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Abstract: Multi-voxel pattern analysis (MVPA) is a fruitful and
increasingly popular complement to traditional univariate meth-
ods of analyzing neuroimaging data. We propose to replace the
standard ‘decoding’ approach to searchlight-based MVPA, measur-
ing the performance of a classifier by its accuracy, with a method
based on the multivariate form of the general linear model. Fol-
lowing the well-established methodology of multivariate analysis
of variance (MANOVA), we define a measure that directly charac-
terizes the structure of multi-voxel data, the pattern distinctness D.
Our measure is related to standard multivariate statistics, but we
apply cross-validation to obtain an unbiased estimate of its popu-
lation value, independent of the amount of data or its partitioning
into ‘training’ and ‘test’ sets. The estimate D̂ can therefore serve
not only as a test statistic, but as an interpretable measure of mul-
tivariate effect size. The pattern distinctness generalizes the Maha-
lanobis distance to an arbitrary number of classes, but also the case
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where there are no classes of trials because the design is described
by parametric regressors. It is defined for arbitrary estimable con-
trasts, including main effects (pattern differences) and interactions
(pattern changes). In this way, our approach makes the full ana-
lytical power of complex factorial designs known from univariate
fMRI analyses available to MVPA studies. Moreover, we show how
the results of a factorial analysis can be used to obtain a measure of
pattern stability, the equivalent of ‘cross-decoding’.

Keywords: decoding; multivariate; multi-voxel pattern analysis;
fMRI; MANOVA; general linear model

1 Introduction

In the last decade, traditional univariate methods for the analysis
of functional magnetic resonance imaging (fMRI) data based on the
general linear model (GLM) have increasingly been complemented
by new methods that try to access the information content of pat-
terns of activation across a set of voxels. Variably termed multi-
variate (Haxby, 2012) or multi-voxel pattern analysis (Norman et
al., 2006, MVPA), information-based imaging (Kriegeskorte et al.,
2006) or simply decoding (Haynes and Rees, 2006), the new tech-
niques have been applied to topics as diverse as syntax and seman-
tics (Mitchell et al., 2004), visual perception (Kamitani and Tong,
2005), music and speech perception (Abrams et al., 2011), and deci-
sion making (Kahnt et al., 2011). For a recent review, see Tong and
Pratte (2012).

Though other kinds of multivariate methods had been applied
to functional neuroimaging data before (Edelman et al., 1998;
Friston et al., 1993; Goutte et al., 1999; McIntosh et al., 1996;
McKeown et al., 1998; Worsley et al., 1997), the pioneering study of
Haxby et al. (2001) introduced something new by directly linking
a multi-voxel activation pattern to an experimental condition.
Using a correlation-based classifier, they achieved above-chance
performance in predicting the category of a visual stimulus from
distributed cortical responses. Extending this work, Cox and
Savoy (2003) utilized linear discriminant analysis (LDA) and
support vector machines (SVMs) and showed that classification
performance tends to improve with the number of voxels included.
It was suggested that multi-voxel classification can be sensitive
to information predominantly represented at sub-voxel scales
(Kamitani and Tong, 2005), and may be used to access information
not consciously represented (Haynes and Rees, 2005a) as well as

2



aspects of subjective experience not determined by the stimulus
(Haynes and Rees, 2005b). As an alternative to whole-brain or
region-of-interest based analyses, Kriegeskorte et al. (2006) in-
troduced the ‘searchlight’ approach that performs multivariate
analysis on sphere-shaped groups of voxels centered on each brain
voxel in turn. This method results in a statistical map of local
multivariate effects which can be seen as the mass-multivariate
counterpart to standard mass-univariate fMRI analysis.

The analysis of multi-voxel activation patterns in the ‘decoding’
literature relies almost exclusively on the use of classifiers (but see
Haynes and Rees, 2005a; Kriegeskorte et al., 2006). Such a classifier
(cf. Pereira et al., 2009), often an SVM (Cortes and Vapnik, 1995), is
‘trained’ to distinguish data vectors corresponding to two classes of
trials on part of the data, and its performance is assessed or ‘tested’
on the part not used for training. This is repeated such that each
part of the data set is once used for testing (cross-validation), and
the classification performance is quantified in the form of an accu-
racy, the fraction of correctly classified test data points. Nonlinear
(kernel-based, see Boser et al., 1992) SVMs can be used, but lin-
ear classifiers seem to be sufficient in most cases (Cox and Savoy,
2003; Norman et al., 2006). This procedure can be applied to raw
fMRI volumes corresponding to single experimental trials, or to es-
timates of parameters of run-wise GLMs. The latter approach has
the advantage that parameter estimates have clear attached class
memberships, while a single volume may represent a mixture of
different experimental conditions.

However, while classification algorithms have a large number of
important applications, their use for the purpose of searchlight-
based multi-voxel pattern analysis in basic neuroscience represents
an unnecessary detour. Classification is the right tool if the interest
actually lies in determining the group membership of single items.
In neuroscience the most important example of this are brain–
computer interfaces (Blankertz et al., 2011; Wolpaw and Wolpaw,
2012), where the goal is e.g. to interpret the intention of a patient
for every single neural response, in order to initiate the correct
action of a robot arm or communication device. In most decoding
studies in cognitive neuroscience, however, the classification result
is only considered in the form of the accuracy or another aggregate
statistic, that is then entered into statistical procedures in order
to make an inference about the neural processes underlying a
cognitive operation. The interest does not lie in the classification
result per se, but in whether classification can be performed better
than chance.

Above-chance classification is possible if and only if the multivari-
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ate distribution of the data is different between conditions. In this
paper, we therefore propose to avoid the detour through classifica-
tion by replacing the accuracy as the statistic used in searchlight-
based MVPA studies by a measure that directly quantifies the de-
gree to which multivariate distributions differ from each other: the
pattern distinctness D. This measure generalizes the Mahalanobis
distance (used by Kriegeskorte et al., 2006) to the case of an ar-
bitrary number of classes of trials, and it can also be used with
parametric regressors. It is based on the multivariate version of the
general linear model (the MGLM) and therefore related to standard
statistics used in the multivariate analysis of variance (MANOVA;
see Timm, 2002), but cross-validation is applied in order to make it
an unbiased estimator of its population value.

