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Abstract

Correlations between psychological and physio-
logical phenomena form the basis for different
medical and scientific disciplines, but the nature
of this relation has not yet been fully understood.
One conceptual option is to understand the mental
as “emerging” from neural processes in the spe-
cific sense that psychology and physiology pro-
vide two different descriptions of the same sys-
tem. Stating these descriptions in terms of coarser-
and finer-grained system states (macro- and mi-
crostates), the two descriptions may be equally ad-
equate if the coarse-graining preserves the possi-
bility to obtain a dynamical rule for the system.
To test the empirical viability of our approach, we
describe an algorithm to obtain a specific form of
such a coarse-graining from data, and illustrate
its operation using a simulated dynamical system.
We then apply the method to an electroencephalo-
graphic (EEG) recording, where we are able to
identify macrostates from the physiological data
that correspond to mental states of the subject.

1 Introduction

The existence of correlations between psychologi-
cal and physiological phenomena, especially brain
processes, is the basic empirical fact of psycho-
physiological research. Relations between mental
processes, including modes of consciousness, and
those occurring in its physical “substrate”, the cen-
tral nervous system, are generally taken as a mat-

ter of course: They form the basis for the use of
drugs in the treatment of mental disorders in psy-
chiatry, they are applied as a research tool to shed
light on the details of psychological mechanisms,
and the explication of the neural structures under-
lying mental functioning forms the subject of cog-
nitive neuroscience. Still, it remains unclear what
the nature of the observed correlations is and what
exactly is to be conceived as a neural correlate of a
psychological phenomenon.1

One way to approach these issues is to inter-
pret the mental as a domain emerging from an un-
derlying physiological domain (Broad, 1925; Beck-
ermann et al., 1992). However, despite its long
history reaching to recent scientific contributions
(e.g. Darley, 1994; Seth, 2008), the term emergence
is not very well defined and it is used in a large
number of different meanings (cf. Stephan, 2002;
O’Connor and Wong, 2006).

In our understanding, emergence is a relation
between different descriptions of the same system.
In this view, the occurrence and correlation of psy-
chological and physiological phenomena is due to
the fact that the object of psychophysiological re-
search (the research subject) can be approached
and examined in different ways. More specifically,
emergence is to be conceived as a relation between
different descriptions each of which is useful or
adequate in its own manner. The question arises
how there can be more than one adequate descrip-

1While the recent discussion focuses on the notion of “neu-
ral correlates of consciousness” (cf. Metzinger, 2000), we are
interested in psychophysiological correlations in general.

1

ar
X

iv
:0

81
0.

04
79

v3
  [

ph
ys

ic
s.

da
ta

-a
n]

  8
 A

pr
 2

00
9



tion for the same system, and what has to be the
nature of their relation in order to permit this.2

In this paper we present one possible answer to
these questions, motivated by ideas on the emer-
gence of mental states from neurodynamics intro-
duced by Atmanspacher and beim Graben (2007),
where the two descriptions take on the form of a
dynamical system. We introduce the further spec-
ification that the relation between the two asso-
ciated state spaces is characterized by a Markov
coarse-graining (Sec. 2), which leads us to consider
metastable states as a particular form of emergent
states. In order to demonstrate the practical viabil-
ity of these ideas, we develop a method to identify
metastable states from empirical data (Sec. 3), and
illustrate the operation of the algorithm using data
from a simulated system (Sec. 4). In the applica-
tion of the method to a recording of brain electrical
activity, we are able to identify states closely cor-
responding to the mental states of a subject, based
on the analysis of the EEG data alone (Sec. 5).

2 Emergence in dynamical sys-
tems

A descriptive approach that has proven very fruit-
ful in physics and other fields of the natural sci-
ences is utilizing the concept of a dynamical system
(Robinson, 1995; Chan and Tong, 2001). Such a de-
scription is formulated with respect to the states
the system can assume, and a dynamical rule that
defines the way the state of the system evolves
over time. The possible system states form a state
space, which in the most general case is just a set
of identifiable and mutually distinguishable ele-
ments.3

2Note that we are concerned with the atemporal or “syn-
chronous” structure of such a relation between descriptions,
and do not address the question of how a phenomenon
emerges “diachronically”, in a process unfolding in time.

3This is in accordance with the concept of system states in
cybernetics and related disciplines (cf. Ashby, 1962), but is at
variance with the use of the term in physics where a state space
is generally taken to be spanned by a set of observables (prop-
erties that can be precisely quantified). Such a less structured
concept of state space is useful because it also covers cases
where it is not obvious how to endow that space with a for-
mal structure, for instance mental states. However, as Gaveau
and Schulman (2005) point out, introducing into a state space
a dynamics in the form of transition probabilities (see below)
implicitly provides it with a metric structure.

