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Abstract

A certain volume of risks is insured and there is a reinsnrance contract, according to which claims and total
premium income are shared between a direct insurer and a reinsurer in such a way, that the finite horizon
probability of their joint survival is maximized. An explicit expression for the latter probability, under an
excess of loss (XL) treaty is derived, using the improved version of the Ignatov and Kaishev's rain probability
formula (see Ignatov Kaishev and Krachunov, IME 29, (2001), 375-386) and assuming, Poisson claims
arrivals, any discrete, joint distribution of the claims and any increasing, real premium income function. An
explicit expression for the probability of survival of the cedent only, under an XL contract is also derived and
used to determine the probability of survival of the reinsurer, given survival of the cedent. The absolute value
of the difference between the probability of survival of the cedent and the probability of survival of the rein-
surer, given survival of the cedent is used for the choice of optimal retention level. Formulae for the expected
profits of correspondingly, the cedent and the reinsurer, given their joint survival up to the finite time horizon,
are also given. The quota share contract is also briefly considered under the same model. Extensive, numerical
comparisons, illustrating the performance of the proposed reinsurance optimality criteria are presented.

Keywords: excess of loss, optimal reinsurance, optimal retention levels, probability of joint survival of cedent
and reinsurer
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1.Introduction

Optimal reinsurance has been the subject of a large number of risk-theoretical papers and monographs. We
will restrict ourselves to mentioning the works of De Finetti (1940), Verbeek (1966), Buhlmann (1970),
Gerber (1979), Straub(1980) , Waters (1979), Centeno (1986, 1988, 1991, 1997), Centeno and Simoes
(1991), Bowers, Gerber, Hickman Jones and Nesbitt(1997), Hesselager (1990), Taylor (1992), Dickson and
Waters (1996, 1997), Kaluszka (2001), Krvavych (2001), Gajek and Zagrodny (2000). Although reinsur-
ance is a risk sharing arrangement between a primary insurer (cedent) and a reinsurer, the quoted authors
ignore the reinsurer's interests and consider reinsurance conditions, optimal with respect to the interest of the
ceding company only. Thus, in the case when the probability of ruin (survival) was assumed as the optimal-
ity criterion it concerned the primary insurer only and was approximated by the upper Lundberg bound in a
compound Poisson model. This was the approach of Gerber (1979) who showed that the cedent will mini-
mize the probability of his eventual ruin if he chooses the excess of loss reinsurance, among all individual
reinsurance treaties provided. Other works, considering optimal reinsurance, with respect to approximations
of the ruin probability of the primary insurer, are those of Andersen (2000), Krvavych (2001),
Waters(1979), Centeno (1986, 1997), Dickson and Waters (1996, 1997) and earlier the monographs of
Bhulmann (1970) and Straub (1980).

A stochastic dynamic control approach to optimal reinsurance was recently demonstrated in a series of
papers by Schmidli (2001, 2002), Hipp and Vogt (2001), Taksar and Markussen (2002), Asmussen, Hoj-
gaard and Taksar (2000), Mnif and Sulem (2001) and Bauerle (2002). The authors consider dynamic,
controlled diffusion models of proportional or excess of loss reinsurance, optimal from the point of view of
solely the direct insurer, minimizing his probability of ruin (see Schmidli (2000, 2002), Hipp and Vogt
(2001),Taksar and Markussen (2002)), or maximizing the expected discounted dividend pay-out (see
Asmussen, Hojgaard and Taksar (2000), Bauerle (2002).

Borch seems to have been the first to note the importance of the obvious fact (see Borch 1969, p. 295 ) "...
that there are two parties to a reinsurance contract, and that these parties have conflicting interests. The
optimal contract must then appear as a reasonable compromise between these interests". Inspired by the
fundamental work of von Neumann and Morgenstern (1944), Borch (1960, 1969)) looked at the problem of
optimal reinsurance econometrically, applying the game-theoretic approach within the (re)insurance market
framework. He considered (see Borch 1960) the so called reciprocal reinsurance treaty, according to which
two companies share the total of their aggregate claim amounts in such a way that the product of their gains
in utility due to the treaty is maximized. This was what Borch called the Nash solution to the optimal reinsur-
ance problem. He considered quota share and stop loss risk sharing arrangements and provided some con-
crete examples of optimal retention levels in these cases. Buhlman (1980, 1984) has also developed general
economic models of the (re)insurance market, considering the interests of all agents on the market, insurers,
reinsurers and buyers of direct insurance. More recent papers in which (re)insurance problems are modelled
as cooperative games with stochastic payoffs are due to Suijs, Borm, and De Waegenaere (1998) and
Aase(2002). For further references on the subject we refer the interested reader to Aase (2002), who presents
a detailed up to date overview of the current risk exchange models of a (re)insurance market, and considers
competitive equilibrium, Pareto optimality and representative pricing of risk-sharing contracts, based on the
game-theoretic approach.

Not surprisingly, optimal reinsurance has also been at the focus of the attention of practicing actuaries and
reinsurance experts, working in general insurance and reinsurance companies. An example of how some of
them see the problem of determining optimal retention levels and designing whole reinsurance programs
can be found in the recent publication of the Swiss Reinsurance Company, authored by H. Schmitter (2001).-
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The author is not concerned about retention levels affecting the optimal amount of risk the reinsurer would
be prepared to take, to ensure his own safety and financial stability. He has rather concentrated on the
interests of the primary insurer, demonstrating simple methods of how the retentions can be set optimally, to
effectively maintain fluctuations in the results of the primary insurer at an acceptable level. The paper is
based on the early work of De Finetti (1940) where the variance of the aggregate claims amount (the loss
burden) is used as a measure of the risk, associated with a reinsurance portfolio. Optimal retentions are then
described as the retentions minimizing the total variance over all the portfolios, supported by the primary
insurer, keeping the reinsurance price (i.e. the fluctuation and expenses loading of the risk premium) at a
certain fixed level.

In the present paper, we will take an approach, coherent with the remark of Borch (1969) quoted above. We
will consider optimal reinsurance from the point of view of both the interests of the primary insurer and the
reinsurer, as two parties jointly liable for the risk they share. We assume that a mass of risks is insured, thus
generating  individual claims and producing corresponding flow of premiums to an insurance company. In
what follows, we will some times call these two flows, correspondingly, the flows of originally occurring
claims and premiums. We will also assume that the two flows, "adequately” correspond to each other in the
sense, that the company has taken into consideration actuarial methodology (premium rating principles,
estimates of claims distributions, based on historical claim data. etc.), market constraints and other economic
factors and business rules of thumb in determining its premiums. We will further assume that the insurance
company wishes to insure its portfolio of risks, secking an excess of loss (XL) reinsurance contract. Then, we
will concentrate on defining the conditions of such a contract, according to which, the total premium income
and the aggregated claims are shared between the ceding company and the reinsurer in an way, optimal with
respect to the interests of both parties. This seems to be an approach, more natural than focusing only at the
interest of the direct insurer, as has been the case in most of the past research quoted above. This is because
the insurer and the reinsurer can be considered as partners, having common objectives in managing the risk
they share. For example, maximizing the survival probability is one of the important conditions for achiev-
ing solvency and financial stability, objectives of top priority for both insurance and reinsurance companies.

