposed 

by DbS (Brown & Matthews, 2011; Stewart, 2009; Stewart et al., 2006; 2015; Walasek & Stewart, 

2015; Vlaev, 2018; Vlaev et al., 2011). Thanks to these substantial connections with previous 

theories, LMSV represents a unifying framework integrating fundamental insights proposed 

originally by other accounts.   

LMSV can be interpreted as belonging to a broad family of models which rely on a sigmoid function 

to explain context effects (Cheadle et al., 2014; Juechems et al., 2017; Li et al., 2018). Similar to 

LMSV, Cheadle at al. (2014) have proposed that perceptive judgements are based on transforming a 

stimulus through a sigmoid function postulated to change based on past experience. However, in 

Cheadle et al. (2014) past experience does not change the steepness of the sigmoid function. This is 

a critical difference from LMSV, where the steepness of the function varies reflecting the variability 

of the context. This characteristic of LMSV, absent in Cheadle et al. (2014), is critical here because it 

allows LMSV to explain context effects based on contextual variability. The model of Cheadle et al. 

(2014) has also been extended to explain phenomena in value-based decision-making such as 

within-choice context effects (Li et al., 2018) and how an overall propensity to gamble changes 

based on past reward experience (Juechems et al., 2017). Similar to LMSV, these proposals also rely 

on a sigmoid function to explain context effects. However, like Cheadle et al. (2014) but contrary to 

LMSV, they do not allow the steepness of the function to vary (hence they would fail to explain 

between-choice context effects dependent on variability). 
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It is important to emphasize that the level of analysis of LMSV is relatively abstract. This implies that 

LMSV is agnostic on the fine-grained psychological processes underlying computation of subjective 

value, though it provides constraints for theories speaking to such level of analysis. A possibility on 

the nature of fine-grained processes is inspired by DbS, and consists in memory sampling and binary 

comparisons. As discussed above, LMSV is consistent with this type of process, but does not 

necessarily imply it. A compelling alternative is that the brain directly entertains beliefs about the 

summary statistics of a contextual reward distribution (e.g., Friston, 2005), in the form of expected 

reward and uncertainty, and uses these during calculation of subjective value. Hybrid processes are 

also in line with LMSV, in which summary statistics are integrated with individual memory samples. 

With this regard, we note that value-based decision-making is a phylogenetically ancient function 

already present in simple organisms such as insects (Strausfel & Hirth, 2013). These animals’ 

behaviour is driven by basic sensory-motor processes, and lacks higher-order memory capabilities. 

Therefore, at least for some animals, it is possible that subjective value computation, and associated 

reference effects observed empirically (Marsh & Kacelnik, 2002), relies primarily on basic summary 

statistics rather than complex memory sampling. This raises the possibility of a role for summary 

statistics, alone or together with memory sampling, also in humans.  

From a comparison between LMSV and DbS, another important question arises: how does the brain 

represent distributions of variables? According to DbS, the brain represents the precise distribution 

of values characterising a context; this distribution can have any shape. On the contrary, according 

to LMSV, the brain assumes that the distribution of values characterising a context is logistic. This 

implies that in DbS the brain represents the real-world distribution faithfully, while in LMSV the brain 

transforms any distribution to a logistic distribution. This raises two questions. First, how can we test 

empirically whether the distribution is reflected faithfully (as in DbS) or whether it is approximated 

with a symmetrical bell-shaped function (such as a logistic function; as in LSMV)? Second, why would 

it be reasonable for the brain to approximate any distribution with a symmetrical bell-shaped 

function such as a logistic function? The answer to the first question, we argue, requires to tease 
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apart different predictions of models such as DbS and LMSV and to assess their fit with empirical 

data (something partially done here in the context of between-choice non-multiattribute reference 

effects). For the second question, we propose the following answer. First, in the real-world variables 

may be sometimes negatively skewed, sometimes positively skewed, and other times characterised 

by zero skewness; implying that on average the level of skewness may be around zero. Therefore, 

given a limited computational capacity, the brain may simply assume a level of skewness equal to 

the average, namely zero (as in a logistic distribution). Second, neurophysiological evidence supports 

influential theories such as predictive coding where the brain represents variables adopting a 

symmetrical (in that case Gaussian) distribution (e.g., Friston, 2005). For all these considerations, it 

may be reasonable for the brain to approximate any distribution in the real world by assuming a 

priori that any distribution is a symmetrical bell-shaped function (such as in LMSV). Although we 

emphasise the plausibility of this reasoning, we also stress that a promising avenue for future 

research is to explore different functions and to assess their merits and shortcomings with respect to 

empirical data. With this regard, there is evidence that, in the real world, both gains and losses are 

distributed according to a power law function (Stewart et al., 2006), hinting to the possibility that 

the latter may also be a good candidate for explaining reference effects. 

