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Abstract

Background: In cognitive neuroscience, functional magnetic resonance imaging (fMRI)
data are widely analyzed using general linear models (GLMs). However, model quality
of GLMs for fMRI is rarely assessed, in part due to the lack of formal measures for
statistical model inference.
New Method: We introduce a new SPM toolbox for model assessment, comparison and
selection (MACS) of GLMs applied to fMRI data. MACS includes classical, information-
theoretic and Bayesian methods of model assessment previously applied to GLMs for
fMRI as well as recent methodological developments of model selection and model
averaging in fMRI data analysis.
Results: The toolbox – which is freely available from GitHub – directly builds on the
Statistical Parametric Mapping (SPM) software package and is easy-to-use, general-
purpose, modular, readable and extendable. We validate the toolbox by reproducing
model selection and model averaging results from earlier publications.
Comparison with Existing Methods: A previous toolbox for model diagnosis in fMRI
has been discontinued and other approaches to model comparison between GLMs have
not been translated into reusable computational resources in the past.
Conclusions: Increased attention on model quality will lead to lower false-positive rates
in cognitive neuroscience and increased application of the MACS toolbox will increase
the reproducibility of GLM analyses and is likely to increase the replicability of fMRI
studies.
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fMRI-based neuroimaging, mass-univariate GLM, SPM toolbox, analysis pipelines,
model assessment, model comparison, model selection, model averaging

Toolbox DOI

0

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/194365doi: bioRxiv preprint first posted online Sep. 27, 2017; 

http://dx.doi.org/10.1101/194365
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

In functional magnetic resonance imaging (fMRI), general linear models (GLMs) are
routinely applied to relate measured hemodynamic signals with controlled experimental
variables in order to make statements about the localization of cognitive functions in
brain regions (Friston et al., 1994; Holmes and Friston, 1998). Like any other statistical
inference, GLM analyses are dependent on the particular choice of the model (Andrade
et al., 1999; Carp, 2012) and model quality can have a profound effect on sensitivity and
specificity of statistical tests (Razavi et al., 2003; Monti, 2011).
Model assessment (Akaike, 1974; Schwarz, 1978), model comparison and selection (Kass
and Raftery, 1995) as well as model averaging (Hoeting et al., 1999) are established
techniques to control for model quality by inferring the most likely model given the data
and by conditioning data analysis on the optimal model for each data set. While model
assessment (Friston et al., 2007), comparison (Penny et al., 2004; Penny, 2012), selection
(Stephan et al., 2009) and averaging (Penny et al., 2010) have become standard practice
in dynamic causal modelling (DCM) for fMRI (Friston et al., 2003), such techniques are
almost not used in the application of GLMs for fMRI (Friston et al., 1994).
However, formal model inference can be highly beneficial in this context. For example,
methodological analyses could concern the inclusion of nuisance regressors such as move-
ment parameters and hemodynamic derivatives (Henson et al., 2002) or physiological
recordings (Kasper et al., 2017). Beyond that, empirical analyses could compare predic-
tion error models for reward learning experiments (Abler et al., 2006) or different encoding
models for visual reconstruction analyses (Kay et al., 2008).
Importantly, formal model inference does not only enhance the analytical potential of
fMRI data analyses, but can also improve their methodological quality. It can be expected
that, if models are not selected arbitrarily, but based on objective criteria, this is likely
to increase the replicability of fMRI studies – i.e. obtaining the same results with the
same methods applied to different (or new) data. And, with a validated toolbox for these
methods at hand, it will also benefit the reproducibility of GLM analyses – i.e. obtaining
the same results with the same methods applied to the same data.
Previous attempts to control for model quality in GLMs for fMRI include statistical
tests for goodness of fit (Razavi et al., 2003) and the application of Akaike’s or Bayesian
information criterion for activation detection (Seghouane and Ong, 2010) or theory selec-
tion (Gläscher and O’Doherty, 2010). Additionally, voxel-wise Bayesian model assessment
(Penny et al., 2003, 2005, 2007) and random-effects Bayesian model selection (Rosa et al.,
2010) have been included in the popular software package Statistical Parametric Map-
ping (SPM), but are only rarely used due to low visibility, high analytical complexity
and interpretational difficulty. Finally, a toolbox for frequentist model diagnosis and ex-
ploratory data analysis called SPMd (“d” for “diagnostic”) has been released for SPM
(Luo and Nichols, 2003), but was discontinued several years ago1 (Nichols, 2013).

1Tom Nichols gave a “Requiem for SPMd” on Slide 3 of his talk “Building Confidence in fMRI Results
with Model Diagnosis” in the workshop “How Not to Analyze Your Data: A Skeptical Introduction to
Modeling Methods” at the 2013 Annual Meeting of the Organization for Human Brain Mapping. A
potential reason for the end of support for SPMd could be that it only enables model diagnosis, but
not actual model selection facilitated by the MACS toolbox.

1

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/194365doi: bioRxiv preprint first posted online Sep. 27, 2017; 

http://dx.doi.org/10.1101/194365
http://creativecommons.org/licenses/by-nc-nd/4.0/


With this work, we provide a new SPM toolbox for model assessment, comparison and
selection termed MACS (pronounced as “Max”). Purposes of this software package are
(i) to unify classical, information-theoretic and Bayesian measures of model quality previ-
ously applied to fMRI data, (ii) to provide a common pipeline for our previously developed
methods of cross-validated Bayesian model selection (cvBMS; Soch et al., 2016) and av-
eraging (cvBMA; Soch et al., 2017) that so far existed as seperate toolkits and (iii) to
build a framework in which all these model quality measures can be conveniently applied
to GLMs estimated in SPM by directly building on SPM.mat files.
The rest of the paper falls into three parts. First, we give a technical overview of the fea-
tures included in the MACS toolbox (see Section 2). Among others, we have implemented
goodness-of-fit (GoF) measures, classical information criteria (ICs) and the Bayesian log
model evidence (LME). Second, we explain the structure of the MACS toolbox and how
it facilitates diverse and user-specific analyses (see Section 3). Most importantly, the
embedding of MACS into SPM’s batch systems accelerates and simplies fMRI analyses.
Finally, we present two exemplary applications illustrating cvBMS and cvBMA as our
latest methodological advances for fMRI (see Section 4) and discuss our work.