For a well-defined relation between two such
descriptions to hold, it is necessary that the two
state spaces can be related to each other.4 A sim-
ple possibility is that the system assumes a par-
ticular state in one description exactly if it is in
any out of a certain set of states of the other de-
scription; that is to say, one state space is a coarse-
graining or partition of the other state space. Be-
cause of this asymmetry between the two descrip-
tions one may speak of a higher-level and a lower-
level description, and refer correspondingly to ma-
crostates and microstates of the system. The classic
example in physics for this kind of inter-level re-
lation is that between the phenomenological the-
ory of thermodynamics, dealing with the macro-
states of extended systems defined in terms of ob-
servables such as temperature and pressure, and
the theory of statistical mechanics, relating them
to microstates defined in terms of the constituents
of those systems.5

The description of a system is chosen by an ob-
server, but it is also subject to objective constraints
insofar as different descriptions may be differently
adequate or useful. For a description as a dynam-
ical system, the adequacy of a particular set of
system states becomes apparent in the possibility
to find a dynamical rule, Φ∆t, whereby the current
state xt of the system determines its further evolu-
tion,

xt+∆t = Φ∆t (xt) ;

here t is a continuous or discrete time variable and
∆t a time interval. A particular state space defi-
nition may therefore be called dynamically adequate
if the specification of a state implies all the avail-
able information which is relevant for determin-
ing subsequent states, that is, if in this description
the system possesses the Markov property (cf. Shal-
izi and Moore, 2008). In this sense, the most gen-
eral model of a dynamical system is the Markov
process—a stochastic model which includes deter-
ministic dynamics as a limiting case (cf. Chan and

4This of course does not have to be the case; different de-
scriptions of the same system may also be incompatible with
each other.

5In this context the terms macrostate and microstate derive
from the circumstance that they refer to the properties of a
“macroscopic” system versus those of its “microscopic” con-
stituents. Though these terms often imply a difference in spa-
tiotemporal scale, the important point is the difference in the
amount of detail given by the descriptions.
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Tong, 2001).
It is important to note that this criterion for

selecting a descriptive level implies a reference
back to that same level; while employing a more
fine-grained set of states may serve to improve
the prediction of the future of a system in gen-
eral, it will in most cases result in a loss of
the Markov property with respect to these finer-
grained states themselves. In other words, the
Markov-property criterion distinguishes descrip-
tive levels at which the system exhibits a self-
contained dynamics (“eigendynamics”), indepen-
dent of details present at other levels.6

This specification of the kind of descriptions
sought for leads to a more specific concept of
emergence as an inter-level relation.7 Given a mi-
croscopic state description exhibiting the Markov
property, an adequate higher-level description or
coarse-graining should ideally preserve it. In the
context of deterministic nonlinear systems, where
the dynamics is defined by a map from a metric
space onto itself, such a coarse-graining is called a
Markov partition (Adler, 1998; Bollt and Skufca,
2005); for the general case of stochastic dynam-
ics we propose the term Markov coarse-graining (cf.
Gaveau and Schulman, 2005). Accordingly, states
of a higher-level description may be called dy-
namically emergent states if they correspond to a
Markov coarse-graining of a lower-level dynam-
ics.

Interpreting psychophysiological correlations as
reflecting a relation of emergence between two
levels of description as a dynamical system, the
lower-level description is stated in terms of phys-
iological, neural states, the higher-level descrip-
tion in terms of mental states. At both levels a
wide variety of descriptive approaches is possi-
ble, depending on the experimental methods used

6This concept is akin to the idea of operational closure or
autonomy in the theory of autopoietic systems (Maturana and
Varela, 1980; Varela, 1979), which alongside the separation from
the environment also refers to the indifference of system oper-
ations towards the internal “microscopic” complexity of sys-
tem elements (cf. Luhmann, 1996). However, the topic of self-
defined system boundaries is not addressed in this paper and
accordingly, the term “system” is used in the unspecific sense
of a section of reality which has been chosen for observation.

7The stability conditions of Atmanspacher and beim Graben
(2007) are here realized by the Markov property, while contex-
tual constraints (Bishop and Atmanspacher, 2006) can be seen
effective in the selection of a particular descriptive level out of
those admissible.

to assess the brain state on the one hand (elec-
trophysiology, imaging methods, brain chemistry,
etc.) and the chosen set of psychological cate-
gories on the other hand (conscious/unconscious,
sleep stages, moods, cognitive modes, etc.).8 Ap-
plying the dynamical specification of emergence
outlined above, emergent macrostates that are de-
fined via a Markov coarse-graining of the neu-
ral microstate dynamics are candidates for a fur-
ther characterization as mental states. In order to
empirically substantiate these ideas, macrostates
obtained from the dynamics that has been ob-
served in neurophysiological data are to be related
to mental states of subjects that have been deter-
mined by other means, such as behaviorial assess-
ment or verbal reports.

In the following we undertake first steps to-
wards this program. Since a general algorithm for
finding Markov coarse-grainings is not known, we
focus on the special case of metastable states. Be-
cause a system stays in such a state for prolonged
periods of time and only occasionally switches
into another, antecedent states provide practically
no information on the subsequent evolution be-
yond that implied in the current state, so that
the macrostate dynamics is approximately Marko-
vian. The following section describes an algorithm
to obtain metastable states from the microstate dy-
namics observed in empirical data.

3 Identifying metastable macro-
states from data

Metastable states correspond to the “almost in-
variant sets” of a dynamical system, i.e. subsets of
the state space which are approximately invariant
under the system’s dynamics. Since we are deal-
ing with empirical data where there is generally
no precise theoretical knowledge of the dynamics,
it has to be determined from the data.

Via a finite set of microstates resulting from a
discretization of the state space (Sec. 3.1), the time

8Since each mental state allows for multiple realizations at
the neural level, mental states may be said to “supervene on”
brain states (cf. Kim, 1993)—but this alone does not provide a
sufficient characterization of their relation. Moreover, contrary
to assumptions prevalent in the discussion (cf. Chalmers, 2000)
a neural correlates need not necessarily be realized in a partic-
ular neural subsystem of the brain.
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evolution operator Φ∆t is estimated in the form of
a matrix of transition probabilities P (Sec. 3.2). Me-
tastable states are then determined using an algo-
rithm to find the almost invariant sets of a Markov
process (Sec. 3.3). Additionally, an estimate of
the optimal number of macrostates is obtained
via an analysis of the characteristic timescales of
the dynamics (Sec. 3.4). Our algorithm builds on
work by Deuflhard and Weber (2005), Gaveau and
Schulman (2005), and Froyland (2005), and re-uses
an idea of Allefeld and Bialonski (2007).

