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Abstract

A range of frailty models — Makeham/Gompertz-gamma, (with actuarial an-
tecedents in the work of Perks and Beard), Gompertz-inverse Gaussian — has
been considered and been applied to two insurance-based mortality data sets
with the purpose of finding evidence of frailty in these populations and to de-
termine, based on statistical tests, the consistency of such models for describing
the age structure of mortality rates and recent trends over time. The models
have been fitted using generalized linear models.

Keywords: frailty, mortality rate, generalized linear modelling, gamma distribution,
inverse Gaussian distribution, Gompertz—Makeham function, Perks model.

1 Introduction

This paper considers practical aspects of the analysis of mortality in a heterogeneous
population, and in particular focuses on selecting the frailty models that may be suc-
cessfully fitted to insurance-based mortality data and on considering the implications
of such models. The paper is organized in eight main sections.
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The first section provides a general introduction to the topic of frailty mod-
els. The second section presents the framework used to formulate the mathematical
models for representing frailty. The third section considers the selected models and
different methods of fit. The fourth section considers goodness of fit and diagnostic
tests. In sections five and six we present the insurance data and the results from fit-
ting the range of models, their overall comparison and conclusions. In section seven,
there is a brief discussion about the interpretation of parameter estimates of frailty-
based mortality models and comparison of our results with other authors’ findings.
Section eight provides some concluding comments. Finally, a concise mathematical
background is presented in the Appendix.

There is little doubt that heterogeneity exists in human population with respect
to mortality. This is exemplified by studies of mortality in populations like the UK
analyzed by socio-economic status, educational attainment, access to health system
and other similar characteristics (see Benjamin and Pollard [1993]).

By the late 1970’s, the theoretical implications of heterogeneity on population
mortality studies became clearer to demographers, actuaries and statisticians work-
ing in this field. One particular feature was well established. As noted by Olshansky
and Carnes [1997], both Gompertz and Makeham had recognized the limitations of
the models for the age variation in mortality that they had proposed, and in partic-
ular the failure of these models to apply during the later part of the age span (see,
for example, Makeham {1867] and Gompertz [1872]), which “has been a persistent
theme throughout the historical literature on senescence and the search for a law of
mortality”.

Two distinct modelling approaches can be identified.

The first group of studies aimed at determining the effect of particular cause-
specific factors on human mortality and thus assumed a mix of discrete terms when
setting up mathematical models, for example, Levinson [1959], Redington [1969],
Keyfitz and Littman [1979] and Congdon [1994].

The second group involved continuous rather than discrete risk models. Work
on this approach effectively began with the seminal paper of Vaupel et al [1979] who
formulated the basic ideas of quantifying the effect of heterogeneity on population
mortality by the generalized concept of frailty represented as a univariate statistical
variable Z and described its implications for standard life table methods.

The fundamental assumption is that each individual has a given vulnerability to
death (or in fact to causes of death) and those more sensitive or frail will die sooner.
Further, assuming that Z has a gamma distribution in the initial birth cohort across
the population, Vaupel et al have shown that, as a result of heterogeneity, the mor-
tality experience for an individual is significantly underestimated from population
mortality trends by using previous methods, especially at older ages. The above con-
cept can be readily extended to areas other than mortality, like disease incidence or
component reliability, also to topics where frail does not necessarily mean inclined
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to detrimental change, like migration or leaving unemployment (see, for example,
Vaupel and Yashin [1985a]).

We propose a parametric model for the force of mortality using the frailty model
as a building block. As a number of commentators have noted, there are many
advantages in using parametric mortality models, including:

a) the resulting rates are smooth and can be used for interpolation or extrapola-
tion by age;

b) coustruction of a complete survival model and associated life table is facilitated;
c) interpretation of parameters;

d) parsimony, so that extensive sets of rates or probabilities can be reduced to a
few parameters (Keyfitz [1982]; Congdon [1993]; Chang [1998]);

e) analytic manipulation of functions based on the survival model;

f) comparison of mortality patterns between populations is facilitated;

g) assessment of trends and forecasting over time are assisted.
As is widely reported in the actuarial and demographic literature, the objective of
using such parametric models is to obtain the best adherence to the data while
retaining the smallest number of parameters. There is thus a trade off between

goodness of fit and statistical stability of the parameters introduced (see, for example:
Keyfitz [1982]; Benjamin and Pollard [1993] or Congdon [1993]).

In this paper, we will follow the method introduced by Vaupel et al [1979] and
compare empirically two possible mortality models based on two different underlying
frailty distributions, that is the gamma and inverse Gaussian, with the following
aims:

a) to explore how substantial might be the heterogeneity present (via frailty) in
different insurance-based populations;

b) to compare the behaviour of different mathematical models;

c) and to observe possible parameter trends.

2 Frailty Models

2.1 Model of Individual Differences in Frailty

Formulating a systematic way of considering the various aspects which distinguish
individuals of a human population has proved to be difficult (Benjamin and Pollard
[1993]). Even the current advances in computing and demographic registration,
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greatly improving our data storage and recording expertise, solve just a small part
of our problems.” As noted by Keyfitz [1985], “...heterogeneity in the underlying
population places difficulties in the way of interpretation of all statistical data based
on averages”. Practically, it is only feasible to form partially homogeneous sub—
groups since, if attempts are made to include all the factors in a descriptive or
statistical model, the result would obviously be too over—parameterized and difficult
to interpret. Thus, necessary simplifying assumption in traditional demographic (in-
cluding life table) analysis has been to include only some of the important measurable
differences in the composition of a population.

Standard methods of analysis tend to assume independence among individuals,
while possible risk factors affecting mortality (or survival) may be covariates in the
model. But there will be cases where we do not have complete, detailed information
on each individual or where we do not know that the covariate exists, or if it exists,
that it is of significance. These unobserved risk factors create dependence between
the individuals under observation. In the statistical literature, models that cater for
this dependence are often described as “random effects models”.

Unlike the effect of sampling variability, which we can deal with by collecting
more data, the effect of heterogeneity cannot be reduced by increasing sample sizes.
An indirect approach based on the formulation of a model is needed to deal with
heterogeneity as an omitted variable. The general consequence of ignoring hetero-
geneity is that the analysis of population data does not describe the characteristics of
any individual but of the cohort as a whole. We note that, in mortality applications,
the selective effect of heterogeneity is to underestimate the mortality rates at older
ages which an average individual will experience. This bias will be explored further
in this section.

Perhaps the first recognition of the effect of heterogeneity is due to Gini [1924]
who was commenting on the interpretation of pregnancy rates. The effect in migra-
tion was considered by Blumen et al [1955] and in mortality by Vaupel et al [1979]
which has led to considerable interest and further developments in the literature.

In the discussion that follows, we present the ‘multiplicative model’ suggested by
Vaupel et al [1979].

We define frailty in a heterogeneous population across any given age z as a
random variable Z, with probability density function f;(z), such that the individual
force of mortality conditional on a realization of Z, = z will satisfy the following
relation:

wz|Zy=2) = pa(2) = 2+ g, (2.1)

where y; is referred to as the ‘standard hazard function’ or ‘standard force of mortal-
ity’ corresponding to a ‘standard individual’, conventionally those with frailty z = 1,
that is: pg = u(z|Z = 1). Observe that the meaning of y, is slightly changed from
the usual actuarial notation. This model is presented in terms of the force of mortal-
ity, rather than the age specific probability of death, g, because of the fundamental
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role played by the force of mortality in the survival model and because g, is bounded
above which would lead to complexities in terms of the range of values for Z.

Therefore, we could consider frailty as an unobserved scale statistic (a continuous
non-negative random variable) that encompasses all the factors affecting human
mortality (other than age) in order to determine the extent of heterogeneity in a
human population that is made up of individuals with different characteristics.

Further, assuming that there is a unique and fixed value of z associated with a
given individual for all his or her life span, Vaupel et al [1979] note that “... The
definition does not imply, however, that individuals at the same level of frailty are
identical — even if they are contemporaries from the same population.” The assump-
tion is only that their “likelihood of death” would be the same. The result is that
members of the cohort with higher values of frailty z will have a higher probability
of dying and thus the more frail individuals are more likely to die first.

We also note that the assumption that frailty is constant for an individual during
their lifetime is rather simplistic. However, this is the first step in incorporating

heterogeneity in mortality analysis. Extensions to the model are briefly discussed in
section 2.2

We denote by H and S the cumulative hazard and the survivor function respec-
tively for an individual up to a current age . Then expressions for these functions,
conditional on the frailty level 2, are (by definition):

In the above definition the ‘standard’ value conveniently and historically was chosen
as 1. However, we note that the definition can be extended to any ‘standard’ value,
say, Z = a by writing:

bs' =pe|Z=0a) =a- ps,
z
S| Z=2) = 2p = ke =2

where 2’ = z/a and p, ' is the ‘new standard’ hazard function. Thus transforming
the original definition (2.1) to:

wz|Z =az")=2"-p;'. (2.1

Also in some models, we may have an extra constant term independent of age
and frailty, for example, in the case of the Makeham individual hazard rate — see
Appendix:

(| Z=2)=a+z-ps. (2.1)
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H(z|Z = 72) = /oz/z(tlz)dt - /Omz.p(m)dt

T T
=/z-mdt=z/ptdt
0 0

S(z|Z =2) = exp[-H(z|z)] = e (2.3)

where H; = fomm dt is the ‘standard’ cumulative hazard function up to age z.

The probability density function (p.d.f.) of age at death among the survivors in
the population at age z conditional on z follows from the definition of the force of
mortality viz:

f(2|Z =2) = f(z|2) = u(z|2) - S(z]2) (24)
Therefore, the joint p.d.f. of the age at death variable and frailty z in the cohort is
given by:

f(@,2) = f(z|2)- folz) = p(z|2)-S(z|2) - fol2)
where we have used (2.4) and S(z, 2) is the individual survivor function dependent
on both age = and frailty z:
S(z,z) = S(z|2) - fol2), (2.6)

and fo(2) is the p.d.f. of frailty in the initial birth cohort, that is at age z = 0.

We can apply the above equations to the cohort at age x. For those in the
population at age z, we note that death can occur at any time ¢ > z, conditional on
surviving until age z, and we can express the p.d.f. of variable Z, (for those in the
population alive at age ) as follows

_ f;of(t,z)dt
fo(2) = T’

where in the above

S(z) = /OwS(:c,z) dz = /OwS(z|z) - fo(z)d=

is the cohort survivor function unconditional on frailty, which can also be regarded
as the proportion of the initial birth cohort still alive at age z regardless of their
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frailty. Substituting using (2.1), (2.3), (2.5) and (2.6) gives:
5(2) - falz) = /wf(t,Z)dt :/ z-pg-e - fo(z) dt
Wy

— fo(z) /w[—e_z'H‘]’dt

= fo(z) - [-e~ ] :0
= fo(z) - e He
= fo(z}- S(z|2), 27

so that:

f) = folz) - S(zlz) _ folz)-S(e|2)
¢ S(z) I°8(z12) - fo(z)dz
(We note that S(z) is the natural choice for the normalizing constant).
We denote the population hazard rate for individuals at age z by:

B fO°°f (z,2)dz

B(z) = T S (2.9)

(2.8)

Substituting from (2.5) and (2.6) yields:

o _ Jom@|z) - S(z|2) - fo(2) dz
[J,(Z') - . g(m) I

then substituting from (2.1} and (2.7) gives:

I

00
A@) = o [ 2 fo0)dz
= pg-B[Zg] = pg - 7z, (2.10)
where E[Z;] = Z; is the mean (or expected) frailty among the survivors to age .

