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Abstract

Keywords:

Background: This study investigates the prediction of mild cognitive impairment-to-Alzheimer’s
disease (MCI-to-AD) conversion based on extensive multimodal data with varying degrees of missing
values.

Methods: Based on Alzheimer’s Disease Neuroimaging Initiative data from MClI-patients including
all available modalities, we predicted the conversion to AD within 3 years. Different ways of replac-
ing missing data in combination with different classification algorithms are compared. The perfor-
mance was evaluated on features prioritized by experts and automatically selected features.
Results: The conversion to AD could be predicted with a maximal accuracy of 73% using support
vector machines and features chosen by experts. Among data modalities, neuropsychological, mag-
netic resonance imaging, and positron emission tomography data were most informative. The best
single feature was the functional activities questionnaire.

Conclusion: Extensive multimodal and incomplete data can be adequately handled by a combination
of missing data substitution, feature selection, and classification.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY li-
cense (http://creativecommons.org/licenses/by/4.0/).

Mild cognitive impairment; Alzheimer’s dementia; Prognosis; Multimodal biomarker; Missing data; Feature

selection

1. Background

Alzheimer’s disease (AD) is the most common cause for
dementia in the elderly and primarily diagnosed based on
clinical symptoms such as memory loss and disorientation
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[1]. As an intermediate stage between normal age-related
cognitive decline and dementia, mild cognitive impairment
(MCI) has been identified [2]. Because not all MCI patients
convert to AD and the MCI group is very heterogeneous, it is
a highly relevant task to differentiate MCI subjects who will
develop AD within the next years from those who will be sta-
ble or even improve.

Recent studies tried to solve this task by using a combina-
tion of biomarkers, e.g. obtained via positron emission to-
mography (PET) or magnetic resonance imaging (MRI),
and algorithms adopted from machine learning [3-5].
Computer-based decision support systems are assumed to
be not only more sensitive for the detection of early disease
states, but also more objective and reliable than medical de-
cisions made by single clinicians [6]. Those automatic diag-
nostic tools become especially important when data of
different modalities are integrated into one diagnostic deci-
sion as recommended by the National Institute on Aging
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(NIA), because this requires expertise in more than one clin-
ical field.

In this study we consider several generalizations with the
aim (1) to make full use of databases such as the ADNI
(Alzheimer’s Disease Neuroimaging Initiative [7]) and
(2) to optimize automatic multimodal classification for use
in everyday clinical routine.

First, what is a good way to deal with missing data?
Missing data are a severe problem in many medical data-
bases and is usually solved by discarding all patients with
missing data. However, for multimodal data it is very likely
that most of the patients will lack data from one or the other
domain and a requirement of complete cases results in very
small data sets. Here, we compared three different ap-
proaches to replace (“impute”) missing data entries: mean
imputation, imputation by the Expectation-Maximization
(EM) algorithm, and a combined approach.

Second, most studies focus on a certain subset of
domains for automatic multimodal classification (e.g.,
neuropsychology and MRI), not least because of missing
data [4,8-10]. By replacing missing values, we were able
to take the multimodal approach further and include all
modalities available in ADNI. In total we assessed 288
features from 10 different domains including clinical data,
neuropsychology, genetics, biospecimen, MRI, and PET.

Third, if expert knowledge is not yet available or not yet
complete, it is desirable to have a framework that can deal
with features of different importance and even irrelevant fea-
tures, namely by automatic feature selection. Here, we
compared two methods for fully automatic feature selection
(F-score and feedforward/backward selection) with manual
feature selection by a group of experts.

Fourth, we compared three state-of-the-art classification
algorithms: Support Vector Machines (SVMs), a single clas-
sification tree, and Random Forests. By not making any con-
crete assumptions about the scale or the distribution of the
data, they are well suited for the analysis of data sets
comprising many different features.

Fifth, what is a good way to deal with unbalanced data?
Class frequency is often unbalanced and can lead to large
discrepancies between sensitivity and specificity [8]. Here,
we propose a way to balance sensitivity and specificity via
the receiver operating characteristic (ROC).

2. Methods
2.1. Data

2.1.1. Subjects

Data used in this project were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (adni.loni.usc.edu). The ADNI was initiated in 2003 by
the NIA, the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administra-
tion, pharmaceutical companies, and nonprofit organizations

for the development of diverse biomarkers for the early
detection of AD [7] (For more information on study proce-
dures see http://adni.loni.usc.edu/methods/documents/).

