
              

City, University of London Institutional Repository

Citation: Weygandt, M., Hummel, H-M., Schregel, K., Ritter, K., Allefeld, C., Dommes, E., 

Huppke, P., Haynes, J. D., Wuerfel, J. & Gärtner, J. (2017). MRI-based diagnostic 
biomarkers for early onset pediatric multiple sclerosis. NeuroImage: Clinical, 7, pp. 400-408.
doi: 10.1016/j.nicl.2014.06.015 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/22802/

Link to published version: https://doi.org/10.1016/j.nicl.2014.06.015

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


NeuroImage: Clinical 7 (2015) 400–408

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
MRI-based diagnostic biomarkers for early onset pediatric
multiple sclerosis
Martin Weygandta,b,1,⁎, Hannah-Maria Hummelc,1, Katharina Schregeld, Kerstin Rittera,b, Carsten Allefelda,
Esther Dommese, Peter Huppkec, John­Dylan Haynesa,b,2, Jens Wuerfelb,d,2,⁎⁎, Jutta Gärtnerc,2

aBernstein Center for Computational Neuroscience Berlin, Charité— Universitätsmedizin, Berlin, Germany
bNeuroCure Clinical Research Center, Charité — Universitätsmedizin Berlin, Germany
cDepartment of Pediatrics and Pediatric Neurology, and German Center for Multiple Sclerosis in Childhood and Adolescence, University Medicine Göttingen, Germany
dInstitute of Neuroradiology, University Medicine Göttingen, Germany
eCenter for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité— Universitätsmedizin Berlin, Germany
⁎ Correspondence to: M.Weygandt, Bernstein Center fo
Charité —Universitätsmedizin Berlin, Haus 6, Philippstrass
⁎⁎ Correspondence to: J. Würfel, Institute of In
Neuroradiology, University Medicine Goettingen, Robert
Germany.Tel.: +49 (0) 551 396643, Fax: +49 (0) 551 39

E-mail address: martin.weygandt@bccn-berlin.de (M.
1 First authors contributed equally to this work.
2 Last authors contributed equally to this work.

http://dx.doi.org/10.1016/j.nicl.2014.06.015
2213-1582/© 2014 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 24 March 2014
Received in revised form 17 June 2014
Accepted 30 June 2014
Available online 12 July 2014

Keywords:
Pediatric multiple sclerosis
Early onset pediatric multiple sclerosis
Biomarkers
Diagnostic information
Currently, it is unclear whether pediatric multiple sclerosis (PMS) is a pathoetiologically homogeneous disease
phenotype due to clinical and epidemiological differences between early and late onset PMS (EOPMS and
LOPMS). Consequently, the questionwas raisedwhether diagnostic guidelines need to be complemented by spe-
cific EOPMSmarkers. To search for suchmarkers, we analyzed cerebral MRI images acquired with standard pro-
tocols using computer-based classification techniques. Specifically, we applied classification algorithms to gray
(GM) and white matter (WM) tissue probability parameters of small brain regions derived from T2-weighted
MRI images of EOPMS patients (onset b12 years), LOPMS patients (onset ≥12 years), and healthy controls
(HC). This was done for PMS subgroups matched for disease duration and participant age independently. As ex-
pected, maximal diagnostic information for distinguishing PMS patients and HC was found in a periventricular
WM area containing lesions (87.1% accuracy, p b 2.2 × 10−5). MRI-based biomarkers specific for EOPMS were
identified in prefrontal cortex. Specifically, a coordinate inmiddle frontal gyrus containedmaximal diagnostic in-
formation (77.3%,p=1.8× 10−4). Taken together,wewere able to identify biomarkers reflecting pathognomon-
ic processes specific for MS patients with very early onset. Especially GM involvement in the separation between
PMS subgroups suggests that conventional MRI contains a richer set of diagnostically informative features than
previously assumed.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Pediatric MS (PMS) is defined by an initiation prior to the age of
16 years (Sadaka et al., 2012; Renoux et al., 2007). Although a variety
of features characteristic for PMS have been described recently (e.g.,
Hummel et al., 2013; Bigi and Banwell, 2012; Sadaka et al., 2012;
Vargas-Lowy et al., 2012; Polman et al., 2011), it is currently unclear
whether PMS denotes a pathoetiologically homogeneous or heteroge-
neous clinical phenotype. In particular, recent studies found evidence
for differences in the gender distribution between patients with early
onset PMS (EOPMS) as compared to later onset PMS (LOPMS; Banwell
r Computational Neuroscience,
e 13, 10115 Berlin, Germany.
terventional and Diagnostic
-Koch-Str. 40,37075 Göttingen,
13250
Weygandt).

. This is an open access article under
et al., 2007). Another study evaluated the validity of the revised
McDonald criteria 2010 for diagnosing PMS and found that these criteria
are well suited for childrenwith onset at the age of 11 or older, but con-
siderably less well for the subgroup of children with earlier onset
(Sadaka et al., 2012). Comparing characteristics of hyperintense lesions
in T2-weighted (T2w) brain MR images between EOPMS and LOPMS
patients, Chabas and colleagues found that EOPMS lesions were less
well-defined. Consistently, these authors claimed that MRI-based diag-
nostic criteria for prepubertal MS might have to be revised (Chabas
et al., 2008).

