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Abstract 

Traditional views of visual working memory postulate that memorized contents are stored 

in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies 

proposed that contents are maintained by posterior brain areas using codes akin to perceptual 

representations. An important question is whether this reflects a difference in the level of 

abstraction between posterior and prefrontal representations. Here we investigated whether 

neural representations of visual working memory contents are view-independent, as indicated by 

rotation-invariance. Using fMRI and multivariate pattern analyses, we show that when subjects 

memorize complex shapes, both posterior and frontal brain regions maintain the memorized 

contents using a rotation-invariant code. Importantly, we found the representations in frontal 

cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, 

our results give evidence for the view-independent storage of complex shapes in distributed 

representations across posterior and frontal brain regions. 
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Introduction 

The human brain is capable of temporarily storing a limited amount of visual information 

in an active and flexible workspace typically referred to as visual working memory (Baddeley 

1986, 1992; Luck 2008). The contents of working memory can be manipulated within this 

workspace and are believed to serve as input for higher order processes (Logie 2003; Hyun and 

Luck 2007). For a long time it was believed that visual working memory relies on a centralized 

store in dorsolateral prefrontal cortex (DLPFC), mainly based on evidence from 

electrophysiological studies in non-human primates (Courtney et al. 2007; Funahashi 2006; 

Goldman-Rakic 1995; Petrides 1995). In contrast, recent work in human neuroimaging using 

multivariate pattern analyses has raised evidence for multiple separate stores in visual, temporal 

and parietal brain areas retaining visual information held in working memory (Harrison and 

Tong 2009; Serences et al. 2009; Christophel et al. 2012; Riggall and Postle 2012; Emrich et al. 

2013; Christophel and Haynes 2014), while spatial, categorical and quantitative representations 

were also found in frontal areas (Jerde et al. 2012; Spitzer and Blankenburg 2012; Lee et al. 

2013). The debate over the localization of working memory storage is currently ongoing (Albers 

et al. 2013; Lee et al. 2013; Jacob and Nieder 2014; Lara and Wallis 2014; Matsushima and 

Tanaka 2014; Mendoza-Halliday et al. 2014; Christophel et al. 2015, 2017; Bettencourt and Xu 

2016). 

However, while research has focused on the localization of the working memory stores, it 

has remained unclear which format of storage is used. In visual areas, for example, information 

might be retained in a strictly retinotopic format mimicking the early visual responses during 

perception and retaining the specific viewing conditions during encoding. Alternatively, the 

memory representation of visual contents could exhibit some degree of invariance meaning that 
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it generalizes across viewing conditions similar to perceptual representations of objects in lateral 

occipital cortex (Grill-Spector et al. 2001; Kourtzi and Kanwisher 2001; Kourtzi et al. 2003; see 

also Williams et al. 2008; Cichy et al. 2011). 

Here, we intended to shed light on both format and localization of visual working memory 

contents. In particular, we asked whether representations of memorized contents generalized 

across different rotational views and whether this depended on whether the rotation information 

was irrelevant or critically necessary for the task (See Figure 1). To ensure that our results were 

not confounded by verbal encoding strategies, we refrained from using real-life objects as 

stimuli. Instead, we used complex artificially generated shapes that are hard to describe verbally. 

Notably, neural representations of simple shapes (like circles, triangles and squares) have been 

found during working memory in monkey dorsolateral prefrontal cortex (DLPFC; Meyer et al. 

2011; Meyers et al. 2012). Delay-period information about similarly complex shapes, however, 

was only investigated and found in inferotemporal areas (Miyashita and Chang 1988). The 

stimuli we used here allowed us to parametrically vary shape similarity between memorized 

samples and test stimuli and thereby adjust task difficulty (See Figure 2).  

We particularly asked whether it is possible to identify invariant representations of these 

complex shapes in regions beyond early visual cortices. Two groups of subjects memorized 

shapes shown in random in-plane rotations while being positioned in an MRI scanner. By using 

random rotations rather than a set of fixed rotations we ensured that subjects had to re-encode the 

samples in each trial discouraging long-term memory based strategies (i.e. ‘object A in rotation 

3’). Please note that as a disadvantage our use of random rotations prevents us from applying 

simple and direct tests of rotation-specific information. The confirmation of rotation-specific 

encoding schemes was only a secondary interest of the current study, as representations that 
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encode individual rotations have been identified before (e.g. Harrison and Tong 2009; 

Christophel et al. 2015). 

The two groups performed two different versions of a delayed shape similarity task. One 

group performed a rotation-invariant task where the rotation of the memorized shape was 

irrelevant whereas subjects from a second group performed the rotation-specific task and had to 

remember its rotation in addition to its form (see Figure 1 and its caption). The tasks were 

performed by separate groups to avoid a carryover of encoding strategies between the two 

groups. To identify whether the brain retained these shapes using a rotation-invariant code, we 

used multivariate pattern analysis (MVPA, Haxby et al. 2001; Haynes and Rees 2005a, 2005b; 

Kamitani and Tong 2005; Haynes and Rees 2006; Harrison and Tong 2009; Serences et al. 2009; 

Christophel et al. 2012; Riggall and Postle 2012; Lee et al. 2013) to test whether the BOLD-

fMRI patterns encode shape-specific information in a form that generalizes across different 

rotational states. 

Materials and Methods 

Participants 

44 healthy right-handed subjects (25 female; mean age: 23.9, SEM± 0.53) with normal or 

corrected-to-normal vision were recruited for the current study. Subjects gave informed consent 

and the study was approved by the local ethics committee. The subjects were split into two 

equally-sized groups either performing a rotation-invariant (group 1: 14 female; mean age: 23.4, 

SEM± 0.65) or a rotation-specific (group 2: 11 female; mean age: 24.4, SEM± 0.83) version of 

the task. 



6 

 

Artificial shape stimuli 

In both experiments, participants were asked to memorize artificially generated shapes. 

Stimuli were presented via back-projection using Cogent 2000 

(http://www.vislab.ucl.ac.uk/cogent.php). We used decagons, ten-sided shapes shown in white 

on a black circle (4° visual angle in diameter; Figure 2A) on a grey background (not shown in the 

Figures). These artificial shape stimuli were chosen to discourage memorizing the stimuli using 

verbal descriptors (i.e. for real-life objects) while at the same time presenting stimuli of 

challenging complexity. These stimuli varied in the distance of the 10 corners to the center of the 

shape. To generate these shapes, we assigned one out of 10 evenly-spaced numbers (from 0.28 to 

1) randomly to each corner. All points were 36° radial angle apart from each other relative to the 

center. We chose decagons over shapes with more or less sides, as ten-sided shapes were 

sufficiently hard to memorize. To control for slight variations in center-of-mass and surface area, 

all stimuli were then recentered and resized to a surface area of 3 square degrees of visual angle. 

Please see Figure 2A for a visual representation of this correction. 

For each subject in the first experiment, we randomly generated a unique set of six 

decagons (sample stimuli, Figure 1, Design), selected from a larger set of random shapes to 

generate a diverse set. Trying to avoid multiple close-to-identical shapes, we estimated similarity 

for all 15 pairs of six shapes regardless of rotation, correlating the original (not recentered) 

corner-to-center distances of potential shapes for all pairs of possible rotations in steps of 36° 

(rotation-invariant correlation, Figure 2B). For a given set of six shapes, we thus considered 150 

correlation values between pairs of ten corner-to-center distances (10 per pair), which inevitably 

included some spurious correlations leading us to choose a lenient criterion of Fisher z-

transformed r < .55 (corresponding to r < .5005) for the inclusion of shapes. Even this lenient 
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criterion limited the number of ten-sided shapes within a set to six, as the unsupervised random 

generation algorithm was unable to find larger sets within a reasonable runtime. The same 

criterion was used to assure that different rotational versions of the same shape were largely 

dissimilar. The same 22 sets were used for the 22 subjects in the second experiment to allow for 

a better comparison between the two groups.  