The approach of cross-validated MANOVA to searchlight-based
MVPA proposed in this paper has a number of advantages over
the classification approach:
– The result of classification analysis depends on the kind of
algorithm chosen, its parameters, and on the way the classifier is
applied to the data (single trial vs run-wise parameter estimates).
By contrast, our method provides a unified parameter-free frame-
work based on a probabilistic model of the data, which is the direct
generalization of the standard univariate model for fMRI data, the
GLM.
– Classification accuracy as the numerical value resulting from
classifier-based MVPA does not have an interpretation with re-
spect to the underlying neuroimaging data, because its value does
not only depend on the ‘test’ data being classified, but also on
the amount of training data used to construct it. By contrast the
pattern distinctness directly characterizes the data by measuring
the amount of multivariate variance accounted for by a specific
effect, in relation to the amount of error (or ‘noise’) variance.
– Classifiers can only assess how discriminable data corresponding
to different experimental conditions is. In an experimental design
involving two or more factors, it is often interesting to see whether
the difference between the levels of one factor is itself different
across the levels of another factor: an interaction analysis. While
such an analysis can not be implemented using classifiers, the
framework of the MGLM is perfectly suited to describe factorial
designs and analyze arbitrary contrasts, including main effects
and interactions.

The measure of pattern distinctness is derived in the next section.
The third section shows the results of its application to a study on
object perception. Before concluding, we discuss the assumptions
and possible limitations of our proposed method, including its pos-
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sible extension to the case of whole-brain and region-of-interest
based MVPA.

2 Method

In the following we derive our measure of multivariate effect in
a sequence of steps. Starting with an information-theoretic moti-
vation of Mahalanobis distance, we generalize from the underly-
ing normal distribution model to the MGLM, and arrive at the al-
gorithm of cross-validated MANOVA (cvMANOVA). We investi-
gate the properties of the pattern distinctness D theoretically and
in a numerical simulation and show that our measure can not only
quantify pattern differences and pattern changes, but also pattern
stability, the equivalent of ‘cross-decoding’.

2.1 Mahalanobis distance

How well data points from two classes can on average be discrim-
inated depends on how different the underlying data distributions
are. An alternative to measuring the performance of a classifier is
therefore to model those distributions and to quantify their differ-
ence. The assumption underlying standard univariate fMRI analy-
ses (Friston et al., 1995; Kiebel and Holmes, 2007) is that responses
in different ‘classes’ are normally distributed, with different class
means but the same variance (homoscedasticity). The straightfor-
ward generalization of this to the multivariate case is

~yi ∼ N (~µi, Σ), (1)

where~yi is a p-dimensional activation vector (measured BOLD sig-
nal values in p different voxels) for classes i = 1, 2, and ~µi is the
corresponding class mean activation pattern. Σ is a p × p covari-
ance matrix describing the within-class variance, and N denotes
the multivariate normal distribution.

In general, the distinctness of two distributions can be quantified
using an information-theoretic measure, the Kullback–Leibler di-
vergence DKL (Kullback and Leibler, 1951). For two equal-variance
normal distributions (see Fig. 1a), this distinctness can be simply
expressed by the squared distance of the class means ~µ1 and ~µ2,
measured with respect to the within-class covariance Σ,

2 DKL = ∆2 = (~µ2 −~µ1)
′ Σ−1 (~µ2 −~µ1), (2)
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Figure 1: Classification and covariance structure. (a) Data points in voxel activation space that belong to two
different classes (red and green stars) can be discriminated using a classification boundary (dashed line) if they
come from different distributions (densities indicated by contour lines); here an accuracy of 70 % is achieved.
Multivariate normal distributions as shown here are defined by their expectation values (red and green center
bullets) and covariance structure (visualized by the strong red and green ellipse-shaped 1 σ-lines). In this case, the
discriminability of the two distributions is completely characterized by the Mahalanobis distance ∆, the distance
of the distribution centers (black line) measured in standard deviations; here ∆ = 1.5. (b) The discriminability of
three or more classes is characterized by the magnitude of the between-class covariance (black ellipse) compared
to the within-class covariance (colored ellipses). This magnitude can be quantified e.g. by the diagonal diameter
of the between-class covariance ellipse measured in standard deviations of the within-class distribution. (Note
that the between-class covariance ellipse does not correspond to the 1 σ-line of a multivariate normal distribution,
but describes the covariance structure of the three class means treated as a sample.)
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where ′ denotes transposition. ∆ is called Mahalanobis distance (Ma-
halanobis, 1936).1

The highest possible mean classification accuracy, achieved by a
linear classifier based on perfect knowledge of ~µ1, ~µ2, and Σ (see
Hastie et al., 2009), can be derived theoretically; it is

αopt = Φ
(

∆
2

)
, (3)

where Φ denotes the cumulative distribution function of the stan-
dard normal distribution. If the classifier has been trained on a lim-
ited amount of data, imprecise estimation of the distribution pa-
rameters leads to worse mean classification performance, but still
the mean accuracy α is a monotonically increasing function of ∆,
starting from a chance level of 50 % and saturating for large ∆ to-
wards 100 % (for approximate formulas see Wyman et al., 1990).

In contrast to the expected accuracy α estimated by the classifier-
based approach, the equivalent quantity ∆ directly characterizes
the multivariate data structure. Other than the accuracy, its esti-
mate does not depend on the internals of a particular classification
algorithm and it does not saturate for stronger effects. Moreover, it
is the multivariate generalization of a standard univariate measure
of effect size, Cohen’s d (Cohen, 1988).

2.2 The Multivariate General Linear Model

The multivariate normal distribution model for two-class data
(Eq. 1) is a special case of the multivariate general linear model
(MGLM),

Y = XB + Ξ. (4)

The equation has the same form as for the GLM underlying
univariate fMRI analyses (Friston et al., 1995; Kiebel and Holmes,
2007), except that here the measured data Y is not a time series
column vector but of an n × p matrix specifying the signal at n
different time points in p voxels simultaneously. The design matrix
X specifies time series (columns) for each of the q regressors and
remains unchanged from the univariate case. Accordingly, the
parameter matrix B is of size q × p and describes the strength of
the contribution of each of the q regressors to the signal within
each of the p voxels. Finally, each of the n rows of the error term

1The same two-class model underlies linear discriminant analysis. Maha-
lanobis distance and LDA make complementary uses of the same distributional
assumptions: quantifying the distinctness of the classes or assigning new data to
them.
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Ξ is a sample from a p-dimensional normal distribution, N (0, Σ).
The following calculations are based on the premise that the rows
of Ξ are mutually uncorrelated. Since fMRI data are characterized
by serial correlations, we assume that they have been removed by
a standard whitening procedure during preprocessing (Glaser and
Friston, 2007).

The two-class model (Eq. 1) can be written in the form of the
MGLM by including two regressors, such that X contains a 1 in
the first column for each data point belonging to class 1, a 1 in the
second column for each data point belonging to class 2, and zeros
otherwise. The two rows of B then correspond to vectors ~µ1 and
~µ2.