In recent years, the application of computer-based classification al-
gorithms for the analysis of MRI data of neurological (e.g., Kloeppel
et al., 2008) as well as psychiatric disorders (e.g., Weygandt et al.,
2012) has become more and more frequent. In MS research, a variety
of neuroimaging studies used this approach to identify lesion-related
and non-lesion-related MRI biomarkers for adult MS extracted from
brain images acquired with clinical routine MRI acquisition protocols.
For example, we applied this approach to diagnose relapsing–remitting
MS (RRMS) by evaluating voxel intensity patterns (Weygandt et al.,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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2011), and wavelet representations of these patterns (Hackmack et al.,
2012a) extracted from brain areas containing normal-appearing brain
tissuemeasuredwith T2wMRI sequences. In a further study, we used tis-
sue intensity patterns to predict symptom severity in RRMS (Hackmack
et al., 2012b). Finally, another group used the approach to differentiate
between subgroups ofMS (i.e. patients with short vs. long disease dura-
tion; high vs. low white matter (WM) lesion load; benign vs. non-
benign MS) based on gray matter (GM) probability maps (Bendfeldt
et al., 2012).

In the present study, we assessed whether classification techniques
can also be applied in pediatric neuroimaging by searching for MRI-
based diagnostic biomarkers specific for EOPMS. In particular, we con-
ducted three main diagnostic classification analyses to identify brain
regions containing the most relevant diagnostic information for EOPMS.
In Analysis 1, we investigated differential diagnostic separability of
EOPMS vs. LOPMS patients using logistic regression. This was done in-
dependently for areas located in GM and for areas located in WM
based on local tissue probability parameters. In Analysis 2, we searched
for diagnostic information for separation of EOPMS patients vs. healthy
control (HC) subjects separately for GM andWM areas. Finally, in Anal-
ysis 3 we tested local diagnostic separability of LOPMS vs. HC based on
local GM and WM tissue probability parameters. Importantly, LOPMS
and HC were matched with EOPMS with regard to gender, the LOPMS
and EOPMS group were additionally matched in terms of disease dura-
tion and lesion load. In three supplementary analyses, the same com-
parisons were additionally computed for PMS subgroups matched for
age, gender and lesion load.

2. Methods and materials

2.1. Participants

Participants were included in the study in a three-step procedure. In
the first step, 79 MS patients with a disease onset prior to the age of
16 years and 20 HC subjects scanned with a standardized MR protocol
(see Brain imaging) were included. All pediatric MS patients were diag-
nosed according to the revised McDonald diagnostic criteria 2010
(Polman et al., 2011). Each patient was followed-up at the German Na-
tional Center for Multiple Sclerosis in Childhood and Adolescence, Uni-
versity Medical Center, Göttingen, Germany. HC subjects were free of
neurological or psychiatric disorders. Compatible with the heuristic for
age-based patient subdivision presented in Ruggieri et al. (2004), pa-
tients with disease onset prior to the age of twelve were assigned to
the EOPMS group, and patients with onset at 12 years or older were
assigned to the LOPMS group. In the second step, we (MW) conducted
an MRI quality assessment procedure leading to exclusion of the data
of eight EOPMS patients, 20 LOPMS patients, and five healthy partici-
pants (primarily due to slight motion artifacts). Finally, the six EOPMS
patients with the longest and the 14 LOPMS patients with the shortest
disease duration were excluded in the third step in order to match the
two groups in terms of disease duration. Following these steps, 15 pa-
tients with EOPMS, 16 patients with LOPMS, and 15HC subjects werefi-
nally included. For the supplementary analyses, two alternative PMS
groups were composed to match these groups in terms of participant
age. Specifically, the five youngest EOPMS patients and the 13 oldest
LOPMS patients were excluded. Thus, 16 patients with EOPMS, 17 pa-
tients with LOPMS, and 15 HC subjects were included in these supple-
mentary analyses. Consent was obtained according to the Declaration
of Helsinki, and the local research ethics committee of the Medical Fac-
ulty, Georg-August University, Göttingen approved the study. All sub-
jects gave written informed consent.

2.2. Brain imaging

Whole-brain high in-plane resolution T2w images with 32 or 35
contiguous axial slices (TR = 4500 ms, TE = 103 ms, flip angle =
130°, voxel resolution = 0.6 × 0.6 × 4 mm3, no gap, matrix size =
384 × 384) were acquired with a turbo spin echo sequence on a
3 Tesla whole-body MRI (Magnetom Trio, Siemens, Erlangen, Germany)
using a clinical routine 12-channel head coil. In particular, in the three
main analyses evaluating PMS groups matched for disease duration (in
the three supplementary analyses evaluating PMS groups matched for
participant age) images of 2 (2) EOPMS patients had 32 axial slices, im-
ages of 13 (14) had 35 slices. For LOPMS patients, 9 (4) had 32 and 7
(13) had 35 slices, 3 (3) HC subjects had 32, 12 (12) HC subjects 35 slices.
A χ2-test for stochastic independence showed that the number of slices
acquired was partly balanced across groups i.e. EOPMS vs. LOPMS:
χ2 = 6.23, p = 0.013 (χ2 = 0.67, p = 0.412), EOPMS vs. HC: χ2 = 0.24,
p = 0.624 (χ2 = 0.32, p = 0.570), and LOPMS vs. HC χ2 = 4.29, p =
0.038 (χ2 = 0.06, p= 0.810).

2.3. Preprocessing of MRI data

Preprocessing included a manual lesion mapping procedure, two
sequential segmentation runs, resampling and within-subject standardi-
zation of modulated tissue probability maps. In particular, we (HH)
started preprocessing by performing a manual lesion mapping based on
high in-plane resolution T2w-images (voxel size = 0.6 × 0.6 × 4 mm3)
of individual subjects using the OsiriX software toolbox (OsiriX Founda-
tion, Geneva, Switzerland).

Subsequently, images were segmented into GM, WM and CSF in a
two-run segmentation procedure using the unified segmentation ap-
proach in SPM8 (Wellcome Trust Centre for Neuroimaging, Institute of
Neurology, UCL, London, UK — http://www.fil.ion.ucl.ac.uk/spm). The
two-run procedure was applied to minimize age-dependent deforma-
tion effects (e.g., Wilke et al., 2002) and tissue misclassification (e.g.,
Wilke et al., 2003) that might result in a typical one-run procedure
from using adult reference data during normalization/segmentation of
pediatric brain images.