For the special case of (2.1), we note that (2.10) becomes
) = atyg -z - (2.10a)

Choosing the marginal p.d.f. of z in the initial birth cohort such that its expected
value is Zg = 1 (i.e. equal to the frailty level of the ‘standard’ individual 2) will make

*Supposing that the ‘standard’ frailty is 2 = a # 1, then

[} 00 !
substituting (2.1') in: B(z) = / w(z|2)fo(z)dz = / pe' s fo(z)dz = M%Ez
o o
“ifZ =a = E0) = p0|z=a) = po; where g is the force of mortality of the
‘standard’ individual at birth.
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the population hazard rate at birth equal to the ‘standard’ individual hazard rate:
BE(0) = p(0lz=1) = po. (2.11)

More importantly, we can see from the previous expression (2.10) that, should
the expected frailty Z, vary significantly with age, the population force of mortality
will have a different rate of change with respect to age than the individual force of
mortality. Specifically, we note that:

_ Joz- fo(z) exp[—z - Hy]dz

= 2.12
e Jo fo(z) exp[—2 - Hy)dz (212)
Differentiating (2.12) with respect to age z yields:
45 - 2(2) < 0 (2.13)
i 28 = ~Ha05(z .

where 02(z) is the conditional variance of Z, among the population that is alive at
age = (Lancaster [1990], page 64). Thus, the mean frailty declines with age as death
selectively removes those individuals with the higher frailty levels z who are likely to
die earlier, and so Z will decrease with age, especially in the case of the older ages.
This means that y; increases more rapidly than g, ie. “individuals ‘age’ faster than
heterogeneous cohorts” (Vaupel and Yashin [1985b], so that expectations of life for
individuals would be overstated by not allowing for the selective effect of frailty.
Regarding this feature Vaupel et al [1979] conclude: “... An intriguing implication
is that studies of human aging based on cohort mortality data may be systematically
biased or based on erroneous functional forms.”.

However, in a microlevel analysis of mortality rates over space (borough) and
time in London, Congdon [1994] finds no “universal tendency for a reduction in
(life) expectancy when frailty is included.” Congdon includes in his model covariates
reflecting (inter alia) the ethnic composition of the sub-population and a deprivation
index. Comparisons of life expectancy between a “degenerate” homogeneous model
and a frailty-based model indicate the importance of differences in the parameter
estimates for the underlying Gompertz model, the form of the heterogeneity model
used and the specification of the level of over-dispersion in the variance. It would
thus appear that, with a more complex model, the direction of the bias in measures
of life expectancy is less clear-cut than with the simple frailty model presented above.

The model specified so far contains two critical components:

a) amodel for describing the relationship between the hazard rate for individuals,
iz, and current age z;

b) a choice for the distribution for Zg, fo(z).
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The choices that have attracted the most attention in the literature are, for a),
the Gompertz - Makeham model

g = a+f-eP? (2.14)

and for b) the gamma and inverse Gaussian distributions. Vaupel et al [1979] make
extensive use of the gamma distribution on the grounds that it is tractable ana-
lytically, flexible in shape and has positive support (noting that frailty cannot be
negative). The detailed implications of using these models are presented in the
Appendix.

2.2 Extensions and Related Work

A number of contributions to the literature deal with adapting and fitting the model
as presented in section 2.1.

Manton et al [1981] adapt equation (2.1) so that calendar time, y, is repre-
sented i.e.

p(:’L‘,ylZ = Z) =2z /"’(xvy) (2‘15)

and then fit models with a range of choices for specifying u(z,y) to national mor-

tality data (grouped by age) for US and Sweden over the period 1850 — 1975. They
conclude that the most satisfactory fit is obtained with the choice

wz, y) = p(z) - exp oy, + ds (1885 — yo)] (2.16)

where cy, represents a contrast between the cohort born at time y9 = y — z and
that born in 1885 and dj is the change in the proportionality factor ¢ for age . In
a further development, Vaupel [1999] surmises the following model for representing
the dynamics of mortality over age and time:

wz,y|Z = z) = z- u(z) - exp[-ri(z) r2(y) ] + @ - exp [-r3(y)] (2.17)
where o > 0 and 71(z), r2(y) and r3(y) are suitably chosen functions.

Vaupel and Yashin [1985b] investigate the effects of different choices for fo(2)
including a discrete model and uniform, gamma, Weibull and log-normal distribu-
tions.

Manton et al [1986] have explored the goodness of fit to US Medicare total mor-
tality data and US lung cancer mortality data of a range of frailty models with
the following choices for fo(2): gamma, inverse Gaussian and degenerate distribu-
tions (i.e. a homogeneous model) and for p,: Gompertz — Makeham and extended
Weibull i.e.

pe =ca+pB-2PL (fora>0,8>0,p>0). (2.18)
They conclude that their results (in terms of parameter estimates and goodness

of fit) are less sensitive to the choice of distribution for fo(z) than to the choice of
function for p,.
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Further levels of generality may be introduced by relaxing the assumption that
the frailty level is constant with respect to time or age. Models allowing stochastic
variation of frailty over time or age have been introduced and discussed by Woodbury
and Manton [1977], Yashin et al [1985] and Vaupel et al [1988]. For example,
Yashin et al [1985] differentiate between observed and unobserved variables (like
frailty) — this is an important distinction in a life insurance context where, however
rigorous the underwriting procedure, only some of the physiological variables for an
individual can be measured and then only at policy inception.

The application to multiple state models, incorporating for example cause—specific
forces of mortality, has been considered by Manton and Stallard [1980] and Vaupel
and Yashin [1985b]. Also, Jones [1998] uses a four-state multiple state model with
frailty for analyzing the impact of selective lapses on the mortality of insured lives.

A recent extension has been to formulate models of inherited frailty and longevity
which can then be tested on mortality for related individuals (e.g. parent—child or
twins): see Vaupel [1988], Yashin et al [1995] and Yashin and Iachine [1997].

3 Models and Methods of Fit

3.1 Introduction

We consider two methodologies for fitting the models described in the Appendix,
the methods of non-linear least squares and of generalized linear modelling.

When selecting the mathematical models for graduating and fitting mortality
data, it is important to consider not only achieving a reasonably good fit but also
ensuring that the fundamental model assumptions are met. The classical method of
non-linear least squares (NLM) requires the assumption of constancy of variance
and the normal distribution of error terms, neither of which holds exactly in this
case. Also, when modelling mortality or hazard rates the mean value should be
strictly positive, whereas having a Gaussian distribution for the random responses
implies, at least theoretically, a domain for the mean which is the whole real line.
For these reasons, we use a generalized linear modelling (GLM) approach, which
does not require these restrictive assumptions.

Further, it is well known that in the case of numbers of deaths when modelling
mortality (as with data in the form of counts), the errors are expected to have
a Poisson (and not normal) distribution. The Poisson distribution assumption is
discussed more fully by Forfar et al [1988] and Renshaw [1991, 1995].

Therefore, only as a preliminary stage, graduation with respect to age by NLM
(weighted and unweighted) has been compared to the different methods of GLM,
which have been previously suggested by Renshaw [1991, 1995]. This testing has been
carried out on a limited scale, being implemented only for the immediate annuitants’
experience (see section 5.1). Then the finally selected GLM method has been applied
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across the whole data set with a systematic sensitivity analysis, allowing for changes
to the age range being fitted and the deletion of outliers. In the final phase, trends
in the estimated parameters for the population hazard function, and indirectly for
the chosen frailty distribution, have been investigated.

As noted earlier, we focus on the graduation of the crude forces of mortality
by mathematical formula as this allows the definition of a frailty level as a contin-
uous (and real) numerical value on the positive axis. The selected models under
investigation are:

a) Gompertz/Makeham — gamma: [i(z) = o + {Tobre » Where @ =0 in
the case of the Gompertz individual hazard.

e —d+p-2’

Vite-btra

In each model ' = £—40. The full derivation of the above formulae can be found
in the Appendix. We also observe that, later in this section, we use the simplifying
notation of y, instead of i(z) .

b) Gompertz — inverse Gaussian: 7i(z) =

3.2 Exploratory Data Analysis

It is usual to undertake careful visual inspection of mortality rates plotted against age
before attempting any graduation exercises. As noted by Horiuchi and Coale [1990]
and others, it can be difficult to distinguish, from plots of the logarithms of mortality
rates, the differences between a straight line and, say, upwardly or downwardly
concave curve. These authors propose a different type of exploratory check. They
consider the behaviour of

Ag) = d% n7(z) 3.1)

for different curves. It is clear that if fz(z) = B-eP so that there is no heterogeneity
present then A(z) would be exponentially increasing; however, for the Makeham —

gamma, frailty model o

1+ eb-ra'
(see the Appendix) and then it is straightforward to demonstrate that if

Fo(e) = a+ (A.13)

a>0, A(z) is bell shaped with a maximum at age
a=0, A(z) is monotonically decreasing.

(Indeed we can show that zg — 40 = % + ﬁ ln(ﬁ))
For the Gompertz — inverse Gaussian model, the method can be similarly applied
to:
e —d+pa’

ﬁ(m) = —r——l + P —b+p'-'13l

(A.19)
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and it is straightforward to demonstrate that A(z) is monotonically decreasing.

Using some crude estimates for A(z), based on finite difference methods, for a
sample of the data sets under consideration, we have noted that there is very little
evidence of a bell-shaped profile, indicating the likelihood that o = 0. The profiles
also tend to be decreasing functions of age, indicating the presence of heterogeneity
and supporting the choice of (A.13) with & = 0 (i.e. (A.10)) or (A.19).

An equivalent test would be to consider a plot against age of
o) = [m (e + 1) — 7o) ] (3:2)

which for the Gompertz — gamma model leads to a downward sloping straight line.

3.3 Non-Linear Least Squares

It is common to refer to a mathematical model as non-linear if there is at least one
structural parameter that appears in all the partial derivatives (of first order and/or
above) of the model with respect to any of its parameters. Such models generate
parameter estimators of a more complicated form than linear models and usually
can only be solved numerically. In this case we have made use of procedures offered
by the S-PLUS 3.2 statistical package, see Venables and Ripley [1999], applying the
non-linear least squares criterion, that is, minimizing the error sum of squares:

S(p) = Zwrm' [fiz; () — Nw»']2 ) (3-3)
i=1

with respect to the parameter vector p , where the summation is over n cases (we use
z; as the notation for the observational units, which allows for the possibility that
there might be grouped ages or some individual ages missing). The weights wy,, = 1
for Vi =1, n in the case of the unweighted model (NLM) and:

1

We; = —5
Mg,

Vi=T,n (3.4)

for the weighted graduation (WNLM). Hence the loss function becomes in this later

case:
o o

=1 N

There is a considerable body of literature on the appropriate choice of weights in
the non-linear least squares formulation: see Congdon [1993, 1994] for a discussion.
One approach is to choose weights that are inversely proportional to the sampling
variation (T‘,i,, say) so that rates with greater variance (and lower reliability) attract
lower weights. A second approach is to allow additionally for a constant level of
overdispersion (0?) with particular reference to smaller populations, so that the
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weights are proportional to (2, + 02)_1. A third approach is to adopt (3.4), so that
a constant coefficient of variation across all ages is assumed. Several investigators
in the mortality field have followed this third approach, including Heligman and
Pollard [1980], Forfar and Smith [1988], McNown and Rogers [1989], Carriere [1992]
and Chang [1998].

‘We note that, with this configuration, cases with zero observed numbers of deaths,
must be excluded from contributing to the loss function (3.5).