The paper is organized as follows. In the next section, we have considered first the simple case when the
primary insurer seeks no reinsurance, i.e., covers each claim by himself and fully retains the corresponding
flow of premiums. His probability of ruin (survival) up to a finite horizon is then given by the improved
version of the Ignatov and Kaishev's formula (see Ignatov Kaishev and Krachunov 2001), assuming the
individual claims to him have Poisson arrivals and their severities have any discrete joint distribution. This
result, together with the ruin probability formulae of Picard and Lefevre (1997), which applies to the same
model but for independent, individual claims only, are given in Section 2 for further use in proving the main
results of Section 3. In Section 3 we have considered the simple, unlimited XL reinsurance contract, and have
defined two risk processes, of the cedent and of the reinsurer. With respect to these two risk processes, we
have further introduced two optimality criteria for setting the XL retention level. They both can be viewed
as measures of the risk, taken by the cedent and the reinsurer and are explored in Subsection 3.1.Thus,
retention levels may be considered optimal if they minimize the these risk measures. The first such measure
is the probability that both the primary insurer and the reinsurer will survive up to a finite time horizon . As
we have shown, this joint survival probability is a function of the retention level. The latter is said to be
optimal if it maximizes the probability of joint survival up to a finite time horizon of the cedent and the
reinsurer. An alternative optimality criterion, introduced in Section 3, is the absolute value of the difference
between the probability of survival to a finite moment in time of the cedent and the probability of survival of
the reinsurer, given survival of the cedent up to that moment. The optimal retention level is the value which
minimizes this difference. Theorems 1 and 2, proved in Section 3, give explicit expressions for these two
criteria of optimality of the retention level, assuming the originally occurring claims to the primary insurer,
i.e., claims before reinsurance, have any discrete joint distribution and their arrivals form a Poisson point
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process. Section 3 is further devoted to the extensive numerical investigation and sensitivity analysis of our
two optimality criteria, given by formula (7), established in Theorem land by formula (18), established in
Theorem 2. Both formulae are shown to be numerically efficient and convenient for practical evaluations.
This is confirmed by the numerical results and graphical illustrations of optimal retention levels, obtained on
their bases, for the case of logarithmically and multinomially distributed claims. In Subsection 3.2, the
expected profits of correspondingly, the cedent and the reinsurer at the end of the time horizon, given their
joint survival to that moment are considered, as measures of performance of the two parties. Explicit expres-
sions for these expected profits are established by Theorems 4 and 5, correspondingly for the cedent and the
reinsurer, and their numerical performance is tested. The numerical example and 3D graphs of the expected
profits (see Fig. 7) illustrate the choice of an optimal pare of values of the retention and the proportion in
which the original premium income is split between the two parties. Borch's point that the interests of the
two parties are contradictory is clearly illustrated on the 3D plot of the two profits given in Fig 7 . Section 4
is devoted to the quota share contract. Theorem 6 therein establishes, that the choice of the quota share
retention level does not affect our first optimality criterion, i.e., the probability of the joint survival of the
cedent and the reinsurer, which coincides with the probability of survival of the primary insurer without a
QS contract. Finally, Section 5 contains conclusjons, comments about the practical applicability of the
results, and some questions for future research.

2. Preliminaries

We will consider a portfolio of insurance risks with claim severities, modeled by the integer valued r.v.s.
Wi, W), ..., occurring with inter-occurrence times 7y, 72, ...., assumed identically, exponentially distributed
rv.s  with parameter, A. The joint distribution of W, W,, .., is denoted by
represented by a counting process Ny =#{i: 7; + ... + 7; < 1}, where # denotes the number of elements in the
set {.}. The r.v.s W1, Ws, ..., are assumed to be independent of N,.Then, the risk (surplus) process R;, at
time ¢, is given by

N
R=HO- W,

i=1

where A(t) is a nonnegative, increasing, real function, defined on R, , representing the aggregated premium
income up to time £, to be received for carrying the risk associated with the entire portfolio. We will be
concerned with the probability of non ruin (survival) P(T > x) in a finite time interval [0, x], x > 0, where
the time T of ruin is defined as

T:=inf{t:t>0, R,<0} . M
The premium income function A(z) is defined aggregating, up to time ¢, the premiums on individual contracts,
rated using the well known actuarial (net) premium rating principles (see e.g. Gerber 1979) and/or other
rating techniques, used in practice. Thus, it will be assumed that the function A(f) "adequately corresponds”
to the total amount of claims, generated by the insurance portfolio up to time #. If the primary insurer is not
buying reinsurance then, as shown in Ignatov, Kaishev and Krachunov (2001), his survival probability
P(T > x) may be expressed as
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P(T>x)= e_’m'z Z PWy =Wy oy Wiei =Wi; W2 n—wy — .. = Wi y)

k=1 wizl,.. w21
Wit AW <n—1

@
k1 k=j-1 "

Z(—l)’b,-(zl, ¥ Y G

- m=1

j=0

where,
n=[h(x)]+ 1, [h(x)] is the integer part of A(x),

Va1 SX<Vy, V;=h1(), fori =0, 1,2, .., notingthat0 =vp<v; <v,..., and k is such that
Wit twersn-Lwito+wezn (1<k<n), z1=Vy 4w, I=1,2, ... and by(zy, .., z)) is defined
recurrently as

b;( N +lij _qy+2 Zy ! b - ’+jzf1 ) )
;215 oy 27y = (=1 +(=1Y T i)+ o+ (1Y —1—'171—1(21, s Zj1)y

J! G=-1

(€)

with by =1, b1(z) =z;.

In the special case of independent, identically distributed claims W;,W,,... with common distribution
{P}, j € N*}(where N*is the set of natural numbers) i.e., when P(W; = )=P;,i=1,2, .., j=1,2, ..with
mean y , one can express the probability of survival of the direct insurer, without reinsurance, by applying
the Picard and Lefevre (1997) formula

PT>0)=e™ Y A4i0) avys @
i=0

where I, is the indicator of the event {.} and 4;(x) i = 1,2,.... are the Appell polynomials, defined as

Ao =1,
k=1

/@)= AP A,
=0

with

A4;v)=0, i>0.

i
Appell polynomials 4;(x), i=1,2, ... are expressed as A;(x) = Z b, €;_p(x), where

r=0
i

'3
a=Y B gk izo, =1, @ =P +..+ We=J), k>0, g° =5 and b,,
=0
r=0, 1, ..., i are unknown coefficients, obtained by solving the system

Z by eir(vi) = 6o .
r=0
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Now, let us assume the direct insurer is seeking reinsurance cover for part of the risk, related to his portfolio
of insurance polices. Thus, it will be assumed throughout the sequel that the originally occurring, individual
claims, modeled by the r.v.s W, i =1, 2, .... are shared between the ceding insurer and a reinsurer, accord-
ing to the clauses of a reinsurance contract between them. In the next sections we will consider excess of loss
and proportional reinsurance contracts.