Delayed shape similarity tasks 

In each trial, subjects memorized one out of the six possible shapes. To separate memory-

related signals from neural correlates of mere stimulus processing or visual persistence we used a 

retro-cue method (Figure 1; Sperling 1960; Harrison and Tong 2009; Christophel et al. 2012). At 

the beginning of the trial, two decagons shown after each other in rapid succession followed by a 

retro-cue (either a ‘1’ or ‘2’) that indicated which of the two was to be remembered (see Figure 1 

for timings). The cue was surrounded by a star-shaped 20-sided mask that was introduced to 

suppress perceptual representations of the samples. The cued sample was to be held in memory 

for the following delay of 9.5 seconds. 

To probe for rotation-invariance, the memorized shape was shown in a randomly chosen 

in-plane rotation. Specifically, we used a different rotation in each trial to avoid a limited set of 

predetermined rotational states, which subjects might recognize. As a result, potential non-

invariant retinotopic representations of a given memorized shape would not induce a common 

activation pattern across trials and the neural signals for the six shapes would remain impossible 

to differentiate for multi-voxel pattern analyses. This was further enforced by controlling the 

memorized samples for size and center-of-mass and by keeping correlations between stimuli and 

amongst rotational versions of the same stimulus below a common criterion (see above). In 
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comparison, invariant representations that can generalize across viewing conditions should leave 

a distinguishable neural trace across stimuli memorized in various rotations.  

To serve as a non rotation-invariant control, the non-remembered shape was always shown 

in the same rotation. This allowed us to directly compare potential rotation-invariant working 

memory representations to perceptual representations without necessitating invariant processing 

during perception. We ensured during piloting that subjects would not be aware of this 

manipulation and subjects confirmed this in the post-scan debriefing.  

After the delay, two test stimuli were shown left and right of the center of the screen 

(Figure 1, right). Subjects were asked to identify which of the two test stimuli was more similar 

to the memorized sample. None of the stimuli was identical to the remembered stimulus and both 

target and foil were generated randomly. The target stimulus was chosen to have a positive 

correlation and the foil was uncorrelated (see below).  

Importantly, the two subject groups performed two slight variations of the task: In the first 

group, subjects performed a rotation-invariant version of the task (Figure 1, top right). In this 

group, the target stimulus rotation was chosen randomly and was similar to the memorized shape 

when rotated optimally (rotation-invariant z-transformed r > .6, see Figure 1, for examples). The 

similarity of the target stimulus was adjusted for each subject during training to approximate 

threshold performance (see below). In contrast, the foil stimulus was uncorrelated regardless of 

its rotation (rotation-invariant z-transformed r < 0.2). Thus, the stimulus rotation during encoding 

was irrelevant for this task and a rotation-invariant representation would be sufficient to perform 

the task. 
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In the second group, subjects had to memorize the shape of the cued sample in the specific 

rotation shown to perform in the task (Figure 1). For this purpose, the target stimulus was always 

shown in a rotation corresponding to the memorized shape (rotation-specific z-transformed r > 

.6, see Figure 1, for examples). As in experiment 1, the exact similarity of the target stimulus was 

adjusted for each subject during training to approximate threshold performance. Furthermore, the 

foil’s correlation to the memorized sample was only kept below criterion when computed for the 

rotational states shown (rotation-specific z-transformed r < .2, see Figure 1, for examples). Thus, 

the foil’s shape could be more similar to the memorized shape but shown in a different rotation. 

Finally, we included a number of catch trials (25%) where the foil was identical to the 

memorized stimulus but shown in a random rotation. The rotations of these catch foils were 

sampled from the full 360° space such that subjects were sometimes asked to identify deviations 

of a few degrees (average deviation 90°, uniform distribution). This approach did prevent us 

from using the rotation-specific correlation approach to quantify similarity as the center-to-

corner angles did not align between the memorized sample and the foil. These catch trials 

allowed us to assess behaviorally whether subjects retained the rotation information throughout 

the delay. 

In both groups, subjects performed four runs of 60 trials each in the fMRI scanner, 10 per 

memorized stimulus. Prior to the experiment in the fMRI scanner, subjects received one hour of 

training to familiarize them with the difficult task. For this training, we shortened the delay 

period to 2.5 seconds and included feedback. Sample shapes were generated randomly for each 

trial to avoid the training of a stimulus-set specific strategy. Furthermore we used the training to 

titrate the difficulty of the target stimulus using three levels of difficulty (both experiments, 

range of 0.6 to 1.35 in z-transformed correlations) and an intermediate level of difficulty was 
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used for the scanning session that approximates 75% performance based on linear interpolation. 

On average, this difficulty was 1.02 (SEM ±0.03) in the rotation-specific task and 1.16 (SEM 

±0.02) for the rotation-invariant task. Please note that, due to different methods of calculating 

rotation-invariant and rotation-specific similarity (see Figure 2) these values and the resulting 

indicators of behavioral performance are not easily compared across groups. Subjects received 

one run of training without feedback directly before the scanner experiment. 

For comparison with recently observed content-specific working memory signals in the 

frontal eye fields (see Jerde et al. 2012), subjects in the second group additionally performed a 

very simple eye movement task used to localize the frontal eye fields (Ferrier 1875). Subjects 

were instructed to fixate unless one out of four symbols told them to make either horizontal or 

vertical eye movements for two seconds. In particular, we used the letter ‘h’ and the ‘=’ symbol 

to instruct horizontal eye movements while ‘v’ and ‘||’ signified vertical eye movements. By 

avoiding visually-guided saccades we insured that responses during this task were specific to eye 

movements and not to the visual stimulation used to instruct them. Subjects were asked to move 

their eyes back and forth as far as they comfortably could (ad lib.) and with as many repetitions 

as possible during the 2 second cue presentation. The inter-cue interval lasted either two, four or 

six seconds with an average of four seconds. Each subject performed four runs of 20 trials each, 

five for each cue. Activity during this task was used to identify eye-movement related activation 

at the putative location of the frontal eye fields.  

Data acquisition 

For the main experiment, subjects performed four runs of 60 trials each in the fMRI 

scanner (Siemens 3T Tim Trio). During each run, we recorded 547 three-dimensional images of 
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BOLD data using an EPI sequence (TR: 2 s, TE: 30 ms, voxel size 3.3x3x3 mm, slice gap: 0.33 

mm, descending order, FOV: 192 mm). The 33 slices were aligned approximately parallel to the 

anterior and posterior commissures and covered the whole neocortex. We timed the experiments 

in such a way that each trial onset coincided with the acquisition onsets of a functional image 

(stimulus-locked acquisition) thereby reducing variance in the temporal signature of the task. In 

addition, we acquired anatomical data (T1-weighted MPRAGE: 192 sagittal slices, TR: 1900 ms, 

TE: 2.52 ms, flip angle: 9°, FOV: 256 mm). 

fMRI preprocessing 

Functional imaging data was analyzed using SPM8, cvMANOVA (Allefeld and Haynes 

2014) and The Decoding Toolbox (Hebart et al. 2015). After conversion to NIfTI format, the 

functional data were motion corrected and the anatomical image was coregistered to the first 

image of the BOLD time series. No normalization into a standard space was performed at this 

time and we applied no Gaussian smoothing to the data prior to performing the multivariate 

analyses to preserve the fine-scaled spatial structure of the fMRI data. Using a similar reasoning, 

we abstained from using slice-time correction during preprocessing to retain the temporal 

precision of the stimulus-locked time-series (see 'Data Acquisition'). 

 

Analyses of multivariate pattern distinctness using cvMANOVA 

To identify representations of the remembered shapes and to further test these 

representations for invariance, we used a recently developed technique for multi-voxel pattern 

analysis technique, cross-validated MANOVA (cvMANOVA, Allefeld and Haynes 2014). The 

approach is similar to recently used classifier-based ‘decoding’ analyses (Haynes and Rees 



12 

 

2005a, 2005b; Kamitani and Tong 2005; Haynes and Rees 2006; Soon et al. 2008; Sterzer et al. 