In GLM-based fMRI analyses, contrast matrices C are used to select
specific components out of the total space of effects that the respec-
tive model can describe. Each contrast matrix defines a univariate
null hypothesis of the form C′B = 0, i.e. the statement that a GLM
parameter or a linear combination of parameters is zero, and forms
the basis for the computation of a t or F statistic used to test that
hypothesis. The same logic applies to the MGLM, only that now
the parameters in B belonging to one regressor are vectors across p
voxels, and the specified null hypotheses are multivariate null hy-
potheses. If contrasts are used to select partial effects correspond-
ing to single factors and interactions in a factorial design, this leads
to a decomposition or ‘analysis’ of variance (ANOVA) in the case
of the GLM and to a multivariate analysis of variance, MANOVA,
in the case of the MGLM.

The formal development is again identical in both cases (cf. Kiebel
and Holmes, 2007).2 The contrast matrix C is used to separate the
parameters of the full model into two parts,

B = B0 + B∆ (5)

with
B∆ = C′−C′B = CC−B and B0 = B− B∆. (6)

B0 describes a reduced model corresponding to the null hypothesis
C′B = 0, and B∆ a possible deviation from this reduced model. In
the case of two classes of trials modeled by two regressors and a
contrast C = (−1 1)′, B∆ = ~µ2 − ~µ1 describes the difference of the
multivariate activation patterns between these classes.

The between-class covariance, i.e. the part of the total covariance of

2Notation: A−, Moore–Penrose pseudo-inverse of a matrix A. B̂, estimate of
a model parameter B. 〈X〉, expectation value of a random variable X.
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the data that is accounted for by the class difference, is given by

1
n

B′∆X′XB∆, (7)

while the within-class covariance is identical to the error covariance,

1
n
〈
Ξ′Ξ

〉
= Σ. (8)

The size of the multivariate effect is the magnitude of the between-
class covariance compared to the within-class covariance (Fig. 1b).
Since both are p × p matrices, there are different ways to express
this comparison in a single number; we choose

D = trace
(

1
n

B′∆X′XB∆ Σ−1
)

, (9)

because in the two-class case it has a simple relationship to the Ma-
halanobis distance:

D =
1
4

∆2 · n1 + n2

n
, (10)

where n1 and n2 are the number of data points for class 1 and 2, re-
spectively. We call this measure pattern distinctness because it quan-
tifies how distinct different multivariate patterns appear relative to
the uncertainty induced by the error.

But the MGLM and the pattern distinctness D are more than just
a different way to consider the two-class model. The MGLM can
be used with regressors of arbitrary form, i.e. they can be simple
indicators for two or more classes of trials, indicator variables con-
volved with the hemodynamic response function, or general para-
metric regressors where there are no classes.

This allows to apply the MGLM directly to the measured fMRI sig-
nal, while a classifier might have to be applied to (run-wise) GLM
parameter estimates B̂ in order to provide clear ‘class identities’
for the data points being entered. Moreover, modeling directly the
data allows to estimate the ‘within-class’ covariance, which is actu-
ally the error covariance Σ, on a volume-by-volume basis, leading to
a precise estimate.

Additionally, D is defined for a contrast C specifying a simple two-
class comparison, but also for multi-class comparisons, for main
effects in a factorial design, or for arbitrary (estimable) model pa-
rameter combinations. While some of these comparisons may be
emulated to some degree using classifiers, e.g. multi-class compar-
ison by multiple pairwise classification, this is not possible in the
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case of an interaction of several experimental factors. In short, by
using the MGLM the full analytical power of complex factorial de-
signs becomes available to multi-voxel pattern analysis.

Just as the Mahalanobis distance ∆ characterizes the multivariate
data structure in the two-class case, the pattern distinctness D ful-
fills this function for the general case of a partial effect defined by
a contrast C within an experimental design described by a design
matrix X. In contrast to the classification accuracy, D(C) has a clear
interpretation as it quantifies the amount of multivariate variance
(Cohen, 1982) explained by the effect, measured in units of the error
variance.

2.3 Cross-validated MANOVA

The Maximum-Likelihood fit of an MGLM to a given data set is
achieved by Least Squares:

B̂ = X− Y and Ξ̂ = Y− XB̂. (11)

The straightforward estimate of the pattern distinctness D based
on this fit is identical to the Bartlett–Lawley–Hotelling trace:

TBLH = trace(H E−1). (12)

Here
H = B̂′∆X′XB̂∆ and E = Ξ̂′Ξ̂ (13)

are the hypothesis and error matrices of sums of squares and cross-
products. In the univariate case (p = 1), H and E are simple sums of
squares and the ratio F = H/E · fE/ fH gives the ANOVA statistic
with degrees of freedom fH = rank XC and fE = n− rank X.

Along with Wilks’ Λ (cf. Haynes and Rees, 2005a), the Bartlett–
Lawley–Hotelling trace TBLH is one of the standard test statistics
used in multivariate statistics (MANOVA, canonical correlation
analysis, etc.; see Timm, 2002). As an estimator of D, however,
it is severely biased. An intuitive explanation is that TBLH is a
(generalized, squared) distance. Since the estimates cannot be
negative, if D is zero or small, estimation errors mostly increase
the estimate. Or from a model evaluation perspective, H can be
seen as comparing (‘correlating’) the estimate of the contrast effect
on the data, XB̂∆, with itself, leading to an overestimation of the
effect.

As in the case of estimating accuracies, this problem can be reme-
died using cross-validation (Hastie et al., 2009). For a data set con-
sisting of m runs, k = 1 . . . m, we perform a ‘leave-one-run-out’
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cross-validation. The estimate of D in the lth cross-validation fold,

D̂l = trace(Hl E−1
l ), (14)

combines B̂∆ computed from data of the lth (‘left out’ or ‘test’) run
on the right-hand side with its values from the other (‘training’)
runs on the left-hand side:

Hl = ∑
k 6=l

{
B̂′∆
}

k

{
X′XB̂∆

}
l and El = ∑

k 6=l

{
Ξ̂′Ξ̂

}
k , (15)

where braces with subscript indicate that the expression has to be
evaluated using data from the respective run. The complete cross-
validated estimate of D is then the mean of the per-fold estimates
D̂l. After additionally correcting a multiplicative bias of E−1 in esti-
mating (nΣ)−1, the final unbiased estimator of the pattern distinct-
ness D becomes (see Appendix A)

D̂ =
(m− 1) fE − p− 1

(m− 1) n
· 1

m

m

∑
l=1

D̂l. (16)

While the Bartlett–Lawley–Hotelling trace TBLH is useful as a test
statistic to determine whether the observed effect is significantly
different from zero, its cross-validated version D̂ can serve the
same purpose, but additionally provides an unbiased estimate
of the size of the effect. Such a characterization of the effect inde-
pendent of the amount of data available or its partitioning into
‘training’ and ‘test’ sets enables interpretation and potentially
facilitates cross-study comparisons and power analyses (cf. Cohen,
1988). However, the estimated effect size D itself does of course
depend on the specific design matrix X used (e.g. number of trials,
type of regressors), and may depend on the number of voxels p
included in the analysis.