3.4 Generalized Linear Models
3.4.1 Introduction

The family of Generalized Linear Models (GLM) has been developed to apply a wide
range of (usually) linear regression functions with an error structure which is different
from the classical assumptions of a constant variance and a normal distribution. The
underlying GLM principle is a natural extension of the classical linear model, with the
independent variables present only through a linear configuration. The GLM method
allows us to select the appropriate distribution of errors from a comprehensive class
of density functions belonging to the exponential family and to define maximum
likelihood estimators. The following brief introduction is based on McCullagh and
Nelder [1989], while the actuarial applications of GLMs, (sections 3.4.3 and 3.4.4)
have been inspired by Renshaw [1991, 1995] and Haberman and Renshaw [1996].

In the framework of GLM, the generalization of the classical linear regression
models is carried out in two main directions:

1. Linear Predictor Structure

The explanatory variables @; (j = T, p) control the mean of the response
m = E[Y] through a linear combination n = 7, x; f;, termed the Linear pre-
dictor, however the identity relationship m; = ; is extended to any monotonic
functional form:

glmi)=mn or m;=g'(m) Vi=Tn (3.6)

where the function g(-) is called the &nk function being continuous and differ-
entiable over its domain.

2. Extended Distribution and Variance Assumptions
Similar to the traditional (linear or non-linear) regression analysis, an impor-
tant feature of GLMs is to assume independently distributed random responses.
However, the classical Gaussian distribution assumption is extended to a wider
class of exponential density functions, also making the variance dependent on
the mean of the response variable (i.e. non—constant) by a relation presumed
to be known in advance.
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Thus, GLMs assume that the response vector y is a random sample of the
independent random variable Y with p.d.f.:

fy @, 6, ¢) = exp {% T ely, w)} , (37)

where k(-), b(-) and ¢(-) are functions determined by the structure of the given
GLM. For a known parameter ¢, the above defines the exponential family with
canonical parameter §. The mean and variance of Y are then given by:

m=E[Y]=0b/(§) and Var[Y]=k(p) b"(), (3.8)

where we usually denote 8”(8) = V(m), also called the variance function, and
observe that it depends on the mean m through the parameter 6.

The function k(-), is a scale factor applied to the variance and usually is ex-
pressed as a ratio:

ki(q:):u% Vi=T,n (3.9)

that is a ratio between a constant dispersion parameter ¢ and some predefined
w; weights, potentially different for each observation.

It is interesting to note that we can obtain an optimal GLM for the special link
function referred to as the canonical link defined by the condition g(m;) = 6;. Ex-
amples are the identity, log and log-odds link functions for the normal, Poisson and
binomial distributions respectively. Then, as one would expect, the classical linear
modelling structure acts as a special (limiting) case of the GLM regression analysis
having identity link g(m) = m and variance function V(m) = 1.

To fit parameterized models represented by 7, the unknown parameters are esti-
mated by maximizing the log-likelihood. A measure of the overall goodness of fit of
the current model under consideration is provided by the value of the scaled deviance,
which is defined to be twice the difference between the log-likelihood achieved by
the saturated (i.e. matches the observations exactly) and the fitted model:

D) = 2 {i(y, 6, ¢) ~ 1(y, 6, ¥) }

2 {Z {W + elyi, qo)] - {%"—) + (%, so)] }

i=1 i=1

It

1< < < 5

5 22w [ (B:—0) —b(G) +5(0)] - (3.10)
i=1

In the above, the canonical parameter @ corresponding to the fitted and saturated

(or full) model is denoted by 8 = 8(ri) and @ = 0(y) respectively. The saturated

model is characterized by the property that it provides a perfect fit, since the fitted

values are equal to the empirical responses, themselves. In the GLM method, it is
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customary to work with the unscaled deviance D(-) instead of the scaled one D*(-),
which is defined as:

D(y; ™) = ¢-D*(y; ) . (3.11)
We note that the scaled deviance is a measure of discrepancy equivalent to that
used in the classical regression analysis (based on the normal error distribution),
namely the error sum of squares and also, in this case, the scale factor is equal to
the variance, that is ¢ = o2.

Differences in the values of the scaled deviance, as more terms are added to the
parameterized structure of the predictor, are then used to assess the statistical sig-
nificance of the addition to the structure. Such deviance differences may be referred,
as an approximation, to the x? distribution with the appropriate degrees of freedom

determined by the number of extra parameters which have been added to the nested
structure of the predictor 7.

The scale parameter ¢ is estimated either by the ratio

o = D™

v

(3.12)

based on the unscaled deviance, measure of goodness of fit, or by the ratio
1 L - m,)2
- . 3.1
v ZZ: V(m,) (3-13)

based on the unscaled Pearson goodness of fit statistic. Here v denotes the degrees
of freedom associated with the model fit.

Apart from the usual response residuals » = y — 7i there are three main types
of residuals available in the GLM framework, referred to as deviance, Pearson and
Anscombe residuals. In the current paper we focus only on the first two, each of these
being in effect the components of the corresponding unscaled discrepancy measures:

i. Deviance Residuals
In the formal definition of the deviance (3.10) and (3.11) we can see that

D(y; ) =Y d;, so by defining:
rp = sign(y — m)Vd, (3.14)
we will have Y- r% = D(-).

ii. Pearson Residuals
Similarly to before, we define this as a quantity that satisfies Y r% = X2,
based on (3.13):

rp = (y— ) ;- (3.15)

_w
V(m
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3.4.2 Modelling Mortality with Poisson Distribution

In the traditional actuarial approach, the force of mortality is assumed to be constant
over the age interval under consideration, usually 1 year, and further the deaths of
members of the cohort under observation are assumed to be independent.

The observed data comprise the number of recorded deaths, a;, arising from
central exposed to risk, 5, over a range of ages z in a defined calendar period. As
noted earlier, our target is to model the force of mortality at age z, py;- Following
Forfar et al [1988], we model the actual numbers of deaths, A;, as Poisson random
variables with mean equal to 75-p,. Forfar et al [1988] show that the maximum
likelihood estimator of the force of mortality is:

o = 22 (3.16)

Tg
With a one year age interval (z, z+1}, it has become customary to refer the estimator
to the central age of the interval i.e. fi, 41 In the following paragraphs, we use the

suffix x; to refer to the i*® age group, thereby retaining generality, and we overlook
the need to refer to the central age of the interval in places for notational convenience.

Therefore, our aim is to model mortality, making use of the GLM structure based
on the Poisson distribution of the response variable Y ~ P(m), the numbers of death
in the age interval under discussion, with p.d.f. of the form:

F(,0, ¢) = eop{y-logm—m—yl} . (3.17)

A particular feature of the data to be used is that they are based on the number
of policies rather than the number of lives. So the death of a policyholder with more
than one policy will appear in the observations as more than one death. This feature
needs to be allowed for in the model. It has received wide attention in the literature:
see Forfar et al [1988] for example. We follow the proposal of Renshaw [1992], and
adopt a modelling distribution that incorporates overdispersion i.e. the overdispersed
Poisson distribution. We note, however, that the modelling of excess variation (as
in this case) has only a marginal effect on the parameter estimates (as we might
intuitively expect) but that confidence intervals and significant tests may be biased

unless the effect is incorporated: see Cox [1983] and Renshaw [1992] for further
discussion.

Then, the statistics of the corresponding GLM are given by:
E[Y]] = mj = rg;-pg;  and  Var[Vj] = ki(p) - my
0; = logm;  b(6;) = expb; V(m;) = my

canonical link:  g(m;) = 6; = logm; (3.18)

rD; = sign(y; — ) \/2 [yi In ¥ —(y; - Thi)]

rpi = (¥ — M)/ 7
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where k;(p) = .

In this paper, we have applied the GLM fitting method to the adopted Gompertz
— gamma frailty model. The method of implementation depends on the chosen target
variable, which could be either the number of deaths or the force of mortality, so
that YV; = Ay, or Y; = A, /rg, respectively, and these two methods are outlined in
the following two sections. In both, we have made the simplifying assumption that
the central exposures are constant (non-random) quantities for each observational
unit.

The actual fitting applied is based on the so—called ‘quasi-log-likelihood’ tech-
nique, that defines the quantity:

n n m; y;i—1
Cy) = av) =S w | By 3.19
Q(m; y) gq(m vi) ;‘” /y‘. oV (49

where y; are the observations with mean m;. Therefore the corresponding (quasi)
unscaled deviance is defined as:

i LG Yi g — ¢
Dyly; ) = =2 - q(th; 1) = _2Zwi/: y"/(t) dt. (3.20)
i=1 i=1 m;

This method represents an extension of the fundamental approach presented ear-
lier in section 3.4.1, since, for members of the exponential family of distributions, the
quasi-log-likelihood can be shown to be equivalent to the log-likelihood. McCullagh
and Nelder [1989] provide a detailed mathematical treatment of quasi-log-likelihood
functions.

3.4.3 GLM with Taylor Expansion

The modelling structure described so far (which we shall call GLM1) considers the

number of deaths A as the target random variable having a Poisson distribution for
each individual case, so that:

Ay ~P (Tz-p,w+%) = my = E[Ad =1y 1,3, (3.21)

where the expected value is denoted by m; as above.

The corresponding GLM features result by substituting the given mean m, into
equations (3.18). However, note that we have included in this model an overdisper-
sion parameter ¢ > 1, to allow for the possible presence of duplicate policies. Thus,
the variance is:

Var[Ag]=¢ - V(mg)=p-rs- Poyd - (3.22)

As mentioned before the final model of Z(z) is non-linear in some of its pa-
rameters, so the above relation (3.21) for the mean number of deaths mg has to

-
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be linearized’ in order to be able to apply the GLM methodology. We follow
Renshaw [1991] and first take the logarithmic transformation of (3.21) and then
use a Taylor expansion for the remaining non-linear term in order to obtain an ap-

proximation to the mean, which is linear in all of the resulting structural parameters.
Thus,

Inmg; = Inry +1np,m+%
= Ilnry+Ina—In (1 + e"—w’) ) (3.23)

where ¢’ = (z + 1 — 40). We denote by f(b, p) the last term in the above and we
apply a Taylor expansion, to first order terms, in the neighbourhood of (bg,pg) to
obtain

Inmg ~ Inrg—cz+na+ B-ky+7v-vg, (3.29)

offset

where ¢, = In(1 + ebP02") f — gbo—pod'(1 4 gho—pod'y=1 o — gl k B=1by—b
and v = p — pg. The RHS of (3.24) then forms a linear predictor with the unknown
parameters Ina, 8 and v with a known offset Inr, — cg.

The estimates from this GLM procedure depend on a set of starting values for
bo and pg so that ¢y, k; and v, can be computed. The closer these values are to
the global minimum, the more certain are we that the iteration will converge to the
right set of estimated values. Since, in the present case, we cannot estimate b and p
directly, the actual fitting is performed recursively by reusing the estimates of b and
P as starting values for the next fitting:

b=b - and p=py+7

until 3 ~ 0 and #4 = 0, that is the estimates of b and p cannot be improved upon.
We use, as starting conditions, estimates from previously fitted observation periods
or the results from other graduation methods (for example, NLM or WNLM).

3.4.4 GLM with Parameterized Link Function

In the second GLM graduation method (GLM2) the force of mortality is selected
as the target random variable, and we use the overdispersed Poisson distribution to
model the numbers of death, as in the previous sections. Considering the responses
to be Az /rg, the mean and variance can be expressed as:

E [ﬁ] _ Bl _me (3.25)
Tz Tz Tz
A A .
Var [_] _ Var[2 z] — 1 Zn:c — iuz (3.26)
T T'x TZ Tz

where the notation u, has been used to highlight the difference between the mean of
the two target variables, u; # mg. Comparing the above with the configuration of
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the GLM (3.8) and (3.9) we can see that in order to satisfy the Poisson distribution
assumptions we have to set the weights as follows:

Wy =Tz -

Then the Gompertz — gamma form of the frailty model (A.10) can be rewritten
in terms of the mean value as:

a

Uy = —mm
T 14emn’

(3.27)
where 7, = b — p- . Although it is not possible to form a linear predictor 7, that
would include all three parameters a, b and p, we can apply the GLM methodology, if
we are able to find a continuous and differentiable link function g(uz, a) = 1, with
fixed parameter a. Then, the graduation could be performed over a chosen range
of values for parameter a assuming that the resulting ‘deviance profile’ D(u; @) is
a smooth curve with preferably one (global) minimum value Dy, over the selected
interval.