3.1 Discretization of the microstate
space

In order to represent the observed microstate dy-
namics as a finite-state Markov process, the state
space defined by K variables (x1, x2, . . . , xK) = x
has to be discretized, resulting in a set of com-
pound microstates which forms the basis for fur-
ther analysis. Since the data set may be high-
dimensional and of varying density in different
areas of the state space, we need a flexible algo-
rithm which adapts the size and shape of micro-
state cells to local properties of the distribution of
data points.

This procedure has to meet two competing
goals: It should capture as much detail as possible
in order to faithfully represent the underlying con-
tinuous dynamics within its discretized version;
but since transition probabilities between cells are
to be estimated, the number of data points per cell
should not fall below a certain minimum. More-
over, the extensions of the cells in the directions
of the different variables should be of roughly the
same size.9

To achieve this, we use a recursive bipartition-
ing approach (Fig. 1): For a given set of n data
points S = {xm}, m = 1 . . . n, the direction of
maximal variance is determined, i.e. a unit vec-
tor e, |e| = 1, such that varm (xm · e) obtains its
maximum value. Using the median M of the data
points’ positions along this direction as a thresh-

9We assume at this point that the variables spanning the
state space permit a comparison of distances along different
directions. Where this is not the case it is advisable to map
all variables onto the same range of values before performing
the discretization.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure 1: Discretization by recursive bipartitioning, il-
lustrated with a set of data points drawn from a two-
dimensional normal distribution stretched out along the
main diagonal. Cuts occurring earlier in the procedure
are indicated by thicker lines.

old value, the set is divided into two subsets,

S1 = {xm | xm · e ≤ M},
S2 = {xm | xm · e > M}.

The procedure is repeated for each of the resulting
subsets, up to a recursion depth of b steps. This
algorithm leads to a practically identical number
of data points per cell (either bn/2bc or dn/2be)
which can be adjusted via the parameter b. It pro-
vides a high level of detail in those areas of the
state space where the system spends most of the
time, and it avoids too elongated cells by applying
cuts perpendicular to the current main extension.

3.2 Microstate dynamics

Via the bipartitioning procedure, each data point
xm (m = 1 . . . n) is assigned to one out of a finite set
of microstates, identified by an index µ ∈ {1 . . . N}
(N = 2b). The observed sequence of data points
(where the index m enumerates samples taken at
consecutive time points) is thereby transformed
into a sequence of microstate indices µm. Consid-
ering this sequence of compound microstates as a

4



realization of a finite-state Markov process, the un-
derlying dynamics is described by a discrete trans-
fer operator P, an N×N-matrix of transition prob-
abilities between states,

Pij = Pr(µm+1 = i | µm = j),

which may be estimated according to

P̂ij =
cij

∑i′ ci′ j

where
cij = #(µm+1 = i ∧ µm = j)

is the number of observed transitions from state j
to state i.

We assume that the Markov process described
by P is irreducible, i.e. that it is possible to reach
any state from any other state.10 If this is not the
case, the system has not only almost invariant but
proper invariant sets, each forming an irreducible
process of its own which itself may be subjected to
a search for almost invariant subsets.11 We assume
moreover that the process is aperiodic, which is
already the case if only one diagonal element Pii
is different from zero. For a finite-state Markov
process these two properties amount to ergodicity,
which implies that there exists a unique invariant
probability distribution π over microstates, with
P π = π, which is also the limit distribution ap-
proached from every initial condition.

The analysis of the dynamical properties of a
Markov process leading to the identification of its
metastable states is strongly facilitated if it is re-
versible, i.e. if the dynamics is invariant under
time reversal: Pij πj = Pji πi for all i, j. This prop-
erty cannot usually be assumed for an arbitrary
empirically observed process. But since the prop-
erty of metastability, the tendency of the system
to stay within certain regions of the state space for
prolonged periods of time, is itself indifferent with
respect to the direction of time (Froyland, 2005),
we can base the search for the corresponding al-
most invariant sets on the transition matrix for the

10We use the terminology and results of Feller (1968), Ch. XV.
11Another possible problem is that there may be states a tran-

sition into or out of which is never observed, because they
only occur at the beginning or end of the given data segments.
Along with the general possibility of transient states, this is-
sue is resolved in a natural way by the reversibilization step
described below.

reversibilized process R,

Rij =
1
2

(
Pij +

Pji πi

πj

)
,

instead. This operator can be directly estimated
according to

R̂ij =
cij + cji

∑i′(ci′ j + cji′)

i.e. by counting transitions forwards and back-
wards in time, and the corresponding invariant
probability distribution determined as

π̂i =
∑j(cij + cji)

∑i′ ∑j(ci′ j + cji′)
.

In the following we will use the symbols R and π
to denote these estimated quantities.

3.3 Almost invariant sets

To identify almost invariant sets we employ the
PCCA+ algorithm which was developed by Deufl-
hard and Weber (2005) to find metastable states in
the conformation dynamics of molecules. In this
section we outline the main ideas of that approach
which are necessary to understand the operation
of the method, while for further details on the im-
plementation and mathematical background the
reader is referred to their paper.