For this study, patients with a baseline diagnosis of MCI
and a follow-up time of at least 36 months were extracted
from the ADNI database. Patients who were diagnosed
with MCI, NL or MCI to NL at all visits during the 3-year
follow-up were included in the MCl-stable group, whereas
patients whose diagnosis changed to AD during the 3-year
follow-up were regarded as MCI-converters. After this pro-
cedure, 237 patients were selected, 151 of which belonged to
the MCl-stable group, and 86 to the MCl-converter group
(see Table 1).

2.1.2. Features

Based on the ADNI database, features from 10 modalities
were extracted including neuropsychological testing (NP, 15
features), medical history (MEDHIST, 21 features), medical
symptoms at baseline (BLSYMP, 25 features), neurological
and physical examinations (EXAMS, 28 features), MRI
lesion load (LESION, 1 feature), MRI volume-based
morphometry (VOLUME, 24 features), voxel-based
morphometry (VOXEL, 117 features), laboratory data
including cerebrospinal fluid (CSF) examinations (BIO, 47
features), PET scans (PET, 7 features), and demographic in-
formation about age, gender, and education (DEMO, 3 fea-
tures). This resulted in a total of 288 features (see Table B.4).
All features were obtained from the baseline visits of the
patients.

Please note that we here only used the sum scores of
the different neuropsychological tests because we assumed
that they cover all important aspects of the test. However,
because it might be also interesting to look at specific do-
mains of cognition, we performed additional analyses on
the subscores of the Alzheimer’s Disease Assessment
Score (ADAS) and the functional activities questionnaire
(FAQ).

In our final feature set, 7.94% of data were missing
(9.1% in the MClI-stable group and 5.9% in the MCI-
converter group). The number of missing values per feature
varied between 0% and 82.12% for MCl-stable patients

Table 1
Baseline subject characteristics

MCl-stable MClI-converters
Characteristic (n = 151) (n = 86) P-value
Age, mean (SD) 74.12 (7.66)  74.62 (6.90) .61
Gender .76
Females, n (%) 48 (31.79) 29 (33.72)
Males, n (%) 103 (68.21) 57 (66.28)
Education, y; mean (SD)  15.82 (2.96) 15.72 (3.02) .80
MMSE, score; mean (SD) 27.59 (1.69)  26.69 (1.72) 1.1x107*

Abbreviations: MCI, mild cognitive impairment; SD, standard deviation;
y, years; MMSE, Mini-Mental State Examinations.

NOTE. P-values were calculated via a two-sided ¢-test. For baseline char-
acteristics of other features, see Table B.4.
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Fig. 1. (A) Proportion of missing data for each feature, separately for mild cognitive impairment (MCI)-converters and MCI-stable patients. (B) Mean squared
error between true and imputed values for different percentages of missing data. (C) Balanced accuracy for the different classification algorithms and different

percentages of missing data.

and 0% and 89.53% for MClI-converters (see Fig. 1A for
details). In about 20.14% of the features, no data were
missing. In five features including CSF data, more than
50% were missing.

2.2. Missing data handling

We compared three ways of missing data replacement:
mean imputation, imputation by the EM algorithm, and a
combined imputation.

In mean imputation, the mean value over all nonmissing
data is calculated for each of the features individually. This
value is then substituted for all missing values of the respec-
tive feature. To account for categorical and discrete variables
we first determined the scale for each of the features and then
substituted with the mode, median, or mean value accord-
ingly. The main advantage of mean imputation is its low

computational cost. However, the estimates are often
biased [11].

A less biased treatment of missing data can be achieved
by using the Expectation-Maximization (EM) algorithm
[12]. This is an iterative procedure which switches between
an expectation (E) and a maximization (M) step until the
most likely values for the missing data are found. We used
here a regularized version of the EM algorithm described
in [13] (The code can be found at http://www.clidyn.ethz.
ch/imputation/).