3. Optimal excess of loss

Recall, that according to the excess of loss (XL) treaty, the direct insurer covers each individual claim up
to a certain retention level M and what exceeds M is covered by the reinsurer. Since here claims are integer
valued, the retention level will also take integer values, i.e., M =1, 2, ... .Let us denote by #;°and by W;"the
parts of the total claim W, i=1, 2, ...covered correspondingly by the cedent and by the reinsurer. Obvi-
ously, W, =min(M, W), W = (W, - M),, and W; =W+ W/, i=1,2, .... As is natural with reinsurance
contracts, the cedent and the reinsurer share not only the risk but also the total premium income for covering
that risk. Thus, we will assume that A4(f) = hc(¢) + h,(2), where h.(¢), h,(r) and h(?) are increasing (not necessar-
ily strictly) and possibly discontinuous, non-negative, real functions, representing the premium income up to
time # of correspondingly, the cedent, the reinsurer and the total original portfolio of risks. We will consider
two risk processes, that of the direct insurer and of the reinsurer, which we will correspondingly define as

Ny
RE=h(0)- ) min(M, W), ®
i=t
and
N
RS =h(®)= ) (Wi=M), . ©

=1

The type of optimality problem one may pose with respect to R,°and R, is to find the value of the retention
level Mwhich maximizes (minimizes) a certain optimality criterion, assuming 4.(?), /() and h(¢) are fixed
and such that A(f) = h.(2) + h,(). The optimality criterion can either be related to the risk, accepted by the
cedent and by the reinsurer or to their business performance. One may choose different risk and performance
measures and specify the optimality criterion, based on the particular choice. Thus, Section 3.1 is devoted to
the "probability of survival" based optimality, as a measure of the risk and in Section 3.2 the optimal
retention levels are considered, which maximize the expected profit at time x, given that both the cedent and
the reinsurer survive up to that time.

~
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= 3.1.1 Retention levels optimal with respect to P((7¢ > x) [ (T” > x))

Let us first consider the probability P((T° > x) (" (T” > x)) of joint survival of the cedent and the reinsurer as
an optimality criterion. To address the two optimal reinsurance problems 1) and 3) we need an explicit
expression for the probability P((T‘ >x)N(T" > x) ), which is given by the following

Theorem 1. The probability of joint survival in finite time X of cedent and reinsurer under an excess of loss
reinsurance treaty

P(T*>x) N (T7>x) =

e E E PW1 =W, ey Wic1 = Wit Wi 2 B— Wi — .. — Wi1)

k=1 wizl.wazl, ©)]
Wi+t <n—1

-

I-1
- m
Z =1 bz, r 2N Z % >

7=0 m=1

where n is defined as in 2), Z; = max(Vy,es_swes Ve swf s

— 1 —=mi | —
Viyer s = Be Wi°+... + w)°), w;° = min(M, w;), Vi dwy = w4 tw)w = (w,- - M)
and/is suchthat, 2, <..<%_; <x<3Z.

]

Proof- Consider the probability of survival of the cedent, without reinsurance, given by formula (2) and recall
(see Ignatov, Kaishev and Krachunov 2001) that the expression

-1 E=j-1 .
Y CW b, )V Y, EAL

J=0 m=1

coincides with the conditional probability P(T > x | W1 = w1, ..., Wiy = wi1; Wy 2 B~ Wi — ... — Wi_1), Le.,

PT>x|Wi=wi, w, Wiy =wi_; W zn—wy— ... —Wi1)
e K ®
= Y (Wb, . zpV Y, EA
j=0 m=1
provided that Vy,4 4w, <X < Vit swge
By analogy with formula (2) we can write
PI>NI >x) =
n
et Z Z PWy=w1, oy Wimr =Wiep; W 2 n~wy — . — W) )

k=1 wyzl,.,w 21,
Wit Fwp_1<n—1

XPUT > ) NI >x) | Wy =wi, oo, Wi =wip; Wi == Wi — oo = W)

By analogy with equality (7) of Ignatov and Kaishev (2000) for the risk process R,we can write for the risk
processes R,and R,”
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PI>NI >x) | Wy =wy =w° +wy',
Wie1 = Wiy = W1 + w1 W 2 n—wi — . —Wi_1)

ey

=PUT > )T >x) | W =w, W =wi', ooy Wit = w15,

Wt =wit s B+ W 2 n—wi —w" — .~ w1~ i)
10
=P((T1 2 Ve, TIHT2 Z Vieamy®s voy TLF oo F Tl Z Vi tw ©s T1 et T 2 X)
MV Z Vi, T1H T2 Z Vi, s veos T1F e F Thot Z Vs> T1 + et T 2 X))
= P(ry 2 max(V,e , Vuy), Tt + T2 Z 8K WVwerny® s Vwyswy )y s
T1 + oo + Tp1 2 WAV w5 Yy ttwgy™ s T1 F et T 2 X)
From (8) and (10) it is not difficult to deduce that
P(ry = max(vwl‘ 5 "wl’)a T +Tr = max("wfﬂv;" s V" 4w," ) N,
TL+ oo+ Tl 2 WAyt Vi o dwg ) TLF b T 2 X) =
k-1 k—-j-1 - an
Y Y b, .z Y, EAL
J=0 m=1

Now, if / is an index, such that Z; <... < %_; < x <Z then, we can sum up in (11), with respect to j from 0 to
I—1, since we consider the events of ruin of the cedent and the reinsurer up to time x only. Hence, we can
rewrite (11) as

PTy = MaX(ye , Vi), T1 +T2 = IAX T s Virony ) -

ey

T+ e+ T 2MAXVy et 4wy Vit awe ) T1H b T 2 X) =

-1 _ gt . 12
Y Y b, L zpn Y, AL 2
J=0 m=1

The assertion of the Theorem now follows from (10), (12) and (9).0
Numerical illustrations and sensitivity analysis

Now, we are in a position to solve the two optimal reinsurance problems 1) and 3). Deriving analytical
expressions for the optimal retention level M in 1) and the optimal split of 4(#) into A.(?) and A,(f) in2) is in
general a formidable task, taking into account the complexity of (7) with respect to M , h.(f) and A,(2) and
their inverse functions. Alternatively, one can find the optimal solutions of problems 1) and 3) directly using
(7). For the purpose, formula (7) has been implemented as a Mathematica module, named OpXlJo and
used in what follows for numerical investigations.