Our starting point is the ergodic and reversible
Markov process characterized by the N × N-
transition matrix R along with its invariant proba-
bility distribution π. Due to the reversibility of the
process (symmetry of the stationary flow Rij πj),
the left and right eigenvectors Ak, pk and eigen-
values λk of R,

Ak R = λk Ak, R pk = λk pk, k = 1 . . . N,

are real-valued. Resolving the scaling ambiguity
left by the orthonormality relation Ak pl = δkl by
the choice pik = πi Aki leads to the normalization
equations

∑
i

p2
ik

πi
= 1 and ∑

i
πi A2

ki = 1,

5



and the transition matrix can be given the spectral
representation

R = ∑
k

λk pk Ak.

We assume that the eigenvalues are sorted in de-
scending order, λ1 ≥ λ2 ≥ . . . ≥ λN . The unique
largest eigenvalue λ1 = 1 belongs to the invari-
ant probability distribution, p1 = π, while the
corresponding left eigenvector has constant coef-
ficients, A1i = 1.

If the process R possesses q almost invariant
sets, it can be seen as the result of a perturbation
of a process R̄ that possesses q perfectly invari-
ant sets. Any (normalized) element of the right
eigenvector subspace of R̄ belonging to eigenval-
ues λ̄1 = . . . = λ̄q = 1 gives an invariant proba-
bility distribution of the process. Moreover, if the
invariant sets are described by characteristic func-
tions χ̄l (l = 1 . . . q), such that χ̄l(i) = 1 if state i
belongs to invariant subset l, 0 otherwise, then any
linear combination of them is a left eigenvector of
R̄ for eigenvalue 1. Conversely, from any linearly
independent set of left eigenvectors for eigenvalue
1, {Ā1, Ā2, . . . , Āq}, the characteristic functions of
the invariant sets can be recovered via suitable lin-
ear combinations.

Through the perturbation, the multiple eigen-
value 1 becomes a cluster of large eigenvalues
λ1, λ2, . . . , λq close to λ1 = 1, and the invariant
sets become almost invariant sets. They are de-
scribed by almost characteristic functions χl(i), at-
taining values in the range [0, 1] which may be in-
terpreted as quantifying the degree to which state i
belongs to almost invariant set l. In analogy to the
unperturbed case, these functions are constructed
as linear combinations of the left eigenvectors be-
longing to the q large eigenvalues,

χl(i) =
q

∑
k=1

αkl Aki, l = 1 . . . q,

defined by coefficients α = (αkl). Admissible are
those regular transforms that conform to the con-
straints

• partition of unity: ∑l χl(i) = 1 for all i, and

• non-negativity: χl(i) ≥ 0 for all i, l.

The PCCA+ algorithm optimizes the transform α
with respect to an objective function to be maxi-
mized; we here choose the maximum scaling func-
tion

I(α) = ∑
l

max
i

χl(i),

which favors attributions of states i to almost in-
variant sets l that are as clear-cut as possible.

The input data for the optimization are the dom-
inant left eigenvectors Ak, k = 1 . . . q. The first
eigenvector is trivially A1 = (1, . . . , 1), but the re-
maining eigenvector coefficients can be geometri-
cally interpreted as attributing to each microstate i
a position in a (q− 1)-dimensional left eigenvector
space with position vectors

o(i) = (Aki) , k = 2 . . . q.

Within this space, the optimization procedure ap-
pears as fitting a q-simplex as closely as possible
around the microstate points. In a system with
pronounced metastable macrostates each of them
appears as a cluster of microstates located at the
boundary of the point cloud, and the optimization
procedure matches these q clusters to one of the
vertices of the q-simplex. The values of the almost
characteristic functions χl(i) then attain the geo-
metric meaning of barycentric coordinates of the
data points with respect to the locations of the sim-
plex vertices vl :

o(i) =
q

∑
l=1

χl(i) vl .

Finally, metastable macrostates corresponding
to almost invariant sets of microstates are identi-
fied by attributing each microstate i to that ma-
crostate l ∈ {1 . . . q} for which the almost charac-
teristic function χl(i) attains the highest value (or,
to whose defining vertex it is closest in terms of
barycentric coordinates).

3.4 Macrostates and timescales

If no prior information on the number of metasta-
ble states to be identified is available, it is desirable
to obtain an estimate from the data set itself. Since
the existence of q almost invariant sets leads to q
large eigenvalues, a criterion based on gaps in the
eigenvalue spectrum is the natural choice.

6



However, the concrete values in the spectrum of
R depend on the step size of the underlying dis-
crete time, which is implicitly given with the input
data. Changing the timescale from 1 to τ steps, the
process has to be described by the transition ma-
trix Rτ , whose spectral representation

Rτ = ∑
k

λτ
k pk Ak

is essentially the same as that of R, but with eigen-
values raised to the power τ.

The question which eigenvalues or which gap
in the eigenvalue spectrum is to be considered
“large” therefore depends on the chosen timescale.
As Gaveau and Schulman (2005) note, a coarse-
graining of the state space always implies a cor-
responding “coarse-graining” or rather change of
scale with respect to the time axis.

We propose12 a measure of the size of spectral
gaps that is invariant under a rescaling of the time
axis. This is achieved by transforming eigenvalues
into associated characteristic timescales,

T(k) = − 1
log |λk|

,

and introducing the timescale separation factor as the
ratio of subsequent timescales:

F(k) =
T(k)

T(k + 1)
=

log |λk+1|
log |λk|

.