2008; Harrison and Tong 2009; Serences et al. 2009; Cichy et al. 2011; Christophel et al. 2012; 

Riggall and Postle 2012; Lee et al. 2013; Christophel et al. 2015) but has several advantages: (1) 

It quantifies patterned activation differences in a continuous manner rather than counting binary 

‘true’ or ‘false’ classifications; (2) its result is an interpretable measure of multivariate effect size 

(explained variance) which can be expected to be more comparable across studies; and (3) it 

makes the full flexibility of the regressor-based general linear model (GLM) available to 

multivariate analyses (Friston, Holmes, et al. 1994). 

cvMANOVA uses an adaptation of the well-known framework of multivariate analysis of 

variance (Timm 2002) to quantify differences in the patterned hemodynamic responses for 

different neural events. BOLD time series are fitted with a multivariate general linear model 

(MGLM) using a set of regressors of the same kind as those used in a univariate GLM. An effect 

of interest is specified in the form of a contrast vector or matrix, and the amount of multivariate 

variance is calculated that can be explained by this effect, as a ratio to the multivariate error 

variance. Since the naive computation strongly overestimates the true amount of explained 

variance (a form of the problem of overfitting), cross-validation is used to obtain an unbiased 

estimate, which is called estimated pattern distinctness �̂�. Specifically, cvMANOVA uses leave-

one-run-out cross-validation, effectively comparing the pattern difference estimates averaged 

across all but one run with the pattern difference estimate obtained from the left-out run by 

computing their covariance; in this view, �̂� is a measure of the consistency of patterned 

responses across runs.  

In detail, the MGLM 
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𝑌 = 𝑋𝐵 + 𝛯 

is fitted to the measured time series Y of length n from a set of p voxels, so that Y is an n×p 

matrix. The design matrix X models the expected shape of the BOLD signal as a linear 

superposition of q regressors (an n×q-matrix). Accordingly, B is a q×p matrix which describes 

the influence of the q different regressors in generating the signal in the p different voxels. An 

effect of interest is specified in the form of a contrast matrix C with q rows and an arbitrary 

number of columns. The contribution of this effect to the model parameters is then given by 

𝐵𝛥 = 𝐶𝐶
−𝐵, where – denotes the pseudoinverse. The quantity we are interested in is 

𝐷 = trace (
1

𝑛
B𝛥
′𝑋′𝑋 B𝛥 Σ

−1), 

where Σ is the variance-covariance matrix of the error Ξ, and ' is the matrix transpose. The 

pattern distinctness D quantifies the amount of multivariate signal variance explained by the 

effect, in relation to the multivariate error variance. To estimate D, the MGLM is fitted to data 

from each of m runs separately, providing estimated regression parameters �̂�, and estimated 

errors �̂�  (residuals). Then, leave-one-run-out cross-validation is implemented as follows. The 

estimate of D in the lth fold is 

�̂�𝑙 = trace(𝐻𝑙𝐸𝑙
−1) 

where 

𝐻𝑙 =∑{�̂�𝛥′}𝑘
𝑘≠𝑙

{𝑋′𝑋�̂�𝛥}𝑙 𝑎𝑛𝑑 𝐸𝑙 =∑{�̂�′�̂�}
𝑘

𝑘≠𝑙

, 

with k=1…m. Braces with subscript indicate that the design matrix and estimated 

parameters are to be taken from the respective run. It can be shown that the mean of the fold-
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wise estimates �̂�𝑙 is an almost-unbiased estimator of D, which can be converted into a perfectly 

unbiased estimator �̂�  via an additional factor depending on properties of the experimental 

design. In the rest of the paper, for simplicity we use the symbol D when referring to the 

estimated pattern distinctness. For more details of cvMANOVA, please refer to Allefeld and 

Haynes (2014); an implementation for MATLAB is available online. 

Under the null hypothesis of no patterned activation differences (no explained multivariate 

variance) D has a true value of 0, and estimated values of D vary randomly around 0. Negative 

values of D are an expression of this random variation. This corresponds to the random variation 

of estimated accuracies around the chance level (for two classes: 50 %) in the case of classifier-

based ‘decoding’. cvMANOVA can be either combined with a searchlight approach 

(Kriegeskorte et al. 2006) investigating local patterns in spherical portions of the data (here, with 

a radius of 4 voxels; i.e. in ‘searchlights’ of maximally 251 voxels, not limited to the cortical 

surface but excluding cerebrospinal fluid) across each position of the brain to obtain a statistical 

parametric map of D-values, or applied to regions of interest. 

In this paper we use cvMANOVA to answer two questions: Do the fMRI data contain 

information about the identity of the memorized shape? And do they contain information about 

the rotation a given shape is presented at? The analyses described in the following were 

implemented identically for each subject and for both experiments. 

Shape identity information: To probe the data for information about the identity of the 

presented shape, each set of trials corresponding to one of the 6 different shapes was modeled 

separately. To additionally investigate the time-course of information and to avoid the 

assumptions of the canonical hemodynamic response function (HRF), time points within the 
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delay period were modeled separately using a set of 5 FIR regressors (boxcar functions of 2 s 

length each such that a period of 10 s was covered; this includes the time of the cue display). We 

therefore had a 6 × 5 factorial design with factors “shape identity” and “time point”, leading to 

30 regressors in total (for each of the 4 runs). Different rotations of the same shape in the ten 

different trials (per shape and run) were not modeled separately. 

Because we were interested in the effect of shape identity, we used a contrast matrix which 

(with respect to a single time point) has the form 

(

  
 

 1  0  0  0  0
−1  1  0  0  0
 0 −1  1  0  0
 0  0 −1  1  0
 0  0  0 −1  1
 0  0  0  0 −1)

  
 
, 

where the rows correspond to the 6 shape identity regressors and the columns to the five 

partial contrasts together defining the effect of shape identity. The true pattern distinctness 

corresponding to this contrast is 0 if the activation patterns are identical for the first and second 

shape, the second and the third shape, etc., i.e. if all the shapes have the same corresponding 

activation pattern. A deviation from this leads to an above-zero value of D. 

 Since there were 5 different regressors for each shape identity corresponding to the 5 time 

points, this contrast matrix had to be padded with zeros. For the first time point this has the form 

(

 
 
 
 
 

 1  0  0  0  0
 0  0  0  0  0
 0  0  0  0  0
 0  0  0  0  0
 0  0  0  0  0
−1  1  0  0  0
 0  0  0  0  0
 ⋮  ⋮  ⋮  ⋮  ⋮)

 
 
 
 
 

, 
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where the rows correspond to the 30 regressors per run, with FIR regressors for each shape 

grouped together. For each of the 5 resulting contrasts (one per time point) we estimated the 

amount of multivariate variance explained by the encoded effect relative to the multivariate error 

variance, resulting in the measure of pattern distinctness D. This procedure was performed 

separately for each of the 5 time points during the delay period and for all possible searchlights 

across the brain resulting in 5 brain-shaped maps of D, one for each time-point.  

These maps were normalized into MNI space using normalization parameters acquired 

during unified segmentation (Ashburner and Friston 2005) of the coregistered anatomical images 

and smoothed using a Gaussian kernel with 3 mm FWHM to reduce residual between-subject 

variation in the functional anatomy. To be probed for significant deviations from zero, these 

normalized and smoothed maps of D were then averaged across time and entered into a second-

level one-sample t-test. This resulted in statistical maps representing values of t and p, which 

were thresholded using a two-step cluster-correction approach (Friston, Worsley, et al. 1994; 

Nichols and Hayasaka 2003). All statistical tests are performed on data that was averaged across 

the whole delay-period and all bar plot and brain render displays correspond to averaged data. 

In this analysis focusing on shape identity we did not separately model the different 

rotational states of each shape. This way, the multivariate variance induced by differences in 

rotation could not be accounted for by the MGLM regressors, but contributed to the error 

variance. Since the pattern distinctness D is the ratio between explained and error variance, an 

effect of shape identity therefore not only indicates the presence of shape identity information, 

but also that the amount of rotation-induced variance is not sufficiently high as to prevent 

significance. Moreover, a different set of 10 rotations were used in each run, and since D can 

also be interpreted as a measure of pattern consistency across runs, this indicates that the patterns 
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corresponding to different rotational states of the same shape are not sufficiently different as to 

prevent the identification of a common underlying pattern associated with the shape only. Both 

of this implies that a significant result for shape identity information can also be read as an 

indicator that the patterns representing shape identity are retained in an invariant format across 

rotational states. 

Shape rotation information: To further investigate whether the areas identified in the first 

analyses do not only contain shape identity information, but store shapes in a rotation-invariant 

way, we also probed the recorded fMRI data for rotation-specific information. An invariant 

memory store should have no information about the rotation of the memorized shape, whereas a 

retinotopic store would necessarily contain rotation information, but should show no 

representation of shape identity when collapsed across rotations. 