In the first segmentation run, the standard adult tissue probability
templates included in SPM8were used. Regions containing lesions iden-
tified by HH were excluded. Unmodulated tissue probability maps and
spatially normalized lesion masks were generated as output files for
each subject. These output files were then used to compute customized
tissue probability templates for the second segmentation run separately
for each pair of groups (EOPMS & LOPMS, EOPMS & HC and LOPMS &
HC) and for both matching procedures. In particular, customized tissue
probability templates were determined by computing the voxel-wise
averages across not modulated tissue probability maps for GM, WM
and CSF of each subject included in the given pair of groups. To avoid
lesion-induced artifacts, subjects having a lesion at a given voxel coordi-
nate (as defined by the normalized lesion masks) were excluded from
the averaging procedure.

In the second segmentation run, these customized tissue probability
templates for GM, WM, and CSF were used (please note that the images
of the EOPMS and LOPMS patients were segmented twice within each
matching framework: once for the comparison with the HC subjects,
once for the comparison with the other PMS group). Again, regions con-
taining lesions were excluded. Modulated and unmodulated tissue prob-
ability maps and spatially normalized lesion maps were generated as
output files for each subject. After segmentation, themodulated probabil-
itymapswere resampled to a voxel resolution of 6 × 6× 6mm3 using tri-
linear interpolation to increase sensitivity of the diagnostic classification
analyses and to decrease the substantial computational load imposed by
the voxel-wise permutation procedure used for statistical inference
(please see section MRI-based classification analyses).

In the next step, unmodulatedprobabilitymapswere used to generate
binarymasks for GM,WM, and CSF. This was done for each pair of groups
and matching framework separately to facilitate a tissue-specific search
for diagnostic biomarkers in the classification analyses. Specifically, we
first computed the voxel-wise average for each of the three tissue
types across unmodulated tissue probability maps (voxel resolution =

http://www.fil.ion.ucl.ac.uk/spm


Fig. 1. Preprocessing of MRI data. Starting with the second segmentation run, preprocessing was performed separately for each of the pairs of groups. The figure shows two exemplary
subjects belonging to the early onset PMS vs. later onset PMS pair. EOPMS, early onset pediatric MS; LOPMS, later onset pediatric MS; T2w, T2-weighted; z-Trsfo, z-transformation.
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Table 1
Demographic and clinical characteristics for pediatric MS groups matched for gender and disease duration. Lesion load was computed based on lesion masks manually determined by HH de-
rived from on high-resolution T2w-images in the lesionmapping procedure. Clinical symptomswere diagnosed by an experienced neuropediatrician and amedical consultant. Abbreviations:
Dis. dur., disease duration; s., symptoms; Unspec., unspecific, Cran. nrv. involv., cranial nerve involvement.

Demographic and clinical participant characteristics

Parameter EOPMS LOPMS HC EOPMS vs. LOPMS EOPMS vs. HC LOPMS vs. HC

M (SD) M (SD) M (SD) t p t p t p

Age (years) 11.9 (2.7) 16.4 (1.4) 12.6 (2.7) –5.85 2.3 × 10−6 –0.74 0.466 5.00 2.7 × 10−5

Onset (years) 8.5 (2.3) 14.0 (1.2) –8.46 2.5 × 10−9

Dis. dur. (mo) 40.6 (24.4) 28.9 (13.0) 1.67 0.105
Lesion load (× 104 mm3) 2.2 (4.4) 2.4 (3.0) –0.14 0.886

N (total = 15) N (total = 16) N (total = 15) χ2 p χ2 p χ2 p
Gender (female) 9 13 12 1.70 0.193 1.43 0.232 0.01 0.930
Motor s. 7 1 6.61 0.010
Visual s. 5 6 0.06 0.809
Sensible s. 5 8 0.88 0.347
Unspec. s. 6 2 3.06 0.080
Cran. nrv. involv. 2 0 2.28 0.131

403M. Weygandt et al. / NeuroImage: Clinical 7 (2015) 400–408
2 × 2 × 2mm3) of all subjects included in a given pair of groups that did
not have a lesion at a given coordinate.Whether a lesionwas present for
a given coordinate or not was determined based on the normalized le-
sion masks determined in the second segmentation run. Then, we
resampled these averaged maps to a voxel resolution of
6 × 6 × 6 mm3. Finally, a voxel coordinate was assigned to that tissue
class for which the maximal averaged probability score among the
three tissues was computed. Following this procedure, the GM mask
comprised 4498 (supplementary analysis using age-matched samples:
4641) voxels for the contrast EOPMS vs. LOPMS, the WM mask for this
comparison comprised 2379 (2513) voxels. For EOPMS vs. HC, the GM
mask consisted of 5015 (4951) voxels, the mask for WM consisted of
2186 (2301) voxels. Finally, for LOPMS vs. HC the GM mask consisted
of 4632 (4727) voxels, the mask for WM consisted of 2519 (2510)
voxels.

In a final step, we computed a within-subject z-transformation of
the masked, resampled, and modulated GM andWM tissue probability
maps for each subject to account for potential between group differ-
ences of overall brain volume. The resulting z-transformed, masked,
resampled and modulated tissue probability maps then entered the
classification analyses (see below). Please see Fig. 1 for an overview
on preprocessing steps conducted.
Table 2
Gray and white matter brain areas with diagnostic information for the separation of early onset
the closest brain region of a given coordinate as determined by the neuroanatomical atlas of th
Hemisphere; Dst, Euclidean distance to the closest brain region contained in the neuroanatom
might result from the comparably liberal assignment of coordinates to GM in the MNI atlas. x,
rootmean square error; p, probability of observed RMSE according to permutation testing.MSS,
standardized and modulated tissue probability between both groups. Ls, percentage of patients
icance level corrected for multiple comparisons (false discovery rate [FDR] criterion;αFDR= 0.0
threshold (αuncorrected= 5 × 10−4). Brain area abbreviations: Ant., anterior; cing., cingulate; fro
Postcent., postcentral; Sup., superior; temp., temporal.