Substituting λτ
k for λk in this equation, the result-

ing factors cancel out, so that F(k) provides a mea-
sure of the spectral gap between eigenvalues λk
and λk+1 that is independent of the timescale.

Using this measure, the number of macrostates
q is estimated as the value of k for which F(k) be-
comes maximal. The choice q = 1 leading to a
single macrostate comprising all microstates has
thereby to be excluded, because it is always asso-
ciated with the largest timescale separation factor,
F(1)→ ∞.

If several larger gaps exist, a ranking list of pos-
sible q-values may be compiled, where each value
leads to a different possible coarse-graining of the
system into macrostates. This way different lay-
ers of the system’s dynamical structure are recov-

12See Allefeld and Bialonski (2007) for a very similar ap-
proach in a different context.

ered, which (extending Deuflhard and Weber’s ap-
proach) may be considered as the result of multi-
ple superimposed perturbations. An example of
this is given in the following section, where the
method is illustrated using data from a simulated
system.

4 Example: A system with four
metastable macrostates

To illustrate the operation of the algorithm we ap-
ply it to data from a simulated system, where we
can interpret the analysis results with respect to
our precise knowledge of the underlying dynam-
ics. We use a discrete-time stochastic system in
two dimensions, (x1, x2), where the change over
each timestep is given by

∆xi = a
(

xi − 2x3
i

)
+ biξi,

with a = 0.01, (ξ1, ξ2) standard normal two-
dimensional white noise, b1 = 0.03, and b2 = 0.05.
The first term of the right hand side of this equa-
tion describes an overdamped movement within a
double-well potential along each dimension, lead-
ing to four attracting fixed points at (x1, x2) =
(±1/

√
2,±1/

√
2). Without the stochastic second

term, the system would be decomposable into four
invariant sets, separated by the two coordinate
axes. But due to the noise the system performs
a random walk, staying for prolonged periods of
time in the vicinity of one of the attracting points,
but occasionally wandering into another point’s
basin of attraction. These switches occur more fre-
quently along x2 because the noise amplitude is
larger in that direction, b2 > b1.

Data resulting from a simulation run of this sys-
tem are shown in Fig. 2. A section of the con-
necting trajectory illustrates how the system state
moves through the state space, entering and leav-
ing the cells of the microstate partition. Counting
these transitions between cells leads to an estimate
of the reversibilized transition matrix R.

The largest eigenvalues of R are plotted in
Fig. 3a, revealing a group of four large eigen-
values (> 0.995), which itself is subdivided into
two groups of two eigenvalues each. This pic-
ture becomes clearer after the transformation into

7



Figure 2: Data points from a simulation run of a system
with four metastable macrostates over 106 time steps,
and a part of the connecting trajectory. Straight lines
indicate the cell borders of the partition into 4096 micro-
states obtained via the bipartition algorithm.
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Figure 3: Eigenvalue spectrum of the transition ma-
trix R of the system with four metastable macrostates.
(a) The eigenvalues of largest magnitude. (b) Logarith-
mic timescales; locations and values of the two largest
timescale separation factors are indicated.
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Figure 4: Eigenvector space (o1, o2, o3) of the system
with four metastable macrostates for q = 4. Each dot
representing a microstate is colored according to which
vertex of the enclosing tetrahedron is closest, defining
the four metastable macrostates.

Figure 5: Micro- and macrostates of the system with
four metastable macrostates. Lines indicate the cell bor-
ders of the partition of the state space into microstates,
while the coloring of data points shows the attribution
of microstates to one of the four metastable macrostates.
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timescales T(k). In Fig. 3b they are displayed
on a logarithmic scale, such that the magnitude
of timescale separation factors F(k) becomes di-
rectly visible in the vertical distances between sub-
sequent data points. The largest separation factor
is F(4) = 5.02, closely followed by F(2) = 4.55, in-
dicating that a partitioning of the state space into
q = 4 macrostates is optimal, while searching for
two different macrostates may also yield a mean-
ingful result.

The identification of almost invariant sets of mi-
crostates defining the metastable macrostates is
performed within the 3-dimensional eigenvector
space (o1, o2, o3). Fig. 4 reveals that the points
representing microstates are located on a saddle-
shaped surface stretched out within a 4-simplex or
tetrahedron. The algorithm identifies the vertices
of the tetrahedron and attributes each microstate
to that macrostate whose defining vertex is clos-
est, resulting in the depicted separation into four
sets.

In Fig. 5 this result is re-translated into the origi-
nal state space of Fig. 2, by coloring the data points
of each microstate according to the macrostate it is
assigned to. The identified metastable states co-
incide roughly with the basins of attraction of the
four attracting points, i.e., the almost invariant sets
of the system’s dynamics.

From Fig. 4 we can also assess which macro-
state definitions would be obtained by choosing
q = 2, the next-best choice for the number of
metastable states according to the timescale sep-
aration factor criterion. In this case the eigenvec-
tor space is spanned by the single dimension o1,
along which the two vertices of the tetrahedron on
the left and right side, respectively, coincide. This
means that the two resulting macrostates each con-
sist of the union of two of the macrostates obtained
for q = 4. With respect to the state space, these
two macrostates correspond approximately to the
areas x1 > 0 and x1 < 0.