For this analysis we used a different set of MGLM regressors, additionally modeling 

rotational state. Since rotations were randomly selected for each trial separately and never 

repeated across runs, we used 3 evenly spaced bins of rotation angles (e.g. for rotations from 0° 

to 120°, from 120° to 240° and from 240° to 360°, respectively). The boundaries of these 

rotation bins were chosen separately for each shape, such that the distribution of trials across the 

3 bins and the 4 runs was as uniform as possible. We therefore had a 6 × 3 × 5 factorial design 

with the factors “shape identity”, “shape rotation”, and “time point”, leading to 90 regressors in 

total (for each of the 4 runs). To test whether the patterned activation differed for different 

rotations of the same shape, we estimated the pattern distinctness D using a contrast matrix that 

encodes differences between rotation bins, within each shape. This analysis can be understood as 

a series of six separate analyses estimating the main effect of rotation for each separately with 

the resulting pattern distinctness values being averaged afterwards. The resulting maps of D were 
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processed and tested as in the previous analysis. For one subject in the second group we found no 

boundaries that resulted in at least one trial per bin for all shapes and rotations, and this subject 

was discarded from this analysis. 

Frontal eye field region-of-interest analysis 

The second group also performed a frontal eye field localizer. Eye movement related 

activity was modeled using regressors based on the canonical HRF. The resulting parameter 

estimates were tested against baseline on the group level using a one-sample t-test after 

normalization and smoothing using a kernel of 7 mm FHWM. To yield a conservative 

localization of the frontal eye fields we used voxel-level correction for multiple comparisons 

(Friston et al. 1991) and clusters smaller than 20 voxels were removed. We then extracted the 

frontal portions of these clusters and separated them according to hemisphere resulting in 

regions-of-interest (ROIs) for the left and right frontal eye fields. After transformation into 

single-subject space (inverse normalization) to preserve the single-subject resolution of the 

activity patterns, these ROIs were then probed in both groups for invariant information about the 

memorized shape using the cvMANOVA approach. These analyses proceeded in exactly the 

same way as the searchlight analysis, only that voxels were selected based on the identified ROI 

instead of distance from a center searchlight voxel. The resulting pattern distances were tested on 

group level against zero using one-sample t-tests.  

Multivariate pattern classification using the decoding toolbox 

To compare results from the pattern distinctness analyses to a more conventional analyses 

approach, we used multivariate decoding analyses (Cox and Savoy 2003; Haynes and Rees 

2005a; Kamitani and Tong 2005; Kriegeskorte et al. 2006) combined with a time-resolved 

searchlight approach (Kriegeskorte et al. 2006) to probe the data for rotation-invariant and 
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rotation-specific representations. For this, we used a publicly available toolbox that was 

developed in-house (Hebart et al. 2015). More specifically, we used the rotation-bin model 

described above to identify (a) regions that have representations of shape-identity that generalize 

across different rotations and conversely (b) regions that represent a shapes rotational state. As a 

first step, for both analyses, we computed a univariate general linear model to estimate beta 

estimates for all 360 regressors (6 shapes by 3 rotations by 4 runs by 5 time-points). 

Shape identity cross-classification: We estimated rotation-invariant local pattern 

information regarding the memorized shape identity in small spherical (three-dimensional) 

clusters with a radius of 4 voxels (i.e. in ‘searchlights’ of maximally 251 voxels) at each position 

in the brain (not limited to the cortical surface but excluding cerebrospinal fluid). We used 

parameter estimates from one out three rotation bins for each shape train a linear support vector 

pattern classification algorithm (LIBSVM, regularization parameter C=1) to distinguish between 

a pair of memorized shapes. This training was performed using data from three out of four runs. 

The classifier was then applied on the parameter estimates for the remaining, left-out run and the 

two remaining rotations bins for the respective shapes. Thus, overall classifier performance was 

based on a series of pair-wise (2-way) trainings of all possible pairs of shapes and rotation bins 

and tests of the respective classifiers on the remaining rotation bins. Chance level was 50%. The 

resulting accuracies were then averaged across all classification steps. Each time leaving out a 

different run, this procedure was repeated four times (4-fold cross validation). The resulting 

accuracies were averaged across the cross-validation folds and noted in a dedicated brain map at 

the position of the center voxel of the searchlight. This was repeated for each center position 

across the brain and for each of the five time-points, yielding five maps of decoding accuracies 
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for that subject. The accuracy maps for each subject were then normalized, smoothed, averaged 

and tested as in the previous cvMANOVA analyses. 

Shape rotation classification: Rotation-specific local pattern information was calculated 

within the different beta estimates for a given shape identity. Using data from three out of four 

runs, we trained classifiers to distinguish between data from two out of three rotation bins and 

tested these classifiers on data from the remaining run. This procedure was repeated for all 

shapes, all possible pairs of two rotation bins, all cross-validation folds, all searchlight center 

voxels, all time-points and the resulting accuracy maps were averaged, post-processed and tested 

as before.  

 

Results 

Behavioral results 

The two groups performed two variants of a difficult shape similarity discrimination task 

where the retention of the rotational view of the shape was either irrelevant (rotation-invariant 

task, group 1) or necessary (rotation-specific task, group 2) for the task (see Figure 1 and its 

caption). During the training stage before scanning, the similarity of the target stimulus to the 

memorized shape was varied in order to set a difficulty level that would lead to around threshold 

performance. The similarity was adjusted during scanning when subjects performed below 

threshold. In the scanner, the target was correctly identified in 80.92% (SEM ±1.78 %) of the 

trials in the rotation-invariant task and in 74.13% (SEM ±1.59 %) in the rotation-specific task 

(see Figure 3, for single subject data). In 9.17 % and 10.83 % of the trials (in the invariant and 
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specific task, respectively), subjects responded too late (after two seconds) or did not respond at 

all. During a number of catch trials in the rotation-specific task, the foil was identical to the 

memorized sample in shape but was randomly rotated (see Methods). For these catch trials 

which included trials with close-to-identical-rotations, accuracy was 65.6 % (SEM ±1.5 %) and 

thus lower (paired t-test, T(21) = 6.37, p < 0.001) than in standard trials (77.8 %; SEM ±1.66 %), 

demonstrating that subjects used the rotation information for the task, albeit with imperfect 

precision. Given that catch trials were identical to standard trials all the way up to the target 

presentation and that our period of interest was the preceding delay-period, our analyses 

collapsed across all trials. 

Content-specific brain activity patterns during the invariant task 

First, we wanted to know which brain regions have content-specific representations of the 

memorized shapes. We assumed that, within an area constituting a visual working memory store, 

different shapes held in memory would lead to differential neural activity patterns (MVPA, 

Haxby et al. 2001; Haynes and Rees 2005a, 2005b; Kamitani and Tong 2005; Haynes and Rees 

2006; Harrison and Tong 2009; Serences et al. 2009; Christophel et al. 2012; Riggall and Postle 

2012; Lee et al. 2013), potentially reflecting a sampling of neural population codes (Fujita et al. 

1992; Tanaka 1993) by fMRI voxels (Kriegeskorte et al. 2010). Specifically, we tested whether 

local spatial patterns of brain activity differed between the different experimental conditions 

(shapes). For this we used a recently introduced difference measure called pattern distinctness D 

(Allefeld and Haynes 2014). D quantifies the information carried by brain signals with respect to 

the experimental conditions, in this case the shapes (see Methods; for details). Technically, this 

reflects the multivariate variance explained by a given contrast of conditions in relation to the 
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residual multivariate variance. Values of D significantly larger than 0 indicate the presence of 

reliably different patterns and therefore the representation of content-specific information in the 

respective area. 

