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Motivated by the recent demonstration of its use as a toottferdetection and characterization of
phase-shape correlations in multivariate time series,ho@/shat eigenvalue decomposition can also
be applied to a matrix of indices of bivariate phase syndation strength. The resulting method

is able to identify clusters of synchronized oscillatonsd do quantify their strength as well as the

degree of involvement of an oscillator in a cluster. Sincetti@ case of a single cluster the method
gives similar results as our previous approach, it can be ag@ generalized Synchronization Cluster
Analysis, extending its field of application to more compééaations. The performance of the method
is tested by applying it to simulation data.
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1. Introduction

The eigenvalue decomposition of the equal-time corrafatiatrix of a set of signals is
one of the standard tools of multivariate data analysisAnderson [[2003]). Recently,
Miller et all [2005] demonstrated the usefulness of the eigenvalue deesition of the
correlation matrix specifically as a tool for the detectidrpbase-shape correlations in
multivariate data sets. They showed that changes in thedegsynchronizationin all or a
subset of signals are reflected in coordinated changes highest and lowest eigenvalues,
and that information about the channels involved and the tfitheir interaction can be
obtained from the corresponding eigenvectors.

While the correlation of time series may indicate the syonoimation of the oscillators
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they are obtained from, the physical concept of synchraizaefers specifically to the
adjustment of the rhythms of oscillators, i.e. to the retynamics of their phases rather
than their amplitude$ [Pikovslst al. (2001)]. Moreover, there is a regime in the dynamics
of coupled chaotic oscillators in which the phas#&eatence is bounded while the ampli-
tudes remain uncorrelated [Rosenblatral. (1996)], called phase synchronization. In this
paper, we show that in order to focus the analysis on synctation relations, it is possible
to replace the matrix of correlation dbieients with a matrix of indices of bivariate phase
synchronization strength. Combined with an additiongl stiesorting signals into groups,
eigenvalue decomposition can operate as a SynchroniZatister Analysis, generalizing
the previous approach of Allefeld and Kurths [2004].

2. Eigenvalue Decomposition of the Synchronization Matrix

The correlation matrix C of a set of data channg)s = 1...N, consists of the correlation
codficients G; € [-1;1] between channels. Its eigenvalugsand eigenvectorgy are
defined by the equation

C Vi = A Vi, (1)

which in general habl different solutionsk = 1... N. In the following we assume that the
eigenvectors are normalizeel,| = 1, and the solutions have been sorted according to the
eigenvaluesl; < A, <... < An.

The eigenvectors and -values of C are real-valued, andgle@eilues are non-negative.
Because a matrix becomes the diagonal matrix of its eigaagdly being transformed into
the basis of its eigenvectors and the trace of a matrix igi@wtunder such a transform, for
every correlation matrix hold¥, Ax = tr(C) = N. In the uncorrelated case this is trivially
fulfilled by 2 = 1 for all k. With a deviation from this, each increase of an eigenvalue
above 1 has to be compensated for by at least one other eigetecoming smaller than
1, such that this value gives a natural distinction betwégme” and “small” eigenvalues.

The quantification of phase synchronization is based onristamntaneous phasge of
each oscillatoi = 1...N. How these phases are determined in the special case is not
important here; if the given data are time series, the stahalagproach is the Hilbert trans-
form for narrowband data, or the Morlet wavelet transformbimadband signals (for a
discussion, see Pikovsley all[1997] orAllefeld [2004], Sec. 3.2). The statistical strém
of phase synchronization of two oscillaté@nd j can then be defined as the “peakedness”
of the distribution of the phaseftirencep; — ¢;; here we use the measure

Ry = |2 D exoli (03 - ) @)

wherel = 1...n enumerates the realizations in the given sample. For thiéncmm from
no to perfect phase synchronization, this measure takesiloles/from 0 to 1. R can be
seen as the modulus of the complex correlatiorfoa@ent of signalsg = exp(i¢;), and its
decomposition shares the properties given above for C.