2 Theory

In the MACS toolbox, methods of model inference are broadly categorized into the three
categories model assessment (MA), model comparison (MC) and model selection (MS).
This section gives a technical introduction of these different techniques which are also
summarized in Table 2.

2.1 Model assessment

Model assessment (MA) is defined as any method that quantifies the quality of an indi-
vidual model by a single real number. MA methods can again be sub-divided into three
groups of tools: (i) goodness-of-fit measures (GoF) for non-inferential model assessment,
(ii) classical information criteria (ICs) for frequentist model assessment and (iii) the log
model evidence (LME) for Bayesian model assessment.
In all of the following, we consider a generative model m with model parameters θ describ-
ing measured data y with estimated parameters θ̂ giving predicted data ŷ, with number
of data points n and number of model parameters p. The meaning of these variables in
the context of GLMs for fMRI is given in Table 1.

2.1.1 Goodness-of-fit measures

The purpose of GoF measures is to get a first impression of how well a model – in this
case: a GLM – describes a given set of data – in this case: voxel-wise fMRI signals. One
obvious thing to look at would be the residual variance of the GLM calculated as

σ̂2
ML =

1

n

n∑

i=1

(yi − ŷi)2

σ̂2
ub =

1

n− p
n∑

i=1

(yi − ŷi)2
(1)
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where σ̂2
ML is the maximum-likelihood estimator and σ̂2

ub is the unbiased estimator of that
quantity. In SPM, the residual variance is calculated somewhat differently as

σ̂2
SPM =

1

tr(RV )

n∑

i=1

(yi − ŷi)2 (2)

where R is the residual forming matrix and V is the error correlation matrix of the
corresponding GLM which accounts for the loss of effective residual degrees of freedom
(erdf) by whitening and filtering the data. Generally, the lower the residual variance,
the better model predictions and measured data agree with each other. However, as the
residual variance does not have an upper bound, it is more useful to look at the coefficient
of determination (Razavi et al., 2003, eq. 2)

R2 = 1− RSS

TSS
=

ESS

TSS
(3)

where RSS is the residual sum of squares
∑n

i=1(yi − ŷi)
2, ESS is the explained sum of

squares
∑n

i=1(ŷi − ȳ)2 and TSS is the total sum of squares
∑n

i=1(yi − ȳ)2, such that
TSS = ESS + RSS. Generally, the closer R2 gets to 1, the better the model captures
the variation. However, as the coefficient of determination always increases when another
variable is included in the model, an improved measure is given by the adjusted coefficient
of determination (Razavi et al., 2003, eq. 4)

R2
adj = 1− RSS/dfr

TSS/dft
(4)

where the residual degress of freedom dfr = n − p and the total degrees of freedom
dft = n − 1 are used to adjust the sums of squares to account for additional model
parameters. For this reason, the adjusted R2 can be seen as a precursor to classical
information criteria (see next section).
Note that, whereas R2 always falls between 0 and 1, R2

adj can also become negative. Both
R2 and R2

adj are also related to the F -statistic in an F -test of a GLM against only the
constant regressor which is given by

F =
(TSS− RSS)/dfn

RSS/dfd
(5)

where the numerator degress of freedom dfn = p − 1 and the denominator degrees of
freedom dfd = n− p are the parameters of the F -distribution under the null hypothesis
that the signal only consists of a mean µ.
Goodness-of-fit measures also include the signal-to-noise ratio (SNR):

SNRmf =
|µ̂|
σ̂
, µ̂ = ȳ

SNRmb =
var(Xβ̂)

σ̂2
.

(6)

Here, SNRmf is the model-free SNR which is calculated as the inverse of the coefficient of
variation (CoV) and quantifies the ratio of signal average to signal variation (Welvaert
and Rosseel, 2013, def. 1). Signals that are very low or very variable will receive a lower
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SNR given this measure. In contrast, SNRmb corresponds to a model-based SNR which
divides the variance of the explained signal by the variance of the unexplained signal
(Welvaert and Rosseel, 2013, def. 5).
Note that, while both measures are unit-less, they cannot be directly compared. Generally,
with a change of the GLM, the model-based SNR will also change while the model-
free SNR will not. Moreover, for a mean-only GLM, the model-based SNR will be zero
(because a constant regressor has no variation) while the model-free SNR will be non-zero
(given that the BOLD signal has a non-zero mean).
Also observe that, if the measured signal y and the predicted signal ŷ have the same
mean, then var(Xβ̂) = var(ŷ) is proportional to the explained sum of squares and the
SNR simplifies to SNRmb = ESS/RSS = R2/(1−R2).
In our toolbox, all these measures are implemented via the routine MA_inspect_GoF and
can be exported as whole-brain maps or explored in a voxel-wise manner (see Figure 4A).

2.1.2 Classical information criteria

Classical information criteria (ICs), in the terminology of the MACS toolbox, are model
quality measures that only depend on the maximum log-likelihood (MLL), as a measure
of model accuracy, as well as n and p, giving rise to some measure of model complexity.
The first of these ICs was Akaike’s information criterion (Akaike, 1974)

AIC = −2 log p(y|θ̂, m) + 2k (7)

where the maximum log-likelihood MLL = log p(y|θ̂, m) and k = p + 1 is the number of
model parameters (see Table 1). The corrected AIC, an improved version of the AIC for
finite-sample calculations, has been derived as (Hurvich and Tsai, 1989)

AICc = AIC +
2k(k + 1)

n− k − 1

= −2 log p(y|θ̂, m) + 2k

(
n

n− k − 1

)
.