In the rotation-invariant task, collapsing across rotational views, we found that in multiple 

regions different memorized shapes evoked significantly different fMRI-patterns as indicated by 

significantly positive values of D (one-sample t-test, p < 0.001, cluster-corrected p(FWE) < 0.05, 

Figure 4A). The regions included occipito-temporal, posterior parietal and frontal brain areas. In 

occipital cortex, the information was localized on the lateral surface extending into both visual 

and inferotemporal cortex. The peaks in occipital cortex (XYZ(MNI); [-44 -70 -4] & [46 -82 10], 

T(21) = 5.73 & 4.71) are consistent with the localization of the lateral occipital complex (LOC; 

Malach et al. 1995; see also Kanwisher et al. 1997; Grill-Spector et al. 1999). Pattern distinctness 

D in posterior parietal cortex was most reliable in areas close to the intraparietal sulcus 

(XYZ(MNI); [-22 -72 50] & [34 -50 48], T(21) = 5.16 & 5.79), consistent with previous studies 

investigating working memory of pattern stimuli (Christophel et al. 2012; Christophel and 

Haynes 2014) and extended into more anterior regions of the parietal cortex. Finally, we found 

regions in frontal cortex localized in premotor cortices (XYZ(MNI); [-54 8 34] & [52 8 32], T(21) = 

3.75 & 4.43). Importantly, a similar analysis probing the same data for information about the 

shown but not memorized shape revealed significantly less information in all three regions 

(paired t-test, LOC: T(21) = 3.81 & 2.14; PPC: T(21) = 3.29 & 4.75; FEF: T(21) = 3.48 & 2.91, p < 

0.05, see Figure 5A).  

We also tested shape representations outside of these areas using a more sensitive and 

explorative region-of-interest approach. For this, we used two locations in left and right calcarine 
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sulcus that were shown to represent mentally rotated stimuli in prior work (Christophel et al. 

2015; XYZ(MNI); [-1 -82 10] [10 -88 10]). Furthermore, we defined two anatomical regions-of-

interest in left and right DLPFC (XYZ(MNI); [-44 52 21] [44 52 21]). Neither of these regions 

showed significantly larger delay-period information for memorized as compared to not-

memorized shapes (see Figure 5A). In the absence of such a differential effect, we assume that 

the information present in the calcarine sulcus for both memorized and not-memorized items is 

indicative of a perceptual rather than a working memory representation. Not-memorized items 

were always shown in the same rotation to serve as a non rotation-invariant control (see 

Methods) which might result in higher pattern distinctness values in right calcarine sulcus. 

For confirmatory purposes we also performed a more conventional cross-classification 

analyses which has been used previously to study invariance (Cichy et al. 2011). For this 

purpose, we grouped trials of a given shape with similar rotations into three bins (see Methods; 

for details). We trained support vector machine classifiers to distinguish between different 

shapes, but using only data from one of these three rotation bins. Then, we introduced data from 

the remaining rotation bin into these classifier models to predict the shape identity, essentially 

asking whether the difference between a pair of shapes in one type of rotation shared a common 

difference in patterned brain activity with the same pair of shapes in different rotations (see 

Methods; for details). Using this analyses, we find significant above chance classification in all 

regions reported above (LOC: T(21) = 3.87 & 4.96; PPC: T(21) = 4.57 & 4.5; FEF: T(21) = 2.95 & 

2.52, p < 0.05, see Figure 5B). 
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Rotation-specific information versus rotation-invariance 

In a brain area that stores the stimulus in a rotation-invariant format, there should be 

reliable information about the identity of the shape, but no reliable differences between different 

rotational states of the same shape. In contrast, in a region storing stimuli in a strictly retinotopic 

format without rotation invariance, identical shapes shown in different rotations would be 

represented by very different patterns of activity. We thus tested, whether any regions exhibit 

rotation-specific information by testing the pattern distinctness D for the different rotational 

angles. The previous analysis that collapsed across angles found significant shape-specific 

information, in lateral occipital, posterior parietal and frontal areas. Thus, to test whether these 

areas retain the memorized shape in a rotation-invariant manner, we probed the recorded brain 

activity for information about the specific rotational angle of the memorized shape. To facilitate 

this analysis, we again grouped trials with similar rotations of a given shape into three bins, 

based on the assumption that similar rotations of the same shape are similar when represented 

retinotopically (see Methods; for details). We then tested whether the activity pattern within a 

given searchlight showed reliable differences across the different rotation bins for a given shape. 

Using the same thresholds as before, we did not find any area having significant levels of pattern 

distinctness D, as expected from an invariant signal. This held true even when multiple 

comparisons correction was restricted to only account for the voxels found in the first analysis 

(i.e. ‘small volume correction’). Thus, our results can be interpreted as indicative of rotation-

invariant representations of memorized shapes in later occipital, posterior parietal and frontal 

areas when subjects perform a memory task where rotation is irrelevant. 
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Notably, the cvMANOVA-based rotation-specificity analysis using rotation-bins has an 

important caveat when compared to more conventional classifier-based ‘decoding’ analyses: It 

probes differences between different rotational views against the within-class (i.e. within-bin) 

variance and can therefore be assumed to be less powerful then a straight forward classification 

approach (which simply averages within-run variation). Thus, to confirm our results, we again 

used a time-resolved searchlight classification approach probing the acquired data for rotation-

specific information (see Methods; for details). We found no evidence for such information in 

any of the areas reported previously, thus, confirming the evidence for a rotation-invariant code 

during the rotation-invariant task. 

Shape representations during the rotation-specific (non-invariant) task 

Then, we asked whether shapes were retained in a rotation-invariant format when retaining 

the rotation was necessary for the task. For this purpose, we analyzed data from the second group 

of subjects which performed a version of the task where the specific rotational angle of the 

memorized shape had to be remembered. This analysis was identical to the one used to identify 

invariant representations during the invariant task.  

We found that even if subjects had to retain the rotation, shape-identity was retained in a 

rotation-invariant form as indicated by values of pattern distinctness D significantly larger than 

zero for the shape-identity analysis (one-sample t-test, p < 0.001, cluster-corrected p(FWE) < 0.05, 

Figure 4B) and no significant rotation-specific information. The overall pattern of results during 

the rotation-specific task was largely identical to the results found during the rotation-invariant 

task. In particular, we found clusters which held significant information about the memorized 

shape in occipito-temporal, posterior parietal and frontal cortices, with peaks in the vicinity of 

LOC (XYZ(MNI); [-54 8 34] & [52 8 32], T(21) = 4.57 & 5.71), the intraparietal sulcus (XYZ(MNI); 
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[-16 -74 52] & [34 -62 54], T(21) = 4.23 & 4.3) and in right premotor cortex (XYZ(MNI); [22 -4 

66], T(21) = 5.48). The left premotor cortex showed D values significantly larger than zero but the 

resulting cluster did not reach sufficient size to overcome cluster-correction (one-sample t-test, p 

< 0.001, XYZ(MNI); [-20 -12 56], T(21) = 5.58). All three areas also showed significantly larger D 

for memorized shapes as compared to not-memorized but shown shapes (paired t-test, LOC: 

T(21) = 3.05 & 2.71; PPC: T(21) = 3.44 & 2.98; FEF: T(21) = 3.11 & 4.06, p < 0.05, see Figure 

5A) and significant across-rotation classification of shape-identity (LOC: T(21) = 3.56 & 2.92; 

PPC: T(21) = 4.12 & 4.44; FEF: T(21) = 4.02 & 3.52, p < 0.05, see Figure 5B). This effect, 

however, seems to be absent in left LOC when testing data from the rotation-specific task for 

peak voxels that hold information in the rotation-invariant task and vice versa in left and right 

LOC (see Figure 5). This could suggest that separate neural populations in LOC support memory 

function during the rotation-invariant and the rotation-specific task.  

 On the whole-brain level, a direct comparison (unpaired t-test) of the shape-specific and 

rotation-specific pattern distinctness values D between the rotation-invariant versus the rotation-

specific task did not reveal any significant differences between the two groups of subjects (p > 

0.001), suggesting that storage is largely unaffected by the task. Notably, posterior parietal 

cortex showed significantly larger values of D in the rotation-invariant task as compared to the 

rotation-specific task (unpaired t-test, T = 3.11, p < 0.05) when probing the areas reported above 

using a region-of-interest approach (see Figure 5). Decoding accuracy values derived from the 

cross-classification analyses showed no significant differences between the two tasks.  

