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Abstract

This text describes a generalization of the analytic signal (Gabor,[1946) ap-
proach for the definition of instantaneous amplitude and phase to the case
of multivariate signals. It was originally written as an appendix for an-
other paper, where the determination of the locally dominant oscillatory
direction (the instantaneous amplitude) described here is used as a pre-
processing step for another kind of data analysis. The text is reproduced
in a ‘standalone’ form because the procedure might prove useful in other
contexts too, especially for the purpose of phase synchronization analysis
(Rosenblum et all, [1996) between two (or more) multivariate sefs of time
series (Pascual-Marqui, 2007).

The local oscillatory behavior of a real-valued univariate signal x(t) is com-
monly characterized using the corresponding complex-valued analytic signal
z(t). It is obtained by combining x(¢) with an imaginary part,

z(t) = x(t) +iy(t),

which is defined as the Hilbert transform of x,

1 ® x(t') .,
t) =Hx(t) = —prv dt
st - nf”
where P.V. denotes the Cauchy principal value of the integral. Under the condi-
tion that x(t) is dominated by a single frequency component, its instantaneous
amplitude A(t) and phase ¢(t) can be determined via the analytic signal ac-
cording to

At) = [z(8)],  ¢(t) = argz(t),
so that
x(t) = A(t) cos¢(t)
or
z(t) = A(t) exp(i¢(t)).

The terms amplitude A and phase ¢ as they are used here can be interpreted
such that they specify the parameters of a strictly periodic sinusoidal oscilla-
tion which locally matches the behavior of the observed signal x(t) at a given
instant ¢. In particular, ¢(t) attains the value 0 (or equivalently, an integer mul-

tiple of 271) whenever the actual value of x(t) coincides with the associated
instantaneous amplitude A(t).
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Figure 1: Determination of local ellipse axes. The trajectory formed by the multivariate
signal is locally matched to an elliptical orbit, which is defined by the data vector ¥ at
a given instant and the corresponding vector i from the signal’s channel-wise Hilbert
transform as conjugate axes. The main axes of the ellipse, 7 and b, are obtained using
the associated multivariate instantaneous phase ¢.

These properties of the analytic signal can also be utilized to determine
the parameters of the locally matching oscillation for a multivariate signal
X(t) = (xi(t)) (i = 1...K). We assume that each component signal x;(f) is
dominated by a single frequency and that the frequencies of different signals
are practically identical. Using i/(t) to denote the channel-wise Hilbert trans-
form of ¥(t) and Z(t) for its channel-wise completion to the analytic signal, the

local extension of the signal’s oscillatory behavior for instant ¢ is obtained with
Zi(0) = Z(t) exp(i0),
parametrized by 6 € [0,27]. Its real part
X (0) = X(t) cos0 — () sin6

gives the multivariate oscillation that locally matches the behavior of the signal
at instant ¢; its trajectory is an elliptical orbit with conjugate axes defined by the
vectors ¥(t) and ¥(t).

From these conjugate axes, the main axes #(t) and b(t) of the local ellipse
can be calculated (Fig. [I). It proves useful to do so via introducing a global
(channel-independent) instantaneous phase ¢(t), such that for ¢(t) € {0, 37,
T, %7‘[} (or equivalents), X(t) coincides with one of the main axis vectors or its
negative. This is achieved choosing

Since the resulting values in the range [—%, §] cover only one quarter of a

cycle, the outcome may be transformed into an equivalent but more useful



representation via a standard “unwrapping” procedure (adding or subtracting
7 at discontinuity points) to enforce a smooth evolution of ¢(t).

Using this result, the main axis vectors of the locally matching ellipse at
instant ¢ are obtained by going backwards along ¥;(6) by an amount of ¢(t) or
forwards by 7 — ¢(t), i.e.

and . -
b(t) =% (5 — (1))

If ¢(t) has been adjusted for a smooth evolution over time, the same can be
expected from the resulting (t) and b(t). It is, however, not clear from this
definition which one of these vectors specifies the major and minor axis of the
ellipse, respectively, and it is possible that over the course of time the two vec-
tors change roles. For a specific application of this result, further processing
may therefore be necessary.

The generalization of the instantaneous phase concept to the multivariate
case may be complemented by the definition of a multivariate instantaneous
amplitude A(t) such that

N

Z(t) = A(t) exp(i¢(t)),

which is given by
A(t) =a(t) —ib(t).

The channel-wise modulus of this quantity corresponds to the instantaneous
amplitudes A;(t) of the component signals, while the argument comprises the
phase differences between the global and the component signal instantaneous

phases, () — 9(t).
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