Logarithmically distributed individual claims

To illustrate the numerical solution of problems 1) and 3) we have chosen , without loss of generality, the
following test model, which we will use for testing purposes throughout the sequel:

Individual claims:independent, logarithmically distributed with parameter o, i.e.,

W; ~ Log(a), P(W =i)=—a'/In(1 - @) i; a3)
Premium income functions: h(f) = c.t , () =c,tand h(t) = ct =(c. + ;) t , (u=0);

Claim inter-arrival times 7; i = 1, 2, ...: exponentially distributed with parameter A.
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We have computed P((7° > x){) (T" > x)), by means of OpX1Jo, with respect to model (13) as a function
of the retention level M, for different, fixed values of c, and ¢,, such that ¢ = ¢, + c,. Fig. 1 illustrates
graphically this function for @ = 0.9, size of the time interval x =8, A = 0.4, total premium rate c¢=1.75,
and values of the reinsurer's premium rate ¢, =0.7, 0.5, 0.25, 0.15. Dots on the graphs correspond to
P(T° >x)((T" > x)) evaluated at retentions M =1, 2, ..., 10, whereas, maximum of the probability of
joint survival is achieved at the bigger (red) dots, for optimal retention levels Moy = 10, 9, 4, 2 correspond-
. ing to ¢, = 0.15, 0.25, 0.5, 0.7, which means that optimal retention levels decrease with the increase of the
proportion of the total premiums, transferred to the reinsurer, as is natural to expect, since the reinsurer will

cover larger part of each claim for larger part of the total premium income passed on to him by the direct
insurer.

P((T°>x)N(T*>x))

Fig.1. Optimal retentions with respect to the probability of joint survival of cedent and reinsurer, for fixed
values of ¢, (and c).

Optimal retention levels for the values of ¢, = 0.15, 0.25, 0.5, 1.0, for increasing values of @ are summa-
rized in Table 1. As can be seen, for fixed value of c,, optimal retentions increase as « increases, since the
expected value of the claim severities increases with @, causing higher proportion of each claim to be
retained by the cedent in order to keep the joint probability of survival maximal. Table 2 illustrates that for
fixed ¢, the optimal retention levels decrease as the Poisson intensity of the claim arrivals is increased. By
increasing A the amount of claims arriving on average is increased, causing higher risk of ruin for the cedent
and hence lower optimal retention levels, necessary to keep his and the reinsurer's join probability of
survival maximal.

Table 1. Optimal retention levels for increasing reinsurer's premium rate c,
and parameter of the logarithmically distributed claims &
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c\a .1 .3 .5 .7 .9 .99 .999
.15 1 1 2 2 3 4 4
.25 1 1 1 2 3 3 4
.50 1 1 1 1 2 3 3
1. 1 1 1 1 1 1 2

Table 2. Optimal retention levels for increasing reinsurer's premium rate ¢,
and Poisson parameter A

c\a| .1 .2 .3 .4 .5 .6 .7 .8 9
.15 4 3 3 3 3 3 2 2 2
.25 3 3 3 3 2 2 2 2 2
.5 2 2 2 2 2 2 2 2 1
1. 1 1 1 1 1 1 1 1 1

To investigate numerically the behavior of P((T° > x) () (T” > x)) in the optimal reinsurance problem 3) we
have used OpX1Jo, to compute and plot on Fig 2, the graph of P((T° > x)( (7" > x)) as a function of ¢,
increased from 0.01 to 1.5 with a step 0.01, for values of the retention level M = 1,2, 3,4, 5, 7 and fixed
values of ¢ = 1.75, (¢, = 1.75-¢,;), @ =09, x=8and A =0.4. A straightforward maximization yields the
optimal values ¢, =.0.93, 0.59, 0.4, 0.29, 0.01, 0.01 of the reinsurer’s premium rate c,, (also the optimal
cedent's rates , cP=175-¢°Y) , at which, correspondingly, the maxima
P(T° > x) N(T" > x)™ = 0.279, 0.280, 0.292, 0.306, 0.330, 0.355 were attained. They are marked by the
(red) dots on Fig 2, for the retention levels M =1, 2, 3, 4, 5, 7 respectively. As can be seen, looking at Fig
2 and at the values P{(T° > x) N (IT7 > x))™, the maximum of each of the curves increases as M increases
from 1 to 7, i.e., global maximum of the joint survival probability is achieved for ¢,%' = .0.01 and M =7
which is close to having no reinsurance arrangement. This is natural to expect, since by increasing the
retention level M up to 7 and higher, the direct insurer tends to retain almost all the risk and hence the
proportion covered by the reinsurer tends to vanish, bringing up to unity his probability of individual
survival, which on its turn increases the joint probability of both cedent and reinsurer surviving. This extreme
case is of course not realistic since existing insurance and reinsurance market conditions and regulatory
requirements (such as statutory solvency requirements etc.) cause both insurers and reinsurer's to look for
risk sharing contracts between each other.
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P(T >x)N(T>x))

Fig. 3. Optimal values of the reinsurer's ( direct insurer's) premium rate ¢, (¢, = 1.75 - ¢,) for fixed reten-
tion levels M.

The peculiar shape of the probability of joint survival of the cedent and the reinsurer as a function of the
premium income rate ¢, and the retention level M, for the same multinomially distributed claims example is
illustrated by the 3D plots, given on Fig. 4 and Fig. 5 which differ only by the view point.
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Fig. 4. A 3D plot of P((T° > x) N (T" > x))as a function of the premium rate ¢, (¢, = 1.75—¢,) and the
retention level M.

30

0.22

Fig. 5. A 3D plot of P((T° > x){) (T > x))as a function of the premium rate ¢, (¢, = 1.75—¢c,) and the
retention level M.




16 Optimal Retention levels, Given the Joint Survival of Cedent and Reinsurer.nb

= 3.1.2 Retention levels optimal with respect to |[P(T¢ > x) — P((T" > x) | (T€ > x))|

Let us now turn our attention to the second definition of the optimality criterion, ie., to
|P(T° > x)— P((T" > x) | (T° > x))|. Obviously, we have

PAT" >0 (>0 = = paes 5>

hence, to evaluate |P(7° > x)— P((T" > x) | (T° > x))| we need to find a formula for the probability P(T¢ > x)
and then use it, together with the expression (7) for the joint survival probability. To obtain such a.formula
we will consider the claims process to the ceding insurer. It is modeled by the r.v.s W, i=1, 2, ..., which

take values
w; ifw, < M
M ifw;>M (14)

ie., min(w;, M), i =1, 2, ...at the moments of arrival of the original claims.