(8)

Because the corrected AIC improves the AIC for small samples and approximates the
AIC for large samples with n� k, it can in principle always be used in place of the AIC.
Historically, the second IC was the Bayesian information criterion (Schwarz, 1978)

BIC = −2 log p(y|θ̂, m) + k log n (9)

which means that AIC and BIC are equal for sample sizes around n = e2 ≈ 7.39. Although
the name suggests that the BIC rests on Bayesian inference, it does not and is only
theoretically connected to Bayesian statistics by being an infinite-sample approximation
to the Bayesian log model evidence (see next section).
In contrast to that, the deviance information criterion (DIC) is a “real” Bayesian infor-
mation criterion, because it requires the specification of prior distributions on the model
parameters and posterior distributions are used to calculate expected likelihoods. Tech-
nically, the DIC therefore depends on more than just MLL, n and p. Formally, the DIC
is given by (Spiegelhalter et al., 2002)

4

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/194365doi: bioRxiv preprint first posted online Sep. 27, 2017; 

http://dx.doi.org/10.1101/194365
http://creativecommons.org/licenses/by-nc-nd/4.0/


DIC = −2 log p(y| 〈θ〉θ|y ,m) + 2pD (10)

where the effective number of parameters pD is

pD = 〈D(θ)〉θ|y −D(〈θ〉θ|y) (11)

and D(θ) is the log-likelihood function on the deviance scale2

D(θ) = −2 log p(y|θ,m) , (12)

such that 〈D(θ)〉θ|y is proportional to the posterior expected log-likelihood (PLL) and
D(〈θ〉θ|y) is proportional to the log-likelihood at the posterior expectation (LLP). In these
equations, the operator 〈·〉θ|y denotes an expectation across the posterior distribution
(Woolrich et al., 2004) which naturally depends on the prior distribution. However, the
DIC is very robust with respect to the choice of the prior and we have therefore imple-
mented it with a non-informative prior (Soch et al., 2016, eq. 15).
In our toolbox, all these criteria are implemented via the routine MA_classic_ICs which
can also be accessed through the corresponding batch editor job (see Figure 2).

2.1.3 Bayesian log model evidence

An alternative to those classical information criteria are Bayesian measures of model
quality based on the marginal log-likelihood, also called the log model evidence (LME)
which is given by (Gelman et al., 2013, eq. 1.3; Bishop, 2007, eq. 1.45)

LME(m) = log p(y|m) = log

∫
p(y|θ,m) p(θ|m) dθ . (13)

Note that, in contrast to GoF measures and classical ICs which use point estimates for
model parameters, the LME calculates an expectation over the entire parameter distribu-
tion. Furthermore, while classical ICs operate on the deviance scale (see eq. 12), the LME
operates on the log-likelihood scale (see eq. 13), so that thresholds commonly applied to
LME differences (Kass and Raftery, 1995), i.e. log Bayes factors (see next section), must
be multiplied by −2 when applying them to IC differences.
The LME has several advantages over classical information criteria including (i) its au-
tomatic penalty for additional model parameters (Penny, 2012), (ii) its natural decom-
position into model accuracy and model complexity (Penny et al., 2007) and (iii) its
consideration of the whole uncertainty about parameter estimates (Friston et al., 2007).
The LME however has the disadvantage that it depends on a prior distribution p(θ|m)
over model parameters and the choice of the prior can have a profound impact on result-
ing model comparisons. In recent work on GLMs for fMRI, we have therefore suggested
the out-of-sample log model evidence (Soch et al., 2016, eq. 13)

oosLMEi(m) = log

∫
p(yi|θ,m) p(θ| ∪j 6=i yj,m) dθ (14)

2The deviance scale, i.e. multiplication by −2, is commonly used in information criteria to remove
multiple −1/2 factors in the (multivariate normal) log-likelihood function and based on theoretical
results obtained with the derivation of the AIC (Burnham and Anderson, 2001).
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and the cross-validated log model evidence (Soch et al., 2016, eq. 14)

cvLME(m) =
S∑

i=1

log

∫
p(yi|θ,m) p(θ| ∪j 6=i yj,m) dθ (15)

where S is the number of data subsets – in our case: fMRI recording sessions3. These
can be seen as Bayesian measures of model quality, but avoid having to specify prior
distributions on the model parameters. Instead, the prior distribution is obtained by
training the model on independent data of the same kind.
Given that LME, cvLME or oosLME have been calculated and models m can be sensibly
grouped into model families f , log family evidences (LFE) can be easily calculated using
the law of marginal probability as (Soch et al., 2016, eq. 18)

LFE(f) = log p(y|f) = log
∑

m∈f
p(y|m) p(m|f) (16)

where p(y|m) is the exponential of LME, cvLME or oosLME and p(m|f) is a within-
family prior, usually set to a discrete uniform distribution, embodying the assumption
that within each family, all the models are equally likely a priori.
In our toolbox, the cvLME is the default model selection criterion and can be calculated
via the routine MA_cvLME_multi or the corresponding batch editor job (see Figure 2).

2.2 Model comparison

Model comparison (MC) is defined as any method that quantifies the quality difference
between two models by a single real number. Most trivially, one can for example calculate
the difference between two information criteria (Penny et al., 2004, eq. 23)

∆ICij = IC(mi)− IC(mj) (17)

which can be performed for AIC, BIC etc. and compared with particular scales. When
calculating this difference between two LMEs, the result is called the logarithm of a Bayes
factor or a log Bayes factor (Penny et al., 2004, eq. 22)

BFij =
p(y|mi)

p(y|mj)

LBFij = LME(mi)− LME(mj)

(18)

which can be applied to LME, cvLME or oosLME. There are two well-known scales of
interpretation (Jeffreys, 1961; Kass and Raftery, 1995) which e.g. define thresholds for
LBFs of 0, 1, 3 or 5 corresponding to BFs of around 1, 3, 20 or 150 and evidence in
favor of model mi against model mj labeled as “not worth more than a bare mention”,
“positive”, “strong” or “very strong” (Kass and Raftery, 1995, p. 777). While these scales
belong to standard practice in Bayesian inference, we strongly advocate to always also

3For single-session fMRI data, split-half cross-validation is used and several scans between the two parts
are removed to ensure temporal independence (Soch et al., 2016, Fn. 1; Soch et al., 2017, Fn. 1)
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report concrete LBF values and not to misunderstand LBFs exceeding a threshold as
signalling “statistical significance” (McShane et al., 2017).
When analyzing a group of subjects in an experimental study and assuming independence
across subjects, subject-level log model evidences can be summed up into a group-level
log model evidences (Penny et al., 2010, eq. 6)

p(Y |m) =
N∏

i=1

p(yi|m)

log p(Y |m) =
N∑

i=1

log p(yi|m)

(19)

where Y = {y1, . . . , yN} are the group data and N is the number of subjects. Comparing
two models across several subjects then gives rise to a group Bayes factor or log group
Bayes factor which is given by (Stephan et al., 2007, eq. 20)

GBFij =
p(Y |mi)

p(Y |mj)

LGBFij = log p(Y |mi)− log p(Y |mj) .