Because a considerable fluctuation of EM estimates has
been found for categorical features [14], a third imputation
technique was implemented which is a combination of
mean and EM imputation: for all categorical features mean
imputation was performed and the EM imputation was
then only carried out on the remaining noncategorical
features.
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The performance of these three imputation techniques
was evaluated on a complete version of the given data set,
where only features without missing values (58 instead of
288 features) were contained. Subsequently, we randomly
deleted 0% to 90% of the data and calculated the mean
squared error between the imputed and true values. Because
the combined method produced lower errors for almost all
cases than mean imputation and EM algorithm alone (see
Fig. 1B), we decided to use the combined method for all
further analyses. Importantly, imputation values were calcu-
lated based only on training data and were then used to
replace missing values in both training and test data.

Additionally, we investigated which classification algo-
rithm comes closest to recovering the prediction accuracy
of the complete data (as above 58 out of 288 features). We
therefore performed the different classification analyses
(see section 2.4) for the complete data set and a series of
incomplete data sets, in which we randomly deleted 0% to
90% of the data (see Fig. 1C). Missing data were replaced
via combined imputation.

2.3. Feature selection

To assess the importance of certain features or feature
combinations, we looked at the following sets: all features
together, single features and each feature domain (NP, ME-
DHIST, etc.). Additionally, we compared automatic with
manual feature selection.

2.3.1. Automatic feature selection

For automatic feature selection, we implemented two
different approaches: F-score and Forward/Backward
Feature Selection. In both approaches, feature selection
was performed on independent feature selection sets deter-
mined by a threefold nested cross-validation.

The F-score measures the ability of a feature to discrim-
inate between two classes and is calculated as the between-
class variance divided by the within-class variance [15]. It is
fast and easy to calculate but ignores dependencies between
features. Here, features were ranked by the F-score in the
training set and the 10 best ranked features were used for
classification.

In forward and backward feature selection, the accuracy
of a classifier is used as a criterion for feature selection
[16]. Here, we used an SVM with default parameter
(C = 1) and 10-fold cross-validation.

In a forward feature selection the idea is to start with the
single best feature, then add other features incrementally and
keep only those which increases the classification perfor-
mance. Backward feature selection starts with all features
and then features are incrementally removed from the
feature set. To achieve a more robust selection procedure
[16], feature selection was repeated 20 times based on the
feature selection set and only those features were included
which were selected in a certain fraction of the cases
(1 for backward selection and 0.2 for forward selection).

The average number of features for forward selection was
9.49 and for backward selection 281.84.

The 10 most commonly chosen features for the F-score
and forward selection are shown in Table 2. Please note
that the feature ranking is averaged over the different ana-
lyses and therefore does not reflect a certain combination
of features in a particular analysis. However, all three feature
selection methods can lead to a feature set containing highly
correlated variables (e.g. the ADAS-11 and ADAS-13).
Whereas the F-score assesses each feature independently
and thus do not take interactions between the features into
account, forward and backward selection add or remove fea-
tures incrementally and thus combinations of features are as-
sessed. Counterintuitively, by reducing the noise the
combination of highly correlated and even redundant vari-
ables can lead to a better class separation than when using
the features alone (e.g., see [16]).

2.3.2. Manual feature selection

In manual feature selection, experts of the different fields
(namely, R. Buchert A. Maeurer, A. Roberts, L. Spies, and P.
Suppa) have chosen altogether 36 features. The feature se-
lection procedure was as follows: For each domain an expert
was appointed who was asked to select, from a list of
possible features taken from the ADNI database, those fea-
tures that according to their knowledge are most important
in characterizing Alzheimer’s disease. The only specifica-
tion we made was that the number of features per domain
should not exceed 10 features. In particular, the expert fea-
tures included seven features from NP (Alzheimer’s Disease
Assessment Score 11 and 13 [ADAS 11 and 13], Clinical
Dementia Rating Scale [CDR], FAQ, Geriatric Depression
Scale [GDS], Neuropsychiatric Inventory [NPI], and Mini-
Mental State Examination [MMSE]), seven features from

Table 2
Feature ranking for F-score and forward feature selection

Rank F-score Forward feature selection
1 FAQ (NP) FAQ (NP)