As for data from the rotation-invariant task, we also used a more conventional time-

resolved searchlight-classification analysis to test the acquired data for rotation-specific 

information (see Methods; for details). When subjects had to specifically memorize the rotational 
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state of a given sample, we found no significant information of rotation specific images. Given 

previous reports of rotation-specific delay-period information (Harrison and Tong 2009; 

Serences et al. 2009; Christophel et al. 2015; Ester et al. 2015) we performed an exploratory 

analysis where we lowered the threshold and used an uncorrected threshold (p < 0.001). This 

identified a medial cluster in the precuneus (XYZ(MNI) [-2 -64 30], T(20) = 3.99, p < 0.001, see 

Figure 6). When excluding the first time point which typically shows no information in 

multivariate analyses of fMRI data during working memory (Harrison and Tong 2009; 

Christophel et al. 2012) this cluster would be significant even after correction (cluster-corrected 

p(FWE) < 0.05). This area did not overlap with any of the regions reported in rotation-invariant 

analyses. Furthermore, this region showed significantly higher decoding accuracies when 

decoding the rotational state of a given shape during the rotation-specific task as compared to the 

rotation-invariant task (two-sample t-test, T(41) = 3.55, p < 0.001, see Figure 5). In contrast, the 

same area showed no significant cross-classification between shapes during the rotation-specific 

task. Decoding accuracy for such a rotation-invariant cross-classification was found to be 

significantly above chance during the rotation-specific task (T(21) = 3.17,p < 0.05) and 

significantly larger than the rotation-invariant task (two-sample t-test, T(41) = 2.08, p < 0.05). No 

other area showed significantly larger rotation-specific information in either of the tasks 

compared to the other task.  

 

Frontal eye field localizer and region-of-interest analysis 

The results in frontal cortices were of particular interest due to their implication for theories 

postulating storage in frontal cortex. Some authors postulate a unique role of dorsolateral 

prefrontal cortex (DLPFC) as a generalized working memory store (Goldman-Rakic 1995; 
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Petrides 1995; Funahashi 2006; Courtney et al. 2007). Others attribute a specific role in the 

storage of specific features to specific regions in prefrontal cortex as part of storage system 

distributed across the whole neocortex (e.g. Zimmer 2008). 

Notably, the anatomical definition of the DLPFC with respect to Brodmann areas 

(Brodmann 1909) varies, with some authors referring to the lateral aspects of areas 9 and 46 (e.g. 

Hoshi 2006) and some also including area 8 (see Miller and Cohen 2001). In contrast, the results 

in the current study are almost exclusively localized in area 6, typically referred to as premotor 

cortex (Barbas and Pandya 1987; Wise 1985; see Campbell 1905). More importantly, the 

findings in premotor cortices overlap with the visual field maps constituting the frontal eye fields 

(Ferrier 1875) which are also situated in area 6 in humans (Petit et al. 1999) and sometimes are 

referred to as inferior and superior PCS (Jerde et al. 2012). In particular, the peaks found 

(XYZ(MNI); Group 1: [-54 8 34] & [52 8 32]; Group 2: [-20 -12 56] & [22 -4 66]) are within 

proximity of the results found during saccadic and pursuit eye movements (17 studies reviewed 

in Petit et al. 1999 XYZ(MNI); [-34 -14 50] & [32 -12 49]), sites where cortical stimulation elicits 

eye movements (Average electrode site in 2 patients, Blanke et al. 2000 XYZ(MNI); [-40 -9 54]) 

and regions of the frontal cortex involved in bottom-up saliency processing (Bogler et al. 2011; 

XYZ(MNI); [-27 -3 36] & [27 -9 51]). 

To further explore this, subjects in the second group performed a short eye movement task. 

Instructed by abstract cues, subjects performed horizontal and vertical eye movements 

intermitted by periods of fixation. We estimated eye-movement related responses using 

hemodynamic-response function modeling and contrasted the corresponding parameter estimates 

against baseline on the group level (for details see Methods). Consistent with our main results, 

we found regions in premotor cortices with increased activation during eye movements 
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(XYZ(MNI): [-56 4 44] & [54 -2 44]). We used these activation maps to generate two group-level 

left and right hemispheric regions-of-interest (ROIs) for the frontal eye fields (see Methods; for 

details). These ROIs showed large overlaps with content-specific activity patterns during the 

rotation-invariant and the rotation-specific task (Figure 7A, showing a collapsed analysis treating 

all subjects as one group, one-sample t-test, p < 0.0001, cluster-corrected p(FWE) < 0.05).  

To further investigate whether areas activated by eye movements were carrying memory-

content-specific information, we used a pattern distinctness analysis which only considered data 

within these cortical ROIs. The estimated pattern distinctness values D within these ROIs were 

tested against chance (zero) on group level. We found invariant content-specific signals in FEF 

ROIs (one-sample t-test; Figure 7B) across both hemispheres in the rotation-invariant task (T(21) 

= 3.98 & 3.47, p < 0.05) and in right FEF for the rotation-specific task (T(21) = 4.48, p < 0.05). 

Thus, all evidence considered, we show that the content-specific activation patterns 

identified here reside in the frontal eye fields rather than the DLPFC. These results cannot be 

easily explained by stimulus-related eye movements, as the signals were found long after the 

presentation of the sample stimuli and before the onset of the target stimuli. Furthermore, 

stimulus-specific eye movements (i.e. tracing the outlines) would be specific to the rotational 

view shown and therefore would not lead to rotation-invariant signals. 

Time-courses 

For descriptive purposes, to explore the temporal evolution of content-specific signals 

during the delay period, we extracted the pattern distinctness D from the normalized and 

smoothed searchlight maps for each time-point separately. To provide an unbiased estimate of 

the effect size, we show data for regions-of-interest that were defined using independent data by 
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plotting data from the rotation-invariant task shown in regions defined using the rotation-specific 

task and vice versa. For comparisons between the two tasks, we use regions-of-interest defined 

using the collapsed data set. Please note that this approach resulted identical and near identical 

regions-of-interest for LOC and FEF in the analyses of the data for the rotation-invariant task 

and the collapsed data. For descriptive purposes only, we also report data from a given task for 

the regions defined within the same data. Data within regions defined using the same data cannot 

be used as an unbiased estimator of effect size. 

These D-values are shown in Figure 7C separately for the lateral occipital regions, 

posterior parietal cortex and the frontal eye fields. Generally, all areas show little or no 

differences from zero during the initial seconds (most likely due to the hemodynamic delay), 

peak early and show a sustained response, similar to time courses reported previously (e.g. in 

Christophel et al. 2012; Christophel and Haynes 2014). The absolute values of D are slightly 

lower but of the same order of magnitude than those reported for category-specific information 

of perceived objects in the work by Allefeld and Colleagues (2014). 

Correlations with individual differences in behavioral performance 

Finally, we also asked whether the content-specific information retrievable from the 

acquired delay-period data covaries with behavioral performance. For this purpose, we correlated 

the individual behavioral accuracy (% correct) with pattern distinctness and decoding accuracy 

values computed  using cvMANOVA (both shape-specific and rotation-specific), shape cross-

classification and rotation classification analyses similar to prior work (Ester et al. 2013). Even 

though we computed these correlations for all areas and various content-specificity measures 

reported in this manuscript, we only found significant correlations of behavioral performance 

with shape-specific pattern distinctness values in the precuneus and only during the rotation-
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invariant task (see Figure 5, r = 0.54; p < 0.05). It is important to mention, however, that 

performance correlations with content-specificity measures have so only found for relatively 

simple working memory tasks (e.g. Ester et al. 2013). In more complex tasks, like the one used 

here, where performance can depend on both the precision of memorization and the precision of 

the comparison of sample and test stimuli, such correlations have not been found (Christophel et 

al. 2012).  

 

Discussion 

Our results have implications for the question where and how information is held in 

working memory. Consistent with recent decoding studies of working memory (Harrison and 

Tong 2009; Serences et al. 2009; Christophel et al. 2012; Riggall and Postle 2012; Emrich et al. 