(20)

Importantly, this LGBF approach assumes the same model for each subject and therefore
corresponds to a fixed-effects (FFX) analysis. If this assumption cannot be justified, a
random-effects (RFX) model has to be used (see next section).
Finally, in the case that just two models are considered and a uniform prior across models
is assumed, (log) Bayes factors can be directly transformed into posterior model probabil-
ities using the simple relation (Penny and Ridgway, 2013, eq. 10)

p(mi|y) =
BFij

BFij + 1
=

exp(LBFij)

exp(LBFij) + 1
(21)

and additionally

p(mj|y) = 1− p(mi|y) . (22)

2.3 Model selection

Model selection (MS) is defined as any method that chooses one particular model from
a set of candidate models based on some objective criterion. For example, fixed-effects
Bayesian model selection (FFX BMS) generalizes the idea of posterior model probabilities
to more than two models, such that (Penny et al., 2010, eq. 7)

p(mi|Y ) =
p(Y |mi) p(mi)∑M
j=1 p(Y |mj) p(mj)

(23)

where M is the number of models. The optimal model is then the one with the high-
est posterior probability. Note that, by using the group-level LME p(Y |mi), FFX BMS
effectively assumes the same optimal model for all subjects.
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In contrast to that, random-effects Bayesian model selection (RFX BMS) allows for the
possibility that different subjects have different optimal models. For each subject’s data
yi, the generating model mi is assumed to come from a multinomial distribution with a
Dirichlet as the prior distribution over multinomial frequencies r. However, the models
are not observed directly, but only indirectly via the model evidences from first-level
model assessment4 (Stephan et al., 2009, eqs. 3-5):

p(Y |m) =
N∏

i=1

p(yi|mi) =
N∏

i=1

M∏

j=1

p(yi|ej)mij

p(m|r) =
N∏

i=1

Mult(mi; 1, r) =
N∏

i=1

M∏

j=1

r
mij

j

p(r|α) = Dir(r;α) =
Γ(
∑M

j=1 αj)∏M
j=1 Γ(αj)

M∏

j=1

r
αj−1
j

(24)

Together, these probability distributions define a second-level hierarchical population pro-
portion model that can be inverted using either Variational Bayes (VB) (Stephan et al.,
2009, eq. 14) or Gibbs Sampling (GS) (Penny et al., 2010, eqs. 13-17) techniques. When
using model selection for methodological control, i.e. identifying the optimal model for
data analysis, the optimal model is simply the one with the highest estimated model fre-
quency, quantified via e.g. expected frequencies or likeliest frequencies (Soch et al., 2016,
p. 474). In contrast, when the purpose is discovery science, i.e. deciding between compet-
ing theories of brain function, the best model should outperform the others considerably,
quantified using e.g. exceedance probabilities (Stephan et al., 2009, eq. 16).
Finally, Bayesian model averaging (BMA) is also grouped under model selection here
as it implicitly consists in, based on the set of candidate models, fitting a larger model
which effectively marginalizes over modelling approaches. In our implementation, aver-
aged model parameter estimates are calculated as (Soch et al., 2017, eq. 8)

β̂BMA =
M∑

i=1

β̂i · p(mi|y) (25)

where β̂i is the i-th model’s parameter estimate for a particular regressor in the GLM
and p(mi|y) is the i-th model’s posterior probability calculated from cvLMEs.
Whereas model selection decides for one particular model that maximizes a certain func-
tion such as log model evidence, posterior model probability or group-level model fre-
quency, model averaging combines several models using their posterior probabilities cal-
culated from model evidences. Given that finite data never provide absolute certainty
about the modelling approach, this approach allows to account for modelling uncertainty
by utilizing parameter estimates from all models in the model space instead of discarding
the valuable information from all but one model (Soch et al., 2017, p. 188).

4Note that mi, the optimal model for the i-th subject, is a 1×M vector of zeros with a single one at the
j-th position indicating the true model j. Therefore, the model evidence of the j-th model is denoted
using the j-th elementary row vector ej in the first line of equation (24).
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3 Methods

The MACS toolbox is written in MATLAB and designed to work as an extension for
Statistical Parametric Mapping (SPM), Version 8 or 12 (SPM8/12). This section describes
how three layers of implementation make the toolbox accessible for different users and
how two modes of batch processing make the toolbox useful in different contexts.

3.1 Three layers of implementation

An overview of the toolbox functions is given in Figure 1. This figure shows the three types
of functions included in the toolbox: (i) mathematical functions, (ii) interface functions
and (iii) batch functions. Mathematical functions (see Figure 1C) directly implement
the statistical analyses (such as ME_GLM_NG for estimating a Bayesian GLM) required
for toolbox features. Interface functions (see Figure 1B) represent toolbox features (such
as MA_cvLME_multi for calculating the voxel-wise cvLME) and execute mathematical
functions. Batch functions (see Figure 1A) take information from SPM batch editor jobs
(such as batch_MA_cvLME_auto for performing cvLME assessment) and use it to call
interface functions.
Regular toolbox users will never access any of these functions directly in MATLAB, but
will use toolbox features through SPM’s batch editor only. This can be achieved by
installing the MACS toolbox and opening the SPM batch editor (see Section 6 and
Figure 3). Users can then fill out regular batch jobs like in SPM and directly run them
from the batch editor. Batch job templates only use few options most of which can often
be left at their default values. Examples are given in Figures 3 and 4:

- Figure 3 : batch for cross-validated Bayesian model selection

- Figure 4A: output from goodness-of-fit inspection for a GLM

- Figure 4B: output from high-dimensional data visualization

Intermediate toolbox users may also use the batch editor, but will additionally call the in-
terface functions via MATLAB’s command-line interface. This could for example happen
in a pipeline script which is intended to process many models applied to many subjects.
Note however that those pipeline-style analyses can also be implemented using the regular
batch system. An exemplary command-line call could look like this:

>> load [...]\SPM.mat % load GLM estimated in SPM

>> MA_cvLME_multi(SPM) % calculate voxel-wise cvLME

>> MA_classic_ICs(SPM) % calculate voxel-wise AIC/BIC

Advanced toolbox users and developers can also rely on the batch editor and interface
functions, but will additionally call mathematical functions to perform their own cus-
tomized analyses. This could for example happen when one is interested in Bayesian
GLM parameter estimates or when the cvLME is to be calculated for a large number of
models in a small number of voxels. This type of usage can also lead to new methods
developments. An extract from a possible script could read like this:
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01 % load model specification and prepare model estimation
02 load [...]\SPM.mat % load GLM estimated in SPM
03 Y = MA_load_data(SPM); % load voxel-wise fMRI data
04 X = SPM.xX.X; % get design matrix
05 V = SPM.xVi.V; % get covariance matrix
06 P = spm_inv(V); % get precision matrix
07 [n, p] = size(X); % get model dimensions
08 m0 = zeros(p,1); % set prior beta mean
09 L0 = zeros(p,p); % set prior beta covariance
10
11 % estimate general linear model with normal-gamma priors
12 [mn, Ln, an, bn] = ME_GLM_NG(Y, X, P, m0, L0, 0, 0);
13 LME = ME_GLM_NG_LME(P, L0, 0, 0, Ln, an, bn);

3.2 Two modes of batch processing

An overview of the toolbox modules is given in Figure 2. This figure shows the two modes
of batch processing that the toolbox allows: (i) automatic processing and (ii) manual
processing. In short, automatic processing requires specifying the model space only once
whereas manual processing requires that log model evidence images are entered for each
model and each subject in every processing step.
Automatic processing consists in using the toolbox module for model space definition to
create a model space file called MS.mat that contains references to SPM.mat files belong-
ing to several GLMs for several subjects. Given that the model space has been specified,
cvLME model assessment, Bayesian model selection and other modules can be imple-
mented by a simple reference to the model space file which automatically applies the
analyses to all subjects. The automatic procesing mode is the prefered one as it allows
larger analyses in shorter time and also avoids unnecessary analysis errors.
Manual processing means that GLM folders or cvLME maps are not referenced automat-
ically using a model space file, but manually by reference to their filepaths. This is useful
when for example cvLME model assessment is prefered to be performed in one batch
with GLM model estimation or when LME images are processed, e.g. spatially smoothed
or recalculated into LFE images, before further analysis steps are performed.
Consider the example of cross-validated Bayesian model selection (cvBMS; Soch et al.,
2016): In the automatic processing mode, each model for each subject would have to
be referenced once – using its SPM.mat when defining the model space. In the manual
processing mode, each model for each subject would have to be referenced twice – using its
SPM.mat when calculating the cross-validated log model evidence and using the resulting
LME.nii when performing second-level model selection.
Like the SPM batch system, the MACS toolbox uses dependencies between modules.
Dependencies are references to files generated in earlier processing steps that are to be
used in later processing steps. For example, an SPM.mat file generated during model
estimation may be used for cvLME calculation; or a cvLME map generated during model
assessment may be used for group-level BMS; or a BMS.mat file generated during model
selection may be used for generation of selected-model maps (SMM); etc. The MACS
toolbox encourages the use of dependencies and they are most conveniently implemented
in the automatic processing mode.
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4 Results

The MACS toolbox was primarily designed to summarize tools for cross-validated Bayesian
model selection (cvBMS) and cross-validated Bayesian model averaging (cvBMA). In this
section, we propose pipelines and analyze examples to demonstrate how these techniques
can be effortlessly implemented with MACS. Before that, we describe analyses illustrat-
ing how to apply goodness-of-fit measures and classical information criteria to first-level
GLMs in SPM.

4.1 Model assessment: repetition priming

To demonstrate first-level model assessment, we reanalyze a single-subject, single-session
data set from a study on repetition priming (Henson et al., 2002) that is used as example
data in the SPM manual (Ashburner et al., 2016, ch. 31). In this experiment, subjects were
viewing faces which either belonged to famous or non-famous people (“familiarity”) and
each face was presented twice (“repetition”). This implies a 2×2 experimental design with
4 experimental conditions. This demonstration builds on data preprocessed according to
the SPM12 manual and addresses model assessment for the “categorical” model and the
“parametric” model (Ashburner et al., 2016, sec. 31.1-3).
First, we want to get an impression of where in the brain the categorical model performs
better and where it performs worse. We use the MACS module for goodness-of-fit inspec-
tion to assess signal-to-noise ratio (SNR) and coefficient of determination (R2) across the
whole brain. We find that in visual cortex, especially fusiform face area (FFA), the model
achieves the highest variance explanation which is consistent with the facial stimuli of
the experiment (see Figure 4A).
Second, we want to find out where the model fit is supported by which model param-
eters. We use the MACS module for high-dimensional data visualization to explore the
estimated regression coefficients from the main experimental conditions in a voxel-wise
fashion. For orientation purposes, we overlay this query with an R2 image obtained in
the first step. We find that there is one region of parietal cortex, possibly the superior
parietal gyrus (SPG), in which there is an effect of both experimental factors, familiarity
and repetition (see Figure 4B).
Finally, we want to compare the categorical against the parametric GLM. We use the
MACS module for classical information criteria (ICs) to compute the voxel-wise Bayesian
information criterion (BIC) for both models. Computing the information difference (∆IC)
between the two models is then implemented using the log Bayes factor (LBF) module.
Model comparison at an ad-hoc threshold of ∆IC < −10 in favor of the parametric
model5 gives rise to a large cluster in parietal cortex, close to the postcentral gyrus
(PCG), that was also reported when performing an F -test on the additional regressors
in the parametric model6 (Ashburner et al., 2016, fig. 31.17).