A small modification is advisable for the purpose of topologically
specific inference using a statistical parametric map of D̂-values.
Since searchlight spheres centered near the boundaries of the brain
mask contain fewer voxels and the variance of the null distribution
of D̂ is approximately proportional to p (see Appendix B), the map
has an inhomogeneous null variance. We therefore recommend to
use statistical parametric maps of the standardized pattern distinct-
ness

D̂s =
1
√

p
D̂, (17)

and to additionally report peak or mean values of D̂.
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2.4 Simulation

The statistical properties of D̂ were investigated using artifi-
cial data sets approximately simulating an fMRI experiment. It
comprised m = 4 runs of n = 512 volumes each. There were
n1 = n2 = 16 trials per run for each condition, each lasting for
one volume, such that the design matrix consisted of indicator
variables for the two conditions and a constant regressor. Data
were generated according to the MGLM equation (Eq. 4) with
serially uncorrelated errors, i.e. the simulation refers to data after
the whitening preprocessing step. The error covariance was set to
Σ = I without loss of generality (cf. Appendix A). The contrast
considered was C = (−1 1 0)′. For each choice of simulation
parameters (true effect size D and dimensionality p), 10, 000 data
sets were generated.

For each artificial data set, additionally the empirical accuracy a
was determined for classification of run-wise parameter estimates
β̂1· and β̂2· (p-dimensional vectors) as well as for classification of
single-trial volumes, in each case using a linear soft-margin sup-
port vector classifier (Cortes and Vapnik, 1995), in the implementa-
tion of the LIBSVM library (Chang and Lin, 2011).

Fig. 2a shows D̂ and TBLH as a function of D for p = 123 voxels,
corresponding to a searchlight radius of 3 voxels. The simulation
demonstrates the extreme estimation bias of TBLH, and confirms the
theoretical result that D̂ is an unbiased estimator of D.

Fig. 2b shows the sampling variance of D̂ under the condition that
there is no true effect (D = 0), as a function of p. It demonstrates
that the ratio var D̂/p is approximately constant for small to
moderate values of p. This supports the theoretical expectation of
proportionality between null variance and dimensionality, which
means that the standardized pattern distinctness D̂s = 1√

p D̂ is a
suitable statistic to construct statistical parametric maps.

The usefulness of the pattern distinctness D̂ and the empirical ac-
curacy a as a statistic to distinguish data sets with a true underlying
effect from those with a null effect is investigated in Fig. 3. The cho-
sen non-null effect of D = 0.025 can be considered ‘large’ if the cor-
responding ∆ = 1.26 is compared to Cohen’s recommendations for
d. Accordingly, the sampling distributions of D̂ for null and non-
null effect (Fig. 3a) overlap only moderately. The run-wise classi-
fication accuracy (Fig. 3b) is not able to resolve these two effects
as well because the range of possible values is limited ([0, 1]) and
completely covered by the null distribution. The increased range
of possible values for single-trial classification (Fig. 3c) mildens the
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Figure 2: Simulation results: Statistical properties. (a) The cross-validated and naı̈ve estimates of D, D̂ and
TBLH, as a function of D for p = 123 voxels. Values of D̂ are shown with a marker (+) indicating the mean and a
vertical line for the interquartile range of the sampling distribution, values of TBLH only with a marker (×). The
identity line D̂ = D is shown in gray. For reference, the upper horizontal scale gives the corresponding values of
the Mahalanobis distance ∆. The plot confirms that D̂ is an unbiased estimator of D, while the Bartlett–Lawley–
Hotelling trace TBLH is strongly biased. (b) The ratio var D̂/p for D = 0, as a function of the number of voxels
p, corresponding to searchlight radii r of 0 to 5. The plot supports the theoretical expectation that the sampling
variance of D̂ under H0 is approximately proportional to p for moderately large numbers of voxels.
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Figure 3: Simulation results: Effect detection. (a) Sampling distribution of the estimated pattern distinctness D̂
for true values D = 0 (null effect, blue) and D = 0.025 (non-null effect, orange), for p = 123 voxels. (Gaussian
kernel density estimate with bandwidth 0.0014) (b) Sampling distribution of the empirical accuracy for classifi-
cation of run-wise parameter estimates, for the same true effect sizes. Based on a classification of two data points
in each of four runs, a can only take on nine different values. (c) Sampling distribution of the empirical accuracy
for classification of single-trial volumes, for the same true effect sizes. Here, a can take on 129 different values,
of which 60 actually occur. (d) Receiver operating characteristic for distinguishing the non-null from the null ef-
fect based on the observed value of D̂ (strong line), run-wise classification accuracy (circle-line), and single-trial
classification accuracy (dot-line, respectively. The diagram illustrates the trade-off between the fraction of sam-
ples falsely, to the fraction of samples correctly determined to come from the non-null (orange) distribution, for
varying thresholds. At a fixed false positive rate (‘type I error’) of 0.05 (vertical dashed line), the pattern distinct-
ness achieves a true positive rate (‘power’) of 0.79 compared to an interpolated true positive rate for run-wise
accuracy of 0.55 and for single-trial accuracy of 0.53.
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problem, but still the sampling distributions for null- and non-null
effect appear to overlap more than for D̂.

The same observation is presented in a more precise way in Fig. 3d
in the form of a ‘receiver operating characteristic’ diagram (ROC,
see also Kriegeskorte et al., 2006). If a data set is determined to
show an effect based on comparison with a threshold, the trade-
off between false and true positive rate can be adjusted by choosing
the threshold value. The ROC curves show that in this simulation D̂
achieves a higher true positive rate than both run-wise and single-
trial classification accuracies for arbitrary given false positive rate.
Though this result suggests that hypothesis tests based on D̂ may
be more powerful than tests based on a, their relative performance
will depend on the exact structure of the data set and the chosen
comparison; see Sec. 3 for an example where a shows statistically
stronger effects than D̂.

2.5 Pattern stability

A common variation of classifier-based pattern analysis is ‘cross-
decoding’ (cf. Haynes and Rees, 2005b), i.e. training a classifier on
one pair of classes and testing it on another pair of classes. This
method is typically applied in a factorial design, where the two
pairs of classes refer to the same factor but under different levels of
a second factor (see next section for an example). Cross-decoding
is therefore the complement of an interaction analysis: while the
latter attempts to show that a pattern difference changes under an
additional manipulation, cross-decoding attempts to show that it
remains stable. This approach can be translated into the framework
presented here; since our measure of multivariate effect is based on
‘correlating’ parameter estimate differences B̂∆ between ‘training’
and ‘test’ runs (Eq. 15), it is also possible to apply it to estimate
differences computed for different contrasts.