We will further adopt the notation, P(Wi°=wy, ..., Wo*=w, )= P, ., for the distribution of the
individual claims to the ceding insurer. It is not difficult to conceive that we can express Py, _ y, in
terms of the original claim amounts distribution Py, ., as

Pytn =0, if w; > M, atleast for one valueof i=1, ..,n

P w1,y = Pur,w,if wi< M, forallvaluesof i=1, ..,n as)

c p— c
Py = F WieeeWh— 1MW 1ymes s W LMWy 4 1o s W LMW 150 W

=P(Wy =w1, oo, W1 =wyq,
Wy zM, Wyt =Wis1, o Wpm1 = Wit Wy 2 M, Wiyay = Wiyay, oy
W'Ik—l =Wh-1, u’lk =M, n’!,,+1 = Whils em Wy = wy)

= Z P Wiaeees W LW W oo s Wh— 1sWh s W 4 150 s Wi~ 15 Wi s W1 50005 Wi
M=w;, <+oo

M=wj,<tco (1 6)

Msn-/-,:<+eo
if 1<sw,sM-1,0=<j<n jth,jth, ..jth, 1<sh<h<..<l<n 0< k< n, and there is
no summation when £ =0, i.e., Py, w, = Pw,, . w,-

To avoid infinite summation on the right-hand side of (16) and hence to facilitate its exact numerical evalua-
tion we will rewrite it as

P(Wy=w1, ., W1 =wyo1, Wi 2 M, Wi =Wia1, o Wipo1 = Wiy, Wi, 2 M, Wiy =wya,
W1 =Wyt Wi, 2 M, Wit = Wity o, Wa =Wy)

eny

=P(Wy=w1, ey Wi =Wyt Wia1 = Wiats v W1 =Wy 1, Wiy = Wia1, oy

u’l,,—l =w,1, n’I;,H = Whtls ey W = Wy, n’ll =M, u/lz =M, .., u/I,, = M)

=P(Wy = Wi, oy Wiye1 =Wyt Wiat = Wipats oo Wipo1 = Wity Wipa1 = Wity won

Wit = Wiet, Wi =Wiats oo W =Wy, Wy, = M, W, = M, .., W), = M)

=PWi=w1, wy Wi = Wit What = Wials v W1 = Wipo1, Wiy = Wity oo,
Wit =Wyt Wis1 = Wiats wos Wn = Wa, Wy, <MYU W, <MYU ..U (W, < M))
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=PW1=w1, woy W1 =Wio1, Wisd = Wity oes Wit = Wity Wha1 = Whats oy
_ _ an
W1 = Wity Wit = Wity oy W =wy)

&
=PUjr (Pr=w1, oo, Wy =Wi1, W1 = Wit oo, W1 = Wipo1, Wi = Wity wony
Wit = Wi—1, Wit = Wit ey W =wp) N (W, < M)

Now, applying the inclusion-exclusion theorem to the second term on the right-hand side of the last equality
in (17) and introducing the notation

PWy=w1, oy Wit =wWio1, Wit =Wty oo Wit = Wity Wha1 = Wity ooy
Wi—1 = Wye15, Wia1 = Wi 1y wes W = Wp) =
Pwl,...,wl,_l, KWL N W 1seeeesWh—15 KWL Dy Wiyg geeesWh— 1, KW Dy Wit 150005 Wn

we obtain

PW1=W1, ooy W1 = Wi, Wy 2 M, Wit = Wity v Wit = Wit Wi, 2 M, Wiy = Wiy, s
Wit =Wy, Wi, 2 M, Wiy = Wyi1y oy W =wy)

= Py Wit CW P, WL Wiy 1 €W D, Wiy e W1, €W, B, Wit 1pens Wi (18)
£k M-1
‘Z Z Py Wi —15 €W Dy W 41 5m0mes € Wiy P Wiyt omees Whm LWL Wt Leens 8 Wy Wieens €W D,y Wy
J=1 wy=1
M-1
DYDY
l<j<s<k
wi,=1
M-1
Z Pwl,---7wll—1, CWh P Wit 1geensy CWE_ P W1t 15ees WE W Wt 1o W1 W Wi 150, €W Dyee Wy
w,=1
M-1
+ ... +(1)" E
W =1
Let us note that the distributions
P Wiseeos Wi —15, € WI D Wit 1seeees W1, KWL D Wit Loy W1, K Wi D, Wiy 15000, Wn ’
l<h<bh<..<lh=n O0<k=<n, are easily obtained from

Py oW1 W1y Wi v Wy 15Wiy Wy 155 Wi =15 Wi W 15--sW, DY SUIIMIN it out with respect to the corre-
sponding, set of indexes. To apply formula (18), one needs to know these marginal distributions. Explicit
formulae for the latter, for the multinomial and the 'negative binomial' distributions are given in the Appen-
dix. Now, we are ready to state and prove

Theorem 2. The probability of survival in finite time x of the cedent, under an excess of
loss reinsurance treaty is
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M
PT>x)= e

k=1 Mzwizl, Mzw 21, =n~w—-.—W;

Wit AWe<n.—1
(19)
k—1 k=j-1 ( l)m
. . X
Pcwl,...,wk,l,i E -1y bz, w2V Z m |?

7=0 m=0

with (18).
Proof. Since we are interested in the probability of survival of solely the cedent we can directly apply
formula (2), substituting in it, A(f), nand P(W) =w, ..., Wp_1 = wWi_1; Wi = n—w| — ... — wy_)) correspond-
ingly with %.(2), n. and P(W1° = wy, ..., Wyo1® = W13 M = W = n, — wq — ... — wi_1), taking into consider-
ation that W¢,; < M, i =1, 2, .... Thus, we have
ne
P(T° >x)= et Z Z PWL =Wy, oy Wi =Wps M = W 20— W) — .. — Wi_1)
k=1 Mzw=l, Mzw_ =1,

Wit AW <n.—1

k-1

k—j-1 .
Z Wby, oz Y EA
m=0

j=0

which leads to (19), noting that

M
P(Wcl =Wl o Wi =W M 2 Wy =n,—wy — ... —Wi1) = Z

I=Re=Wy—..~ W]

¢ .
P WiseesWi—1, 1°

We can substitute in (19) the expression of P”wl,"_,wnc via the distribution of the original claims, as given
by (15) and (16), combined with (18), which completes the proof of the theorem.

Numerical illustrations and sensitivity analysis of |P(T¢ > x) — P(T" > x) | (T° > x))}.