5An information difference ∆IC < −10 is roughly equivalent to a log Bays factor LBF > 5 and thus
signals “very strong evidence” according to a widely used scale (Kass and Raftery, 1995).

6Note that (i) we of course advocate to perform this model comparison using Bayesian model quality
measures such as the cvLME rather than information criteria like BIC and (ii) the model comparison
performed here is, strictly speaking, not equivalent to the F -test in the SPM manual, because the para-
metric model also excludes regressors that are included in the categorical model, namely experimental
condition regressors convolved with the hemodynamic derivatives.
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4.2 Model selection: orientation pop-out

To demonstrate the cvBMS pipeline, we reanalyze data from an earlier study (Bogler
et al., 2013) that has previously been used for the cvBMS paper (Soch et al., 2016). In
this data set, we compared three models: a categorical model (GLM I) that describes
the 4 × 4 experimental design using 16 regressors, one for each experimental condition;
a linear-parametric model (GLM II) that uses one onset regressor indicating stimulation
phases (orientation pop-out) and two parametric modulators encoding levels of the two
factors (left and right orientation contrast); and a nonlinear-parametric model (GLM
III) that uses nonlinear parametric regressors, motivated by behavioral pre-tests (Bogler
et al., 2013; Soch et al., 2016). In this demonstration, we will build on estimated first-level
GLMs and only describe the steps of model assessment and model selection.
First, in order to avoid model dilution, we want to compare the family of categorical
models (consisting of GLM I only) against the family of parametric models (consisting
of GLMs II & III). To this end, we specify a job in which we define a model space
that consists of all 3 models applied to 22 subjects. Using dependencies on this model
space information, automatic calculation of cvLME maps and LFE maps is performed
(see Figure 5A). Following model family assessment, group-level BMS has to be specified
manually, because log family evidences are not associated to particular models – which
would be necessary for the automatic processing mode –, but only exist as individual
images. After group-level BMS, selected-model maps are generated (see Figure 5A). This
analysis leads to the results depicted in Figure 3B of the cvBMS paper.
Second, within the winning family of parametric models, we want to compare the linear-
parametric (GLM II) to the nonlinear-parametric (GLM III) model. To this end, we define
a new model space consisting only of these 2 models applied to 22 subjects. As cvLME
maps have already been generated in the first step, model assessment does not have to be
performed in this second step. Using dependencies on model space information, automatic
group-level BMS and generation of SMMs are performed (see Figure 5A). This analysis
leads to the results depicted in Figure 3C of the cvBMS paper.
Third, using the winning nonlinear-parametric model, we want to investigate the effect of
removing the parametric modulator either for left or for right orientation contrast (OC),
i.e. the effect of visual hemifield on model preference. This leads to a model describing
only left OC (GLM III-l) and a model describing only right OC (GLM III-r). Again,
we define a model space consisting of these 2 models applied to 22 subjects. As these
are new models, cvLME maps have to be calculated (automatically). Finally, group-level
BMS and selected-model maps are added to the pipeline (see Figure 5A). From the SMMs,
we extract the proportion of voxels in left and right V4, respectively, with preferences for
left or right OC, respectively, according to the group-level model selection. This analysis
leads to the results depicted in Figure 5C of the cvBMS paper.
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4.3 Model averaging: conflict adaptation

To demonstrate the cvBMA pipeline, we reanalyze data from another study (Meyer and
Haynes, in prep.) that has previously been used for the cvBMA paper (Soch et al., 2017)
which also details the experimental paradigm, stimulus material and data preprocessing.
For this data set, we estimated four models: all models include regressors for main blocks
and delay phases in a conflict adaptation paradigm (Meyer and Haynes, in prep.); one
model includes no additional processes (GLM 1); one model additionally describes the
first trials following preparatory delays (GLM 2); one model additionally describes the cue
phases preceding preparatory delays (GLM 3); and one model includes both additional
processes, cue phases and first trials (GLM 4). Critically, cue phases and first trials are
temporally correlated to preparatory delays, such that model choice influences parameter
estimates for the delays phases. However, as each model includes regressors for the delay
phases, we can use Bayesian model averaging to remove this modelling uncertainty (Soch
et al., 2017). In this demonstration, we will build on estimated first-level GLMs and only
describe the steps of model assessment and model averaging.
First, following model estimation, we want to calculate averaged estimates for the common
model parameters in these four GLMs. To this end, we specify a job in which we define
a model space that consists of all 4 models applied to 24 subjects. Using dependencies
on this model space information, automatic calculation of cvLME maps and automatic
group-level BMA are performed (see Figure 5B). Additionally, we perform automatic
group-level BMS and generate selected-model maps. This analysis leads to the results
reported in Table 2 and Figure 4A of the cvBMA paper. Group-level SMMs can be used
for masking second-level analyses – an alternative to BMA that is not included in this
demonstration, but discussed in the publication (Soch et al., 2017).
Second, following model averaging, we want to perform second-level analysis, but based
on the averaged model parameter estimates calculated in the first step instead of the pa-
rameter estimates from a particular GLM as in standard processing pipelines. To this end,
we use SPM’s factorial design specification to set up a paired t-test between parameter
estimates belonging to the two delay phase regressors (see Figure 5B). Subsequent model
estimation, contrast calculation and statistical inference lead to the results reported in
Table 1 and Figure 4A of the cvBMA paper. As expected, a main effect between switch
and stay delays phases and, in more detail, a positive effect of switch over stay delay
phases can be observed in left primary motor cortex (Soch et al., 2017).
In addition to a PDF of the user manual for the MACS toolbox, SPM batch editor job files
from all demonstrations, classical model assessment as well as cvBMS and cvBMA, are
included as MAT files in the MACS toolbox repository. They can be used for educational
purposes illustrating suggested pipelines or as analysis templates underlying the user’s
applications. Additionally, time consumption of creating and executing these demonstra-
tions are reported in Table 3. In summary, when using the automatic processing mode,
complex analyses, such as whole cvBMS and cvBMA pipelines, can be quickly imple-
mented, because almost all analysis steps can simply reference the model space module
which usually is the only time-consuming operation.
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5 Discussion