GM areas with diagnostic information for EOPMS vs. LOPMS

Area H Dst x y z RMS

Rolandic op. R 0 48 –12 18 0.41
Inf. front. gy. L 0 –36 30 –20 0.42
Mid. temp. gy R 0 54 –48 12 0.42
Mid. front. gy R 0 24 32 –18 0.42
Inf. par. gy. R 0 48 –36 54 0.43

WM areas with diagnostic information for EOPMS vs. LOPMS

Area H Dst x y z RMSE

Angular gy. R 3.6 36 –58 24 0.35
Pallidum L 0 –24 –6 0 0.40
Sup. front gy. L 0 –18 54 12 0.43
Insula L 1.0 –36 –30 24 0.43
Sup. front. gy. L 1.0 –18 54 0 0.42
2.4. MRI-based classification analyses

We conducted three separate main analyses to discover diagnostic
information that potentially differentiates EOPMS, LOPMS and HC. In
particular, we searched for diagnostic information for separation of
EOPMS vs. LOPMS patients contained in modulated tissue probability
parameters extracted from GM (WM) areas in classification Analysis
1a (1b). In classification Analysis 2a (2b), we searched for diagnostic in-
formation for EOPMS patients vs. HC subjects in GM (WM) areas. Final-
ly, in Analysis 3a (3b), we searched for diagnostic information for
separation of LOPMS patients vs. HC subjects based on GM (WM) tissue
parameters. In thesemain analyses, PMS groups werematchedwith re-
gard to disease duration, lesion load and age. In three supplementary
analyses (S1–S3) the same comparisons were computed for PMS sub-
groups matched for gender, age and lesion load. The processing steps
did not differ between analyses, except for group- and tissue-specific
brain masks and the tissue-specific modulated probability maps
used for the analyses (see Preprocessing). The classification analyses
were conducted using in-house software (cf. Weygandt et al., 2012;
Weygandt et al., 2011).

For each voxel, we determined the diagnostic classification accuracy
in a leave-one-out cross-validation (CV) framework. In particular, we
pediatric MS (EOPMS) and later onset pediatric MS (LOPMS) patients. Area, GM region of
e Montreal Neurological Institute (MNI) brain template (Tzourio-Mazoyer et al., 2002). H,
ical atlas in millimeters. Please note, that a distance of 0 mm in the white matter analysis
y, z, x, y, and z coordinates of the identified coordinate in MNI space in millimeters. RMSE,
mean of sensitivity and specificity. SEN, sensitivity; SPE, specificity;Δtp, mean difference of
having a lesion at a given coordinate. Bold text indicates a diagnostic accuracy on a signif-
5). Non-bold text indicates a diagnostic accuracy according to an uncorrected significance
nt., frontal, gy., gyrus; Inf., inferior; ncl. nucleus. Mid, middle; par., parietal; op., operculum;

E p MSS SEN SPE Δtp Ls

1.2 × 10−4 74.2 73.3 75.0 0.9 0
1.8 × 10−4 77.3 73.3 81.3 0.9 0
2.0 × 10−4 87.3 93.3 81.3 0.8 0
3.2 × 10−4 80.6 80.0 81.3 1.0 0
4.7 × 10−4 70.8 66.7 75.0 –1.3 0

p MSS SEN SPE Δtp Ls

b 2.1 × 10−5 80.6 80.0 81.3 –1.6 10
3.6 × 10−5 80.8 86.7 75.0 0.7 0
2.9 × 10−4 74.2 73.3 75.0 0.3 10
4.1 × 10−4 67.7 66.7 68.8 –1.1 13
4.5 × 10−4 67.9 73.3 62.5 0.3 3



404 M. Weygandt et al. / NeuroImage: Clinical 7 (2015) 400–408



Table 3
Gray andwhitematter brain areaswith diagnostic information for the separation of early onset pediatricMS (EOPMS) patients and healthy controls (HC). See Table 2 for details. Brain area
abbreviations: cing., cingulate; fiss., fissure; gy., gyrus; ncl. nucleus. par., parietal; Postcent., postcentral; Sup., superior.

GM areas with diagnostic information for EOPMS vs. HC

Area H Dst x y z RMSE p MSS SEN SPE Δtp Ls

Precuneus L 0 0 –76 50 0.40 7.2 × 10−5 73.3 80.0 66.7 0.4 0
Angular gy. R 3.6 36 –58 24 0.42 1.1 × 10−4 70.0 80.0 60.0 1.3 7
Thalamus R 0 6 –24 6 0.39 2.5 × 10−4 83.3 86.7 80.0 –0.5 0
Precuneus L 0 0 –64 32 0.41 2.5 × 10−4 76.7 73.3 80.0 –0.9 0
Putamen L 0 –24 6 6 0.42 2.9 × 10−4 73.3 66.7 80.0 –0.7 0
Hippocampus L 0 –24 –18 –18 0.43 3.4 × 10−4 76.7 80.0 73.3 0.6 7
Sup. front. gy. R 0 12 46 48 0.41 4.9 × 10−4 76.7 66.7 86.7 –1.3 0