However, the explicit computation of such a modified form of the
pattern distinctness D is not necessary. The degree of stability of a
multivariate effect E across the levels of another experimental fac-
tor A can be quantified by combining the multivariate measures of
the effect E and the interaction E×A. Under the hypothesis of max-
imal inconsistency (mutual orthogonality) of patterns across the L
levels of A it holds

D(E) =
1

L− 1
D(E×A) (18)

(see Appendix C). The difference of the two sides of the equation
therefore quantifies the degree of pattern stability. Adopting the
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symbol for the set complement (‘\’) to denote the complement of
an interaction (‘×’), we can define

D(E \A) = D(E)− 1
L− 1

D(E×A) (19)

as the multivariate measure of pattern stability. It is 0 for maximal
pattern inconsistency and attains its maximum value of D(E) for
zero interaction, i.e. maximum pattern stability.

The expression can be interpreted such that the total amount of
variance accounted for by the effect E is reduced by that part that
is inconsistent across the levels of A, quantified by the strength of
the interaction. Applied to estimates D̂ of the multivariate effects,
it can be used as a test statistic to reject the null hypothesis of maxi-
mal pattern inconsistency and thereby provide evidence for pattern
stability.

3 Application

In order to demonstrate the use of our measure of pattern distinct-
ness, we reanalyzed the data of Cichy et al. (2011). In this study,
renderings of three-dimensional object meshes were presented to
subjects either to the left or the right of a central fixation dot. The
objects belonged to four different categories with three exemplars
for each category, resulting in 24 experimental conditions (see Fig.
4). Images were presented in mini-blocks of six different views of
the same object, at a rate of one view per second. There were four
mini-blocks per condition in each of the five experimental runs.
Data were acquired in 412 fMRI volumes per run at a TR of 2 s, with
a field of view covering the ventral visual cortex at an isotropic res-
olution of 2 mm. Volumes were slice-time corrected, realigned and
normalized to the MNI template. Thirteen subjects participated
in the experiment, but the data of one were discarded because of
strong head movements. The data of each subject were modeled
with one design matrix per run, each comprising regressors for the
24 conditions. Regressors were composed of canonical HRFs time-
locked to each image presentation. Preprocessing, construction of
the design matrix, and removal of serial correlations were per-
formed in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), further
analysis in custom SPM-based MATLAB code (The Mathworks,
Natick).

The experiment has a three-way design with the factors position (P:
right, left), category (C: animal, car, plane, chair), and exemplar (E),
where the factor E is nested within the factor C. We investigated
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Figure 4: Experimental conditions and contrasts. Renderings of twelve different objects belonging to four dif-
ferent categories were shown left and right of a fixation dot. The 24 resulting conditions were examined in the
form of three contrasts corresponding to the main effects of position (P) and category (C), and their interaction
(P × C). The associated contrast matrices C are shown in grayscale, where white stands for a value of 1, black for
−1, and gray for 0.
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the main effects of P and C, as well as the interaction P × C; the
corresponding contrast matrices are shown in Fig. 4.

Using a searchlight of radius 4 voxels (p = 257 voxels), for each
searchlight position we computed MGLM parameter estimates B̂
and residuals Ξ̂ (Eq. 11). The respective contrast was applied to ob-
tain B̂∆ = CC−B̂. Performing a leave-one-run-out cross-validation,
for each fold l = 1 . . . m hypothesis and error matrices Hl and El
were computed (Eq. 15) and from them the fold-wise estimate of
pattern distinctness D̂l (Eq. 14). The per-fold estimates were then
combined into the final unbiased estimate of pattern distinctness D̂
(Eq. 16). The result was converted into a statistical parametric map,
SPM{D̂s}, of standardized pattern distinctness (Eq. 17). Maps com-
puted for each subject and contrast separately were subsequently
smoothed with a Gaussian kernel of 6 mm FWHM.

The application of standard second-level statistics including t-tests
to cross-validated MVPA measures has been discussed critically by
Stelzer et al. (2013). We instead followed their approach to perform
a group-level permutation test by combining single-subject permu-
tation values selected independently in each subject. These single-
subject permutations were generated by a sign-permutation pro-
cedure adapted for cross-validated MANOVA, described in App.
D. With m = 5 runs, there were 24 = 16 single-subject permuta-
tions and 1612 = 2.8 · 1014 combined permutations, out of which
100, 000 were randomly selected. The group-level test statistic was
the standardized pattern distinctness D̂s averaged across subjects.
Statistical results were corrected for multiple comparisons at the
voxel level by using the permutation distribution of the maximum
statistic across voxels (Nichols and Holmes, 2002).

The results are shown in Fig. 5. The pattern distinctness for the
three computed contrasts obtains values significantly different
from zero over large areas of the visual cortex, with maxima
exhausting the number of computed permutations, P ≤ 10−5

(corr.). The same holds for the measure of pattern stability
D̂s(C \ P) = D̂s(C) − D̂s(P × C) which quantifies the degree of
stability of category-specific patterns across the two positions
(Eq. 19), i.e. indicates the presence of position-invariant category
information. The effect sizes reach maxima of D̂ =

√
p D̂s = 3.45

for the main effect of position in primary visual cortex, for category
of D̂ = 0.55 bilaterally in middle and superior occipital gyrus, and
for the interaction P × C of D̂ = 0.35 again in V1. For the pattern
stability C \ P values of up to D̂ = 0.45 are reached bilaterally over
middle and inferior occipital gyrus as well as fusiform gyrus, con-
sistent with the location of the lateral occipital complex identified
by Cichy et al. (2011).
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Figure 5: Analysis results. The results of cvMANOVA in the form of statistical parametric maps of the standard-
ized pattern distinctness D̂s, averaged across twelve subjects, for four different multivariate effects. The maps are
shown on a 3D rendering of the ICBM152 template brain and on a sagittal slice at x = 32. The highlighted areas
are those where the multivariate effect was statistically significant at a level of P ≤ 0.05, corrected for multiple
comparisons. The multivariate main effect of position (P) is strongest over primary visual cortex, while the main
effect of category (C) extends from middle and superior occipital gyrus into the fusiform gyrus. The multivariate
interaction of these two factors (P × C) is again mainly confined to primary visual areas. In addition to the three
standard contrasts (see Fig. 4), the fourth column shows the difference in effect size between the main effect of
category and the interaction, D̂s(C \ P) = D̂s(C)− D̂s(P× C). This difference quantifies the degree of stability
of the patterns representing category information under a change of presentation position, and thereby indicates
the presence of position-invariant category information (equivalent to cross-decoding). Note that a different color
scale had to be used for the leftmost plot because of an overall much stronger effect of position.
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To compare cross-validated MANOVA with established analysis
methods, we also computed classification accuracies and mass-
univariate statistical parametric maps. However, please note that
classification accuracy is not defined for an interaction effect and
there is no analogue of ‘pattern stability’ for univariate analysis.
Cross-validated accuracies were determined using an SVM to clas-
sify run-wise parameter estimates. Accuracy maps were smoothed
with a Gaussian kernel of 6 mm FWHM before entering statistical
assessment, which was based on a permutation procedure analo-
gous to that applied to D̂, exchanging labels between conditions.
Statistical significance of accuracies averaged across subjects was
again assessed by comparing actual values with the permutation
distribution of the maximum statistic, estimated by 100, 000 times
randomly combining single-subject permutations. Additionally,
we computed the univariate second-level SPM{F} applied to first-
level contrast images (smoothed as above), statistically assessed in
SPM8 by standard familywise error correction based on random
field theory.