Most models (including DbS, DNT, RFT, and LMSV) assume that subjective value is a bounded 

quantity. This can potentially produce ceiling effects that are problematic. Consider an example 

where, during previous trials, an agent has been offered options comprising £1, £2, £3 as amounts. 

Next, at the current trial, an agent is offered an option returning £10000 with 1/100 chance versus 

an option returning £20000 with 1/100 chance. Because £10000 and £20000 both rank better, and 

are way higher, than all previous amounts, according to most theories they will both receive the 

highest subjective value (for DbS, LMSV or RFT, a subjective value equal to one). This predicts 

indifference for the two options, a prediction which is potentially problematic because real agents 

are likely to always choose the £20000 option. One potential way to address this is to assume that 

amounts present in the current trial also exert reference effects (these are forms of within-choice 
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effect). If this is assumed, then £20000 would be evaluated with respect to £1, £2, £3, and £10000; 

while £10000 would be evaluated with respect to £1, £2, £3, and £20000. A preference for the 

£20000 option would now be predicted. 

An important question is how reference effects arise out of neural mechanisms. Research has 

identified a specific brain network engaged during computation of subjective value and choice. 

Within this network, a central role is played by the dopaminergic midbrain (e.g., Glimcher, 2011; 

Schultz et al., 1997). A large body of evidence has revealed that neural activity in the dopaminergic 

midbrain is proportional to the subjective value (Schultz et al., 1997). In addition, studies 

manipulating the contextual reward distribution have found that this neural response is inversely 

correlated with the expected reward (Schultz et al., 1997). These findings have been interpreted as 

evidence of an expression of a RPE signal in this region (Glimcher, 2011; Schultz et al., 1997). 

Moreover, research has manipulated the range of the reward distribution, observing that two 

different reward magnitudes elicit a more distinct neural response when the range is smaller 

(Diederen et al., 2016; Tobler et al., 2005). Altogether, these data fit with the notion that a RPE 

weighted by uncertainty is signalled in the dopaminergic midbrain. Notably, this is analogous to the 

calculations proposed by LMSV, establishing a connection between this theory and neural processes. 

A critical empirical question is whether a link exists between neural and behavioural reference 

effects. Addressing this question, recent studies have shown that reference effects emerge together 

in dopaminergic midbrain and in choice behaviour (Rigoli et al., 2016b; 2016c; 2018). These findings 

provide compelling evidence in line with the possibility that behavioural reference effects are 

supported by neural adaptation processes occurring in the dopaminergic midbrain. Interestingly, a 

recent study has highlighted also a role for the hippocampus, as engagement of this region favours 

the emergence of reference effects (Rigoli et al., 2016c). The hippocampus is critical for processing 

contextual information in several domains (Holland & Bouton, 1999), and this research has extended 

this role to decision-making. Interestingly, this region is implicated also in memory processing 
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(Squire, 1992), raising the possibility that it may guide memory sampling underlying reference 

effects in value computation.  

An important distinction in decision-making under risk is between decision from description and 

decision from experience (e.g., Ludvig & Spetch, 2011). In the former, participants are explicitly 

informed about the values at stake, while in the latter they have to learn these values from 

experience. Most empirical studies of between-choice non-multiattribute reference effects have 

focused on decision from description (Rigoli et al., 2016a; 2016b; 2016c; 2018; Stewart et al., 2015; 

Walasek & Stewart, 2015). However, we note also studies about decision from experience which 

have manipulated the contextual average (Hunter & Gershman, 2018; Rigoli et al., 2018). Results of 

these studies are analogous to those emerged during decision from description. However a 

systematic exploration of reference effects during decision from experience requires further 

research. 