Here, we will restrict our numerical illustrations of how one can apply Theorem 2 to the case of the test
model (13), ie., to independent claims only. Further numerical investigations of the criterion
|P(T¢ > x)— P((T" > x) | (T° > x))lfor the case of multinomial, and 'multivariate negative binomial' distribu-
tions of the claims is straightforward, applying (19), combined correspondingly with the formulae for the
marginal multinomial and ‘'multivariate negative binomial' distributions, given in the Appendix. Such
numerical illustrations, on the example of the multinomially distributed claims are provided in Subsection
3.1.4. Next, we will consider {P(T° > x) — P((T" > x) | (T° > x))|, for the case of model (13), with model
parameters A = .4, @ =.9,c. + ¢, = 1.75, ul =u2 =0, x = 8.0ur purpose will be to illustrate the solution of
optimality problem 4), in which we assume the retention level M is varied from 1 to 5 and for each fixed
value of M we solve problem 4), i.e., find the optimal split of the total premium rate c into ¢, and c,, such
that |P(T°>x)— P((T" >x)| (T° > x))l—min. For M =1,2,3 the optimal values of c,, for which
|P(T¢ > x)— P((T" > x) | (T° > x))| =0 are respectively, equal to 0.913, 0.439 and 0.126 with values of the
probability P(T¢ > x) = P((T” > x) | (T® > x)) respectively, 0.528, 0.518 and 0.510. This is illustrated
graphically on Fig. 6, on which the optimal solutions are marked by dots on the curves, obtained for each
fixed value of M, by computing P(T¢ > x)and P((T" > x) | (T > x)) for values of c,, varied with a suffi-
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ciently small step . As seen on Fig.6 the dots are closely situated, since their corresponding probabilities
0.528, 0.518 and 0.510 are close, which means that the cedent will prefer to choose the pair of optimal
values (M, c,), correspondingly equal to (3, 0.126) since in this case he will pass the lowest possible
proportion, 0.126 of the premium income to the reinsurer. Note, that increasing M does not decrease
significantly his probability of survival.

P((T">x) | (T°>x))

P(T°>x)

ow

Fig.6. Optimal split of the premium income rate ¢ for increasing values of the retention level M.

Now, let us perform some sensitivity analysis of our criteria |P(T° > x)— P((T" > x) | (T° > x))lon the
example of the test model (13). We will investigate how the change of the parameter & of the Log distributed
claims, affects the optimal solutions of problem 2), ie, the values of M minimizing
|P(T° >x)— PAT" >x) | (T° >x))l. The model parameters have been set as follows: A =4,
ul =u2 =0; ¢, =1.75—.15; ¢, = .15; x = 8, and a has been given values 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999
and for each value of @ the retention level M has been varied from 1 to 10 with a step of 1, computing for
each pare of values (@, M) the probabilities P(T¢ > x) and P((T" > x) | (T° > x)).The results of this investiga-
tion are illustrated on Fig. 7. As seen, the red (thick) dots, i.e., the dots situated closest to the straight line
with a unit slope, represent the values of M which 'equalize’ the two probabilities P(7° > x) and
P((T" > x) | (T° > x)), i.e. bring them as close to being equal as possible. As can be seen, these values, for
values of & equal to 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999, are correspondingly equal to 1, 1, 2, 2, 3, 4, 4, since
the dots on each curve, starting from the first dot lying on the vertical, dashed line, up the curve, correspond
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to values of M increasing from 1 to 10. The vertical dashed line at P(T¢ > x) =0.75 occurs since P(T° > x)
does not change if we change @ and keep M equal to unity, as is for the dots on the vertical dashed line.
Note, that by increasing @ we increase the mean value of the Log distributed claims, but since Mis unity
along the dashed line, this does not affect the probability of survival of the cedent, which is therefore con-
stant, equal to 0.75. Obviously, the latter value will increase, causing the dashed line to move to the right, as
we increase the intensity A of the claim arrivals or the cedent's premium rate c.. At the same time, increasing
the mean of the claims, keeping M =1, i.e., descending along the dashed line, decreases the probability of
survival of the reinsurer, given survival of the cedent, which is natural to be expected. Another observation
we can make, looking at Fig. 7, is that increasing @, i.e., increasing the mean of the claims, causes the cedent
to retain a higher proportion of each claim, i.e., the optimal values of M increase which is to be expected,
since both c.and c,are fixed. Another observation we can make, looking at Fig. 7, is that, for fixed o, i.e., if
we go up along each curve, the dots, corresponding to increasing values of Mcome closer to one another, i.e
with Mgoing up its influence on the two probabilities P(T° > x) and P((T" > x) | (T¢ > x))diminishes and
also, each curve tends to the value of P(T° > x)reached in the case when the cedent covers each claim only
by himself, without passing part of it to the reinsurer.

P((T">x) | (T®>x))

1 ) ‘
L]
A
0.8 * . :
: i .a:.l
o6 ‘. . -a=.3
) \ : -a: 5
.v'-\\» : Vi it: ” a: - 7
0.4 B
% -a=.99
: -a=.999
0.2 i
: P(T °>x)

o
[N}
o
=3
=}
o
o
@

=

Fig.7. Optimal retention values for increasing values of the parameter a of the Log distributed claims.

Another sensitivity analysis of the criterion |P(T° > x)— P((T” > x) | (T° > x))|, based on the same test
example of model (13), with @ = 0.9, ¢, = 1.6, ¢, =0.15, ul =u2 =0, x = 8 is to see how the optimal values
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of Mchange as the Poisson intensity A of the claim arrivals is increased from 0.1 to 0.9 with an increment of
0.1. To obtain M°P'the value of Mis varied from 1 to 10, for each fixed value of A.The results are shown on
Fig. 8, where one can see that as A increases, the optimal values of M, marked by the red (thick) dots,
decrease, taking values, correspondingly 4, 3, 3, 3, 3, 3, 2, 2, 2 since, the more claims arrive the higher the
risk for the cedent and the less of it should he retain, the values of ¢, c.and c,being fixed. Another phenom-
ena to be observed is that both P(T¢ > x)and P((T" > x) | (T > x))decrease as A increases, which is also
reasonable, since the risk to both parties increases as more claims arrive on average. As before the distance
between consecutive values of M, the dots along the curves decrease, affecting less and less the two probabili-
ties of survival.the probability of survival of the reinsurer reaching unity as Mapproaches 10. As is also
normal to expect for fixed values of M, @, ccand ¢, both P(T° > x)and P((T" > x) | (T° > x))decrease as A
increases, since the more claims arrive the higher is the risk for both of the parties. This is of course true for
values of M < 6.(see the patterns of the dots on Fig. 8)

P((T">x) | (T®>x))

! %
L]
°
o
0.8 .
[ ]
.1
0.6 .2
» .3
< .4
.5
\
0.4 .6
. .7
N
.8
.9
0.2 e
P(T ®>x)
0.2 0.4 0.6 0.8 1

Fig.8. Optimal retention values for increasing values of the parameter A of the Poisson intensity of the claim
arrivals.
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= 3.1.3 Independent individual claims

Let us now consider the special case of independent, identically distributed claims W;,W,,... with common
distribution {P, j € N*}(where N*is the set of natural numbers) ie., when, P(W; = )=P;, i=1,2, ..,
j=1,2, ..with mean 4 . In this case one can express the probability of survival of the direct insurer and the
reinsurer without conditioning on the survival of the cedent, applying the Picard and Lefevre formula (4),
accordingly adjusting it. To see how this can be done we will first express the distribution of the claims to
the cedent in terms of the distribution of the original claims as

P =0, if j>M,

Py= X P, if j=M, (20)
Ms j<+oo

P¢=pP;, if 1<j< M-1.

