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ABSTRACT 

Seismically excited adjacent buildings with equal floor heights and with inadequate clearance 

may interact/collide due to out of phase response developing slab-to-slab pounding forces 

which, although do not induce local damage to structural members, they do influence the 

overall seismic structural response. Herein, a numerical study is undertaken to quantify, 

statistically, the above influence in terms of fragility curves conditioned on different limit 

states widely used in performance-base seismic risk assessment of yielding structures. This 

is accomplished through incremental dynamic analysis (IDA) for 72 far-field GMs and 

facilitated by introducing a novel intensity measure, the geometric mean of spectral 

acceleration at the fundamental periods of the colliding structures, shown to improve 

efficiency in accounting for GM record-to-record variability. Probabilistic models (fragility 

curves) are derived for a case-study scenario of two colliding reinforced concrete (r/c) 

structures with unequal number of floors and ductility capacities (i.e., 12-storey ductility 

class high and 8-storey ductility class low according to Eurocode 8) modelled as equivalent 

inelastic SDOF systems. It is found that seismic pounding has significant impact to the 

median and standard deviation (shape) of fragility curves for a clearance of 10% the 

minimum required distance specified by Eurocode 8, especially for the higher (12-storey) 

structure for which pounding is detrimental. 

1 INTRODUCTION 

Collisions/pounding of neighbouring building structures with insufficient clearance and 

dissimilar dynamic characteristics have been repeatedly observed during past major seismic 

events in congested city centres (e.g. [1,2]). In the case of adjacent buildings with equal floor 

heights, earthquake induced pounding involves slab-to-slab collisions with no local damage to 

structural members due to pounding forces (e.g., [3,4]). To this effect, significant numerical 

research work has been devoted to assessing the influence of slab-to-slab interaction/pounding 

between closely spaced yielding buildings on their global seismic response and ductility demands 
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(e.g., [3-9]). Specifically, several studies considered modelling neighbouring structures as 

inelastic single-degree-of-freedom (SDOF) oscillators to facilitate readily generalizable 

comprehensive parametric analyses on structural properties of interest (e.g., [5-7]). Others, 

adopted more detailed multi-degree-of-freedom (MDOF) two-dimensional/planar [8,9] and 

three-dimensional [3,4] inelastic finite element (FE) structural models aiming to quantify seismic 

demands of adjacent interacting structures with different geometry and configurations and, thus, 

addressing certain real-life scenarios.  

Still, to date, research studies examining the influence of pounding to seismic inelastic demands 

of adjacent buildings used only limited number of recorded earthquake ground motions (GMs) 

and did not accounted for record-to-record variability in a probabilistic performance-based 

earthquake engineering (PBEE) context [10]. The latter is important in developing probabilistic 

seismic structural vulnerability models for seismic risk and loss analyses of adjacent possibly 

interacting structures. This is commonly accomplished through conducting incremental dynamic 

analysis (IDA) [11] for a sufficient number of GMs to obtain a statistical relationship between an 

intensity measure (IM) leveraging the severity of the seismic action and an engineering demand 

parameter (EDP) being a seismic response quantity well-related to structural damage. Then 

structural vulnerability models pinned to different performance levels (or damage limit states) 

are derived in terms of fragility curves quantifying that probability that a particular limit state is 

exceeded as a function of the IM (see e.g. [12] for an application to a highway bridge 

pounding/interacting with its abutments in the longitudinal direction under seismic excitation).  

In this context, herein, the influence of slab-to-slab seismic pounding to probabilistic seismic 

vulnerability of two adjacent interacting reinforced concrete (r/c) structures is gauged in terms of 

fragility curve statistics. These are derived through IDA for a set of 72 far-field GMs facilitated 

by the introduction of a novel IM that brings in elastic spectral seismic demand information for 

both the interacting structures. As a case-study application, the commonly encountered in practice 

scenario of two adjacent buildings with different number of floors and ductility capacity in which 

one is old and code-deficient (low ductility capacity) and the other is newly-constructed and, 

therefore, code-compliant with high ductility capacity is considered. The presentation begins with 

the description of the structures and their mathematical modelling/representation. Details on 

pounding modelling and seismic excitation considered follow while numerical work…  