2 ADAS 13 (NP) ADAS 13 (NP)

3 ADAS 11 (NP) RIGHTHIPPO (VOLUME)
4 AVEASSOC (PET) X2SDSIGPXL (PET)

5 BCVOMIT (BLSYMP) ADAS 11 (NP)

6 TAU (BIO) SUMZ3 (PET)

7 X2SDSIGPXL (PET) SUMZ2 (PET)

8 MIDTEMP (VOLUME) LEFTHIPPO (VOLUME)
9 AVEREF (PET) DIGITSCOR (NP)

10 NXHEEL (EXAMS) AVEASSOC (PET)

Abbreviations: FAQ, Functional Activities Questionnaire; ADAS,
Alzheimer’s Disease Assessment Score; AVEASSOC, average regional as-
sociation cortex value; X2SDSIGPXL/X3SDSIGPXL, number of pixels
with Z-scores > 2/3 standard deviations; SUMZ2/SUMZ3, sum of pixel
Z-scores > 2/3 standard deviations; BCVOMIT, vomiting; NXHEEL, cere-
bellar—heel to shin; MIDTEMP, volume of middle temporal lobe; LEFT-
HIPPO/RIGHTHIPPO, volume of left and right hippocampus; AVEREF,
average regional value of the reference region used for normalization; DIG-
ITSCOR, Digit Symbol Substitution Test.
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MEDHIST (Family History Questionnaire, Medical History
of neurological, psychiatric or cardiovascular disease), five
features from BIO (ApoE4-alleles 1 and 2; Abeta, Tau,
and Ptau), one feature from LESION (white matter lesion
load), six features from VOLUME (volumes of left and right
middle/inferior temporal lobe, left, and right hippocampus),
seven features from PET (averaged uptake values in
18F-FDG images in frontal and association cortex and sum
of pixel-wise Z-scores), and three features of DEMO (age,
gender, and education).

These expert features were further divided into standard
and advanced features. Standard features comprised all fea-
tures from DEMO and MEDHIST, the neurospychological
screening procedures MMSE, CDR, GDS, and NPI and
gene data from BIO (in total 16 features). All other expert
features belonged to advanced features (in total 20 features).
Importantly, experts assessed the importance of the single
features based on their general knowledge and did not use
the ADNI data set at hand.

2.4. Classification

For the classification of features, we used three different
supervised learning algorithms: SVMs [17,18], a single
classification tree [19], and Random Forests [20]. All three
algorithms are used here to learn a model between baseline
features and group membership (either MCI-converter or
MCl-stable) based on training data, which is then evaluated
on independent test data.

SVMs are a very popular classification method [17,18]
and have been used for disease classification, including
Alzheimer’s disease, before [21-23]. SVMs find a decision
boundary which maximizes the margin between two
groups. We used here the library for support vector
machines (LIBSVM) LIBSVM toolbox for MATLAB [24]
with a Radial Basis Function (RBF) kernel and default pa-
rameters (C = 1) based on standardized features (Software
can be found at http://www.csie.ntu.edu.tw/ ~ cjlin/libsvm/
). Nonlinear kernels such as the RBF kernel are often asso-
ciated with an improvement in accuracy and have the advan-
tage to account for complex interactions in the data. To
assess the importance of nonlinear interactions, we addition-
ally show results on a subset for a linear SVM.

Classification trees are a tree-based technique for parti-
tioning complex decisions into a number of simpler decision
rules [19]. The motivation using decision trees is the inter-
pretability of decisions. However, a single classification
tree strongly depends on the training data and even small
variations in the input data can lead to a completely different
tree structure [25]. Here, we used MATLAB'’s fit function
from the ClassificationTree class.

Random Forest is an ensemble method, where a number
of classification trees is grown and the output is determined
by a majority vote among all trees [20,26]. Because the
classification is not based on only one tree, Random
Forests are thought to produce more robust classification

results. However, this is achieved at the cost of the
interpretability of the decision process. Here, we used the
software of L. Breiman and A. Cutler with 100 trees and
m set to +/n (http://www.stat.berkeley.edu/ ~breiman/
RandomPForests/).

To estimate the generalization error for new data sets, we
performed a nested cross-validation for all three classifica-
tion methods and the different feature selection methods.
The data are first split into three parts. Each of the three parts
is once the feature selection set, the remaining two parts are
the validation set. Based on the validation set, a 10-fold
cross-validation was performed. To get more stable results
this procedure was repeated 30 times and mean values
were calculated. As measures of classification performance,
we show sensitivity, specificity, and balanced accuracy
(mean of sensitivity and specificity).