This result can be understood from the system’s
dynamics, since because of the smaller probabil-
ity of transitions along x1 these two areas of the
state space form almost invariant sets, too. As can
be seen from this example, the possibility to se-
lect different q-values of comparably good rating
may allow to recover different dynamical levels of
a system, giving rise to a hierarchical structure of
potential macrostate definitions.

5 Application to EEG data

For the purpose of a first application of the al-
gorithm to neurophysiological data, we chose an
electroencephalographic (EEG) recording from a
patient suffering from petit-mal epilepsy, a con-
dition characterized by the occurrence of frequent
short (several seconds) epileptic episodes, during
which the patient becomes irresponsive (cf. Nie-
dermeyer, 1993). This kind of data is favorable
for our methodological approach because we can
expect two clearly distinct states to be present—
“normal” EEG / mentally present and paroxys-
mal episodes / mentally absent—, and because it
is possible to observe many transitions between
these states in a recording of moderate size.

The data set consists of a section of 89 min
length from the patient’s monitoring EEG. It was
recorded from the 19 electrode positions of the
international 10-20 system (American Electroen-
cephalographic Society, 1991) at a sampling rate of
250 Hz, digitally bandpass-filtered (2–15 Hz), and
transformed to the average reference. Due to ar-
tifact removal by visual inspection the amount of
data available for analysis was reduced to 71 min
total length (1 064 435 data points).

In the preceding simulation example we know
by definition that the given values of the system
variables immediately specify its dynamical state,
and therefore can be directly processed by the al-
gorithm for the identification of metastable states.
With measurement data like EEG the situation is
not so clear. The data “as is” may be accepted
as a specification of the system state, but any fur-
ther processed version of them fulfills this func-
tion as well and may for some reason be even more
suitable. This means that empirical data pose the
problem of how to define the input state space for
the analysis.

For low-dimensional nonlinear deterministic
dynamical systems techniques have been devel-
oped to reconstruct the state space of the system,
or a higher-dimensional space comprising it, from
scalar time series via the method of time-delay
embedding (Takens, 1981; Kantz and Schreiber,
1997). However, these techniques are not appro-
priate for our purposes. Firstly, the data-set is
already multi-dimensional and using the embed-
ding approach we would have to either blow up
the dimensionality even more, thereby introduc-
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ing a high amount of redundance, or discard many
of the input data channels, possibly loosing crucial
information. And secondly, previous attempts to
demonstrate low-dimensional nonlinear structure
in EEG data had only limited success (cf. Theiler
and Rapp, 1996; Paluš, 1996).

Instead, we pursue the following strategy: In a
first step, we use the original 19-dimensional data
space as the input state space. Guided by the re-
sults obtained in this way as well as by indepen-
dent observations on the behavior of multichannel
EEG, in a second step we develop a preprocess-
ing procedure defining a more abstract input state
space.

5.1 Original data state space

Using the recursive bipartitioning algorithm, the
data points were assigned to 32 768 different com-
pound microstates (32 or 33 points in each cell).
The resulting timescale spectrum (Fig. 6a) exhibit-
ing a large separation factor F(3) = 2.15 suggests
a search for three metastable macrostates in a two-
dimensional eigenvector space (Fig. 6b). This is
supported by the 3-simplex shape of the distribu-
tion of microstate positions within this space.

The arrangement of the areas belonging to the
identified macrostates in the input data space is
shown in Fig. 7, where the 19-dimensional space is
represented using the first three PCA components
of the data. The most prevalent state accounting
for about 99% of the data points appears here as a
centrally located spherical area, with the two other
states forming handle-like appendices at opposite
sides.

The role of these three macrostates becomes
clearer considering the transitions between them
over time, in comparison with the underlying
EEG time series (Fig. 8a). Within periods of nor-
mal electroencephalographic activity the system
stays within the “main” macrostate, while during
seizures switches between all three states occur
regularly, corresponding to an oscillation along
the PC1 axis of Fig. 7. This macrostate dynam-
ics reflects the spike-wave oscillatory activity visi-
ble in the EEG channels shown in the lower panel
of Fig. 8, which are characteristic for paroxysmal
episodes.

With this first result, the attempt at identifying
emergent macrostates using the EEG data space is

Figure 6: Analysis results for the original EEG data state
space. a) Timescale spectrum; a large separation factor
indicates three metastable states. b) Microstate positions
in two-dimensional eigenvector space forming a trian-
gular structure, and the resulting three metastable ma-
crostates.
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Figure 8: Analysis results illustrated using a segment of 40 s length. Upper panels: Macrostate dynamics over
time, resulting from different input state space definitions. a) Original EEG data state space. b) Amplitude vector
state space. c) As in (b), but using normalized amplitude vectors. Lower panel: EEG timeseries at four selected
recording sites. Paroxysmal episodes are characterized by short bursts of spike-wave activity.

Figure 7: Analysis results for the original EEG data state
space: Location of data points belonging to the three
identified metastable states. The 19-dimensional state
space is represented using the first three PCA compo-
nents of the data.

only partially successful: The occurrence of states
correlates strongly with those features of the un-
derlying process which are psychophysiologically
most important, and also most prominent in visual
inspection of the data. However, the two states ex-
pected are not directly recovered by the EEG anal-
ysis. Instead of one persistent state during parox-
ysmal episodes, we find rapid oscillatory changes
between states including the one associated with
normal EEG. This indicates that the input state
space is not yet optimally defined.