Observe that we can modify the original expression (3.27) by isolating exp(n;)
and then taking logarithms of both sides:

a— Ug
Inf——} =
( Ug ) G

resulting in a new ‘parameterized link’ function:

9(ug, a) = m(ﬂ) ) (3.28)

Ug

This approach has been used by Renshaw [1995]. The value of the parameter a
has to be pre—determined before the GLM can be fitted. For the structure under
consideration, it is possible to search for the optimum value of a by refitting the same
predictor structure 7, for different values of @, chosen carefully so that a deviance
profile can be constructed.

Note that there is a lower bound imposed on the values which the parameter
can take, since the argument of the logarithm must be positive, that is @ > max(ug)
(see also the interpretation of @ in section 7.2). Although we do not attempt to
prove here that the resulting deviance curve D(u; 14,) is indeed continuous and has
a single minimum over the domain (amin, 0], the results from extensive trials on a
range of data sets indicate that this is the case. Figure 1 provides an example of
deviance profiles based on the Female Annuitants’ Ultimate (i.e. policy duration over
5 years) experience for a range of 8 calendar periods.
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Figure 1: Deviance vs. fixed values of parameter a for Female Annuitants.
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4 Testing of Goodness of Fit

Appropriate diagnostic checks have been applied to all the graduated models, based
both on a visual inspection of characteristic plots and computation of the test statis-
tics proposed and implemented in the actuarial field by the CMI Bureau and codified
by Forfar et al [1988] (i.e. signs test, runs test, serial correlation test). A typi-
cal graphical diagnostic analysis involves plots of residuals against fitted values and
against observed values, plots of the histograms of residuals and also Normal QQ
plots (as proposed by Renshaw [1991, 1995]). All the statistical tests are based on
the Pearson residuals rp.

5 Application to Insurance Data

The proposed models have been applied to two major sets of insurance data collected
by the CMI Bureau and available for an extended historical period. The data com-
prise tabulations of observed number of deaths a, and initial exposures 7% by age
and policy duration d. Since we have modelled forces of mortality (u;) instead of
probability of deaths (g;) the original initial exposure counts have been transformed
to central exposures by the (standard) approximate formula:

;1
Ty =15 — 59 - (5.1)

5.1 Immediate Annuitants

The data consist of cohorts of males and females with lives born in the period between
1846-1943 and followed up between 1946-1994 (note that the observations for years
1968, 1971 and 1975 are not available). The data have been originally recorded by
grouped ages 4045, 45-50, 100+ and for individual ages between 50 — 100, and also
by duration periods (1-4 years and 5+, subsequently rearranged as 1+, i.e. 1-4 and
5+, i.e. 5 and over). Also, further grouping by observation years (and some ages) has
been applied in order to reduce the occurrence of zero mortality rates in individual
cells; this is particularly important for the application of the weighted non linear
least squares graduation method (see section 3.3).

We have grouped the observation years so that the central year of any group does
not coincide with the end of a decade (to avoid bias):

1946 — 49 (4) 1950 — 52 (3) 1953 — 56 (4) 1957 - 61 (5)
1962 — 65 (4) 1966 — 72 (7-2=5) 1973 — 77 (5-1=4) 1978 — 80 (3)
1981 — 85 (5) 1986 — 90 (5) 1991 — 94 (4)

where the numbers in parentheses are the number of participating observation years.
Graduation has been carried out principally on individual ages between 50 and 100+
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with minor changes from one method to another. We note that, for immediate
annuitants, the female data set is larger than the male data set and we focus here
on results for the female data.

5.2 Assured Lives (Males)

This was the largest data set analyzed and it was in a similar format to the annu-
itants’ data set. The experience of male policyholders, however, dominates and is
the focus of our analysis. The recorded age range is considerably longer than the
annuitants’ data set — generally individual ages between 10 — 100+, although mod-
els have only been applied to adult ages 50 — 100+. The available duration periods
have been used in the form 0, 1, 24 and 5+, in line with other authors (for example,
Renshaw and Haberman [1997]). We note that the data in the first three groups,
corresponding to lower durations, are significantly smaller in size and less reliable
than the 5+ group. The data are available for groups of 4 years, with the exception
of the last 4 calendar years 1991 94, where the data for individual calendar years
are also given:

1924 — 28 (5) 1929 — 33 (5) 1934 - 38 (5) 1949 — 52 (4)
1953 — 58 (6) 1959 — 62 (4) 1963 — 66 (4) 1967 — 70 (4)
1971 - 74 (4) 197578 (4) 1979 — 82 (4) 1983 — 86 (4)
1987 — 90 (4) 1991 — 94 (4)

As before, the numbers in parentheses are the number of contributing years.

6 Results and Parameter Estimates

In this section, we illustrate the graduation results for the models selected. Given
the similarity between some of the results and the different possible criteria for
consideration when filtering the final model, it should be stressed that there is often
not a single model which provides an optimal fit from all points of view. Full details
of the results can be obtained from the authors.

6.1 Annuitants Experience

In the first stage, all the models presented have been fitted to the annuitants’ ex-
perience using all the available data points with both graduating techniques (NLM
and GLM), and consideration has been given not only to the final parameter esti-
mates and to the goodness of fit tests, but also to the sensitivity of the results to
changes in the starting conditions. We note that in some cases when graduating by
the weighted classical non-linear least squares method (WNLM), further grouping
by ages of the data cells is necessary in order to avoid zero observed deaths and thus
infinite weights.
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As noted earlier, we focus on the female immediate annuitants’ experience. The
models considered are:

a) Gompertz — gamma, known as Perks (P)

a

B@) = e (A.10)

b) Gompertz/Makeham — gamma, known as Modified Perks (MP)

— _ a .
Alo) = ok s (A13)
¢) Gompertz — inverse Gaussian (GI)
e—d+pa’ A
i) = —m—— . .19
Ae) = s (A.19)

As an example of the results, we present Figure 2 which shows predicted and
observed forces of mortality for the female annuitants’ experience for 1953 — 56 for
duration 5+ with fitting carried out by the unweighted (NLM) and weighted non—
linear least squares methods (WNLM) of section 3.3. Similar graphs (not shown
here) are available for the other subdivisions of the data set.

Comparing initially the results for the WNLM regressions, it is concluded that
it would not be possible to distinguish between the models based on the goodness of
fit tests alone. However, from the detailed parameter estimates and their standard
errors, we find that the & estimates of the MP model are not significantly different
from zero and in some cases are negative. Similarly, the & parameter estimates for
the P and MP models are, in some cases, not significant. On the other hand, all
of the parameter estimates for the GI model are significant. Therefore, based only
on this criterion one might select the GI as the best model for the given data set,
especially when considering the ‘favourable’ property of a non—constant coefficient of
variation for the inverse Gaussian (see equation (A.17) and related comments in the
Appendix). However, it is generally accepted that the population hazard is best
described by a sigmoidal shape curve (i.e. logistic family function), which for older
ages tends to a positive finite value (Thatcher [1999]). The GI model does not have
this characteristic and it reduces to an exponential function, i.e. from the Gompertz
family, as £ — oo: for example, see the fitted models to the grouped observation
years 1953 — 56 in Figure 2 for females and Figure 7 (later) for males.

Examples of the diagnostic plots are presented in Figures 3 and 4 for the P and
GI model fitted to the 1950 — 52 and 1991 — 94 data for duration 14+. The plot
of the residuals against age and fitted values (in the first 2 panels) should show an
absence of any systematic pattern. Further, based on the agsumption of a normal
error distribution, the QQ Normal plot of the residuals should be a straight line.
These plots indicate a poor fit to the data for ages in excess of 85, in this case,
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Diagnostic Plots of W-NLM-GI for observations 1950 - 52

Females Duration 1+ Females Duration 1+
Grouped Residuals against Ages Grouped Residuals against Ages
; . ;
£
: s o
s L g e
L 291, s N ““m
o 20 ’ e ’
ol .. ’ o N g .
° FreTTne T o
gr
. =9
o]
§ v
T . CI) 0
5 80 70 ) ) 10 5 0 n 0 ) 10

Ags Ages
Grouped Residuals against Filed Values Grouped Residuals against Fitied Values
; . ;
[
Jr
2 %o ‘. ,
° } ' gg L '
. ’5 [+] Y e i
e ! e )
O] oo ). .. '] »
o T-Wwmpry; - ; g
gr
: 9
o
§ «
B 0 (IJ »
00 o1 02 03 04 00 o 02 03 04 05
Fited Valoes Fited Values
Q Normal Plotof Grouped Residuals QQ Normal Plot of Grouped Residuals
Y ;
a
3n
: 3° o
° . 4 o —
ot ] ’3; g ___,_:.v_..n.ummm:.:.-.:.'..'-'n'-'ﬁ__
[*] o ~--f.-.r"l'. ----------- g -7"-—.
° —__J_)_r_‘_,_.“u»mmmm.m---n %
g-
‘ “4
o
G o
N o1
2 i 0 1 2 2 1 0 1 2
Quantes o SandardNomral Quanes of tandad Normal

Figure 3: Comparison of WNLM fitting of Perks and Gompertz — inverse Gaussian
models for Female Annuitants Duration 1+ 1950 — 52.
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Diagnostic Plots of W-NLM-GI for observations 1991 - 94
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for both models. The results are even more striking when considering the shape
of the unweighted regressions for some of the more ‘sparse’ data sets like the male
annuitants (Figure 7) illustrating further the rigidity of the GI model compared to
the P or MP models, with the GI model generally having poorer goodness of fit
properties in these cases. In general, the P model produces a better fit to the data
than the GI model. Therefore, we have opted, on balance, for the P model from the
three initially proposed population hazard functions (A.10), (A.13) and (A.19), while
keeping in mind that our particular aim is then to use these results as a starting point
for taking advantage of the improved regression properties of the GLM method.

Although both GLM-based methods presented in sections 3.4.3 and 3.4.4 pro-
vide similar results we only focus here on the GLM2 method, this being the more
straightforward for estimating parameter standard errors. We can obtain a good
general impression of the features of the fitted models by looking at the estimated
parameters of the individual hazard functions and the assumed frailty distributions.

We note from the Appendix that the Gompertz—gamma (or Perks) model is of

the form of (A.9) where § = 6 is the shape parameter for the gamma distribution,
with the mean equal to 1, that is:

6-p-B-eP”®
(6-p—PB)+B-er=’
where the Gompertz model y, = BeP* is used for the standard individual.

The connection between these fundamental parameters and the form (A.10) used
in the fitting is:

B(z) =

. a
b= (A.11)
§=60= %, (A.12)

The parameter p is common to both parameterizations.

Similarly, for the Gompertz-inverse Gaussian case, the model is of the following
form, with v = 4 so that the mean of the inverse Gaussian distribution is equal to 1:

n(z) = B-eP® - r ’ .
B(z) = B (7+ %(ep-z_l))

The connection between these fundamental parameters, p, 8 and «y and the form
(A.19) used in the fitting is:

. e —4—40p
B = —, (A.20)
V1+e-b-105
e—0-10p /1 4 ¢ —b—40p

= " Fa— (A-21)

)
Il
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The parameter p is common to both parameterizations.