2013; Lee et al. 2013; Christophel and Haynes 2014), we show that when artificial random 

shapes are memorized, lateral occipital cortex, posterior parietal cortices and the precuneus carry 

representations of these memorized contents. Importantly, we extend prior findings by showing 

that content-specific signals for visual working memory contents can also be found in a small 

region in (pre-) frontal cortex. We show, however, that this area overlaps with regions activated 

by a frontal eye field localizer task (Figure 7A & 7B) and thus presumably with areas where 

electrical stimulation elicit eye movements (Blanke et al. 2000). It can be concluded that the 

frontal eye fields (originally discovered by Ferrier 1875) hold shape-specific activity identifiable 

during working memory delays. Please note that the information we find in FEF is obtained 

during the delay period and thus is unlikely to reflect explicit eye-movements. 
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Thus, we demonstrate that the storage of visual stimuli held in working memory does 

indeed extend into frontal cortex as suggested by early work in non-human primates (Goldman-

Rakic 1995; Petrides 1995). In contrast to this early work, our results are specifically localized to 

the frontal eye fields. Importantly, frontal eye field neurons do not only discharge during 

saccadic and pursuit eye movements (Bizzi 1968; Bizzi and Schiller 1970) but are also 

responsive to visual stimulation in the absence of eye movements (Bruce and Goldberg 1985). 

These visual responses form retinotopic maps of the visual field (Mohler et al. 1973) similar to 

maps found in the posterior parietal cortex. Our results suggest that such perception-driven 

neural populations within the (motor-driven) frontal eye fields can form lasting representations 

for working memory.  

This is consistent with a recent study that found representations of memorized locations in 

the visual field putatively localized in the frontal eye fields (Jerde et al. 2012). Beyond this 

simple spatial signal, evidence for content-specific memory signals in human frontal cortices was 

– until recently – limited to signals of a clearly non-sensory nature (Spitzer and Blankenburg 

2012; Lee et al. 2013; Spitzer et al. 2014). More recently, Ester and colleagues (2015) showed 

that frontal cortices carry information about memorized gratings, most reliably in the vicinity of 

the frontal eye fields, albeit leaving open whether the representation of gratings in these areas 

uses a spatial or a low-level visual code. Extending these findings our results show that sensory 

driven populations in the frontal eye fields are not only capable of representing spatial position 

but can also code for visual shapes independently of spatial position in an invariant manner. In 

non-human primates, the frontal eye fields have also been shown to code for spatial location 

during memory (Armstrong et al. 2009) while representations of simple canonical shapes haven 

only been found in neurons recorded from adjacent principal sulcus regions (Meyer et al. 2011; 
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Meyers et al. 2012). Information about complex shapes were only found in inferotemporal areas 

(Miyashita and Chang 1988). We extend this prior work by suggesting that visual working 

memory content-specificity is primarily localized to the retinotopic frontal eye fields rather than 

the dorsolateral prefrontal cortex that is considered to be less visually responsive.  

Regarding how these stimuli are retained, we found that representations held in working 

memory generalize across rotations in posterior parietal cortex, lateral occipital areas and the 

frontal eye fields. To demonstrate this generalization, we used the recently developed 

cvMANOVA approach (Allefeld and Haynes 2014) estimating pattern distinctness to show that 

delay-period activation patterns carry information about the memorized shape without 

representing its rotational view. Notably, we did not test whether the same representations also 

generalize across variations of other properties of the shapes like size or location, leaving this as 

an open question.  

Importantly, rotation-invariant coding of working memory contents was prevalent in lateral 

occipital, posterior parietal and frontal regions even when subjects had to memorize the 

rotational state to perform (in the rotation-specific task). This evidence stands in contrast to prior 

work which showed that, during working memory, posterior parietal cortex and the frontal eye 

fields carry rotation information (Christophel et al. 2015; Ester et al. 2015). Two explanations 

can be considered to interpret this discrepancy: On the one hand, this contradicting evidence 

could be a result a difference in experimental tasks and designs. As a major difference, prior 

work (Christophel et al. 2015; Ester et al. 2015) used a limited set of rotations (four rotations in 

Christophel et al. 2015; nine rotations with a ±1-5° jitter in Ester et al. 2015) whereas the current 

study employed random rotations. Even though we intended to discourage the use of invariant 

strategies by using random rotations (see above), it is possible that this choice in design had the 
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opposite effect. Notably, rotation-specific motion information during working memory in 

sensory areas was also found when a few fixed rotations were interleaved with many random 

rotations (Emrich et al. 2013). 

On the other hand, the difference between the current and prior work could be explained by 

the type of stimulus used. Prior work (Christophel et al. 2015; Ester et al. 2015) did not employ 

stimuli that can be considered as shapes (or even objects) but employed abstract grating or 

pattern stimuli. Our finding could suggests that the encoding processes underlying visual 

working memory storage of shapes and objects (but not gratings and patterns) in these areas 

neglect the original viewing conditions and directly generate representations based on an 

invariant code. In day-to-day life, memorized objects oftentimes change their location relative to 

the observer before recall rendering the exact viewing conditions irrelevant. In such a situation, 

memory contents stored in a strictly retinotopic format would be impractical. They would 

necessitate some form of mental rotation (Shepard and Metzler 1971) of the memorized contents 

to allow for comparison. Instead, the invariant encoding of visual shapes in working memory 

could be achieved by using an object-centered coordinate systems (Marr and Nishihara 1978) or 

by using canonical orientations (Tarr and Pinker 1989) to allow for direct comparisons. Our 

evidence suggests that such a process would be limited to stimuli that have a clear unifying 

outline or are perceived as one persistent object for other reasons. 

During perception, invariant representations in ventral stream areas (like the LOC) are 

believed to be based on an element-by-element code, generating larger shapes from smaller 

fragments in 2D (Brincat and Connor 2004) or 3D (Yamane et al. 2008). Such a format, with 

shapes sharing similar elements forming a columnar-level shape space (Fujita et al. 1992; Tanaka 

1993) could also be utilized during working memory in this study. In contrast, both intraparietal 
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areas and the frontal eye fields show a retinotopic organization during perception (Tootell et al. 

1998; Sereno et al. 2001; Hagler Jr et al. 2006; Wandell et al. 2007). During working memory, 

instead of coding for the retained shape as it was shown, these areas might retain the shape of 

visual objects in a rectified or canonical (Tarr and Pinker 1989; see above) rotational state using 

these retinotopic maps as ‘canvas’. Furthermore, the shapes might not be represented as-a-whole 

in these retinotopic areas but only by coding the relative positions of salient parts of the stimulus 

(see Bogler et al. 2011; Christophel et al. 2012; Katshu and d’Avossa 2014) while the details of 

the shape are retained within LOC. Notably, invariant representations of visual objects in 

posterior parietal cortex have also been reported during perception (Konen and Kastner 2008), 

questioning whether this mechanism of representation is unique to working memory.  

Recent behavioral work suggests the coexistence of both viewpoint-specific and viewpoint-

invariant stores for visual working memory (Wood 2009, 2011). This idea is further supported by 

our rotation-specific analyses: When subjects were performing the rotation-invariant task and the 

rotational view of the sample during presentation was irrelevant, we found no evidence for no 

such rotation-specific information. Only if the retention of the viewing conditions were strictly 

necessary to perform in the task (in the second group), we found some limited evidence for the 

retention of these viewing conditions in neural circuits. These results were localized to the 

precuneus, which has been postulated to carry viewpoint-specific information before during 

imagery (Fletcher et al. 1995; Burgess 2002), but not in lateral occipital regions, posterior 

parietal cortex and the frontal eye fields. During the rotation-invariant task, however, the same 

region showed evidence for rotation-invariant storage that was indistinguishable from the results 

in other areas. Thus, rotation-invariant and rotation-specific information were localized to 

different cortical regions, supporting the idea of separate stores (Wood 2009, 2011), but the 
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precuneus was capable of retaining either rotation-specific or rotation-invariant representations, 

depending on current task demands.  

A different area that could potentially serve as a view-specific store is the primary visual 

cortex (V1). Several multivariate decoding studies of working memory report significant cross-

classification between working memory and perceptual signals (Harrison and Tong 2009; 

Riggall and Postle 2012; Albers et al. 2013; Emrich et al. 2013), suggesting that representations 

during visual working memory rely on a neural code that is similar or identical to that underlying 

visual perception. Furthermore, a recent study showed that the orientation-specific responses 

during working memory for grating stimuli follow tuning curves similar to responses during 

perception (Ester et al. 2013).  