In functional magnetic resonance imaging (fMRI), model quality of general linear models
(GLMs) is rarely assessed (Razavi et al., 2003) which may have contributed to the cur-
rent reproducibility crisis in cognitive neuroscience (Pernet and Poline, 2015). We have
introduced an SPM toolbox for model assessment, comparison and selection (MACS) of
GLMs for fMRI which implements classical, information-theoretic and Bayesian measures
of model quality, most prominently cross-validated Bayesian model selection (cvBMS;
Soch et al., 2016) and averaging (cvBMA; Soch et al., 2017).
The key features of our toolbox are (i) simplicity – the toolbox is very easy to use and
directly operates on SPM.mat files from GLM estimation in SPM; (ii) generality – model
assessment and selection are not restricted to special model comparisons, but operate on
arbitrary design matrices; (iii) modularity – toolbox features can be combined into unique
processing batches or even appended to existing SPM infrastructure; (iv) readability –
toolbox code is clearly written for developers and includes extensive comments explaining
mathematical background as well as implementational details7; and (v) extendability –
the toolbox can be easily augmented with new modules, e.g. when one wants to employ
other variants of first-level model assessment (Penny et al., 2007, eq. 6) or second-level
model selection (Rigoux et al., 2014, fig. 8).
The MACS toolbox assists the data analyst in identifying optimal modelling approaches
which, in the ideal case, minimizes the distance between the assumed and the actual data
generating process, i.e. between the true underlying regularities and the model that is
actually employed. In effect, parameter estimates become more precise, e.g. have a lower
mean squared error (Soch et al., 2017), and statistical tests become more powerful, i.e.
have a higher true positive rate (Soch et al., 2016). On the long run, incorporation of
the MACS toolbox into GLM processing pipelines will therefore give rise to fMRI results
that are more likely to replicate across studies.
Some of the toolbox features, in particular goodness-of-fit measures and model comparison
methods, are more of a diagnostic nature, i.e. to get a qualitative impression of model
fit and potentially optimize first-level models. Others, in particular methods of Bayesian
model selection and averaging, allow for concrete objective, user-independent modelling
decisions. As the diagnostic features are primarily intended to serve exploratory data
analysis, we refrain from recommending explicit thresholds for their application which
should depend on the specific context.
We want to emphasize that the Bayesian methods in our toolbox such as cvLME calcu-
lation do not require a Bayesian estimation of the GLM in SPM. In fact, a model only
needs to be specified for model assessment via classical ICs or the Bayesian LME. If a
model has been specified but not estimated, the MACS toolbox automatically invokes
restricted maximum likelihood (ReML) estimation to obtain the temporal covariance ma-
trix needed for model assessment (Friston et al., 2002). Thanks to a very similar variable
structure, the cvLME can also be calculated for GLMs for EEG (Litvak et al., 2011).

7Information on any toolbox function (see Figure 1) can be obtained by simply typing help

MACS fct name (e.g. help MA cvLME multi) into the MATLAB command window after successful
MACS toolbox installation (see Section 6). A list of functions with descriptions can be generated using
the built-in script function index (resulting in function index.xls).
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Also note that, while MACS is particularly integrated with SPM, it can essentially be
used via the MATLAB command line only, with SPM installed by the user, but not being
launched at the time of analysis. This is important when users intend to combine our
toolbox with other parts of their processing pipelines set up in other analysis packages
such as FSL or AFNI – which could e.g. be done using the pipeline manager Nipype
(Gorgolewski et al., 2011).
Version 1.0 of the MACS toolbox has been uploaded to GitHub in May 2017 (DOI:
10.5281/zenodo.845404). The developers intend to immediately commit bug fixes to this
repository (see Section 6). Future developments of the MACS toolbox may include group-
level statistical tests for goodness-of-fit measures (Razavi et al., 2003) and information
criteria (Vuong, 1989) as well as improved voxel-wise visualization for second-level model
selection (cvBMS) results.

6 Software Note

The latest version of the MACS toolbox can be downloaded from GitHub (https://github.
com/JoramSoch/MACS) and has to be placed as a sub-directory “MACS” into the SPM
toolbox folder. Upon starting SPM, batch modules for toolbox features can be assessed
by clicking “SPM → Tools → MACS Toolbox” in the SPM batch editor (see Figure 3).
The MACS toolbox manual gives detailed instructions how to perform specific analyses.8