2 DESCRIPTION AND MODELLING OF CASE-STUDY STRUCTURES 

In this work, the scenario of two adjacent colliding r/c structures with unequal number of floors 

and ductility capacities is implemented by considering the two planar building prototypes shown 

in Figure 1. The buildings have been originally developed as part of a calibration and assessment 

exercise of the current Eurocode 8 [13] and have been extensively used in the literature as 

benchmark structures to appraise the potential of different seismic analysis tools (e.g., [15]) and 

to probe into seismic inelastic demands of r/c structures with different properties (e.g., [14]). The 

tall structure is a 12-story moment resisting frame designed to current Eurocodes 2 and 8 for 

ductility class high, hereafter 12RFDCH, taken as a “new” seismic code-compliant structure. The 

short structure is 8-story wall-frame designed to the Eurocodes for ductility class low, hereafter 
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8WDCL, representing a code-deficient old/existing building. Storey height is common to both 

structures and equal to 3m. 

 
Figure 1: Adopted benchmark r/c structures and pushover curves of equivalent inelastic SDOF oscillators 

 

In the ensuing numerical work, the adopted benchmark structures are represented by two different 

bilinear hysteretic single-degree-of-freedom (SDOF) oscillators derived by Katsanos et al. [14] 

using the standard N2 method involving static inelastic (pushover) analysis [20] The pushover 

curves of the equivalent SDOF oscillators are shown in Figure 1. The underlying properties of 

the oscillators are reported in Table 1. This simplification in structural modelling is justified by 

the fact that nonlinear SDOF oscillators have been extensively used as proxies of adjacent 

buildings to study slab-to-slab seismic pounding through response history analyses (RHA) in 

support of generalizable seismic response trends and conclusions (e.g., [5,6]). Moreover, the 

above structural modelling simplification is widely adopted in typical IDA-assisted probabilistic 

seismic vulnerability assessment studies in order to expedite computations involving nonlinear 

RHA for large numbers of GMs and IM levels [11,14]. The latter consideration is particularly 

critical to facilitate the herein pursued derivation of dependable fragility curves of colliding 

structures using IDA, presented later in the paper, since pounding forces developed during 

collisions are high-amplitude and short-lived, thus requiring a rather small time-integration step 

to be accurately captured in nonlinear RHA.  

Table 1: Properties of the equivalent nonlinear SDOF systems (Katsanos et al., 2014). 

Equivalent SDOF system property 12RFDCH 8WDCL 
Ratios 

12RFDCH/8SWDCL 

Yield displacement Dy1=0.356m Dy2=0.248m 1.44 

Ultimate/collapse displacement Du1=1.801 Du2=0.822m 2.20 

Yield base shear Fy1=6505.62kN Fy2=6489.67kN 1.00 

Ultimate/collapse base shear Fu1=6615.62kN Fu2=6900.92kN 0.96 

Pre-yield stiffness K1=18259.49kN/m K2=26156.20kN/m 0.70 

Post-yield stiffness Ky1=76.17 kN/m Ky2=716.52 kN/m 0.11 

Period T1=0.966s T2=0.723s 1.34 

Mass M1=432.39t M2=346.84t 1.25 

Focusing on the properties of the structural models in Table 1, it is seen that the oscillator 

corresponding to the 12-storey structure has 34% longer natural period from the oscillator of the 
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8-storey structure, partly because the taller structure is more flexible and partly because it is 

heavier: a reasonable and anticipated result. Therefore, the two oscillators have sufficiently 

different dynamic properties. They will move out of phase under common seismic excitation and 

potentially collide given insufficient initial clearance. Furthermore, the new (12-storey) structure 

is 50% more ductile than the old (8-storey) which is, again, a reasonable and expected difference 

supporting the purpose of the case-study. Nevertheless, despite the differences in natural period 

and ductility, the two oscillators have practically the same strength. This suggests that seismic 