We present these values based on the WNLM and GLM2 approaches for the
female annuitants data set with two duration periods (14 and 5+) and 11 grouped
observation periods in Figures 5 and 6. We can see that the estimates 3 and p of the
GI and P models have an almost identical pattern over time in Figure 5, confirming
the similarity of these two models for the given age range (as previously suggested
based on the goodness of fit tests), whereas the MP model differs significantly from
these. It is interesting to note that the estimates based on the GLM2 method for
the P model are within the same range as those given by the GI and P models fitted
by the NLM method, but display a much smoother variation by period. Also, in the
case of the frailty distribution parameter (§ or 4), all the models lead to the same
type of pattern but at different levels. In the case of Figure 6, corresponding to
durations 5+, the GLM2-P model results in more stable estimates.

As described earlier in section 3.1, in the case of mortality modelling, we would
prefer a model that satisfies reasonably well (among others) two important criteria,
namely:

a) allows for the inhomogeneity in the variance of the errors;

b) has parameter estimates that are not influenced by the outliers in the data.

Then, the better behaviour of the GLM2 regression method could be associated
with the fact that it is less influenced (than the WNLM method) by the outliers
of a given data set as demonstrated by the results for 1953 — 56 males’ experience
in Figures 7 and 8, which show that the P and MP models are strongly influenced
by the presence of outliers in the WNLM case (Figure 7) and that the P model is
less influenced by the presence of outliers in the GLM2 case (Figure 8). Although
the NLM method is as equally unaffected by the outliers as the GLM2, i.e. behaves
well under criterion b), when considering the first criterion we note that it assumes
a constant variance of the errors, so that it is less satisfactory than the GLM2,
which allows for a non—constant variance, as outlined in section 3.4.1. In conclusion,

graduation method GLM2 performs reasonably well under both criteria in the case
of the P model.

As described in section 4, the goodness of fit tests are applied to the Pearson
(i-e. standardized) residuals, offering a unified way of comparing various models.
As an example, we examine the resulting diagnostic plots for the same groups of
observation years as in Figures 3 and 4. In Figures 9 and 10, we consider the
diagnostic plots for the P model fitted by the WNLM and GLM2 methods. The plots
of residuals against age and the fitted values should show no systematic variation
and for a standard normal distribution N(0, 1) the QQ Normal plot should be a
straight line. These results are slightly better for the GLM2 models, although there
is visual evidence of systematic patterns in the plots against age and fitted values.
In the case of the response residuals for the WNLM model, the QQ plots indicate
some violations of the model assumptions. Thus, we find similar outcomes when
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Figure 8: GLM2 fitting of Perks model for Male Annuitants Duration 54 1953-56.

comparing the detailed goodness of fit results for the WNLM-P and GLM2-P models,
fitted to the different time periods. In the case of the WNLM-P model, the P(runs)
and P(pos) statistics take extreme values (i.e. either too large or too small positive

numbers of residuals or runs) for most of the graduations whereas in the case of
GLM2-P, these statistics take fewer extreme values.

Taking the above considerations into account, we conclude that the GLM method
has a stronger theoretical justification and yields models with more favourable prop-
erties than the classical non-linear least squares method. The difficulties which have
appeared relate to the non~linear parameters in the model (for example, a). Thus,
in applications of the GLM2-P model, in some isolated cases, we find that:

a) the minimum value of the deviance curve (see for example, case 1 in Figure 11)
lies below the lower bound for parameter a (the bound, which is imposed by

the parameterized link function g(-) and the observed forces of mortality —
see section 3.4.4); or

b) the deviance curve tends asymptotically to a minimum only when a increases
from the lower bound to infinity (see cases 2-4, Figure 11), instead of having

a single global minimum for finite values of a (as in all the cases of Figure 1);
and we note that

c) there is no straightforward method of estimating the standard error for the
parameter a, using the S-PLUS package.
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Diagnostic Plots of W-NLM-P for observations 1950 - 52

Diagnostic Plots of GLM2-P for observations 1950 - 52
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Figure 9: Comparison of WNLM and GLM2 fitting of Perks model for
Female Annuitants Duration 14+ 1950 — 52.
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Diagnostic Plots of GLM2-P for observations 1991 - 94
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Figure 11: Difficulty with the non-linear parameter in (GLM2) fitting, either
min(a) < max(yz) or Dev — min only if @ = oco.

In cases a) and b) above, we note that application of the GLM approach with a
Taylor Expansion (see section 3.4.3) would provide guidance to the value of .

In the last part of the analysis, now that the most suitable model and graduation
method have been chosen, in the form of GLM2-P, we proceed to examine further
the sensitivity of the model to the choice of age range and presence of outliers. Thus,
initially, we restrict the age ranges first to 55 — 100+ and then to 60 — 100+, keeping
all the data corresponding to the chosen age range and comparing the graduation
results from the intermediate stages. Following that, we investigate the results from
fitting the model to the final restricted age range, that is 60 — 100, with any outliers
excluded. We note that, deciding whether an observation of a particular data set
is an outlier or not depends on the elimination criteria. Thus, when identifying the
outliers in a data set, one normally considers the ‘distance’ from a given observation
to the nearest ‘group’ of observations relative to the ‘mean’ for that particular group.
However, in practice, a number of arbitrary factors are involved, making this part
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Sensitivity of GLM2-P parameter estimates to outliers
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Figure 12: Results of GLM2-P model fitted to age range 60 — 100
applied to data sets with(1) and without(2) outliers.
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Sensitivity of GLM2-P parameter estimates to outliers
Female Annuitants Duration 5+
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Figure 13: Results of GLM2-P model fitted to age range 60 — 100
applied to data sets with(1) and without(2) outliers.
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PERKS MODEL (-2
FEMALES DURATION 1+ / GLM2 Fitting Method
Year a b P B (x107°) 6=49

1946 — 49 099943 | 707184 | 011332 |  9.11841 | 8.81953
0.07347 | 0.00182

1950 - 52 0.85481 | 7.08636 | 0.11965 | 596766 | 7.14441
0.09011 | 0.00221

1953 — 56 128268 | 7.46787 | 011670 |  6.87945 | 10.99116
0.09395 | 0.00223

1957 - 61 0.97831 | 7.20746 | 0.1921 |  5.62819 | 8.20674
0.07627 |  0.00179

1962 — 65 0.97837 | 746792 | 012188 | 426516 | 8.02725
0.08154 | 0.00190

1966 — 72 145027 | 761223 | 011144 |  8.36046 | 13.09438
0.07864 | 0.00180

1973 — 77 158409 | 7.74673 | 01325 |  7.38080 | 13.98782
0.08013 | 0.00180

1978 — 80 176966 | 7.92022 | 011255 |  7.12858 | 15.72345
0.10283 | 0.00227

1981 — 85 412233 | 879027 | 011096 | 741372 | 37.15218
0.06841 | 0.00149

1986 — 90 149992 | 795078 | 011404 | 552123 | 13.15276
0.09929 | 0.00212

1991 - 94 174930 | 838516 | 0.11911 |  3.40468 | 14.68700
0.13433 | 0.00278

Table 1: Regression on Female Annuitants Duration 1+.
Age range: 60 — 100 (outliers removed).
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of the analysis more informal in nature. Naturally, there are some significant effects
resulting from the elimination of outliers, as illustrated in the following paragraph;

however, these effects are less dramatic than those offered by NLM or WNLM models
in relation to the same conditions.

In the case of the annuitants’ experience, restricting the age range means, in
effect, the elimination of most of the ‘noise’ at the extremes (in the case of the
annuitants’ experience, this corresponds to observations which are mainly available

only for grouped ages, like 40 — 45, 45 — 50 or 100+). This change has little or no
effect, for the female annuitants’ data in terms of the fitted values, the goodness

of fit tests, and the frailty distribution parameter §. This can be observed when

comparing the corresponding curves from Figures 5-6 and Figures 12-13. However,
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regarding the sensitivity to the outliers, we can note that there are not unexpectedly
some changes in the model parameter estimates when graduating with the outliers
removed. Although these have very little effect on the predicted values — and
we observe improvements in the goodness of fit tests — we note that the effect is
concentrated on the 3 and & estimates, as can be seen in Figures 12-13. We also
note an upward trend over time for the frailty shape parameter § for both duration
periods 1+ and 5+.

Tables 1 and 2 present the parameter estimates for the female experience for
the Perks model fitted by the GLM2 method for the cases of duration 1+ and 5+
respectively (for the age range 60 — 100 with outliers removed).

PERKS MODEL (1 e )
FEMALES DURATION 5+ / GLM2 Fitting Method
Year @ b P B (x| -4

1946 — 49 1.19455 7.09864 0.10952 12.35409 | 10.90756
0.07861 | 0.00192

1950 — 52 0.82005 | 7.02472 | 0.11961 6.16433 | 6.93107
0.10698 | 0.00259

1953 — 56 1.26636 7.38301 0.11551 7.75517 | 10.96351
0.09880 | 0.00233

1957 — 61 1.03058 7.19295 0.11607 7.46251 8.87899
0.07924 | 0.00184

1962 — 65 0.92482 7.27678 0.12010 5.24073 7.70026
0.10068 0.00231

1966 — 72 1.43285 7.41784 0.10825 11.32951 | 13.23674
0.08804 | 0.00198

1973 - 77 135996 | 7.53921 | 0.11278 7.94660 | 12.05903
0.09331 | 0.00208

1978 — 80 2.18555 | 7.96696 | 0.10803 9.71238 | 20.06465
0.10408 0.00228

1981 — 85 426086 | 8.76577 | 0.10089 8.19411 | 38.77211
0.07829 | 0.00169

1986 — 90 1.80723 7.92062 0.10924 8.30729 | 16.54385
0.11044 | 0.00234

1991 — 94 391063 | 8.85662 | 0.11109 6.54790 | 35.20359
0.15455 | 0.00315

Table 2: Regression on Female Annuitants Duration 5+.
Age range: 60 — 100 (outliers removed).



6.2 Graduation Results from Assured Lives Experience 40

6.2 Assured Lives Experience

In the light of the discussion in section 6.1, we focus on the application of the earlier
identified model and graduation method of GLM2-P to the assured lives data set.
These data are particularly extensive for ultimate durations 5+ and are of good
quality. Since the graduation results for the lower durations (1, 2-4) turned out to
be inconclusive (for all the methods and models), we present the results here only
for the ultimate durations 5+. We also note that we have limited the graduation to
age ranges 50 — 100+ in order to allow comparison of results with those obtained in
section 6.1 (although, it could also be worthwhile to examine the parameter & when
the MP model is fitted over the full age range).

When applied to the initial age range of 50 — 100+, the graduations are generally
stable and yield parameters which are significantly different from zero throughout
the whole data sets. It is important to note, however, that the goodness of fit tests
do not support all of the fitted models. Thus the runs and serial correlation tests
(which are not independent) show weak graduations for some cases, for example for
the periods 1953 — 58, 1987 — 90 and 1991 — 94. The tests indicate strong dependence
between individual observations and this is also highlighted by the diagnostic plots
in Figure 14, suggesting cyclic patterns in the residuals. Further we note that,
for the last two group of observations, the estimates of & are very low, 0.253 and
0.237 respectively, suggesting that the models are unsuitable in the light of the
interpretation of this parameter as the upper bound for the force of mortality (see
section 7.2).