Since R is a nonlinear measure, in this case the eigenvatwegmsition can no longer
be interpreted with regard to a linear transform of data okéminto source channels. But



Eigenvalue decomposition as a generalized Synchroniz&laster Analysis 3

matrix eigenvectors
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Fig. 1. Left: Synchronization matrix consisting of threasters of oscillators. Right: Its eigenvectors and -values
Eigenvectors corresponding to eigenvalue$ describe the cluster structure.

matrix eigenvectors
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Fig. 2. Synchronization matrix consisting of three clusteith additional inter-cluster synchronization. The elus
ter structure appears in the eigenvectorstior 1, but only in diferent superpositions.

still the result of the decomposition can be used as a meaasalyze the structure of
synchronization relations. We will demonstrate this witlo basic, artificially constructed
examples of synchronization matrices.

Figure[1 shows the synchronization matrix for a system atingj of three clusters
of synchronized oscillators (with no synchronization begw clusters and aftiérent de-
gree of involvement of each oscillator in its cluster) alavith the result of the eigenvalue
decomposition. There are three eigenvalues larger tharaoethe corresponding eigen-
vectors describe clearly the extent of the clusters as vgethe degree of involvement of
the individual oscillators. There is also a corresponddmatereen the size and strength of
internal synchronization of the clusters and the threemsigjeies. In contrast, the remaining
eigenvectors seem not to contribute to the descriptionesymchronization clusters. The
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original participation indices  trimmed matrix clusters
1 12 11~3.90
10 2.92
08 s 08 2
06 6 06
4
0.4 2 0.4
0.2 2 4 6 8 1012 02
- . 0
123 456 7 8 9101112 0 0.5 1 123456 7 8 9101112
osc # R osc #

Fig. 3. Synchronization Cluster Analysis. Left: Partitipa indices corresponding to thig > 1 for the synchro-
nization matrix of Fig[R. Oscillators are attributed tottichuster for which its participation index is maximal:
blue, green, or red. Center: Synchronization matrix withoeed inter-cluster synchronization. Right: Result of
the eigenvalue decomposition of the trimmed matrix; showertlae participation indices and cluster strengths.

interpretation of the eigenvalue decomposition of R thaneshas these aspects: 1) Synchro-
nization clusters are identified by eigenvalugs- 1. The eigenvalues themselves quantify
the strengthof the clusters. 2) For each cluster, the correspondingheasor describes
its internal structure. Becau$g vi =1, the indexvizk guantifies the relative involvement
of channel (oscillator) in clusterk. 3) Combining both, the “absolute” involvement of
channel in clusterk can be quantified by thgarticipation index/lkvi.

Figure[2 gives the result for a matrix consisting of the sahmed clusters, but with
additional inter-cluster synchronization. Because ofdbepling between them, the three
clusters no longer appear in separate components of itawgilyee decomposition. There
are still threetk > 1, but the eigenvectors consist of superpositions of theteta. To ac-
count for this, the oscillators belonging to the three @ushave to be identified explicitely.

This can be done by means of the participation indices; thequture is illustrated in
Fig.[3. Each oscillator is attributed to that cluster for ghits participation is maximal.
In this way, the three clusters consisting of oscillators3#(blue), 6-9 (green), and 10-12
(red) are correctly identified. In a second step, all of thdides for inter-cluster synchro-
nizations are set to zero, and the eigenvalue decompositicepeated on the trimmed
matrix. For the result of this decomposition, the interatiein given above is valid again.