performance of the colliding/interacting case-study structures should be gauged in terms of peak 

inelastic displacement demand rather than in terms of (pounding) forces as has been the case in 

a previous probabilistic seismic performance assessment study of bridges pounding to the 

abutments [12]. Conveniently, peak displacement is most representative engineering demand 

parameter (EDP) in probabilistic seismic vulnerability assessment of non-colliding structures 

modelled via equivalent SDOF oscillators (e.g., [11]). In this context, meaningful influence 

quantification of pounding/interaction to seismic demands of structures can be achieved by 

monitoring the same EDP for the case-study structures with and without pounding/interaction. 

For numerical implementation, computer models of the two equivalent inelastic SDOF systems 

were developed in OpenSEES structural analysis software [21]. The models comprise a non-

linear zero-length rotational spring supporting an elastic beam element having a laterally 

vibrating lumped mass equal to the equivalent SDOF oscillator mass at its free end as shown in 

Figure 2a. The moment-rotation law of the nonlinear springs is defined via a uniaxial bilinear 

element (material “steel01” in OpenSEES) as shown in Figure 2a with properties defined to 

achieve perfect matching with pushover capacity curves in Figure 2. Further, a 5% inherent 

damping ratio is assigned to both structures.  

 
Figure 2a: OpenSEES structural model  Figure 2b: Distribution of the 72 GMs used 

in conducting IDA on the moment 

magnitude, Mw, fault distance, R, plane. 

3 SEISMIC POUNDING MODELLING 

Collisions between the two SDOF oscillators, introduced in the previous section, are modelled 

by an elastic model comprising a linear spring with stiffness Kp taken as 
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  p 1 2K 20max K ,K= , (1) 

following recommendations in [5], which is activated whenever the initial clearance between the 

oscillators at rest (gap) closes as pictorially seen in Figure 3a (see also [4]).  

Clearly, for a sufficiently large separation distance (SD) the adjacent structures/oscillators may 

never interact (no pounding occurs) and will respond to seismic ground motion independently as 

if they are uncoupled. Herein, the SD for which no pounding occurs is computed as  

 2 2
u1 u2D D 1.98SD + == , (2) 

that is, the SRSS of the peak inelastic displacement the two oscillators can reach following 

Eurocode 8 recommendations. Then, a number of models with different gaps defined as fractions 

of the SD in Eq.(2) are considered in the ensuing sections to gauge, parametrically, the influence 

of the initial clearance to seismic structural vulnerability.  

4 PROPOSED INTENSITY MEASURE FOR ENHANCED EFFICIENCY 

In this study the derivation of fragility curves individually for the two inelastic SDOF case-study 

oscillators for various levels of interaction is pursued by application of incremental dynamic 

analysis (IDA) [11]. This involves conducting a series of RHAs to the nonlinear OpenSEES 

model in Figure 2a to determine the peak deformation of each oscillator (EDP) for different initial 

gap for a suite of strong ground motions (GMs) amplitude-scaled according to an intensity 

measure (IM). Throughout this work, the same suite of 72 non-pulse-like GMs selected to span a 

broad range of seismological and GM parameters including peak ground acceleration (PGA) and 

frequency content have been used. Their distribution on the moment magnitude fault distance 

plane is shown in Figure 2b. 

Turning the attention to the IM, a viable choice for the considered application may be PGA as 

adopted in previous studies to assess the risk of adjacent structures colliding [19,22]. 

Nevertheless, it is well-known that IMs containing information about the structure are more 

“efficient” in deriving IM-EDP relationships as they reduce the spread/variability of IM values 