However, when we successively restrict the age ranges (to 55 — 100+ and 60 — 100),
automatically removing some of the ‘noise’ from the data at the older ages, the &
estimates generally improve together with the goodness of fit tests, except for the
1987 — 90 data which yield a value of P(runs) which is close to zero. Finally, after
we remove all possible outliers and we graduate the age range 60 — 100, we note an
overall improvement in the graduations for most calendar year groups. The excep-
tions are again the last two periods mentioned above, where although the estimates
of & increase to 0.424 and 0.391 respectively, the graduations still produce poor fits,
judged by the goodness of fit tests. Figure 15 presents the trends in the parameter
estimates arising from the above sensitivity tests for the male assured lives. It is
interesting to note that the frailty parameter § on average is at a lower level com-
pared to the results from the female annuitants data sets (see Figures 5 and 6), and
its profile as a function of time is peaked with a maximum in the mid 1950’s and a
subsequent decline.

Tables 3 and 4 present the parameter estimates for the Perks model fitted by the
GLM2 method for the case of ages 50 — 100+ and 60 — 100 (with outliers removed)
respectively. In each case the ultimate experience (duration 5+) is considered.
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Sensitivity of GLM2-P parameter estimates to outliers
Male Assured Lives Duration 5+

60
L

24-28 29-33 34-38 49-5253-58 59-6263-6667-7071-7475-7879-8263-8687-9091-94

50

40

20
s

10
L

1920 1940 1960 1980
observation years

w0
‘C-S B 2428 2933 34-38 49-5253-58  59-62 63-66 67-70 71-74 75-78 79-82 83-86 87-90 91-94

GLM2(1)
T | GLM2(2)
o

T T
1920 1940 1960 1980

observation years

b 24-28 29-33 34-38 49-5253-58 59-6263-6667-7071-7475-7879-8283-8687-9091-94

7 GLM2(1)
GLM2(2)

25

20

10
1

T T
1920 1940 1960 1980
observation years

Figure 15: Results of GLM2-P model fitted to age range 60 — 100
applied to data sets with(1) and without(2) outliers.

42



7 Interpretation of Results 43

PERKS MODEL (&)
MALES DURATION 5+ / GLM2 Fitting Method

Year a b D B (x107% | §-4

1924 - 28 0.86759 | 5.83007 | 0.10239 | 42.42544 | 8.47341
0.01879 |  0.00064

1929 — 33 093248 | 594862 | 0.10369 | 38.44513 | 8.99271
0.01850 | 0.00062

1934 — 38 091670 | 595725 | 0.10283 | 3877908 | 8.91439
0.01781 |  0.00061

1949 — 52 112394 | 6.22537 | 0.10096 | 30.19496 | 11.13251
0.01454 | 0.00051

1953 — 58 121226 | 636991 | 010159 |  35.67910 | 11.93314
0.01549 |  0.00056

1959 — 62 094837 | 624712 | 010525 | 27.26334 | 9.01105
0.02059 | 0.00077

1963 — 66 0.56760 | 5.80394 | 0.10868 | 22.15022 | 522249
0.01778 |  0.00071

1967 — 70 056721 | 5.84387 | 010777 | 22.06230 | 526325
0.01588 |  0.00064

1971 - 74 0.62015 | 6.00645 | 010779 | 20.48702 | 5.75351
0.01421 | 0.00057

1975 - 78 0.69907 | 6.19370 | 0.10767 | 19.24066 | 6.40277
0.01482 |  0.00060

1979 — 82 048202 | 594364 | 011042 | 15.25880 | 4.36521
0.01798 | 0.00074

1983 — 86 040834 | 596262 | 0.11405 | 10.96962 | 3.58033
0.02300 | 0.00094

1987 — 90 025285 | 578147 | 012255 | 579592 | 2.06326
0.02013 | 0.00120

1991 - 94 0.2368 | 591803 | 012604 | 411950 | 1.87932
0.03597 | 0.00143

Table 3: Regression on Assured Lives Males Duration 5-+.
Age range 50 — 100+.
7 Interpretation of Results

7.1 Identifiability

There are difficulties with interpreting the results of the model fitting exercise de-
scribed in previous sections and interpreting the suitability of, say, the Perks model
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for describing mortality variation with age.

There is an identifiability problem. As noted by Hougaard [1984],

“The frailty distribution is not identifiable, if the frailty is an individual
quantity. This is similar to the normal variance components model. It

PERKS MODEL (&)
MALES DURATION 5+ / GLM2 Fitting Method
Year a b P B (x1079) b=46

1924 - 28 077550 | 577756 | 0.10462 |  36.55031 | 7.41225
0.03042 | 0.00093

1929 - 33 0.79153 | 585832 | 0.10654 | 31.87819 | 7.42969
0.02811 | 0.00085

1934 - 38 070192 | 583484 | 0.10813 | 27.15500 | 6.49156
| 0.02980 | 0.00091

1949 — 52 126340 | 6.32005 | 0.10032 |  40.75522 | 12.59415
‘ 0.02567 | 0.00078

1953 — 58 2.14311 | 6.86109 | 0.09820 |  44.20519 | 21.82492
0.02006 | 0.00060

1959 — 62 141532 | 6.46350 | 0.09890 |  42.24255 | 14.31092
0.02837 | 0.00086

1963 — 66 1.04986 | 6.18809 | 0.09945 |  40.36880 | 10.55669
0.01929 |  0.00061

1967 — 70 0.73453 | 599501 | 0.10343 | 29.21118 | 7.10143
0.02445 |  0.00081

1971 - 74 0.58310 | 599825 | 0.10968 | 18.00226 | 5.31618
0.02441 |  0.00082

1975 — 78 075112 | 6.26458 | 0.10747 | 19.41134 | 6.98900
002422 | 0.00080

1979 — 82 049955 | 6.01836 | 0.11142 | 1410104 | 4.48346
0.03154 | 0.00107

1083 — 86 0.60463 | 633185 | 0.10706 | 17.06057 | 6.48810
0.03150 | 0.00104

1987 — 90 042411 | 610275 | 0.11346 | 10.13939 | 3.73787
0.03252 | 0.00108

1991 — 94 0.30061 | 6.27718 | 0.11877 |  6.34391 | 3.28878
0.03380 | 0.00110

Table 4: Regression on Assured Lives Males Duration 5+.
Age range 60 — 100 (outliers removed).
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is not possible to divide the variation into that within and that between
individuals, if there is only one observation per individual. It is possible
if the frailty is common to several individuals, for example in a family.”

Yashin et al [1994] demonstrate that mortality data on their own cannot defini-
tively be used to understand the underlying mechanism of survival. They show that,
without additional covariates or assumptions, the fixed frailty Gompertz/ Makeham
- gamma model cannot be distinguished from a range of models incorporating chang-
ing frailty at the individual level (for example, Le Bras [1976]). Thus, “even when a
model fits the data, the concepts used to construct the model may not be correct”.

This conclusion follows on from Hoem [1990] who proved that many underlying
mortality rates and many frailty distributions produce the same mortality pattern.
As a specific example, we consider the Gompertz — gamma model of (A.8)

@) = ﬁuz (A8)

where g = - €P® and Hy = [yp; dt.

Then, given a non-negative random variable with distribution function G(%)
and finite mean, it is possible to construct a new frailty model with individual
force of mortality (corresponding to Z = 1) v, and frailty distributed at birth with
fo(z) = G'(z) such that the population hazard rate matches (A.8) exactly. The form

of v, is:
- pig H,
- ‘Inf14+ 2= .
Ve = g b((S ln( +5 (7.1)
where b(-) is a function defined by the following steps:
{oe] o0
r(z) = / u-e " TdG(u) // e ¥ dG(u)
0 0

R() = /0 “r(y)dy
B(z) = R Y(z)

b(z) = %B(z) .

7.2 Interpretation of Parameters

For the Perks model, we can write

a

Ale) = 14 ebpo

and we can interpret the parameters as follow:
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1. a is clearly the limiting asymptotic value for the population force of mortality:
a = zli)noxo a(z) .

2. In the Gompertz model
e = B- ef?
and it is clear that p measures the relative rate of increase in the force of mor-
tality with age. For the Perks model, we note that, following Thatcher [1999]:

Ao) = oot = (1-22) (72)

Thus, the relative rate of increase is close to p at young ages, where f(z) is
small, but then it reduces as age increases and for example at ages high enough

for zz(z) to be approximately %a, the relative rate of increase would have fallen
to lp.
2

3. b can be interpreted via the age zo where

o = 40+9
p

which is the age at which f(z) = %a, i.e. half its asymptotic value, and the age
at which the Perks curve has its point of inflection.

7.3 Comparison of Results

It will be useful to compare the result with those obtained from other similar studies.

Estimates of p are available from a number of recent studies. Thus, Forfar and
Smith [1988] fit the full Heligman - Pollard model to successive English Life Tables.
At the oldest ages, this model reduces to

G-H®

&= 17G-H®

(7.3)
and so In H is directly comparable to p in our notation, setting aside the difference
between g, and p;. For ELTs No 11 (1950 — 52), 12 (1970 — 72) the estimates for
P would be 0.10003, 0.10346 and 0.10373 respectively. However, we note that this

exercise involved fitting to the already graduated ¢ values rather than to the crude
data.

Congdon [1993] uses adult mortality data (ages 25 — 90) for Greater London for
1980 - 82 and fits a range of models, including

a) one based on the ELT 12 graduation formula and
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b) the modified Heligman — Pollard model

G-H*

=1 %G H®

(7.4)
For the parameters corresponding to p, the estimates are

a) 0.0716 and 0.1086 for males and females respectively
b) 0.10400 and 0.09685 for males and females respectively.

(We note that in the case of b) the estimates of & are negative for females: as
discussed also in the Appendix).

Wang and Brown [1998] fit the Gompertz — gamma model to the 1994 Group
Annuity Reserving Table of the Society of Actuaries, obtaining the following esti-
mates, in our notation:

a—=015359 b=5.20153 p=0.11761 S ="7.762 x 10-¢ 0 = 1.306

Given the interpretation of ¢ as lim;_,., 7#(z), this particular estimate & looks very
low!

Manton et al [1986] fit the Gompertz — gamma model to US Medicare data for
both sexes by cohort during the period 1968 — 78. Their p estimates for cohorts
born between 1884 and 1902 lie in the range 0.0734 — 0.1029. The  estimates are
published for the 1892 birth cohort (ages 75 — 85):

6= 47393 for males
6= 34722 for females

Congdon [1994] presents a theoretical argument to demonstrate that, all other pa-
rameters remaining unchanged, an increase in the gamma variance (i.e. a decrease in
6) is associated with an increase in life expectancy. The detailed results of Tables 1-4
(and unpublished results) and Figures 5, 6, 12, 13 and 15 are not conclusive in this
regard because the other parameter estimates (p and 3 representing level and slope
of mortality at the individual level) are different as we move from one period to
the next. However, Congdon [1994] further reports a tendency for the gamma, vari-
ance to reduce over time (i.e. corresponding to an increase in ) in a series of fits
of frailty models (with covariates) to male mortality (at ages 25 — 90) for Inner and
Greater London over the period 1971 — 90. The ranges for the parameters are as
follows:

& 0.4300 —  9.7299
) 0.0968 —  0.1075
B 26.9912 x10~6 —  40.7930 x10~S
9 3.9988 — 100.4842
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Congdon [1994] also uses the Gompertz — inverse Gaussian model and finds a
slight improvement in fit in relation to the Gompertz — gamma model: this can be
compared with the opposite finding of the study of Manton et al [1986] and this
report. Further, Congdon experiments with Aalen’s more general model (A.25) and
finds estimates of 1) that are closer to 2 than 1, indicating the slight superiority of
the inverse Gaussian frailty distribution in this case.