Because of the imbalanced class sizes, we observed that
the classifiers performed with high specificity but low sensi-
tivity (see Table A.3). Discrepancies in sensitivity and spec-
ificity have also been reported previously [8,27,28].
Therefore, we adjusted the classification procedure during
the training process via the ROC such that the output of
the classifier is optimized for balanced accuracy [29].

P-values were calculated via nonparametric permutation
tests [30] as it has recently been shown that P-values based
on parametric tests such as the binomial test are biased in
combination with cross-validation [31]. The labels were
randomly permuted 1000 times.

3. Results

The conversion to AD was predicted with classification
accuracies varying between 61.48% and 73.44% (for all:
Poerm < .001) based on all features and feature subsets
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Fig. 2. Accuracies for all features and different feature selection sets using
Support Vector Machines (SVMs), a single classification tree and Random
Forests (*P <.001).
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determined by either experts, F-score or forward/backward
feature selection (see Fig. 2).

3.1. ROC-optimization

For Random Forests, we reported results without ROC
optimization, because the optimization here lead to a more
severe imbalance between sensitivity and specificity (see
Table A.3). For single classification trees, it does not make
a large difference whether the threshold is adjusted via
ROC or not (see Table A.3). Only for SVMs, the adjustment
of the threshold leads to a balance of sensitivity and speci-
ficity (see Table A.3 for results without ROC adjustment).

3.2. Effect of feature selection

Classification performance was improved by all feature se-
lection methods. For SVMs, expert features with a balanced
accuracy of 73.44% were significantly better than all other fea-
tures sets (P < .05, evaluated via a two-sample #-test on the
balanced accuracies from the 30 repetitions of cross-
validation), with the exception of the F-score where the

difference was not significant (P = .07). For a single classifi-
cation tree and Random Forests, the balanced accuracy was
highest for the feature set selected via the F-score (65.15%
and 69.45%) and significantly better than all other feature
sets (P <.05) with exception of backward selection for a single
classification tree (P = .31). Within automatic feature selec-
tion, features selected based on the F-score gave better results
than forward and backward selection for all three algorithms.
Whereas the difference to forward selection was significant for
all three methods, the difference to backward selection was
only significant for SVMs and Random Forests (P <.05).

3.3. Classification based on single features and modalities

SVM classification results for single features and all fea-
tures contained within one modality are shown in Fig. 3A
and Table B.4. The best performing single feature was the
FAQ (72.27%, Pperm < .001). Within MRI volume features,
right hippocampus allowed for the best prediction of the con-
version to AD (balanced accuracy 65.13%, Ppermn < .001).
Within PET features, X2SDSIGPXL was most discrimina-
tive (balanced accuracy 65.42%, Ppery < .001).
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Best performing modalities were neuropsychological
testing (NP, balanced accuracy 72.01%, Ppem < .001), MRI
volumes (VOLUMES, balanced accuracy 65.17%, Pperm <
.001), and PET (balanced accuracy 64.92%, Pperm < .001).
Biospecimen features (BIO, balanced accuracy 58.19%,
Pperm < .005) and voxel-based measures (VOXEL, balanced
accuracy 58.90%, Pperm < .005) also gave significantly above
chance accuracy. In Fig. 3B, we show the balanced accuracy
for all combinations of the best performing modalities NP,
VOLUMES, and PET. The balanced accuracy for advanced
features was significantly higher than for standard features
(74.68%—62.80%, P < .01, see Fig. 3C).

3.4. Sensitivity with respect to conversion times

The sensitivity for patients converting after different time
frames (i.e., 12-36 months) is shown in Fig. 3D. As ex-
pected, the onset of AD could be best predicted for patients
converting after 12 months and worst for patients converting
after 36 months.

3.5. Linear vs. nonlinear SVM

For expert features, classification accuracy was signifi-
cantly lower for a linear SVM than for a nonlinear SVM
(71.78%-73.44%, P < .05). For the F-score, the difference
was not significant (P = .54).

3.6. Comparison of mean and combined imputation

Results of SVM analyses for expert features and features
obtained via the F-score were not significantly different for
mean imputation and the combined method (P = .36 and
P = .70). In Fig. 1C, we show the balanced accuracy for
SVM, classification tree, and Random Forest separately for
different amounts of missing data. As expected the classifi-
cation accuracy decreases for all three algorithms with
higher percentages of missing data, and the variance is high-
est for missing values between 30% and 60%.