5.2 Amplitude vector state space

This finding can be understood from the fact
that electroencephalographic activity in general is
so strongly shaped by a predominant oscillatory
layer of the dynamics—not only during epilep-
tic episodes but also in normal EEG, particularly
in the form of the alpha rhythm—that it is hard
to discern more subtle dynamical features. To re-
cover those features, we need a preprocessing step
that eliminates the oscillatory character of the data
but retains the more slowly changing parameters
of the oscillation.

As observed by Wackermann (1994), the trajec-
tory formed by multichannel EEG within the data
space can be approximated by a movement along
an elliptical orbit with slowly changing orienta-
tion and shape (Fig. 9). By locally matching el-
lipses to the data, a global instantaneous phase
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Figure 9: Amplitude vector state space. The trajec-
tory corresponding to a multivariate oscillatory signal
like EEG takes on the form of an elliptical orbit with
slowly varying parameters. Locally matching ellipses to
the trajectory, the instantaneously dominant oscillatory
component can be characterized by the major semiaxis
vectors (straight radial lines), resulting in a description
of the system’s oscillatory state which itself evolves in a
non-oscillatory way (black curve).
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Figure 10: Analysis results for the amplitude vector
state space. a) Timescale spectrum indicating the pres-
ence of two metastable states. b) Microstate positions
in one-dimensional eigenvector space and the resulting
two metastable macrostates.

and amplitude can be defined, where the ampli-
tude corresponds to the two main semiaxis vectors
of the ellipse. (For a full account of the calculation
see App. A.) For simplicity we only use the ma-
jor semiaxis vector, which specifies the direction
and strength of the momentarily dominant oscil-
latory component, to define an amplitude vector
state space as the input state space for the algo-
rithm.13

With the specification of the system state via the
major amplitude vector an ambiguity arises, be-
cause vectors of opposite orientation are equiva-
lent. This is resolved by enforcing positive sign
for the first vector component during the assign-
ment of data points to microstates. For visualiza-
tion (Fig. 11) the axis vectors are used as they come
out of the calculation described in App. A, that is
with basically random orientation.

The resulting timescale spectrum is shown in
Fig. 10a. The largest separation factor of F(2) =
4.23 now gives a more definite indication of the
number of macrostates than for the original data

13This approach is similar to one of the strategies employed
in the “spatial analysis” of EEG (Lehmann, 1987), to select only
those EEG potential maps (data vectors) which occur at local
maxima of the “global field strength” (the norm of the data vec-
tors).
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Figure 11: Analysis results for the amplitude vector
state space: Location of data points belonging to the
two identified metastable states in a representation of
the state space using the first three PCA components.

state space. In the corresponding one-dimensional
eigenvector space (Fig. 10b) the two macrostates
are trivially defined by a cut at the center of the
range of values.

In Fig. 11, the location of data points belong-
ing to the two macrostates is shown using the first
three PCA components of the data points in the
amplitude vector state space. Again, a prevalent
macrostate (accounting for 98% of the data points)
fills a spherically shaped central area, while two
appendices protruding on opposite sites together
constitute the second macrostate. Despite the fact
that the overall shape of the data cloud is similar
to that shown in Fig. 7, the reader should keep in
mind that the two diagrams depict differently de-
fined state spaces represented with respect to a dif-
ferent set of dimensions.

Fig. 8b demonstrates that the revision of the in-
put state definition successfully eliminates the os-
cillatory switching between states during paroxys-
mal episodes. Starting from the amplitude vector
input state space, the algorithm for the identifi-
cation of metastable states is able to consistently
associate normal EEG with one macrostate, and—
except for short relapses—epileptic EEG with an-
other macrostate.

The macrostate structure of the amplitude vec-
tor state space shown in Fig. 11 suggests that
the distinction of the two macrostates relies only
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Figure 12: Timescale spectrum obtained using normal-
ized axis vectors. The largest separation factor (for six
macrostates) is only marginally larger than the other oc-
curring values, indicating that no adequate definition of
metastable states is possible.

on the length of the amplitude vector. To check
this, we tested the performance of the algorithm
when normalized amplitude vectors are used. The
timescale spectrum (Fig. 12), with a maximal sep-
aration factor F(6) = 1.21 not substantially larger
than the rest, indicates that the identification of
macrostates is severely impaired under these cir-
cumstances. Even so, an examination of the state
dynamics over time (Fig. 8c) reveals that there are
still two states that are mainly attained during
epileptic episodes.

6 Conclusion

Relations between mental (psychological) and
neural (physiological) phenomena form the gener-
ally accepted basis for work in various disciplines
such as psychiatry, psychophysiology, and cogni-
tive neuroscience. While a large body of knowl-
edge has been gathered in these fields, the con-
ceptual question of how mind and brain are re-
lated in precise terms is still largely unresolved.
Starting from the notion of the mental as “emerg-
ing” from neural processes, we argue that this re-
lation of emergence should be understood as one
between different descriptions of the same system.

Utilizing concepts from the theory of dynam-
ical systems for the formulation of descriptions,
we propose that the relation between descriptive
levels should take on the form of a partition or
coarse-graining of the state space that is character-
ized by a preservation of the Markov property. To
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empirically test the validity of our approach, we
turn to a form of such a Markov coarse-grainining
which can be algorithmically obtained: that of me-
tastable states. We describe how metastable ma-
crostates of a dynamics observed in empirical data
can be identified based on the spectral analysis of
the transition matrix governing the microstate dy-
namics, and illustrate its operation with simula-
tion data.