WM areas with diagnostic information for EOPMS vs. HC

Area H Dst x y z RMSE p MSS SEN SPE Δtp Ls

Putamen R 0 24 12 12 0.32 b 2.3 × 10−5 86.7 86.7 86.7 0.7 0
Calcarine fiss. R 0 24 –70 14 0.40 1.0 × 10−4 80.0 73.3 86.7 –0.9 20
Postcent. gy. L 4.4 –24 –34 40 0.42 1.8 × 10−4 80.0 80.0 80.0 –0.3 27
Caudate ncl. L 7.2 –24 –24 30 0.41 2.7 × 10−4 83.3 80.0 86.7 –0.5 27
Caudate ncl. R 4 18 –6 30 0.45 2.7 × 10−4 66.7 66.7 66.7 –0.8 27
Cerebellum R 2.2 18 –42 –38 0.41 3.6 × 10−4 80.0 80.0 80.0 0.5 0
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started the analysis by extracting themodulated tissue probability score
(from either themodulated GMorWMprobabilitymap) of each subject
included in the analysis (Ntotal) for a given voxel (e.g., for the compari-
son EOPMS vs. LOPMS in the disease duration matching framework: N-
total = 15[NEOPMS] + 16[NLOPMS] = 31). Then, the data of all but one
subject (Ntotal –1) were used as training data to compute a logistic re-
gression model using the GLMFIT function included in Matlab 7.6 (The
MathWorks Inc., Natick, MA, 2008). In the next step, this model was
used to compute the predicted class membership probability of the
left out or test subject respectively based on its modulated tissue prob-
ability score. This procedurewas repeatedNtotal times i.e. until each sub-
ject included in the analysis was once excluded from building the
regression model/once treated as test subject.

In the next step, we computed the root mean square error (RMSE)
between true class labels (EOPMS vs. LOPMS: EOPMS = 1, LOPMS =
0; EOPMS vs. HC: EOPMS = 1, HC = 0; LOPMS vs. HC: LOPMS = 1,
HC= 0) and predicted class membership probabilities as primary di-
agnostic accuracy measure for each voxel coordinate. As secondary/
illustrative accuracy measure, we computed the mean of sensitivity
and specificity (MSS). For that measure, a correctly classified subject
belonging to the group named first in each comparison (e.g., an EOPMS
patient in the comparison ‘EOPMS vs. LOPMS’) was considered as true
positive, a correctly classified subject belonging to the second group
(LOPMS in the example) was considered as true negative, etc. The diag-
nostic classification procedure was repeated for each voxel coordinate
included in the respective analysis and yielded a diagnostic accuracy
map for that analysis which denoted the RMSE (MSS) score for each
voxel.

To test for significance of diagnostic accuracy obtained for each
voxel, we used permutation testing to compute the probability of the
observed RMSE-score under the null hypothesis. The False Discovery
Rate (FDR; Benjamini andHochberg, 1995) criterionwas used to correct
for multiple comparisons. Following the FDR criterion, the number of
permutations necessary to assess the significance of accuracy in each
Fig. 2. Brain areas with diagnostic information. Gray matter (GM) areas with significant diagno
pediatric MS (LOPMS) patients. c) EOPMS and healthy control (HC) subjects, e) LOPMS andHC.
LOPMS patients, d) EOPMS andHC, and f) LOPMS and HC. Significant coordinates are shown sup
of the Montreal Neurological Institute (MNI) brain template (Tzourio-Mazoyer et al., 2002). In
cated in as determined by the MNI brain atlas (Tzourio-Mazoyer et al., 2002). In panels b, d, an
distance to a givenWM coordinate as determined by theMNI brain atlas. As accuracy measure,
membership probability and denoted it beneath area abbreviations. For illustrative purposes, w
beneath RMSE scores. Indices beneath axial brain slices report the z-coordinate in MNI space. S
gulate cortex; ANG, angular gyrus; CAL, calcarine fissure, CDN, caudate nucleus; CER, cerebellu
middle cingulated gyrus;MSF,medial superior frontal gyrus;MTG,middle temporal gyrus; OIF, o
gyrus; PAL, pallidum; PCC, posterior cingulated gyrus; PCG, postcentral gyrus; PRC, precuneus;
voxel equals the number of tests (i.e. voxels) included in each analyses
divided by the false positive rate for a single test (αsingle test = 0.05).
Thus, for example in Analysis 1a we permuted the class labels of each
voxel 4498 (number of voxels in GM mask for EOPMS vs. LOPMS) /
0.05 (αsingle test) = 89,960 times. Then, we used the resulting permuta-
tion distribution of RMSE-scores for each voxel to assess the significance
of the observed RMSE-score under the null hypothesis (Good et al.,
2005). At this point, we would like to mention that due to the direct
link between number of voxels in an analysis on one hand and the
number of tests per analysis and the number of permutations neces-
sary per test on the other permutation testing might easily involve a
massive computational burden — if the number of voxels is very
high. For that reason, we decided to resample the voxel resolution
during image preprocessing in order to decrease the computational
load.

In the Results section, we report coordinates for which RMSE is sig-
nificant on a threshold corrected formultiple comparisons following the
FDR criterion (αFDR = 0.05) and also voxel coordinates significant ac-
cording to an uncorrected threshold (αuncorrected = 5 × 10−4). Results
reported correspond to coordinates in the anatomical standard space
of the MNI-brain template (Tzourio-Mazoyer et al., 2002). Since the
classification analyses were conducted in customized template space,
it was necessary to map the coordinates identified in the analyses to
MNI-space first. The procedure used for this mapping is described in
the Supplementary methods.