The results for ‘category’ are shown in Fig. 6. The classification
analysis gives a similar picture of the localization of category in-
formation as cvMANOVA. In contrast to the simulation results of
Sec. 2.4, statistical power of the test based on the classification ac-
curacy a appears to be higher than that based on the pattern dis-
tinctness D̂. Univariate effects are observed in areas consistent with
the multivariate analyses but turn out to be much weaker. To en-
sure that this difference is not just due to different statistical meth-
ods, we repeated the cross-validated MANOVA, but set all param-
eter estimates within each searchlight to their mean before mul-
tivariate analysis. The results (Fig. 6) are much weaker and espe-
cially fail to uncover category effects in fusiform gyrus. By con-
trast, cvMANOVA computed on parameter estimates from which
the mean was removed for each searchlight location separately give
only slightly weaker results than the original analysis, indicating
that the observed effect has a predominantly non-univariate char-
acter.

4 Discussion

In the following we discuss the two critical assumptions underly-
ing the method of cross-validated MANOVA: normally distributed
errors and linearity of the multivariate model; as well as a possible
limitation of its applicability due to an insufficient amount of data.
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Figure 6: Comparison of analysis approaches. Analysis of the ‘category’ effect with four different measures:
cross-validated above-chance classification accuracy averaged across subjects, second-level univariate ANOVA
F-value, average pattern distinctness computed on searchlight-wise mean only, and average pattern distinctness
computed on mean-free data. The highlighted areas are those where the observed effect was statistically signif-
icant at a level of P ≤ 0.05, corrected for multiple comparisons. Color scales are adapted for each measure to
cover the range from 0 to the maximum across the brain (across both analyses for D̂s).
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4.1 Nonnormality

As stated above, our data model assumes multivariate normally
distributed additive errors Ξ, which is the natural multivariate gen-
eralization of the assumption underlying standard univariate fMRI
analyses. The theoretical justification for the normality assumption
is that the error term captures all those aspects of the operation of
the brain and the MR scanner which do not systematically occur in
the experiment and therefore cannot be modeled explicitly. Because
these processes are likely to be high-dimensional and their many
small contributions add up, according to the central limit theorem
the error can be expected to be normally distributed. Since this the-
orem generalizes to the multivariate case (see Timm, 2002), the jus-
tification also holds for the MGLM. In practice, residuals of prop-
erly constructed models in fMRI do appear to be approximately
normally distributed (Kruggel and Cramon, 1999), and univariate
analyses which depend on this assumption have proven to be suc-
cessful and reliable.

A within-class multivariate normal distribution is also the model
underlying the standard parametric approach to classification,
LDA, which was successfully used in several early MVPA studies
(Carlson et al., 2003; Cox and Savoy, 2003; Haynes and Rees, 2005a,
2005b). However, as Hastie et al. (2009) state, optimal performance
of linear classifiers is not bound to multivariate normality; it
extends to the family of distributions that are characterized by
a mean pattern ~µ, a covariance matrix Σ and a monotonically
decreasing function g(d) such that the density is

p(~x) ∝ g
(
(~x−~µ)′ Σ−1 (~x−~µ)

)
, (20)

the elliptical distributions (see Fang et al., 1990). Since in this family
of distributions the probability of a data point is a function of the
Mahalanobis distance from the distribution center, the argument
translates to our measure: Quantifying the distinctness of distribu-
tions using the Mahalanobis distance and our generalization D is
still appropriate for distributions heavier- or thinner-tailed than the
multivariate normal, as long as they fall within the elliptical family.

A more serious concern is that deviations from model assumptions
can induce errors in statistical inference, especially an increased
probability of false positives (type I error rate), but also decreased
power. For this reason we recommend to base hypothesis tests us-
ing D̂ on nonparametric procedures, especially permutation tests
(Good, 2005; Nichols and Holmes, 2002), or at least to use nonpara-
metric methods to back up the results of parametric methods.
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4.2 Nonlinearity

An advantage of classifiers might be seen in the fact that kernel-
based methods (Boser et al., 1992) allow for nonlinear classification.
However, the established assumptions about the statistical struc-
ture of fMRI data that are built into standard univariate analyses
do not give reason to expect a gain from nonlinear algorithms. On
the contrary, a nonlinear classifier may confound different partial
effects in a factorial design that can be differentiated by the multi-
variate linear approach proposed in this paper.

For this it is important to note that nonlinear optimal classification
boundaries do not arise from a nonlinearity of the patterns, but
from a different error covariance structure within different classes.
While the pattern characterizing a class has presumably been
generated by a process of nonlinear neural dynamics (cf. Haken,
1995), the pattern vector ~µ itself is a point in voxel activation
space and therefore does not allow for nonlinear structure. If the
data points belonging to each class are distributed according to
the same elliptical distribution with different means (Fig. 7a),
optimal classification boundaries are piecewise linear. Nonlinear
boundaries (Fig. 7b) arise if this ‘homoscedasticity’ assumption is
violated. In the simplest case, classification boundaries become
(hyper-) paraboloid (quadratic discriminant analysis; see Hastie et
al., 2009).

A violation of homoscedasticity is not to be expected as long as the
within-class variance consists only of the contributions of complex
unknown background processes described by the additive error
term Ξ in the MGLM, and all systematically occurring effects are
explicitly modeled. The most likely cause of heteroscedasticity is
therefore insufficient modeling of the data. An example is shown in
Fig. 7c: A situation where there are actually three different patterns
involved has been modeled by two classes, disregarding the dis-
tinction between two of the patterns. Because of this, the two result-
ing classes have a different covariance structure, and one of them is
also no longer meaningfully characterized by a single pattern vec-
tor. Consequently, the classification boundary becomes nonlinear.
However, such a ‘pooling’ of data from different experimental con-
ditions, which is sometimes used in classifier-based MVPA studies
utilizing more complex designs (e.g. Cichy et al., 2012; Momenne-
jad and Haynes, 2012), can be avoided in the MGLM framework:
The design matrix should always be constructed such that it mod-
els all the systematic experimental effects; and the selection of par-
tial effects is implemented by choosing the correct contrast.