MACS is optimized for SPM12, but also compatible with SPM8. Consequently, MACS
can read all image files (.nii, .img, .hdr) that can be read by SPM.
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Figure 1. Architecture of the MACS toolbox. This figure is for developers only and lists
all functions from the toolbox. A black arrow indicates that one function calls the other.
The horizontal dimension corresponds to the type of function (see Section 3.1): Generally,
(A) batch functions call (B) interface functions which in turn call (C) mathematical
functions. The vertical dimension corresponds to the type of feature (see Section 2):
Interface functions consist of tools for model assessment (function prefix “MA”), model
comparison (MC) and model selection (MS); mathematical functions consist of tools for
model estimation (ME), many distributions (MD) and more functions (MF).
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Figure 2. Batch modules in the MACS toolbox. This figure lists batch modules from
the toolbox that are accessible via the SPM batch editor. Modules either belong to (A)
the automatic processing stream or (B) the manual processing stream (see Section 3.2):
automatic processing is based on a model space file (MS.mat) whereas manual processing
is based on manual input of GLM info (SPM.mat) or cvLME maps (LME.nii). Modules
take (C) particular input files and result in (D) particular output files: MATLAB files
(.mat) contain structured information (such as GLM info) and NIfTI files (.nii) are
brain images (such as cvLME maps). For abbreviations in filenames, confer the list of
features (see Section 2 and Table 2).
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Figure 3. Exemplary batch for Bayesian model selection. This figure shows the SPM
batch editor with a typical batch for cross-validated Bayesian model selection (cvBMS)
including an active module for group-level Bayesian model selection (BMS). The unfolded
menu also hints at where to find features from the MACS toolbox upon successful inte-
gration into the SPM software, with the module for automatic cvLME model assessment
being highlighted by mouse-over.
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Figure 4. Demonstrations of voxel-wise visualization. This figure shows SPM graphics
windows resulting from voxel-wise visualization tools included in the MACS toolbox. (A)
Using the module “inspect goodness of fit”, measured and predicted fMRI signal are
shown alongside goodness-of-fit measures (see Section 2.1.1) which can be browsed for
every in-mask voxel included in a particular first-level analysis (see Ashburner et al., 2016,
sec. 31.2). The lower panel highlights voxels with the top 5% (yellow, good fit) and the
bottom 5% (red, bad fit) in terms of coefficient of determination (R2) for this GLM. (B)
Using the module “visualize high-dimensional data”, several data points in each brain
region can be displayed and browsed in a voxel-wise fashion. The lower panel highlights
voxels in which the R2 of a GLM (the same as in A) is larger than 0.3̄. The upper panel
bar plots beta estimates from the four experimental condition regressors of this model,
indicating a negative effect of both two-level factors in this voxel (see Ashburner et al.,
2016, fig. 31.1). Note that this feature may also be used to display voxel-wise posterior
probabilities or model frequencies in large model spaces for comparing model preferences
in different regions of interest.
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BAYESIAN MODEL SELECTION

in case
of model
families

BAYESIAN MODEL AVERAGING

SPM model estimation SPM.mat

define model space MS.mat

calculate cvLME maps (auto.) cvLME.nii

perform group BMS (auto.) BMS.mat

generate SMM from BMS SMM.nii

perform group BMS (man.) BMS.mat

calculate LFE maps (auto.) LFE.nii

A

SPM first-level analysis SPM.mat beta.nii

define model space MS.mat

calculate cvLME maps (auto.) cvLME.nii

perform group BMA (auto.) beta_BMA.nii

SPM second-level analysis SPM.mat

B

spmF/T.nii

Figure 5. Suggested pipelines for the MACS toolbox. This figure shows processing
pipelines underlying the examples reported in this paper (see Section 4). (A) For Bayesian
model selection (BMS), SPM model estimation should be followed by definition of the
model space, automatic calculation of cvLME maps, automatic group-level BMS and
generation of selected-model maps (SMM) from BMS results. In the case that individual
models can be grouped into model families, automatic calculation of LFE maps would be
followed by manual group-level BMS. (B) For Bayesian model averaging (BMA), SPM
first-level analysis should be followed by definition of the model space, automatic calcu-
lation of cvLME maps, automatic group-level BMA which invokes subject-level BMAs
(see Figure 1) and SPM second-level analysis based on averaged parameters.
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Tables

Symbol general meaning in GLMs for fMRI

m generative model univariate general linear model (GLM)

θ model parameters regression coefficients β, residual variance σ2

y measured data blood-oxygenation-level-dependent (BOLD) signal

θ̂ estimated model parameters estimated regression coefficients β̂, residual variance σ̂2

ŷ predicted data fitted BOLD signal

n number of data points number of fMRI scans

p
number of model parameters

number of GLM regressors

k number of GLM regressors, plus one

N
number of observations

number of subjects

S number of sessions

M number of models number of GLMs

i index over observations

index over scans

index over subjects

index over sessions

j index over models index over GLMs

yi a particular observation

the i-th data point

data from the i-th subject

data from the i-th session

mj
a particular model

the j-th GLM

ej the j-th GLM (see Fn. 4)

f model family family of GLMs

Table 1. Mathematical notation. Note that the number of parameters is equal to the
number of GLM regressors p in goodness-of-fit measures, but equal to k = p + 1 in
information criteria, because the latter account for the total number of model parameters
which include the residual variance σ2 in addition to the regression coefficients β.
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Table 2. Features in the MACS toolbox. This table summarizes methods of model infer-
ence in MACS. References correspond to exemplary applications in the fMRI literature.
For the respective statistical literature, confer the list of features (see Section 2).
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time needed to time needed to

Modules create batch execute batch

Model assessment: repetition priming N = 1

Step 1: goodness of fit of categorical model M = 1

inspect GoF < 1 min < 00:01 h

visualize HD data 1 min < 00:01 h

Step 2: categorical model vs. parametric model M = 2

model space, ICs (auto.), LBF (auto.) 2 min < 00:01 h

Model selection: orientation pop-out N = 22

Step 1: categorical GLM vs. parametric GLMs M = 3, F = 2

model space, cvLME (auto.), LFE (auto.) 15 min 02:38 h

BMS (man.), SMM from BMS 15 min < 00:01 h

Step 2: linear-parametric vs. nonlinear-parametric GLM M = 2

model space, BMS (auto.), SMM from BMS 3 min < 00:02 h

Step 3: nonlinear-parametric GLM with left vs. right OC M = 2

model space, cvLME (auto.), BMS (auto.), SMM from BMS 8 min 01:43 h

Model averaging: conflict adaptation N = 24

Step 1: averaged model parameter estimates M = 4

model space, cvLME (auto.), BMA (auto.), BMS (auto.), SMM 25 min 07:05 h

Step 2: second-level statistical analysis M = 1 (BMA)

factorial design, model estimation, contrast manager (SPM) 10 min < 00:01 h

Table 3. Demonstrations using the MACS toolbox. This table lists processing steps
used in first-level model assessment (see Section 4.1) or belonging to cvBMS and cvBMA
pipelines (see Sections 4.2 and 4.3) as well as dimensions of the data sets used (N =
number of subjects, M = number of models, F = number of families). The second and
third column give times required for specifying and running each batch in the SPM batch
editor. All computations were performed using SPM12 in MATLAB R2013b running on
a 64-bit Windows 7 PC with 16 GB RAM and four hyperthreaded Intel i7 CPU kernels
working at 3.40 GHz.
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