3. Results

3.1. Demographic and clinical participant characteristics

LOPMS patients and HC subjects did not differ from EOPMS patients
with regard to gender (EOPMS vs. LOPMS: χ2=1.70, p=0.193; EOPMS
vs. HC: χ2 = 1.43, p = 0.232). Following from the disease duration
matching procedure, the average age in the LOPMS group was
stic information for the separation of a) early onset pediatric MS (EOPMS) and late onset
Whitematter (WM) areas with diagnostic information for the separation of b) EOPMS and
erimposed on subjects’mean T2-weightedMRI image co-registered to the standard space
panels a, c, and e, brain area abbreviations refer to the GM region a given coordinate is lo-
d f, brain area abbreviations in brackets refer to the GM region with the closest Euclidean
we computed the rootmean square error (RMSE) between class labels and predicted class
e also report themean of sensitivity and specificity (MSS) as alternative accuracymeasure
lices are displayed in neurological orientation. Brain area abbreviations: ACC, anterior cin-
m; CUN, cuneus; HIP, hippocampus; INS, insular cortex; IPG, inferior parietal gyrus; MCC,
rbital inferior frontal gyrus; OMF, orbitalmiddle frontal gyrus; OSF, orbital superior frontal
PUT, putamen; ROP, rolandic operculum; SFG, superior frontal gyrus; THA, thalamus.
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significantly higher than in the EOPMS group (EOPMS vs. LOPMS: t =
–5.9, p=2.3 × 10−6). In addition, the average age in the LOPMS groupwas
also higher as in the HC group (LOPMS vs. HC: t=5.0, p=2.7 × 10−5). A
t-test for independent samples revealed that both PMS subgroups were
comparable in terms of T2w lesion volume (t = –0.14, p = 0.886). See
Table 1 for further details. Please see Table S1 for participant characteris-
tics of PMS subgroups matched by age and gender.

3.2. Analysis 1: diagnosing EOPMS vs. LOPMS

In this analysis, we searched for differential diagnostic informa-
tion for separation of EOPMS vs. LOPMS patients contained in modu-
lated tissue probability parameters extracted from GM (WM) areas
in classification Analysis 1a (1b). Analysis 1a primarily revealed
frontal and parietal GM areas as being diagnostically informative.
Consistently, WM Analysis 1b revealed diagnostic information in
WM areas located in the vicinity of frontal gyri. Please see Table 2
and Fig. 2a and b for details. Please see Table S2 for results for this
group comparison based on PMS subgroups matched for age, gender
and lesion load.

3.3. Analysis 2: diagnosing EOPMS vs. HC

In classification Analysis 2a (2b), we searched for diagnostic features
separating between EOPMS patients and HC subjects contained inmod-
ulated tissue probability parameters extracted from GM (WM) areas. In
Analysis 2a, a number of GM areas in vicinity of the lateral ventricles
have been identified. However, consistentwith Analysis 1, also a coordi-
nate in superior frontal gyrus was found. Analysis 2b revealed WM co-
ordinates close to the striatum, cerebellum but also postcentral gyrus
and calcarine fissure. Please see Table 3 and Fig. 2c and d for details.
Please see Table S3 for results regarding this group comparison based
on EOPMS patients that were matched to LOPMS patients in terms of
age, gender and lesion load.

3.4. Analysis 3: diagnosing LOPMS vs. HC

Finally, in Analysis 3a (3b)we searched for GM (WM) areas contain-
ing diagnostic information for the separation of LOPMS patients and HC
subjects. Consistent with the difference in the presence of disease and
the difference in mean participant age between the groups, Analyses
3a andb revealed a comparatively large number of coordinateswith sig-
nificant diagnostic information. Please see Table 4 and Fig. 2e and f for
details. Notably, contrary to Analysis 1 and 2, no frontal or orbitofrontal
gyri or WM coordinates in the vicinity of these areas were identified.
Please see Table S4 for results regarding this group comparison based
on LOPMS patients that were matched to EOPMS patients in terms of
age, gender and lesion load.

4. Discussion

In this study, we identified diagnostic features in conventional MRI
images separating between EOPMS patients, LOPMS patients and HC
subjects by applying computer-based classification techniques to locally
specific brain tissue probability information.

Three main analyses were conducted that investigated diagnostic
separability within the three pairs of groups (EOPMS vs. LOPMS, EOPMS
vs. HC, and LOPMS vs. HC) based on gray aswell aswhitematter voxel tis-
sue probability information. In these analyses, the PMS groups were
matched by disease duration, lesion load and gender whereas the same
comparisons were computed in three supplementary analyses (S1 – S3)
based on PMS groups matched for age, lesion load and gender.

Consistent with the literature (e.g., Zivadinov et al., 2013; Polman
et al., 2011; Morgen et al., 2006; Prinster et al., 2006; Filippi and
Rocca, 2005), a set of widely distributed brain areas was identified
across analyses. Among these, areas were detected that are discussed
as keymarkers forMS such asWMareas in vicinity of e.g. caudate nucle-
us and thalamus (i.e. ‘periventricular’WMareas, cf. Polman et al., 2011)
and for these areas, very high accuracy has been obtained. Specifically,
for the separation of EOPMS and HC (based on PMS groups matched
for age, gender and lesion load, Analysis S2), an accuracy of 87.1% has
been reached for a WM coordinate close to caudate nucleus (MNI: –18,
–18, 30). However, besides these well established markers temporal
and frontal GM areas have also been identified, which are less well
known to be diagnostically relevant, although their general involvement
in MS has repeatedly been reported (e.g., Morgen et al., 2006; Prinster
et al., 2006). For example, 87.1% accuracy has been reached for a GM
locus in the middle temporal pole (MNI: –16, 10, –38) for the separation
of LOPMS and HC (based on PMS groups matched for disease duration,
gender and lesion load, Analysis 3).

Unfortunately, identification of biomarkers for the separation of
EOPMS patients fromHC subjects or even for EOPMS vs. LOPMS patients
alone does not necessarily imply that the markers are also specific for
EOPMS. To the contrary, many of the markers found for EOPMS vs. HC
are considered to be generic markers for MS. Markers found for EOPMS
vs. LOPMS are not necessarily specific as PMS subgroups differed in
terms of age in Analysis 1 (or disease duration in Analysis S1). These dif-
ferences cannot be easily avoided by e.g. anothermatching procedure be-
cause they follow from the conjunction of a) the mutual dependence of
the factors disease onset, disease duration and age (e.g., age is the sum
of disease onset and duration) and b) the definition of EOPMS and
LOPMS in terms of their different disease onset, disease duration and
age (e.g., age is the sum of disease onset and duration) and b) the defini-
tion of EOPMS and LOPMS in terms of their different disease onset. Thus,
within this constellation, balancing one of the factors disease duration or
age automatically results in inducing a bias in the other.