(one IM value coming from one GM considered in IDA) for a given EDP value (limit state), and, 

consequently, reduce the number of GMs required to establish dependable statistical IM-EDP 

relationships [11, 16]. The latter is an important consideration for the application at hand given 

the computational effort (small integration time-step) typically required to capture accurately 

pounding forces/collisions. In this regard, a novel IM for the case of adjacent/interacting SDOF 

structures is herein considered incorporating spectral acceleration information for both oscillators 

in Figure 2a defined as  

 ( ) ( )a a 1 a 2avgS = S T S T , (3) 

that is, the geometric average of the spectral acceleration, Sa, at the fundamental periods of the 

two oscillators, T1 and T2 (Table 1). The above IM is inspired by recent work on IDA-assisted 
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seismic risk/vulnerability studies of single/uncoupled structures (i.e., non-interacting with 

adjacent structures) demonstrating that the geometric mean of spectral acceleration at several 

different periods centered about the fundamental natural period is a more efficient IM than a 

single spectral acceleration value at the fundamental natural period (see e.g. [18]  and references 

therein). 

 
Figure 3: IDA curves and lognormal distribution fitting (μ: mean; σ: standard deviation) of IM conditioned on light 

damage limit state (displacement= 1.2Dy2 defined in Figure 1) for the 8WDCL oscillator interacting with 

12RFDCH oscillator for zero initial gap for IM taken to be PGA (left panel) and avgSa (right panel). 

 

Figure 3 provides indicative numerical data demonstrating the improved efficiency of the 

proposed avgSa in Eq.(3) over PGA by examining the spread of IDA curves of the peak 

displacement of the 8WDCL oscillator for a model with zero initial gap plotted for both the IMs. 

It is seen that the standard deviation, σ, of avgSa conditioned on displacement 20% higher than 

the oscillator’s yielding displacement, D2y, (taken as a “light” damage limit state in Figure 1) is 

more than 2.8 times lower than σ of PGA data for the same limit state. Similar significant 

improvements on efficiency have been noted for other limit states and for both the oscillators. In 

this respect, avgSa is the IM of choice in deriving fragility curves discussed in the following 

section. 

5 PROBABILISTIC QUANTIFICATION OF POUNDING INFLUENCE 
ON SEISMIC VULNERABILITY THROUGH FRAGILITY CURVES 

The influence of seismic pounding/interaction on the inelastic response of the structural systems 

in Figure 2a and, ultimately, on their seismic vulnerability is herein quantified individually for 

each structure by comparison of fragility curves with (coupled) and without (uncoupled) 

interaction within a probabilistic/statistical context (Figures 4-7). These curves are lognormal 

cumulative distribution functions of the IM of choice, avgSa, for fixed (i.e., conditioned on) an 

EDP (peak inelastic displacement) value. They are thus derived as illustrated in Figure 3 and 

represent the probability that a particular damage state corresponding to the fixed EDP value of 

choice is exceeded as a function of the IM in the considered structure. Results are provided for 

two different limit states corresponding to relatively light damage (EDP equals to 20% higher 

peak oscillator displacement than yielding displacement) and to severe damage (EDP equals to 
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20% lower peak oscillator displacement than the collapse/ultimate displacement) as indicated in 

the pushover curves in Figure 1.  In this respect, fragilities shifted towards to lower avgSa values 

in Figures 4-7 for the same limit (damage) state correspond to more fragile/vulnerable structures 

indicating detrimental effect of pounding/interaction.  

 
Figure 4: Influence of gap on the shape of fragility curves for the 12RFDCH inelastic oscillator for light damage 

limit state 

 

 
Figure 5: Influence of gap on the shape of fragility curves for the 8WDCL inelastic oscillator for light damage 

limit state 

 

 
Figure 6: Fragility curves of coupled and uncoupled 12RFDCH system for two limit states (gap= 0.1xSD) 

 



 

8 

 

 
Figure 7: Fragility curves of coupled and uncoupled 8WDCL system for two limit states (gap= 0.1xSD) 

 

In this setting, Figures 4 and 5 explore the influence of the initial clearance (gap) of the 12RFDCH 

and 8WDCL oscillators, respectively, to their vulnerability (likelihood) of exceeding the light 

damage state under some IM value. Examining first Figure 4, it is seen that for zero initial gap 

(structures in perfect contact at rest) the oscillator corresponding to the tall/new structure has the 

same (40%) probability to exhibit greater the light damage limit for under avgSa=0.34g (i.e., the 

fragility curves for the uncoupled and for the coupled structure with zero gap intersect). However, 

the uncoupled structure will exceed the limit state with higher probability for avgSa< 0.34g 

(interaction is beneficial) while the opposite happens for avgSa>0.34g (interaction is detrimental). 