As for the arrivals of claims to the reinsurer , one has to bare in mind that, since he receives claims only
when the original claims exceed the retention M, hence the process of arrival of claims to the reinsurer will
be formed from the arrivals of the original claims by dropping the moments of arrival of claims of size less
then M, covered by the cedent. In other words, each point from the Poisson process of arrivals of the original
claims with intensity A will remain and form the process of arrivals of the claims to the reinsurer with probabil-
ity 224741 P Hence the letter, thinned process will have intensity lower than A, equal to =2 w1 P))-
For the distribution of the claims severities to the reinsurer one can write

P_/+M
o P 21
7 Pus1+Pupat....’ @n

where P7; is the conditional probability P(W”™ = j)= P(W = M + j| W > M).

pr

Now, we can state the following theorem

Theorem 3. The probability P(7° > x)and P(T” > x) of survival in finite time x of correspondingly the
cedent and the reinsurer is given by formula (4) replacing 471(i), i = 0, 1, 2, ...in the definition of v; with
rlG,i=0,1, 2, .. and P;with P¢;, j=1,2, ..given by (20) for the probability P(T°> x)and
FU),i=0,1,2, ..with 5,7'(1),i=0,1,2, .., Pj with P"}, j=1,2, ... given by (21) and the Poisson
intensity Awith A’ = 2 (Z;'; +1 P)), for the probability P(T” > x).

Proof. Directly follows, applying formula (4) and taking into consideration the construction of the two risk
processes R,°and R,” and the distributions P°; and P}, defined correspondingly by (20) and (21). o

Remark: Let us note that, as mentioned in Section 2, survival of the reinsurer, unconditional of the survival
of the direct insurer is irrelevant, unless we assume that in case of ruin all his liabilities (with respect to
settling current claims and paying reinsurance premiums) are automatically taken by another insurance
company, in which case the probability P(T" > x) given by Theorem 3 may be of some interest.

Optimal Retention levels, Given the Joint Survival of Cedent and Reinsurer.nb
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= 3.1.4 Numerical comparisons of optimality criteria P((7° > x) () (7" > x)) and
[P(T€ > x) — P((T" > x) | (T€ > x))I.

We can now give numerical solutions to the two optimal reinsurance problems 2) and 4) with the second
optimality criterion, i.e, [P(T°>x)—P(T">x)|(T°>x)) and compare these solutions with results,
obtained with the first optimality criterion P((T° > x) () (T" > x)). For the purpose, formula (19) was imple-
mented as a Mathematica module, named OpxXlCe and P((T” > x) | (T° > x)) and P(T° > x) were computed
as functions of the retention level M for the test model (13) and for the same model parameters, used to
investigate P((T° > x) () (T" > x)). Fig. 6 illustrates graphically the solution of problem 2), by plotting these
two functions, together with the probability P((T° > x) N (T” > x)). As can be seen, the two optimality
criteria give different optimal retentions, the first criterion producing considerably higher optimal retention
levels (marked with dotted lines on Fig 6). The difference between the two optimal solutions decreases as the
value of the reinsurer's premium rate c, increases. It can also be noted, looking at the graphs on Fig. 6, that
the second criterion is much less sensitive with respect to varying the premium rate ¢, i.e., it produces
optimal retentions which do not change significantly, taking values 3 to 1 as the proportion of split of the
total premium income, between the direct insurer and the reinsurer, varies in a wide range , i.c., ¢, being
varied from 0.15 to 0.7. This suggests that the second criterion produces retention levels more favorable for
the primary insurer, since the optimal retention level it produces is significantly lower, than the one obtained
under the first criterion, for the same fixes values of c,and c, such that ¢, + ¢, = c.(see Fig 6.). The same
conclusion is confirmed by Fig. 7. on which the two criteria are compared with respect to the inverse optimal-
ity problems 3) and 4), stated in Subsection 3.1, i.e., fixing the value of the retention level M, the optimal
split of the premium rate ¢ into c.and c,is calculated and indicated by the dashed vertical lines on Fig 7. As
seen the case when both criteria give similar optimal solutions is when the retention level M = 1.

Prob Prob
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
Prob Prob
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 ; 0.2
! '2 3 1‘1 5o o M

Fig.6. Optimal retention levels for Log Distributed claims, with respect to criteria P((7¢ > x) N (T" > x))and
|P(T¢ > x)— P((T" > x) | (T° > x))|
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The two optimality criteria are further compared with respect to the problems 2) and 4).

Prob
1
0.8
Geal 0T > !
Join 0.4 : £
0.2 '

Cr

0.20.40.60.8 1 1.21.4

Prob

817

o o o o

Cyr Cr
0.20.40.60.8 1 1.21.4 0.20.40.60.8 1 1.21.4

Fig.7 Optimal value of ¢, for fixed retention level, for Log distributed claims, with respect to criteria
P(T° >x)N(T" >x))and |P(T¢ > x)— P((T" > x) | (T¢ > x))|

Similar comparison has been performed on the example of our second test model in which the distribution of
the claims was taken to be the Multinomial with parameters m=10, d;=1/@G(+1)i=1,2, ...,
x =4, A=0.4. As can be seen, the fact that the distribution is dependent and multinomial does not affect the
conclusions made above, concerning the comparison of the two criteria.
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3.2 '"Expected profit' based optimality

We will consider our initial reinsurance problem of a primary insurer and a reinsurer sharing, under an XL
contract, a mass of risks, generating claims and premium income, adequate to the potential losses. We will
be interested here in an appropriate measure of performance of the two companies. A natural choice of such a
measure can be based on the profit each of them is expected to make at the end x of the finite time interval,
under an XL reinsurance contract, conditional on their joint survival up to the moment x. Indeed, no profit
at any future moment can be expected from a company, ruined before that moment. As before, it is crucial to
consider the joint survival of both of the parties since, there will be no flow of premiums (claims) to the
reinsurer if the primary insurer gets ruined. We define the profits at time x of the cedent and the reinsurer,
correspondingly as the value R,“and R,"of their risk processes, given by (5) and (6), at time x. Let us intro-
duce the indicator random variables I, and I of the events 4 = {T° > x} and B = {T" > x} respectively. For
the conditional expectation E(R.|I4, Ig) there exists a suitable function y(u,v) such that
EQR | I, Is) = w(ly, Iz). We will denote the value of y(ly, Iy) when I, = land Iz = 1, ie., y(1, 1) as
E[RS 1 (T° > x)N(T" > x))] and will call it, the expected profit of the cedent at time x, under the condition
that he and the reinsurer have not been ruined up to time x. Alternatively, we will call this quantity the
cedent's expected profit at time x, given his and the reinsurer's joint survival up to time x. Similarly, one can
define E[R,° | ((T°>x)N(T" > x))] and call it the reinsurer's expected profit at time x, given his and the
insurer's joint survival up to time x.