We apply the method to a recording of elec-
troencephalographic (EEG) data from a human
subject suffering from petit-mal epilepsy. Com-
bined with a suitable preprocessing procedure, the
algorithm is able to automatically identify meta-
stable states from the data which closely corre-
spond to the mental states of the subject (mentally
present / absent). This first application substanti-
ates the practical viability of our approach and ap-
pears promising for the future application of the
method to more challenging forms of data.

Finally we want to point out that the concept
of metastable macrostates in the application to
EEG data is similar to the notion of “brain func-
tional microstates” introduced by Lehmann and
co-workers, which are defined as brief periods
of time during which the spatial distribution of
the brain’s electrical field remains relatively sta-
ble (Lehmann, 1971; Lehmann et al., 1987). Transi-
tions between such states are characterized by an
abrupt change of the field topography, allowing to
decompose the stream of EEG data into segments
of the order of magnitude of 10–100 ms duration
which can usually be grouped into a small num-
ber (< 10) of classes. Note however that the “mi-
crostate analysis” of Lehmann et al. results in a
coarse-grained description of the brain’s electrical
activity, i.e. in our nomenclature, a definition of
macrostates.
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A Instantaneous amplitude and
phase for multivariate time-
series

The local oscillatory behavior of a real-valued uni-
variate signal x(t) is commonly characterized us-
ing the corresponding complex-valued analytic
signal z(t) (Gabor, 1946). It is obtained by com-
bining x(t) with an imaginary part,

z(t) = x(t) + i y(t),

which is defined as the Hilbert transform of x,

y(t) = H x(t) =
1
π

P.V.

∫ ∞

−∞

x(t′)
t− t′

dt′,

where P.V. denotes the Cauchy principal value of
the integral. Under the condition that x(t) is domi-
nated by a single frequency component, its instan-
taneous amplitude A(t) and phase φ(t) can be de-
termined via the analytic signal according to

A(t) = |z(t)|, φ(t) = arg z(t),

so that
x(t) = A(t) cos φ(t)

or
z(t) = A(t) exp(i φ(t)).

The terms amplitude A and phase φ as they are
used here can be interpreted such that they spec-
ify the parameters of a strictly periodic sinusoidal
oscillation which locally matches the behavior of the
observed signal x(t) at a given instant t. In partic-
ular, φ(t) attains the value 0 (or equivalently, an
integer multiple of 2π) whenever the actual value
of x(t) coincides with the associated instantaneous
amplitude A(t).

These properties of the analytic signal can also
be utilized to determine the parameters of the lo-
cally matching oscillation for a multivariate sig-
nal x(t) = (xi(t)) (i = 1 . . . K). We assume that
each component signal xi(t) is dominated by a sin-
gle frequency and that the frequencies of differ-
ent signals are similar. Using y(t) to denote the
channel-wise Hilbert transform of x(t) and z(t) for
its channel-wise completion to the analytic signal,
the local extension of the signal’s oscillatory be-
havior for instant t is obtained with

zt(θ) = z(t) exp(i θ),
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Figure 13: Determination of local ellipse axes. The
trajectory formed by the multivariate signal is locally
matched to an elliptical orbit, which is defined by the
data vector x at a given instant and the corresponding
vector y from the signal’s channel-wise Hilbert trans-
form as conjugate semiaxis vectors. Main semiaxis vec-
tors of the ellipse, a and b, are obtained using the asso-
ciated multivariate instantaneous phase φ.

parametrized by θ ∈ [0, 2π]. Its real part

xt(θ) = x(t) cos θ − y(t) sin θ

gives the multivariate oscillation that locally
matches the behavior of the signal at instant t; its
trajectory is an elliptical orbit with conjugate axes
specified by the vectors x(t) and y(t).

From these conjugate axes, the main semiaxis
vectors a(t) and b(t) of the local ellipse can be cal-
culated (Fig. 13). It proves useful to do so via in-
troducing a global (channel-independent) instan-
taneous phase φ(t), such that for φ(t) ∈ {0, 1

2 π,
π, 3

2 π} or equivalents, x(t) coincides with one of
the main semiaxis vectors or its negative. This is
achieved choosing

φ(t) =
1
2

arctan
2 x(t) · y(t)
|x(t)|2 − |y(t)|2 .

Since the resulting values in the range [−π
4 , π

4 ]
cover only one quarter of a cycle, the outcome may
be transformed into an equivalent but more useful
representation via a standard “unwrapping” pro-
cedure (adding or subtracting π

2 at discontinuity
points) to enforce a smooth evolution of φ(t).

Using this result, main semiaxis vectors of the
locally matching ellipse at instant t are obtained
by going backwards along xt(θ) by an amount of
φ(t) or forwards by π

2 − φ(t), i.e.

a(t) = xt (−φ(t))

and
b(t) = xt

(π

2
− φ(t)

)
.

If φ(t) has been adjusted for a smooth evolution
over time, the same can be expected from the re-
sulting a(t) and b(t). It is, however, not clear from
this definition which one of these vectors speci-
fies the major and minor axis of the ellipse, respec-
tively, and it is possible that over the course of time
the two vectors change roles. For a specific appli-
cation of this result, further processing may there-
fore be necessary.

Complementary to the generalization of the in-
stantaneous phase concept, a multivariate instan-
taneous amplitude A(t) can be defined such that

z(t) = A(t) exp(i φ(t)),

which is given by

A(t) = a(t)− i b(t).

The channel-wise modulus of this quantity corre-
sponds to the instantaneous amplitudes Ai(t) of
the component signals, while the argument com-
prises the phase differences between the global
and the component signal instantaneous phases,
φi(t)− φ(t).
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