Damaskos [1998] uses the Gompertz — gamma model for recent English Life
Tables fitting the models by the weighted non-linear squares method to the un-
derlying crude data (unlike Forfar and Smith [1988]) The parameter estimates are
presented in Table 5, using a range of adult ages. The ELT 15 results for females
are not included because of the poor fit provided by the model.

Parameter Estimates
Period | Age range G b B (x107%) ]
MALES
ELT 12 30 -90 1.1384 0.0964 66.603 | 11.8170
40 - 90 1.1506 0.0962 67.473 | 11.9640
50 — 90 1.2111 0.0953 71.801 | 12.7065
ELT 13 30-90 0.0852 0.0959 67.448 | 8.8790
40 - 90 0.0863 0.0957 68.753 9.0148
50 — 90 0.0900 0.0948 73.400 9.5008
ELT 14 30 -90 0.0669 0.1042 33.393 6.4219
40 - 90 0.0671 0.1042 33.583 | 6.4430
50 - 90 0.0679 0.1038 34.490 6.5406
ELT 15 30-90 0.0748 0.1035 28.318 7.2258
40 - 90 0.0747 | 0.1035 28.260 7.2147
50 - 90 0.0759 0.1031 29.042 7.3619
FEMALES
ELT 12 30-90 0.0889 | 0.1172 8.576 7.5839
40-90 | 0.0882| o0.1174 8.470 | 17.5169
50 - 90 0.0855 | 0.1181 8.008 7.2386
ELT 13 30-90 0.0989 0.1122 10.979 8.8140
40 -90 0.0980 0.1123 10.870 8.7310
50 — 90 0.0933 0.1132 10.197 8.2460
ELT 14 30 - 90 3.017 | 0.1089 11.814 | 27.7010
40 - 90 2.952 | 0.1089 11.734 | 27.1100
50 — 90 2.644 | 0.1095 11.273 | 24.1500

Table 5: Parameter Estimates from Damaskos [1998]
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7.4 Forecasting Parameter Values

Keyfitz [1982] argues persuasively that the effective forecasting of mortality rates
(and other demographic variables) depends on finding a parameter space of small
dimension in which the mortality pattern for the population under consideration
can be located. For forecasting, we would like the successive sets of mortality rates
over time to be represented by point moving in a simple way through the parameter
space — ideally in a straight line (see Sithole et al [2000] for an example). This is
a two stage process. Finding an appropriate parameter space representing a good
fit to past set of data will not be sufficient — the second requirement is a simple
and predictable progression through time. The analysis so far has only addressed
the first stage and our favoured Gompertz — gamma model provides an adequate
representation through three parameters (a, b and p or 8, p and 6).

Given the trends depicted in section 6 for the principal parameters in the Gompertz
— gamma model, the next step is to forecast future values for the parameters. This
is the approach first advocated by Cramer and Wold [1935] in their modelling of
Swedish mortality over time from 1801 — 1930 via the Makeham formula,

Bz, y) = oy +By- C; (7.5)

where oy, By, ¢, were modelled by parametric formulae involving calendar time y.
Specifically o was represented by a linear function and log 8, and logcy each by a
logistic function.

An alternative methodology would be to use time series methods of the Box—
Jenkins type (see McNown and Rogers [1989]) or the structural time series methods
of Harvey and Durbin [1986].

Wang and Brown [1998] take a different approach and propose a model where
the overall improvement in mortality rates is proportional to the average frailty in
the population i.e. they define the annual improvement factor

Ez,y =1- —_u(_:c, y+1)
E(z,y)
and then suggest B
Eyy=kK-Z (7.6)

where & is a parameter to be estimated from past data and z; is given by (A.7) for
the Gompertz — gamma model. This proposal would imply that as average frailty
decreases with age so the annual improvement factors would also decrease. It would
enable the forecasting of 1 year ahead values i.e. G(z, y+ 1) from knowledge of
T (z, y). But the implications are that

Bz, y+1) = Gz, y) (1-Es,y)
=z, y) (1 — K- Z)
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which is not of the Gompertz — gamma, structure and is unlikely to produce a good
fit to the data as they emerge. Indeed, it is straightforward to show that, in this
case, we would have

Z:rﬂ) ay, - ePEm+l)

gz, y+1) = Zi:o By, - epant1)

for suitably chosen ay, a1, Bo, Bi, Ba-

An alternative approach which has not been investigated further would be to
begin with a model of the form

”(za Y, Z) = f(ya z) ° ll(-’f, 1, 1) = f(ya Z) * Kz (77)

and consider simple choices of f(-), for example

fy,2) = fot {2 (7.8)

where f} is different for each calendar period y and f¥ > f¥*!, and the main
mortality structure remains fixed over time. Then, in an obvious notation,

_ plz,y+1,2)
wz, y, 2)
(- 1)
fot+ 1=

which implies that improvement would be higher for the more frail individual.

Em,y,z =

(7.9)

This extension of our analysis remains for future work.

In attempting to understand past mortality trends and consider forecasts for the
future, it is important to begin with an accurate and correct assessment of the past.
As many investigators have concluded, including for example Vaupel et al [1979] and
Congdon [1994], the presence of heterogeneity casts doubt on conventional methods
of measurement. It thus becomes important to allow fully for frailty in models of
mortality so that trends particularly at the oldest ages can be identified — fail-

ure to do so could understate mortality improvement at these ages, in particular
(Vaupel et al [1979]).

8 Conclusions

The theoretical implications of heterogeneity (viz frailty in human populations) when
estimating individual mortality rates from available population data have been ex-
tensively studied in the demographic and statistical literature. Various models have
been proposed for measuring the size of such heterogeneity in human mortality data,
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based on discrete and continuous age formulations. In this paper, we have consid-
ered the latter in the form of applications of Vaupel et al [1979]'s multiplicative
model, because it is more straightforward to implement in practical applications and
to interpret the results, than the discrete alternatives. In this context, we have in-
vestigated, using two extensive insurance-based data sets, two frailty distributions,
namely the gamma and the inverse Gaussian with respect to the Gompertz/Makeham
family of individual hazard functions. The effects on the outcomes of using different
graduation techniques have also been studied.

Thus, regarding the assumptions for the frailty distribution, the analysis shows
that the model incorporating the inverse Gaussian frailty distribution (GI) generally
results in significant model parameters from the graduations, for the relevant age
ranges. But this model is less responsive to variations in the data and also is less
likely to lead to satisfactory predictions for human mortality at the older ages (being
an exponentially increasing function with age) than alternatives. In contrast, the
parameter estimates offered by the models assuming a gamma frailty distribution
(MP or P) are less significant, but the models are more favourable because of a
better fit and because the model has a logistic form with respect to age. Therefore,
we conclude that, when applied together with the Gompertz/Makeham individual
hazard functions, the gamma frailty distribution seems to be more viable compared
to the inverse Gaussian. It also predicts a non—homogeneous population for older
ages, as discussed by Manton and Stallard [1984]. Further, we confirm the experience
of other authors, that, when applied to the older ages only, the MP model is inferior
to the P model, as the & estimates do not appear to be significant.

The generalized linear modelling method has a stronger theoretical justification
compared to the classical non-linear least squares method and can result in more sta-
ble parameter estimates. However, there are potential drawbacks when applying the
GLM fitting technique to models with non-linear parameters. Firstly, one needs to
know in advance the most likely domain for the non-linear parameters and secondly,
the fitting process can fail to produce a global minimum of the deviance profile for
the respective domain. We note that, in the particular case of the P model, the first
disadvantage is usually not serious, as we can often estimate permissible intervals for
the a parameter. Further, this disadvantage is less serious, when compared with the
traditional method of non-linear regression, where we need ‘good’ starting values
for ‘all’ of the parameters involved. Although the second drawback seems to reduce
the chances of success for fitting with the GLM2 method for some of the data sets
investigated, it should be noted that, for all of these cases, there were also difficulties
with the NLM method. Also, we note that the P models fitted by W-NLM technique
proved to be strongly influenced by outliers in the data sets, often yielding, for ex-
ample, estimates of @ that are too low compared to the observed forces of mortality
(where we recall that a = limg_,o0 pz)-

Regarding the size of the frailty effect for the investigated data sets, the results
are less conclusive with a coefficient of variation of the gamma frailty distribution
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(1/+/8) for the final models being on average less than 0.45 for the different data
sets, implying ‘fairly’ homogeneous populations (corresponding to a § value of ap-
proximately 5). As has been shown earlier, parameter values corresponding to & have
been found in the literature in the range 0.15 to 9.5. Considering the interpretation
of a, we probably can restrict this range to the interval from 0.35 to 1.3. For the
relative rate of increase of the force of mortality , the estimates are fairly stable, ly-
ing between 0.09 to 0.12. Thus, we could draw up the potential range of the gamma
shape parameter, d, that could normally result from the P model as being:

_ 03 - 13 ~ 2916 — 14.444 .

0=2=012 " 009

S|

It is possible that the moderately high values of § are attributable to the investi-
gated populations being shaped by selection (temporary initial selection for assured
lives and adverse or self-selection by annuitants: see Benjamin and Pollard [1993]).
For such populations the basic frailty models, with constant frailty at the individual
level during a life span, might not be sufficiently sensitive to pick up differences be-
tween the individual members. Then, a natural extension would be to study more
advanced models where frailty varies with other factors, including age and physio-
logical and socio—economic variables.

Overall, we conclude that the fitting of the Gompertz — gamma model (P) has
been broadly successful for the two data sets discussed i.e. female annuitants and
male assured lives (despite some discrepancies — for example Figure 14). For these
two data sets, the detailed results indicate that it would be worth investigating mod-
elling the time trends in these parameter values with a view to developing methods
for forecasting using time series methods (as in McNown and Rogers [1989]) or
incorporating the time parameter directly in the frailty model (as advocated by
Manton et al [1981] and Vaupel [1999]: see equations (2.16) and (2.17)). This will
be the subject of future research.

Finally, we return to the identifiability discussion of section 7.1 and the need for
caution in interpreting the meaning of the parameters in any frailty—based model.
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Appendiz:

Mathematical Background: Frailty Models

As noted in section 2.1, two important components of the frailty model are the forms
for y1; and fo(2). As mentioned in the introduction, we concentrate on the Gompertz
— Makeham form for the underlying individual hazard function as it has been found
by many studies that this form fits most mortality data well in the adult age range.
Thus, we consider the force of mortality for the ‘standard’ individual:

to = w(e|l) = a+p-ere, (A1)

where « is the Makeham correction term for young age mortality and its value is
usually close to or equal to zero.

It is convenient to treat the two possible cases separately, that is:

a=0 Gompertz Model

According to our definition in (2.2) the ‘standard’ cumulative hazard is given
by:

T

0

H, = /ﬂ-ep'tdt = ée”'t
0 p
_ B e

= S (ere 1) (A.2)

a #0 Makeham Model
The definition (2.1) of the individual forces of mortality is modified to
palz|2) = a4+ z- py (2.10) making the cumulative hazard conditional on z

become:
T T T
/u(t|z)dt = /adt+z/utdt
0 0 0

=a-z+z-Hg, (2-2a)

Ho(z|2)

where H is given by (A.2).

Similarly, the expression for the cohort force of mortality will change slightly
from (2.9):

fa(z) = /0 "u(2) - fole) dz
/0 otz ) falz) do

a+Zg - g - (2.90)

I
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It can be shown that the above changes will have no influence on f;(z), the
p-d.f. of frailty for those alive at a current age . Using the definition (2.8) for
this, we obtain:

fanle) = LSkl fole) T
T, - f(;x’Sa(ﬂz) - fo(z) dz f(;x’fo(z) . e~ Ha(zl2) 42
_ fo(2) - e (@atzHa) e fo(z) - e—#Hs
B fowfl)(z) e—(eztzHs)dz ~— goB fowa(Z)'e‘z'Hw dz
= fo(2).