3.7. Prediction based on neuropsychological subscores

To determine the impact of cognitive subdomains, we
performed additional SVM analyses on the subscores of
ADAS and FAQ (see Fig. 4). For the ADAS, most successful
subdomains were word recall (66.69%), naming (67.39%),
and orientation (65.60%). For the FAQ, we found the subdo-
mains of financing (68.22%), assembling of documents
(72.48%), and remembering of appointments (69.76%) as
most predictive.

4. Discussion

In this study we have shown that the conversion to AD
within 3 years can be predicted with a comparably high ac-
curacy based on a heterogeneous set of features, even when
certain parts of data are missing.

4.1. Comparison of classification algorithms

Among the algorithms evaluated in the present study,
nonlinear SVMs produced best classification results. The su-
periority of SVMs against other machine learning algorithms
in terms of accuracy has been reported in many studies
[32,33]. SVMs generally seem to be quite tolerant toward
irrelevant features, most likely because they successfully
exploit dependencies among features [33]. Most classification
algorithms have problems when dealing with large and noisy
data sets comprising also collinearities in the data [34]. In a
recent review, however, it has been shown that our proposed
classification algorithms are quite robust with respect to
collinearity [35]. Whereas SVMs alleviate the multicollinear-
ity problem via regularization, in Random Forests it is allevi-
ated via choosing a random subset of features for each tree.
Dormann et al. [35] come to the conclusion that in terms of
accuracy it does not make a big difference whether one “ig-
nores” the collinearity in the data or apply diagnostic tools
such as the variance inflation factor. Nevertheless, those tools
might be helpful in interpreting the data.

4.2. Feature selection

Manual and automatic feature selection significantly
improved the performance of all three classification algo-
rithms. If expert features are available, the choice of these
might be the preferable way. But if not, we demonstrated
that automatic feature selection methods, in particular
feature selection based on the F-score or forward selection,
can achieve similar classification performance. Be elimi-
nating on average only six to seven features, the backward
feature selection provided worst results. Generally, it is
said that forward selection selects much less features than
backward feature selection and this way leads often to higher
classification accuracies [ 16]. Because the effect of deleting
single features especially from a large and noisy data set is
expected to be relatively low, the classification accuracy in
backward selection saturates at a quite early level. However,
there are cases in which backward selection gives superior
results, especially in cases where the interaction between
several features should be taken into account (see [16]).
Over forward and backward selection, the F-score has the
additional advantage that it is easy to compute and does
not depend itself on a classification procedure.

4.3. Missing data

In most studies, the problem of missing data is solved by
restricting automatic classification to patients with complete
data [26,3]. However, this becomes a problem especially in
the case of multimodal data, because the probability that test
results are missing increases with the number of tests.

In this study, we substituted missing values to produce a
complete data set. This has the advantage that every machine
learning algorithm can be used for classification. In accor-
dance with other studies the EM algorithm and the combined
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Fig. 4. (A) Support Vector Machine (SVM) accuracies for the cognitive subdomains of Alzheimer’s Disease Assessment Score (ADAS, Q1 to Q12: Word recall,
constructional praxis, delayed word recall, naming, ideational praxis, orientation, word recognition, remembering test instructions, comprehension, word
finding difficulty, spoken language ability, number cancellation; ADI11, total score on the 11-item ADAS; ADI3, total score on the modified 13-item
ADAS). (B) SVM accuracies for the individual functional activities of Functional Activities Questionnaire (FAQ) (FINAN, writing checks etc.; FORM, assem-
bling tax records etc.; SHOP, shopping alone; GAME, playing a game of skill etc.; BEVG, making a cup of coffee etc.; MEAL, preparing a meal; EVENT,
keeping track of current events; TV, understanding TV etc.; REM, remembering appointments etc.; TRAVL, traveling out of neighborhood).

method produced a lower error between imputed and actual
values [36]. However, in this study we found that in terms of
accuracy, it does not make a large difference whether the
combined method or mean imputation is used.

For all three classification algorithms, a similar pattern
for different percentages of missing data has been observed.
However, SVMs started with the highest accuracy and also
provided the highest mean value over all analyses.