The classic nonlinear ‘XOR problem’ illustrated in Fig. 7d&e

23



voxel 1

v
o
x
e
l 
2

 a)    

voxel 1
v
o
x
e
l 
2

 b)    

voxel 1

v
o
x
e
l 
2

 c)    

voxel 1

v
o
x
e
l 
2

 d)    

A
1
 B

1

A
1
 B

2

A
2
 B

2

A
2
 B

1

voxel 1

v
o
x
e
l 
2

 e)    

A
1
 B

1

A
1
 B

2

A
2
 B

2

A
2
 B

1

Figure 7: Causes for and misinterpretation of nonlinear optimal classification. (a) If the data adhere to the
assumptions of the multivariate linear model which implies that all classes are characterized by the same ellip-
tical distribution (red, green and blue ellipses) with the same variance (homoscedasticity), optimal classification
boundaries (black lines) are also piecewise linear. (b) These boundaries become nonlinear if the variance differs
between classes (violation of homoscedasticity), which however is incompatible with the assumption of additive
noise made by the MGLM (Eq. 4). (c) A more realistic scenario for how heteroscedasticity and thereby nonlin-
earity may arise is that one class (green) is actually a compound of two or more patterns (green and red in panel
a). (d) Such compound classes occur for instance in the decoding of single factors in a multifactorial design. In
the case illustrated here there are two factors A and B with two levels each. The four resulting conditions are
pooled into two classes according to the levels of the factor A (green for A1, blue for A2). The clear separation of
these classes by the classification boundary is consistent with the fact that there is a multivariate main effect of
factor A. (e) However, a nonlinear classifier would also be able to separate data pooled according to the levels
of factor B (green for B1, blue for B2), though there is no multivariate main effect of factor B. By contrast, the
information picked up by the nonlinear classifier would be correctly identfied as a multivariate interaction effect
by the MANOVA.
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demonstrates that the application of a nonlinear classifier to
pooled data can even be misleading. In this example, the four
different patterns belong to the four cells of a 2 × 2 factorial
design, and the two classes encode either the two levels of factor A
(6d) or of factor B (6e). The success of classification in the second
case might be interpreted such that there is an effect of factor
B, since data pooled according to the levels of this factor can be
nonlinearly separated. However, from a MANOVA perspective
the situation shown is characterized by an interaction A × B and a
main effect of factor A, but no main effect of factor B. The MGLM
framework is therefore able to describe the structure of the data in
a more detailed way exactly because it is linear.

4.3 Insufficient data

A limitation of MVPA measures like Mahalanobis distance or LDA
classification accuracy that use an explicit probabilistic model of
the fMRI data (a ‘generative’ model) is that in a high-dimensional
space spanned by a large number of voxels the number of data
points is not sufficient to properly estimate the within-class covari-
ance Σ. In such a case, using a ‘discriminative’ model, which does
not describe the distribution of the data points but only allows to
assign them to classes, may be necessary.

This limitation holds for the cross-validated MANOVA method
presented in this paper, too. However, the situation is vastly
improved compared to methods applied to run-wise parameter
estimates because the MGLM operates on the level of single
volumes. Moreover, it makes even better use of the data than trial-
wise classification. Where a classifier would assess the within-class
variation based on the volumes belonging to the two classes of
trials involved, the error covariance of the MGLM is estimated
using the residuals of the full model across the whole length of the
recording. Since within the cross-validation scheme (Sec. 2.3) the
error covariance estimate in each fold is based on data from all but
one of the m runs, a non-singular estimate E is obtained as soon
as (m− 1) fE ≥ p, where the number of error degrees of freedom
is given by the number of volumes per run minus the number of
linearly independent regressors. For searchlight-based MVPA of
typical fMRI studies not just a non-singular but a good estimate
should be possible for radii up to 4 (p = 257).

The estimation problem persists for the analysis of patterns in large
regions of interest or across the whole brain (considered already
by Friston et al., 1995). Here, regularization of the estimate using
‘shrinkage’ (see Blankertz et al., 2011; Schäfer and Strimmer, 2005)
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or reduction of dimensionality via principal component analysis as
a preprocessing step (cf. Carlson et al., 2003) or via built-in model
constraints (Worsley et al., 1997) are possible solutions, but with the
drawback that the resulting estimator is biased. A better approach
to extend the field of application of cvMANOVA might therefore
be to develop a model of the local error covariance structure, e.g.
based on voxel distance or tissue types.

5 Conclusion

In this paper we have introduced a measure for use in searchlight-
based MVPA studies, the pattern distinctness D, as a replacement
of the often employed measure of accuracy. Instead of quantifying
the performance of a classifier, our measure is based on the multi-
variate extension of the general linear model (the MGLM). It there-
fore does not depend on a particular classifier and its parameters,
but directly characterizes the structure of fMRI data by quantifying
the amount of multivariate variance explained by a given effect,
in terms of the error variance. The measure is related to standard
MANOVA statistics, but cross-validation is applied to obtain an un-
biased estimate D̂ of the size of the effect. Other than the approach
of Friston et al. (2008) that implements Bayesian model selection
for the MGLM, our method aims to be a straightforward extension
of univariate statistics to the multivariate case.

The MGLM underlying cross-validated MANOVA uses the same
design matrix and is analyzed using the same contrast matrices as
those used with the GLM, which thereby provide a unified basis
for univariate and multivariate analyses. Because it is based on the
MGLM, cvMANOVA can be used for two or more classes of tri-
als but also with parametric regressors, and D̂ can quantify the
multivariate effect defined by any estimable contrast. This way it
becomes possible to use MVPA to investigate main effects in a fac-
torial design as well as interactions, i.e. the question whether the
pattern difference between two or more levels of one factor changes
depending on another factor. A variant of the measure additionally
allows to quantify pattern stability across the levels of a factor (corre-
sponding to ‘cross-decoding’). Our method therefore substantially
increases the number of studies where MVPA can be applied in a
natural and simple way, and the number of questions that can be
asked of the data.
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Appendix

A Estimation bias

The expectation value of D̂l is

〈D̂l〉 = trace
(〈

Hl E−1
l

〉)
= trace

(
〈Hl〉 〈E−1

l 〉
)

, (A.1)

because Hl and El are uncorrelated, since B̂∆ and Ξ̂ arise from mu-
tually orthogonal projections.