Hence, the expected value E[Z;] = Z, is the same as for the Gompertz
model. The implication is that, in the Makeham model, the scale parameter «
acts additively as an independent term in the case of the population force of
mortality function (see (2.9¢)), in the same way as the force of mortality for
the ‘standard’ individual (A.1).

However, we note that, since in all of the applications we have focused on the
adult and older ages, the inclusion of this correction factor « (initially intro-
duced by Makeham in order to improve the representation of mortality rates
at the younger ages), does not improve the goodness of fit so that effectively
a = 0 throughout.

Regarding the choice of fo(2), Vaupel et al [1979] have proposed the gamma
distribution. Their results were generalized by Hougaard [1984] who showed that if
the frailty p.d.f. fo(z) came from the non-negative exponential family with z as a
canonical statistic viz
25 -exp(—0-z) - m(2)

w(4, 0)
then the resulting p.d.f. f;(2) among surviving members of the cohort will belong to
the same frailty with modified parameters i.e. P(4, 0 + Hy).

P(5,0) =

(A.3)

This family includes the degenerate distribution (i.e. homogeneous case), gamma,
inverse Gaussian, Poisson, two—-point, truncated normal and non—central x? distri-
butions. Hougaard [1986] extended these results to include stable distributions.

We report the empirical results of fitting models based on two types of frailty
p.d.f. at birth, namely: gamma and inverse Gaussian.

a) Gamma distribution:

95 R 25~1 Y
W e 3 (A4)

then the distribution of frailty among survivors at any age z in the cohort is
given by:

P, 0) = folz) =

P(6, v+ Hy) = fa(z) = % e~# (1) (A.5)
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Hence, the average frailty at birth and among survivors at any age z respec-
tively will be:

)
%o = 5 (A.6)
_ ¢
Zp = oy (A7)

We observe that the shape parameter § from the above gamma distribution
function is an important indicator of the extent of heterogeneity in the popula-
tion: fo(z) has coefficient of variation = 1/4/8. Thus, the smaller the value of
§ the more significant is the heterogeneity in the population and when § — oo
the coefficient of variation in frailty becomes zero resulting in the individual
and population hazard rates becoming identical.

Note that we could obtain the same result from the p.d.f. of Z, (2.8) by sub-
stituting the expressions for the conditional survivor function S(z|z), given
by (2.3), and the cumulative hazard (2.2) together with the marginal p.d.f. (A.4).

Then substituting the above expression for the expected frailty (A.7) into (2.10)
yields the intrinsic relationship between the population hazard and the indi-

vidual hazard function: 5

,u(m) = 'Y+Hwﬂm-

(A8)

We can develop the last relation further making use of the cumulative haz-
ard (A.2) and also allowing for the two types of individual hazard functions:

1. Gompertz Hazard: u, = 3 - e?®

Then,
B(e) = - Be™
# 0+ E(er=—1)
5-p-B-eP?

= — =" A9
@p—B)+5-ers (4.9)

This is one of the principal models investigated in this paper. However,
presentation of (A.9) has been transformed in order to make the non—
linear numerical fitting to the data more stable. According to Ratkowsky
[1983, 1990], these transformations not only make the function more suit-
able for parameter predictions (better statistical properties of the estima-
tors), but also lead to parameters that have direct meanings. Thus we
write:

_ é-p

B(z) = 1+ 0_%:.5; P

a

= Trebrd) (A-10)
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where in the above 2’ = z — 40 is the age variable translated to the mini-
mum observation age in the data, which improves the computations sig-
nificantly. We assume throughout that the mean frailty zg = 1 (i.e. § = 6)
in the initial population, so that the mean coincides with the standard
value at age zero. Then, we can calculate the estimated parameters of the
individual hazard rate function and those of the frailty distribution:

a

B = T3 obring’ (A.11)
b=145= %, (A.12)

where we observe that 8 = up = 1 (0) as expected when zp = 1.
2. Makeham Hazard: py; = a+ 3 -eP?
The cohort force of mortality resulting from (2.9a) and (A.8) in this

case is
§-p-B-eP

ﬁa(a:) = o+ (0']7— ,B) +13' e (A.Qa)
which can be transformed into the form:
_ a
pa(z) = o+ W . (A.13)

Both (A.9) and (A.9¢) are members of the family of mortality curves first

proposed by Perks [1932] for graduating the force of mortality. Beard [1959,
1971] undertook a series of investigations, based on different theoretical

models of the mortality process, which could lead to the Perks family rep-

resentation of the force of mortality. One of these includes the proposal of
a heterogeneous population and the derivation of (A.9«) for the Makeham

- gamma case. This study therefore pre—dates Vaupel et al [1979] and we

note that Manton et al [1986] includes a reference to Beard’s work.

In passing, we note that the formula (A.13) has appeared in the actuarial
literature, as part of the graduation formula for adult mortality, for E.L.T.

Nos. 11 and 12 (Benjamin and Pollard [1993]).

b) Inverse Gaussian distribution:

1) = [ ] e vt ew(rz-vs), >0 (a1

which can be re-parameterized, on completing the square, as

folz) = [ﬁ]%exp [— (; /\_7;‘):] (A.14))
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Hougaard [1984] shows that with respect to the standard form for the expo-
nential family, P(4, v), § = —% = const and that the distribution of frailty
among survivors at age = will be:

o) = [ L] explie (v + HM e [~ 4 Ho) = 9] . (A1)

It is straightforward to show that the average frailty at birth and among sur-

vivors at age z will be:
b\?
o= (%) )
o

Z = (7 J:/’Hz)% . (A.17)

The variances are respectively 1~3 and 143 (y+ H,)"%, so that the co-

efficient of variation is not constant with age as in the case of the gamma
distribution, that is cv, = 23 [ (v + Ha,)]_%. This indicates that the models
based on these two distributions have fundamentally different properties. The
inverse Gaussian (contrary to the gamma) would result in a population tend-
ing to become more homogeneous at older ages and then comprising mainly
individuals with low frailty levels. Then, as Hougaard [1984] has pointed out
“...the difference from ordinary life table methods is smaller for the inverse
Gaussian than for the gamma distribution”. He has also argued that, for
a frailty model, this would be a more appropriate property, arising from the
mortality selection process. However, this view was later challenged by Manton
and Stallard [1984] (and subsequent work) who described the population ag-
ing process by a continuous-state continuous—time stochastic model, assuming
that the effect of diffusion (“the random movement of persons to more extreme
values of the physiological variables”) would oppose the effect of selection, thus
maintaining a constant coefficient of variation of the frailty variable.

Y
S
I

Similarly to before, substituting the above equation (A.17) into the cohort
force of mortality given by (2.10) yields the intrinsic relationship between the
population hazard and the individual hazard function:

A@) = b (;f—H) . (A.18)

In this inverse Gaussian case, we have considered only the Gompertz individual
hazard rate. Transforming again the population hazard into a more suitable
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format to facilitate the fitting process, we obtain:

I .ePT # %__ -z ¢'ﬂ2'17 3
He) = Bt (7+§(e”—1)> d ((7-p—/3)+ﬂ-6”)

1
.32 2

!
e—d+11w

—epz [P B | _ ¢ Al
¢ 1+ 7_1% ere V14 e-btpa’’ (A-19)

where b, d and p are estimated directly from the fitting of the model and the
B, ¥ and v can be computed as follows. As before we fix the mean frailty of
the initial birth cohort to be 1, so that y = 4:

B = _ et (A.20)

V14 e-b-105’

. —d—40p ,/1+ —b—40p
e e

P =

2 N ~ ?
e—b—40p p

% (A.21)

and observe that we have 8 = [i (0) = yq as expected when zp = 1.

We note that many authors have deduced the above formulae for the mean frailty
for survivors (egs. (A.7) and (A.17)) and for the population hazard functions (eqgs.
(A.8) and (A.18)) by applying the original method proposed by Vaupel et al [1979].
This approach could be useful for other marginal distributions of Z,. Thus, we can
use the equation for the joint p.d.f. of age and frailty (2.5) to express the individual
force of mortality at age = conditional on frailty level z in another form:

_ @2)
S(z,2)’

which leads to a corresponding result for the unconditional cohort force of mortality
considered for the whole range of z:

fl@) _ I f(=,2)dz
S(z)  J°S(z,z)dz
po - Joz e *Ha - fo(z)dz

= foooe_z.Hw . fO(z) dz ’ (A'23)

(z|z) (A.22)

77Y

f(z) =

as in the development of (2.9).

Allowing, as before, for an appropriate p.d.f. of frailty among the cohort members
at birth we can evaluate, in certain cases, the analytical relation between the popu-
lation and individual hazard function at any current age z to which the members of
the population might survive.

The transformed equations (A.10) and (A.19) (for the cases of gamma and in-
verse Gaussian frailty distributions, respectively) have the advantage of ensuring that
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the multiplicands in the denominator are positive. For example, Congdon [1993] in
fitting the Heligman — Pollard model which, for old ages, reduces to
_ G-H*

T 1+4k-G-H®’

obtains parameter estimates for # which are negative (for females, Greater London,
1980 - 82). This would imply that g, — co as ¢ = T, where 1 + -G - H® = 0.

qz (A.24)

¢) Other Distributions
Aalen [1988] proposes a generalization of the models put forward by Hougaard

[1984, 1986]. These lead to expressions for the population hazard rate of the
following form

Hz

PO = syt my

for, >0 (A.25)
where the special case 1 = 1 corresponds to the gamma model, ¥ = % cor-
responds to the inverse Gaussian model, ¥ < 1 corresponds to the stable
distributions proposed by Hougaard [1986], 1 — O corresponds to the degen-
erate case f(z) — pz. The class of compound Poisson distributions would
correspond to 3 > 1. Then, Z is either equal to 0 with positive probability or
it is continuously distributed for 2 > 0. This model would not be appropriate
for total mortality (i.e. there is no non-susceptibility to death!) but could be
useful for particular diseases or causes of death — as shown by Aalen [1988] in
the case of leukaemia.

d) Other Choices for the Force of Mortality
As noted in the text (section 2.2), some authors have proposed using the
Weibull function for g, for example Manton et al [1986]. This has not been
pursued here because of the weight of evidence from the actuarial literature in
favour of the Gompertz — Makeham family of mortality models for insurance
— based populations.

e¢) Other Structures
Alternatives to the fundamental structure (equation (2.1)) suggested by

Vaupel et al [1979] have been briefly considered. For example, we could men-
tion:

we|Z =2) = f(z)-plz]l) = f(z) - o (A.26)
where f(-) is a low order polynomial, like the linear form:

f(z2) = fo+ fiz. (A.27)

Then the Gompertz — gamma model would lead to

fi-0-p-B-eP®

ﬁ(z) = fO'ﬁ'ep'w'FW

(A.9)
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to replace (A.9), and the Gompertz — inverse Gaussian model would lead to

.\
() = fo-B-eP"+ f1-B-eP® (H%(e—f‘—l)) (A1)

to replace (A.19). Preliminary exploratory analysis indicated that neither (A.9')
nor (A.19') provides a good fit to the data sets investigated. Higher order poly-
nomial choices for f(z) have not been considered.

Jones [1998] explores the representation
wz|Z =2) = 2y -0 <v< 00 (A.28)

for the transition intensity from the healthy state to the withdrawn state. The
parameter -y is used to measure the impact of frailty on the “force of lapsation”,
with v = 0 corresponding to independence. If v > 0, then individuals with
higher frailty would be more likely to lapse than those with lower frailty (and
vice versa for v < 0).
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