Thus, the conditional on joint survival to x, expected profits of the cedent E[R, | (T° > x) (T > x))] and
of the reinsurer E{R,” | (T° > x) " (T" > x))] can serve to form yet another criterion for the optimal choice
of the XL retention level M. One can formulate the same two types of problems as in 2) and 4) but with
respect to the absolute value of the difference of the two expected profits, i.e.,

ER 1 (T° > x) (N (X7 > xN] - EIR, [ (T° > ) N (T7 > x)1 ] @)
Another possibility is to look for a pair of optimal values i.e., values of the retention level and of the split of
the function A() into A.(f)and Ah.(7), A(t) = hc(t) + h(f), such that the two expected profits at time x, given
joint survival up to x, be equal or in a preliminary agreed proportion. To be able to test criterion (22) we
need explicit formulae for the corresponding expected profits. The following theorems present such formu-
lae.

Theorem 4. The expected profit at time x of the cedent, given his and the reinsurer's joint survival up to x is

E[st” (T >x)N (T >0 =

{ E P(W, = Wiy wes Wit = W1, Wz n— W] = oo — Wi1)

k=1 wp=l, . wezl,
Wit W <n—1

!

i-1
Z [[hc(x) -3 wf] Bt s 21, 9= BaCry B2 O} @)
s=1

i=1

{Z Z P(W, = Wis eees Wk—l = Wg-1, Wk ZN=W] = .. = Wp1)
k=1 wzl,.. w21,
Wit AW <n—-1

Bi(Z1, o 21, X)) s
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where #, /,and 2; are defined as in (7), ws° = min(M, w;) and

i-1 ;
i—j=1 -
B D= > VoG, zpy Y E )
7=0 m=1
i=0,1,2.., 1 Bo(-) =0, By(-)=1.

Proof. Taking into account the construction of the risk processes R,°and R,” (see (5) and (6)) we can express
the unconditional expectation E[R,®-14-Ip] as

EQRS-I4-Ig)= e Z Z P(W) =wW1, oo, Wit = Wim1; Wi = R— Wy — ... — We1)

k=1 wzl,.wezl,
Wyt AW <n—1 (25)
! i1
Z [[hco:) - min(M, ws)] BilZ1, s 21, X) = Bt (1, oy Zia, D))
= s=1

where n, l,and Z; are defined as in (7) and

L ) i=j=1 Ay
B, . z,-_l,x)=z b, gy Y, S

7=0 m=1

i=0,1,2...,1By(:) =0, Bi(-)=1.

In equality (25) we have used the fact that the difference e **(Bi(%), ..., Zi_1, X) — BiLiZ1, ..oy Ziz, X)),
i=1,2, ..is equal to the probability that exactly i — 1claims from the original risk process R, have occurred
up to time x, i.e., exactly i — 1claims from the cedent's risk process R,° have occurred and at the same time,
neither the cedent, nor the reinsurer got ruined up to time x. In (25) we have also taken into consideration that
if i — 1claims up to time x have occurred the profit of the cedent is equal to

-1 i~1
he(®) = ) W = ho(x)— ), min(M, wy). 26)
s=1 s=1

Let us note, that obviously, when i = 1, i.e., when 0 claims have occurred up to time x the sums in (26) vanish
and the profit is equal to the premium income, accumulated up to x. We can now write for the conditional
expectation

E R -Iy-Ip] @7
PUT*>x)((T">x))

Substituting (25) and (7) in (27), using in (7) the notation By(Z1, ..., 21, x)for the sum with respect to jwe
get the assertion of the theorem.o

ERS | (T°>x) (T >x)l =

Similarly we have for the expected profit of the reinsurer

Theorem 5. The expected profit at time x of the reinsurer, given his and the cedent's joint survival up to x is
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5. Conclusions

Our main conclusion, which was extensively illustrated through the graphs and the numerical results pre-
sented, is that considering the problem of optimal reinsurance, and in particular optimal XL, from the point
of view of not only the primary insurer but also of the reinsurer, is quite natural and reasonable. We have
done this by introducing measures of risk and performance, based on the joint survival of both parties and
leading to well defined optimal retention levels. The latter can be efficiently computed, based on the explicit
formulae (7), (18) () and (), using the corresponding Mathematica modules, developed for the purpose. We
have demonstrated how, fixing the proportion of the premium income the primary insurer would like to
retain, he can find the corresponding level of retention which applies to each occurring claim, so that his and
the reinsurer's probability of survival is maximized . And vice versa, fixing the retention level, accordingly
with how risk averse the primary insurer is he can find the optimal proportion in which the premium income
should be divided between him and the reinsurer. We have further compared the two optimality criteria
introduced as measures of risk, i.e., the probability of joint survival of the cedent and the reinsurer and the
absolute value of the difference between the probability of survival of the cedent and the probability of
survival of the reinsurer, given survival of the cedent. As illustrated numerically, the two criteria produce
different optimal retention levels. The optimal retention level obtained if the joint survival probability is used
is higher than the one obtained if the absolute value of the difference of the two survival probabilities is used,
the proportion in which the original premium income is shared between the two parties being fixed (see Fig.
6).This suggests that using the second criterion is more favorable for the primary insurer since he retains
smaller part of the risk while keeping the same proportion of the premium income.

What we have also established in Subsection 3.2 is that the expected profits of both parties, given their joint
survival, also depend on the retention level and on how the premium income is divided between them. These
measures are appropriate for measuring the performance of the two parties and can also serve to obtain a pair
of optimal values of the retention level and the split of the premium income. Thus, having two measures, one
for the risk and one for the performance, which can be evaluated for different values of the retention level,
and choices of the premium income function, the claim amount distribution and their parameters, the cedent
and the reinsurer can construct different scenarios and perform a DFA type of analysis. They can construct
efficient frontier plots and choose the retention level which may not be the optimal one, but will provide the
desired balance between the risk and the performance the two parties want to achieve.

Another conclusion, which deserves to be noted, is that the XL retention level affects the expected profits
and the probabilities of survival of both the primary insurer and the reinsurer, as well as the probability of
their joint survival and the optimal choice of this level is of crucial importance for both parties, not only for
the primary insurer. This conclusion is confirmed by the consequences of the tragic events of the 11-th of
September 2001 terrorist attack on the New York World Trade Center. These events showed that reinsurers,
no matter how big they are, can also be vulnerable to substantial losses, which may lead to their insolvency
and closure (see e.g,. Clark (2002)). At the same time, the primary insurers can manage to survive in such
cases, having retained the "optimal" proportion of the risk, which result from considering optimality only
with respect to their own financial interests. Their strategy may simply be to pass as large proportion of the
risk to the reinsurer as possible, against as modest reinsurance premium as possible. Although since the 11-
th of September, there is no official information confirming that, as a result of such a strategy some reinsurers
have closed, while the primary insurers covered by them have survived, this could have very well been the
case. So the possibility of this happening is sufficient to justify , further research on joint optimality criteria.

One question for further research, which can be directly approached, is to consider an XL contract under the
same optimality criteria, introduced in Section 3 but with two levels, a retention level and a limiting level,
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