We have emphasized that the specific scope of this manuscript is research on value-based decision-

making focusing on between-choice and non-multiattribute contexts. However, it is useful to briefly 

discuss the more general implications of our arguments, as reference effects are important also 

outside decision-making, and, within the latter, also outside the between-choice and non-

multiattribute case. With respect to phenomena going beyond decision-making, evidence from some 

psychophysics contexts support models analogous to DNT, where the average stimulation, 

independent of the variability, regulates the discriminability of two stimuli (Carandini & Heeger, 

2012). For example, if auditory stimuli are on average louder, sounds are usually harder to 

discriminate, even if their variability is constant (Jerger, 1957). This suggests that models similar to 

LMSV may be inappropriate to describe some perceptual phenomena, as in LMSV discriminability 

depends on the variability, and not on the average, of the distribution. However, recent studies 

about perceptive decision-making have shown that models analogous to LMSV sometimes offer a 

compelling explanation of reference effects (Cheadle et al., 2014; De Gardelle & Summerfield, 2011; 
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Vandormael et al., 2017). Further research is needed to establish, outside value-based decision-

making, in which conditions processes analogous to those proposed by LMSV are at play. 

Research has also examined reference effects affecting subjective judgement. For example, a study 

has explored how knowledge of other people’s income affects satisfaction about the own income 

(Brown et al., 2008). This study found that the relative ranking of the own income (a concept 

analogous to DbS) affects satisfaction ratings. However, ranking effects provided an insufficient 

explanation, because the actual distance from other incomes was also critical. One way to interpret 

these and similar findings is to rely on RFT (Parducci, 1965; 1995), which combines ranking and range 

processes. Alternatively, an adaptation of DbS grounded on sophisticated memory retrieval can also 

explain these and similar observations (Brown & Matthews, 2011). By relying on a parametric 

framework which, as we have seen here, is capable of explaining some forms of skewness effects, 

LMSV may emerge as capable to capture both ranking and range influences observed in judgement 

(and possibly make also specific predictions as in the case of decision-making). This remains an open 

question for future research.     

Within decision-making, the most studied reference effects are those characterizing within-choice 

and multiattribute contexts, and sophisticated theories have been proposed in this domain (Huber 

at al., 1982; Noguchi & Stewart, 2018; Rigoli et al., 2017; Roe et al., 2001; Ronayne & Brown, 2017; 

Simonson & Tversky, 1992; Soltani et al., 2012; Trueblood et al., 2014; Tsetsos et al., 2010; Tversky, 

1972). Similar to PT (Kahneman & Tversky, 1979) and early EaR models (Kőszegi & Rabin, 2006), 

many theories assume that, for each relevant attribute, a stimulus is evaluated relative to a 

reference point corresponding to the average value of the options available (Roe et al., 2001; Soltani 

et al., 2012; Trueblood et al., 2014; Tsetsos et al., 2010; Tversky, 1972). Other theories are based on 

an extension of DbS (Noguchi & Stewart, 2018; Ronayne & Brown, 2017). Finally, one theory 

proposes an extension of the EaR model described in equation 1, emphasizing the influence of 

variability, in addition to the average, of the options available (Rigoli et al., 2017). Further theoretical 
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analyses are needed to assess whether the concepts proposed here in relation with LMSV may 

contribute to improve our understanding of within-choice and multiattribute contexts. Finally, two 

additional categories of effects exist, between-choice and multiattribute effects on the one hand, 

within-choice and non-multiattribute effects on the other. While the latter remain to be explored 

under the framework offered by LMSV, in Supplementary Material we extend LMSV to the former, 

implying that this theory can be regarded as a general model of between-choice reference effects in 

decision-making.  