4.4. ROC optimization

Our proposed ROC optimization yielded the 50:50 bal-
ance of sensitivity and specificity only for SVMs. It is
evident that the desirable balance of sensitivity and speci-
ficity depends on the task and might change when new treat-
ment options become available. However, ROC adjustment
can also be used to optimize for specific values of sensitivity
or specificity depending on predefined costs.

4.5. Best single features

The best performing single feature was the FAQ, which
is interesting since this measure, in contrast to the MMSE,
is not used in everyday clinical routine. Its relevance for
the prediction of conversion to AD has been previously
shown [37]. Within the FAQ, the ability of assembling doc-
uments such as tax records had the strongest influence on
the later diagnosis. Future studies might evaluate whether
the FAQ or similar scores assessing cognitive and social
functioning should play a stronger role in diagnostic
guidelines.

4.6. Best modalities

In accordance with other studies mostly focusing on the
domains neuropsychology, MRI, and PET [4,9,38] our
analyses also identified these modalities as containing
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most useful predictive information. This shows that the
proposed approach is capable of identifying disease-
relevant modalities even in the presence of missing and
potentially uninformative data.

4.7. Multimodal classification

There are a number of studies that also explored the use
of multimodal data for either diagnosing AD/MCI (vs.
healthy controls) or predicting the conversion from MCI
to AD [4,8,9,28,38,39]. All these studies come to the
conclusion that multimodal prediction is superior to
unimodal prediction (accuracy was typically increased
by 2%-7%). In our case, the best multimodal accuracy
only slightly exceeded the best unimodal accuracy. This
may be explained by the simplicity of our approach:
Features were just concatenated into one vector. By this,
we did not make any use of the specific covariance
structure between the modalities. However, all of the
mentioned studies were based only on a certain
combination of complete neuropsychological, MRI, CSF,
gene, and PET data and not as in our study on an
incomplete set comprising features from all modalities
available in ADNI.

4.8. Limitations

First, the algorithms we used produce only dichoto-
mous class labels and can therefore not directly be used
for expressing uncertainty. Future studies might exploit
probabilistic models for generating probabilistic outputs
[40].

Second, we did training and testing both on baseline
MCl-patients after the guideline that training and testing
data should be of the same kind. However, other studies
have shown that a classifier can benefit from training in
AD and healthy controls [4,8].

Third, one may criticize that the wuse of
neuropsychological tests introduce some kind of circularity
in the analysis. However, three of the most successfully
discriminating scores were not used to make the diagnosis
in ADNI, namely the FAQ, ADAS 11, and ADAS 13
(http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_
GeneralProceduresManual.pdf, p. 20-21).

Fourth, another point for criticism might be the fact that
the expert features are based on individual expert opinions
only and by this do not reflect expert knowledge that is uni-
versally valid. Future studies might involve more sophisti-
cated strategies such as a voting scheme over several
experts or a Delphi review.

Fifth, our proposed models do not account for censoring
in the data. When such models are intended to be brought
into clinical practice, it is necessary to find ways to deal
with missing data due to censoring. One possibility might
be to combine SVM and Cox regression as suggested
by [41].

4.9. Conclusion

Based on a large and heterogeneous set of incomplete
ADNI data, the conversion from MCI to AD could be pre-
dicted with comparably high accuracy and balanced sensi-
tivity and specificity. We recommend the substitution of
missing values via a combination of mean imputation and
EM algorithm and for classification SVMs because they
are very flexible toward different data characteristics. The
dimensionality of the data should be reduced to the most
relevant features either by hand based on expert knowledge
or by an automatic feature selection method. Future studies
should explore the use of probabilistic models for disease
prediction based on incomplete data and more sophisticated
ways of combining the data of different modalities.
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RESEARCH IN CONTEXT

1. Systematic review: A number of studies have used
multimodal data and machine learning approaches
for the prediction of the conversion to Alzheimer.
However, they mostly focused on complete data
sets and a small subset of data modalities.

2. Interpretation: We optimized automatic multimodal
classification for clinical routine regarding missing
data, extensive multimodal data, different kinds of
feature selection and classification algorithms and
demonstrated comparable classification accuracies.

3. Future directions: Future studies might explore the
use of probabilistic models for disease prediction
and might also include differential diagnoses of AD.
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