Consequently, balancing alone cannot be sufficient to guarantee spec-
ificity of biomarkers identified in the comparison EOPMS vs. LOPMS. In-
stead, an additional group comparison must be taken into account that
is comparably characterized by a difference in age or disease duration.
Specifically, given that certain findings are made only in the EOPMS vs.
LOPMS comparison but not for a pair of groups that is similarly character-
ized by one of these confounding factors, it is unlikely that underlying dif-
ferences observed in EOPMSvs. LOPMSare inducedby the confound since
its effect should be comparable across analyses.

A comparison for which this condition was fulfilled was LOPMS vs.
HC (Analysis 3). In particular, the average age in the LOPMS group
was higher than in the EOPMS group and (comparably) higher than in
the HC group (see Table 1). Consequently, biomarkers identified in the
EOPMS vs. LOPMS but not in the LOPMS vs. HC comparison should not
depend on differences in participant age (and disease duration) and
should thus be specific for EOPMS. This specific result pattern was
found for frontal gyri and WM areas located in the vicinity to frontal
GM gyri. In particular, Analysis 1 identified a coordinate in middle
([MNI: 24, 32, –18], MSS = 80.6%) and inferior frontal gyri ([MNI: –36,
30, –20], 77.3% MSS) with diagnostic information. In addition, a WM
area in vicinity to superior frontal gyrus ([MNI: –18, 54, 12), MSS =
74.2%) also contained diagnostic information. On the contrary, frontal
gyri were not at all identified in Analysis 3 and Analysis S3. Thus, taken
together the integration of findings made across analyses conducted in
the study suggest that disease-related alterations of frontal gyri starting
early after disease onset is a diagnostically relevant feature specific for
EOPMS.

Besides identifying brain MRI-based biomarkers specific for EOPMS,
the study also demonstrates that computer-based classification ap-
proaches are able to utilize subtle tissue variations for diagnosis, extracted
fromGMbut alsoWMthat are less characterized bypronounced intensity
alterations than hyperintense WM lesions in T2w-images. This was re-
vealed by the GM analyses conducted as most of the coordinates with di-
agnostic information did not contain lesions (see Tables 2–4 and S1–S3).
Non-lesion GMbased separation of EOPMS andHC is in linewithfindings
of studies showing GM loss in adult MS patients compared to HC



Table 4
Gray and white matter brain areas with diagnostic information for the separation of late onset pediatric MS (LOPMS) patients and healthy controls: HC see Table 2 for details. Brain area
abbreviations: Ant., anterior; cing., cingulate; gy., gyrus; Inf., inferior; ncl. nucleus. Mid, middle; par., parietal; Op., operculum; Parahipp., parahippocampal; Post., posterior; Postcent.,
postcentral; Sup., superior; temp., temporal.

GM areas with diagnostic information for LOPMS vs. HC

Area H Dst x y z RMSE p MSS SEN SPE Δtp Ls

Mid. temp. pole L 0 –16 10 –38 0.31 b 1.1 × 10−5 87.1 87.5 86.7 0.5 0
Cerebellum L 0 –16 –66 –46 0.35 2.7 × 10−5 83.8 87.5 80.0 1.0 0
Ant. cing. gy. L 0 2 22 22 0.40 4.3 × 10−5 77.5 75.0 80.0 0.9 0
Cerebellum R 0 38 –60 –20 0.40 1.6 × 10−4 80.6 81.3 80.0 0.5 0
Parahipp. gy. R 6.1 14 4 –32 0.41 1.9 × 10−4 74.2 75.0 73.3 0.7 0
Post. cing. gy. L 0 –6 –48 28 0.42 2.0 × 10−4 74.4 68.8 80.0 –0.6 0
Sup. temp. gy. L 0 –52 –2 –8 0.40 2.3 × 10−4 80.6 81.3 80.0 1.0 0
Ant. cing. gy. R 0 8 46 22 0.42 2.5 × 10−4 71.0 68.8 73.3 –1.0 0
Ant. cing. gy. R 1 2 4 28 0.44 3.2 × 10−4 74.2 75.0 73.3 0.9 0
Cerebellum L 0 –10 –44 –28 0.42 4.0 × 10−4 74.2 75.0 73.3 0.4 0
WM areas with diagnostic information for LOPMS vs. HC

Area H Dst x y z RMSE p MSS SEN SPE Δtp Ls

Putamen R 0 26 0 8 0.35 b 2.0 × 10−5 80.8 75.0 86.7 0.7 0.0
Thalamus R 0 14 –26 4 0.36 4.6 × 10−5 84.0 81.3 86.7 1.0 0.0
Calcarine fiss. R 0 26 –72 10 0.41 4.7 × 10−5 80.8 75.0 86.7 –0.9 37.5
Putamen R 0 32 –14 –2 0.39 4.9 × 10−5 84.0 81.3 86.7 0.8 6.3
Caudate ncl. L 1 –16 10 10 0.40 9.3 × 10−5 80.6 81.3 80.0 0.7 6.3
Mid. cing. gy. R 0 8 –10 34 0.42 9.3 × 10−5 74.0 81.3 66.7 0.8 12.5
Putamen L 0 –28 4 4 0.40 1.2 × 10−4 77.5 75.0 80.0 0.8 0.0
Gy. rectus R 2 14 28 –8 0.42 2.0 × 10−4 81.0 68.8 93.3 –0.7 6.3
Insula R 9.2 26 –32 22 0.43 2.6 × 10−4 71.3 62.5 80.0 –0.7 37.5
Cuneus L 6.3 –22 –48 26 0.43 2.7 × 10−4 71.0 68.8 73.3 –0.9 62.5
Mid. cing. gy. L 1.0 –10 –14 34 0.42 2.8 × 10−4 74.0 81.3 66.7 1.0 6.3
Post. cing. gy. R 1.4 14 –38 16 0.43 3.1 × 10−4 67.9 62.5 73.3 –1.1 12.5
Hippocampus R 0 20 –32 –2 0.41 3.3 × 10−4 80.6 81.3 80.0 –1.0 0.0
Thalamus L 3.0 –4 –2 –2 0.41 3.6 × 10−4 80.6 81.3 80.0 –0.7 0.0
Thalamus L 0 –16 –28 4 0.44 3.7 × 10−4 67.5 75.0 60.0 0.6 0.0
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(Weygandt et al., 2011; Ceccarelli et al., 2009; Morgen et al., 2006;
Prinster et al., 2006; Bakshi et al., 2002). Within these studies (i.e.
Ceccarelli et al., 2009; Bakshi et al., 2002), it was assumed that elevated
iron deposition might lead to tissue loss in deep gray matter nuclei
which in turn induces signal hypointensity in T2w-images. Speculatively,
thismechanismmight also underly GM-based separability of PMS groups
and HC.