3. Generalized Synchronization Cluster Analysis

The procedure described in the last section is an approaymtthronization cluster anal-
ysis. The method identifies clusters of synchronized @goils and quantifies the strength
of the clusters as well as the degree of involvement of eactiaisr in its cluster. In a
previous papel, Allefeld and Kurthis [2004] introduced &eotapproach that was limited
to a single cluster of synchronization; it assumed that falhe oscillators belong to the
same cluster, and focused on the quantification of the degfrescillator participation.
The algorithm derived from the observation that under retht general conditions the
synchronization indices within a cluster can be writtenhesproduct of factors g,

Rj=RicRjc for i#j (Ri=1), 3
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Fig. 4. Relation between the result of the single-clustedyais (horizontal scale: estimate oi?CRand the parti-
cipation indices given by eigenvalue decomposition (uahx'scale'/leizN) in 20 simulation runs.

which can be interpreted as the synchronization strendtird@s oscillator and the cluster
itself, its “to-cluster synchronization strength”.

We investigated the relationship between the results ofwleemethods by applying
them to simulation data that conforms to the presupposafom single factorizable syn-
chronization cluster. Fd¥ = 20 oscillators, the R were drawn randomly from the uniform
distribution over [0; 1]; then the Rwere calculated based on 100 samples of the phase
difference from a wrapped normal distributiarf. [Allefeld and Kurths [[2004]). Figurgl4
shows the result for the relation between the output of thiieeanethod and the participa-
tion indices for the strongest cluster. Though the mathialdiackground of both methods
is clearly diferent, the plot shows an almost functional dependencyiwtdaa be roughly
described by R = AnV3,. The region of zero participation indices foffbelow about @
comes from the attribution of weakly synchronized osailtato another cluster by the new
method; in this range the observed value can no longer kebigldistinguished from no
synchronization for the given sample size. Since there igar celationship between the
results of both methods in the case where the assumptiohg @&arlier method hold, the
cluster analysis based on the eigenvalue decompositidreafytnchronization matrix can
be seen as a generalization of our previous approach to symizhtion cluster analysis.

4. Application to Simulated Phase Synchronization

To check the performance of the new method, we applied it ta dbtained from the nu-
merical simulation of a system that is known to exhibit cdustof phase synchronization,
previously investigated by Osip@t all[1997] (see Eq. 1 & Sec. IV A). The system con-
sists of a chain of 20 phase-coherent Rossler oscillatdts avdiffusive coupling in the
y-component of strength= 0.007. The natural frequencies of the oscillators increase li
early along the chain, in the range= 1...1.004. Phases were defined as the angle in
the x/y-plane. To also test for the influence of small sample sizeramsk, we addition-
ally applied the algorithm to the synchronization matrixasbed from data reduced to 100
approximately independent samples with 50% white noiseddal the time series data.
The result is shown in Fi¢]5. The analysis identifies two teltssof synchronized os-
cillators (#1-16 & 17-20). There is an almost constant highigipation of oscillators
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full, clean dataset few samples, noisy
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Fig. 5. Analysis results (participation indices and clusteengths) for a chain of nonidentical Rossler oscilgto
Left: Based on original simulation data. Right: Data redlt@e100 samples, plus 50% measurement noise.

in their cluster, resulting in cluster strengths close t® lumber of involved oscillators.
Decreased participation occurs near the border betweedubters, where the coupling
along the chain pulls oscillators away from the common dyinamf their group. The re-
sult for reduced sample size and measurement noise is veitpisto the original. Though
participation indices and cluster strengths are slighthaléer due to the noise, the same
two clusters are clearly identified. This result indicatest the cluster analysis based on
eigenvalue decomposition is relatively robust againstissaaple size and noise.

Conclusion and Acknowledgements

We introduced a new approach to synchronization clustelysisabased on eigenvalue
decomposition. The new method can be seen as a generalindtior previous approach,
extending its field of application to situations includingiltiple clusters. The algorithm
was tested on simulation data and shown to be robust aganaditsample size and noise.
Future work will be on the use of the method to investigatehlyonization patterns in EEG
data. A MarLas implementation of the algorithm can be obtained from theesponding
author.—This work has been supported by Deutsche Forseigenteinschatt.
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