In short, we have summarised and critically evaluated research on reference effects during decision-

making, focusing on between-choice contexts. Although we emphasize several strengths of previous 

perspectives on this topic, we have noted shortcomings of each of these perspectives. Integrating 

important insights originally proposed by previous theories, we offer an alternative model which 

explains a broader set of data. A question for future research is how general the framework is, both 

within and outside decision-making. 
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Source Context manipulation Effect EaR Bayesian EaR DbS DNT RFT LMSV 

Rigoli et al 
(2016c) (see 

also Rigoli et al 
2016b) 

A: £1   £3   £5 

B: £3   £5  £7 

£3A > £3B 

£5A > £5B 

↑ ↑ ↑ ↑ ↑ ↑ 

Rigoli et al 
(2016a) 

A: £2  £3  £4  £5 

B: £3   £4 

£3A > £3B 

£4A < £4B 

↓ ↑ ↑ ↓ ↑ ↑ 

Stewart et al 
Exp A (see also 

B and C) 
(2015) 

A: £10 £20 £50 £100 £200 £500 

B: £10 £310 £410 £460 £490 £500 

A: concave 

B: convex 

↓ ↓ ↑ ↓ ↑ ↑ 

Stewart et al 
Exp A(2015) 

A: £10 £20 £50 £100 £200 £500 

B: £10 £310 £410 £460 £490 £500 

£10A > £10B 

£500A > £500B 

↑ ↑ ↓ ↑ ↓ ↑ 

Tab. 1. Summary of reference effects that have been observed empirically in between-choice and 

non-multiattribute scenarios. Column one indicates where the empirical effects have been described 

in detail. Column two describes the manipulation adopted, reporting the monetary amount 

characterizing context A and context B. Column three describes the effect found empirically. 

Columns four-to-nine indicate, for each effect, whether it is consistent (↑) or not (↓) with 

predictions of each theory. Note that EaR refers to the model proposed by Kőszegi & Rabin (2006), 

Bayesian EaR refers to the model described in equation 1. 
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Fig 1. Empirical data on reference effects occurring in between-choice and non-multiattribute 

contexts. The vertical axis reports the subjective value estimated from choice behaviour (error bars 

represent standard errors). A: Data from Rigoli et al., (2016c) where a low-average context was 

characterised by £1, £3 and £5 and a high-average context was characterised by £3, £5 and £7. The 

figure is adapted from fig 1d of Rigoli et al. (2016c), pooling all participants together. B: Data from 

Rigoli et al., (2016a) where a high-variability context was characterised by £2, £3, £4 and £5 and a 

low-variability context was characterised by £3 and £4. The figure is adapted from fig 4a-b of Rigoli 

et al. (2016a), pooling all participants together. C: Data from Stewart et al. (2015; experiment 1A) 

where a positive-skew context was characterised by £10, £20, £50, £100, £200, and £500 and a 

negative-skew context was characterised by £10, £310, £410, £460, £490, and £500. The figure is 

adapted from fig. 4A of Stewart et al. (2015), rescaled based on the analysis about £10 ad £500 run 

here (see main text). 
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Fig. 2. Predictions of LMSV about reference effects in between-choice and non-multiattribute 

contexts. Different lines represent data simulated with different parameters. A: Predicted effect of 

average (σ = 2; λ = 1). B: Predicted effect of variability (µ = 4.5; λ = 1). C: Predicted effect of skewness 

(σ = 187; λ = 3). 
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Fig 3. The same empirical data shown in fig. 1 are displayed together with predictions arising from 

LMSV. For each specific context condition, LMSV was fitted using parameters µ and σ which 

correspond to the average and SD, respectively, characterising that context condition. 
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Fig. 4. Predictions of LMSV relative to reference effects occurring during decision-making under risk. 

Different lines represent data simulated with different parameters. A: Predicted reference effects 

regarding the value function of losses (σ = 187; λ = 3). B:  Gray dots describe empirical data (with 

95% confidence interval) about reference effects occurring during choices between a null outcome 

and a 50/50 gamble between a monetary amount gained and the same amount lost (Walasek & 

Stewart (2015)), adapted from tab. 1 relative to experiment 1a in that paper). The range of the 

contextual distribution is varied for gains and losses. For instance, G40 & L20 indicates that the 

range for gains is 40 and the range for losses is 20. The loss aversion parameter describes the ratio 

among the weight given to losses over gains in a logistic regression mode of choice (See Walasek & 

Stewart 2015 for details). Dark dots represent predictions of LMSV in this task. When the range is 40, 

µ = ±20 and σ = 11.98; when the range is 20, µ = ±10 and σ = 6.2. We adopted a parameter λ = 3 for 

all conditions. C: Predictions of LMSV in the same scenario regarding the value difference between 

options as function of monetary amount. 