Interestingly, utilization of non-lesion related MRI signals for the di-
agnosis of EOPMS vs. HC by the regression approach in addition to utili-
zation of lesion-related signals was also supported by white matter
analyses. In particular, although high diagnostic accuracy was frequent-
ly linked to high lesion occurrence in these analyses — what is in line
with the diagnostic guidelines (Polman et al., 2011) implying that le-
sions are the only MRI features indicative of MS — high lesion occur-
rence alone was frequently not sufficient to explain accuracy obtained
by the regression approach. This can be seen e.g. in Analysis 2b for a
WMcoordinate (MNI: –24, –34, 40) located in the vicinity of postcentral
gyrus. Although a substantial proportion of EOPMS patients had a lesion
at this coordinate (i.e. 4 out of 15 or 26.7%, see Table 3) accuracy expect-
able by this lesion occurrence was lower than accuracy obtained by the
logistic regression approach. Specifically, when following the diagnostic
guidelines (Polman et al., 2011) suggesting that lesions are the onlyMRI
alterations indicative of MS, and when additionally assuming that le-
sions do only occur in patients but not controls, this lesion occurrence
should go along with a diagnostic accuracy of 63.4%. In particular,
given that four out of 15 patients, who should present with lesions,
had a lesion at this coordinate (sensitivity=26.7%), andnoneof 15 con-
trols, who should not have lesions, had a lesion (specificity = 100%), a
mean of sensitivity and specificity of 63.4% follows. Contrary to these
63.4% however, the logistic regression approach evaluating continuous
tissue probability parameters (instead of the dichotomously scaled
‘presence of a lesion’ marker evaluated by human raters) obtained
80.0%mean of sensitivity and specificity. Consequently, the discrepancy
between these accuracies suggests that the regression approach utilizes
further MRI signals in addition to lesion-induced signal alterations.
Speculatively, WM characterized by only slight signal hyperintensities
being too weak to be classified as lesion by a human rater (i.e. so-
called ‘dirty-appearing’ white matter; Ge et al., 2003) might be these
signals. This interpretation would be compatible with our recent find-
ings (Weygandt et al., 2011).

At first glance, the moderate sample sizes of groups investigated
might be considered a drawback of the study. However, within the spe-
cific framework of the present study several aspects have to be consid-
ered when evaluating the sample size. First, we were able to identify
diagnostic information in periventricular WM areas containing lesions.
Periventricular WM lesions are considered (one of) the key diagnostic
marker(s) for MS (e.g., Polman et al., 2011). Thus, the sample size was
sufficient to reliably identify this major MRI marker for MS frequently
reported in the literature. Second, from a pragmatic perspective the
small prevalence of pediatric MS has to be considered. Following
Ruggieri et al. (2004), the prevalence of MS with an onset prior to the
age of 16 years is approximately between 0.003% and 0.006% in the
overall population. For MS with an onset prior to the age of 10 years it
is even less — approximately between 0.0002% and 0.0008%. Thus,
EOPMS and even LOPMS are rare clinically cases. Finally, we used non-
parametric permutation testing to estimate the probability of diagnostic
accuracies obtained on the voxel level. Compared with parametric pro-
cedures, permutation tests rely much less on the fulfillment of distribu-
tional assumptions for a given test statistic (Good, 2005) — a problem
that might be more prominent in moderately sized data sets as com-
pared to larger data sets.

Finally, the small deviations in the number of slices acquired for
T2w-images across groups for PMS groups matched with regard to dis-
ease duration, lesion load and gender might be considered as limitation
of the study. However, the impact of this imbalance does not appear to
be very strong since results obtained for Analyses 1–3 are compatible
with those obtained in Analyses S1–S3. And for the latter analyses the
number of slices was balanced across groups.
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5. Conclusion

In this study, we identified diagnostic features in MRI acquired dur-
ing clinical routine that differentiated between EOPMS patients, LOPMS
patients and HC subjects by applying computer-based classification
techniques to locally specific brain tissue probability information. In
particular, we were able to replicate existing knowledge on the pivotal
role of hyperintense WM lesions for MS diagnosis by using this ap-
proach to the separate between PMS patients and HC subjects. By
using the classification approach for differential diagnosis or separation
of PMS subgroups respectively, we found diagnostic information specif-
ic for EOPMS in frontal gyri and also WM areas in the vicinity of frontal
gyri. These results suggest that conventionalMRI contains a richer set of
diagnostically informative features than assumed so far. Taken together,
by integrating results from diagnostic classification analyses investigat-
ing groups matched for disease duration, lesion load, participant age,
and gender, we identified biomarkers specific for MS patients with
very early disease onset.
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