Therefore, pounding for zero initial gap has a mixed effect for this structure and at this light 

damage limit state and reduces the dispersion of the IM|EDP statistics (shape of fragility curve 

with interaction is more vertical than the uncoupled one). More importantly, it is observed that 

as the gap increases up to 10% of SD, pounding is globally detrimental (at all probability levels) 

compared to structures being in touch. This detrimental effect then reduces as the gap further 

increases and coupled/uncoupled fragilities practically coincide for 50% of SD gap. Examining, 

next, Figure 5, it is found that pounding with zero or even small initial gap has also mix effect to 

the probabilities of exceeding the limit state for the 8WDCL oscillator given avgSa compared to 

the uncoupled case, but in the opposite manner from the 12RFDCH structure. Here, pounding 

increases the dispersion of IM|EDP values and probability that the light damage limit state is 

exceeded increases under pounding for avgSa< 0.30g (i.e., pounding becomes detrimental). 

Nevertheless, as the gap increases to 10% of SD, pounding for the short/stiffer structure becomes 

beneficial. 

Focusing on the above identified “critical” gap of 10% of SD found through parametric analyses 

(results for other limit states not presented here for brevity demonstrate that this is the critical gap 

across the board with larger differences in fragilities), Figures 6 and 7 demonstrate that this 

opposite effect of pounding (i.e., detrimental for the new 12-storey structure and beneficial for 

the old 8-storey structure) is maintained for the severe damage limit state, though differences are 

less significant. Differences to fragility curve statistics for 10% of SD gap in terms of mean and 

standard deviation defined as   



 

9 

 

 SD 10%SD SD 10%SD

10%SD 10%SD

μ -μ -σ
μ = 100 ; = 100

μ
diff diff


  


 (4) 

are further reported in Figures 6 and 7 for both limit states considered. 

6 CONCLUDING REMARKS 

A novel pilot numerical study has been undertaken to quantify the effect of pounding/interaction 

between adjacent buildings with equal storey heights in terms of fragility curves in a probabilistic 

performance-based context relevant to seismic loss assessment studies. The particular case of a 

taller (12-storey) new structure with high ductility capacity constructed next to a shorter (8-

storey) old/existent structure with low ductility was considered. Benchmark structures modelled 

as inelastic SDOF oscillators derived through pushover analyses to detailed FE inelastic models 

found in the literature have been adopted. Record-to-record variability to seismic 

demand/performance expressed by peak inelastic displacement for each structure (EDP) was 

accounted for by performing IDA using a set of 72 GMs with balanced distribution of 

seismological parameters and for different initial clearance. This has been supported by a novel 

intensity measure (IM) defined by the geometric mean of the spectral acceleration as the natural 

period of the interacting structure (avgSa) shown to be more efficient than the commonly adopted 

PGA. It was found that zero initial clearance did not affect much fragilities in the mean sense, 

but changed the variability to the spread of avgSa for fixed limit state especially for the old 

structure. It was further seen that as the initial clearance increases to a critical value of 10% the 

SRSS of the oscillators displacement capacity, pounding becomes detrimental for the new 

structure and beneficial for the old structure as the probability of exceeding light and severe 

damage limit states for fixed avgSa increased for the new and decreased for the old structure. 

Overall, the furnished results demonstrate that clearance/gap between adjacent structures do 

make a difference to seismic loss assessment studies and need to be accounted for especially 

when structures are not in touch but have some small but insufficient to prevent pounding 

clearance. The effects of adopting more sophisticated pounding model accounting for local 

energy dissipation during collisions to fragility curves are left for future work as well as the 

application of the herein considered probabilistic performance-based seismic assessment 

framework for adjacent colliding/interacting structures modelled through detailed multi-degree-

of-freedom inelastic models. 
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