For the hypothesis matrix,

〈Hl〉 = ∑
k 6=l

〈{
B̂′∆
}

k

{
X′XB̂∆

}
l

〉
= ∑

k 6=l

〈{
B̂′∆
}

k

〉 〈{
X′XB̂∆

}
l

〉
,

(A.2)
because the two braces are computed from data of different runs,
and since 〈B̂∆〉 = B∆,

〈Hl〉 = (m− 1) B′∆X′XB∆. (A.3)

The error matrix follows a Wishart distribution (Timm, 2002),

El = ∑
k 6=l

{
Ξ̂′Ξ̂

}
k ∼ Wp (Σ, (m− 1) fE) , (A.4)

and therefore the expectation of its inverse is

〈E−1
l 〉 =

1
(m− 1) fE − p− 1

Σ−1. (A.5)

Consequently,

〈D̂l〉 =
(m− 1) n

(m− 1) fE − p− 1
trace

(
1
n

B′∆X′XB∆Σ−1
)

, (A.6)

where the trace term is identical to the definition of D (Eq. 9), and
therefore

〈D̂〉 =
〈
(m− 1) fE − p− 1

(m− 1) n
· 1

m

m

∑
l=1

D̂l

〉
= D. (A.7)

B Null distribution

In order to calculate the variance of D̂l for B∆ = 0, we first approx-
imate E−1

l by its expectation value (Eq. A.5), so that

D̂l ≈
1

(m− 1) fE − p− 1
trace(Hl Σ−1) for p� (m− 1) fE.

(B.8)
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For the trace holds

trace(Hl Σ−1) = trace

(
∑
k 6=l

{
B̂′∆
}

k

{
X′XB̂∆

}
l · Σ

−1

)
, (B.9)

and since
B̂∆ = CC−X− Y = CC−X− Ξ (B.10)

for B∆ = 0,

trace(Hl Σ−1) = ∑
k 6=l

trace
({

Ξ′X′−CC−
}

k

{
X′XCC−X−Ξ

}
l · Σ

−1
)

.

(B.11)
Under the trace, Σ−1 acts as a normalization of Ξk and Ξl, so that
we can choose Σ = I (the identity matrix) without loss of generality.

Without the intermediate matrix expressions, trace(Ξ′kΞl) is the
sum of p inner products of two different n-dimensional random
vectors each, with elements independently distributed as N (0, 1).
That is, it is the sum of p n product-normally distributed random
variables. Due to the additional matrices forming projection
operators, the inner products are actually calculated in an fH-
dimensional subspace (due to the contrast C) of a q-dimensional
space (due to the design matrix X), and the trace becomes a sum of
p fH independent product-normally distributed random variables,
each of unit variance. Therefore

var
(

trace(Hl Σ−1)
)
= (m− 1) p fH, (B.12)

and

var D̂l ≈
(m− 1) p fH

((m− 1) fE − p− 1)2 . (B.13)

Moreover, since due to the central limit theorem sums of indepen-
dent random variables tend towards the normal distribution, we
can expect D̂l to be approximately normally distributed around 0
for larger p fH (rule of thumb: > 30).

Due to complex statistical dependencies between the cross-
validation folds the simple extension, var D̂ ≈ p fH/((m −
1)m n2), can only be a very rough approximation. However, the
proportionality to p should hold well for p� (m− 1) fE.

C Pattern stability

We are interested in the stability of an effect E encoded by a con-
trast matrix C, across the L levels of a factor A. C may be an ar-
bitrary contrast involving one or more other factors of a factorial
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design, but not A. It therefore consists of a ‘contrast element’ c that
is replicated across the levels of A

C =


c
c
...
c

 . (C.14)

We denote as Ci the partial contrasts of C, i.e versions of C where
all the replications of c are replaced by zeros, except for the one
associated with level i = 1 . . . L of factor A.

The matrix to extract the parameter difference B∆ associated with
effect E from the parameters B of the full model (Eq. 6) has the form
of a Kronecker product

CE = CC− =
1
L


1 1 . . . 1
1 1 . . . 1
...

... . . . ...
1 1 . . . 1

 ⊗ (cc−), (C.15)

while the corresponding matrix for the interaction E × A has the
form

CE×A =
1
L


(L− 1) −1 . . . −1
−1 (L− 1) . . . −1

...
... . . . ...

−1 −1 . . . (L− 1)

 ⊗ (cc−). (C.16)

The condition of maximal inconsistency of the multivariate effects
associated with c across the levels of A is defined by the mutual or-
thogonality of the partial effects, CiC−i B. In this case, contributions
due to the off-diagonal elements of the matrices in the previous two
expressions become zero, and consequently

D(E) =
1

L− 1
D(E×A). (C.17)

The resulting measure of pattern stability,

D(E \A) = D(E)− 1
L− 1

D(E×A), (C.18)

can be considered a special form of the pattern distinctness D
which is defined by an extraction matrix

CE\A = CE −
1

L− 1
CE×A =

1
L− 1


0 1 . . . 1
1 0 . . . 1
...

... . . . ...
1 1 . . . 0

 ⊗ (cc−).

(C.19)
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In this form the analogy to cross-decoding becomes apparent: The
measure only comprises terms that combine patterns from different
levels of the factor A. CE\A cannot be written as a product CC− and
therefore does not correspond to a contrast, but D(E \A) shares the
statistical properties of the pattern distinctness D.

D Permutation statistics

As shown in Appendix A, if there is no true effect the single-fold
estimate D̂l is asymptotically normally distributed around 0. How-
ever, the approximation we were able to derive for var D̂l does not
simply translate to D̂ itself, and we do not have any results for
higher order moments. Combined with the fact that empirical data
will not exactly adhere to the assumption of multivariate normality
underlying these derivations, we recommend to use a permutation
procedure for the assessment of a statistically significant deviation
from a null hypothesis, H0 : D = 0.

A permutation test (Good, 2005; Lehmann and Romano, 2005;
Nichols and Holmes, 2002) is a null hypothesis test that makes only
weak distributional assumptions, and derives the critical value of
a test statistic by a computational procedure that utilizes the given
sample. The method is based on the symmetries of the distribution
of the data (or derived statistics) under H0, which make it possible
to generate a set of artificial samples consistent with the null
hypothesis by exchanging (‘permuting’) parts of the original data.
The test statistic is computed for all possible permutations, and the
null hypothesis is rejected if the actual value of the statistic has an
extreme position within the set of permutation values.

In the case of cross-validated MANOVA, we propose to implement
permutations at the level of experimental runs beause they can be
considered mutually statistically independent. The circumstance
that MGLM parameters B are estimated separately for each run and
the cross-validation procedure combines parameter estimates from
different runs into the measure D̂ leads to the following approach:

Under the null hypothesis D = 0 for a given contrast C, the con-
trast parameter estimate B̂∆ = CC−B̂ is symmetrically distributed
around 0. The resulting sign permutation{

B̂∆
}

k → −
{

B̂∆
}

k (D.20)

applies independently for each run k = 1 . . . m, so that formally
there are 2m permutations. Since reversing signs for all runs at once

30



does not change the value of D̂, half of these permutations are re-
dundant, leaving an effective number of 2m−1 permutations.

For the typical number of runs of an fMRI experiment, the resulting
number of permutations is not sufficient to perform a null hypoth-
esis test for a single subject at standard significance levels. In this
paper, we follow the approach of Stelzer et al. (2013) to construct a
group-level permutation distribution by combining permutations
independently selected in each subject (see Sec. 3).
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