In a noteworthy study, however, Ester and Colleagues (2009; see also Jehee et al. 2011; 

Serences and Boynton 2007) showed that it is possible to decode the orientation of a memorized 

grating originally shown either to the left or right visual field from ipsilateral areas in visual 

cortex coding for the opposite side. This finding speaks against a strictly retinotopic 

representation of memorized stimuli even in early visual cortex, at least when - like in the study 

by Ester and Colleagues (2009) - their spatial position was irrelevant for the task. A more recent 

study (Pratte and Tong 2014), however, found that the spread of orientation-specific information 

was limited to extrastriate visual areas V3-V4 when subjects had to memorize two orientations 

shown in the left and right visual fields. Furthermore, the spreading of information across the 

cortical hemispheres of V1 proposed by the Ester and colleagues (2009) might not allow for 

generalized representations of spatially inhomogeneous stimuli like the ones used in the current 

study. Therefore, the cross-hemisphere spread of information in V1 might be limited to local 

features like gratings, texture and color (but see Williams et al. 2008). 
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Here, we neither found rotation-invariant nor rotation-specific information in V1, 

suggesting either that neural populations in V1 do not contribute to the retention of complex 

shapes and their rotational view or that the specific tasks and design prevented us from finding 

potential content-specific signals in V1. In particular, each trial included a not-memorized 

control shape shown at an identical position of the visual field in addition to a star-shaped mask. 

These additional stimuli could have suppressed or concealed rotation-specific activity patterns in 

V1, which might otherwise enable subjects to perform in the rotation-specific task. Furthermore, 

rotation-specific information in memory has been reported previously in early visual areas using 

a small set of possible rotational states (Albers et al. 2013; Christophel et al. 2015). The current 

study was primarily designed to investigate invariant rather than rotation-specific responses and 

used random rotations in each trial to discourage simplified memorization strategies. This made 

the use of simple contrasts between different rotations impossible. Thus, whether rotation-

specific signals found previously can be explained by the categorical nature of rotation in prior 

studies or whether rotation-specific information is rendered indiscernible in the current study by 

using random rotations is a question of further research.  

 

Conclusions 

Our conclusions are threefold: First, our findings represent evidence for visual working 

memory stores forming a distributed network of brain regions including occipital, parietal and 

frontal cortices. Second, the visual shape representations found here in frontal regions are 

specifically localized in the frontal eye fields, which have so far only been implied in memory 
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for spatial position and orientation. Third, visual working memory storage in these areas might 

be based on an invariant coding scheme. 
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Figure Legends 

Figure 1: Random Shape Memory Task. (A) The timeline (in seconds) of an experimental trial is shown 

horizontally. Stimulus displays are shown with onsets indicated by vertical lines and duration of stimulus displays 

are given as horizontal lines. In each trial, subjects were cued to memorize one out of two decagons shown (drawn 

from a set of six stimuli). The two shapes were shown sequentially followed by a retro-cue ('1' or '2') indicating 

which of the two should be memorized. These stimuli were generated randomly based on an algorithm that allowed 

to parametrically vary shape similarity (for details see Figure 2). The cue was surrounded by a star-shaped mask 

introduced to suppress activity merely related to stimulus presentation. The to-be-memorized (cued) shape was 

shown in a random in-plane rotation, whereas the not memorized shape was always shown in the same view. After 

an extended delay (10 s), subjects performed a difficult similarity judgment. Two test stimuli were shown left and 

right of fixation. Subjects were asked to identify which of the two stimuli was more similar to the memorized shape. 

(B) A unique set of six memory shapes for each subject was shown (one example set is shown, see design) and 

rotational angle was randomized in each trial (shown shaded and overlapping to emphasize the random nature). Each 

subject performed four runs of 60 trials each (10 per memorized sample) in the scanner. There were two groups of 

subjects either performing only a rotation-invariant or only the rotation-specific version of this similarity judgment 

task. This was done to avoid carryover of strategies between the two tasks. (C) For the rotation-invariant task the 

rotation of the target stimulus was presented at a random rotational angle. The foil stimulus was uncorrelated with 

the target at all rotational angles. Examples for target and foil stimuli are shown. (D) In the rotation-specific task, 

subjects had to memorize the shape of the cued sample in the specific rotation shown. Here, the target stimulus was 

always shown in the same rotational angle as the memorized shape. In order to explicitly discourage subjects from 

using a rotation-invariant strategy, it was possible for the foil to have a higher similarity to the memorized shape 

when appropriately rotated, so the correct answer could only be obtained by taking the original rotational angle into 

account. In addition, one out of four trials was a catch trial where the foil was identical to the memorized stimulus 

but shown in a random rotation. Examples for target and foil stimuli are shown. In both tasks, the target stimulus 

rotation was chosen randomly. 

 

Figure 2: Stimulus generation and similarity metrics. (A) To randomly generate ten-sided shapes 

(decagons), we assigned one out of 10 evenly-spaced numbers (from 0.28 to 1) randomly to each corner. These 

values were used to determine the distance from each corner to the center. All points were 36° radial angle apart 

from each other relative to the center. The shapes were then recentered and resized to control for slight variations 

across different stimuli in center-of-mass and surface area. Shapes were shown in white on a black circular patch. 

(B) For the subsequent task, we estimated shape similarity using two different measures. Rotation-specific similarity 

was defined by correlating the corner-to-center distance with each corner aligned in the given view. Rotation-

invariant correlation was computed by shifting the order of corner-to-center distance, and using the maximal 

correlation and thereby implicitly computing the similarity for the shapes when rotated optimally. 
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Figure 3: Behavioral Results. Percentages of correct responses and reaction times (in seconds) are shown 

for each individual subject in the rotation-invariant (grey, left) and the rotation-specific (black, right) task. Filled 

squares indicate the mean per subject and empty circles show data from each of the four runs. 

 

Figure 4: Regions of the human brain carrying rotation-invariant information about the memorized 

shape during the delay period. (A) Lateral views of a semi-transparent rendered surface of the human brain 

showing in green regions which showed significant (one-sample t-test, p < 0.001, cluster-corrected p(FWE) < 0.05) 

statistically significant information (pattern distinctness D) about the memorized shape collapsing across different 

rotational views during the rotation-invariant task. (B) Areas shown in orange for an identical analysis performed on 

data for the rotation-specific task. None of these areas showed significant information about the rotational state of 

the shape in either of the tasks. No additional clusters are visible when the renders are shown from a different 

perspective. 

 

Figure 5: Effect sizes and between-subject variation (SEM) reported for shape-specific (rotation-

invariant) cvMANOVA (A) and shape-specific (rotation-invariant) and rotation–specific classification (B) 

analyses. Data shown mainly for illustrative purposes is extracted from pattern distinctness or classification 

accuracy maps generated by a searchlight-based algorithm. The left panel (A) shows pairs of bars where the left bar 

indicates shape-spefic (rotation-invariant) information for the remembered item and the right bar represents shape-

specific information for the not-rememberred item. In the right panel (B), pairs of bars show shape-specific cross-

classification accuracy for classifiers trained and tested on different rotations of the same shape on the left and 

classification accuracy for a classifier that distinguishes between these different rortations of the same shape on the 

right. The individual plots represent data for occipito-temporal (top), parietal (middle) and frontal (bottom) voxels. 

Voxels from which data is shown are defined from prior analyses (green, white, orange) or prior work and anatomy 

(gray). To provide an unbiased estimate of the effect size, we show data for regions-of-interest that were defined 

using independent data by plotting data from the rotation-invariant task shown in regions defined using the rotation-

specific task and vice versa. For comparisons between the two tasks, we use regions-of-interest defined using the 

collapsed data set. For descriptive purposes only, we also report data from a given task for the regions defined 

within the same data for the sake of completeness. Data within regions defined using the same data cannot be used 

as an unbiased estimator of effect size and the statistics shown are redundant to the analyses defining them. Error 

bars indicate SEM. Asterisks atop of bars indicate significant above chance information (one-sample t-test, p < 

0.05), asterisks atop of solid brackets indicate significant differences in pattern distinctness D for memorized vs. not-

memorized items for the same voxels (paired t-test, p < 0.05), asterisks over dashed brackets show significant 

between-group comparisons for the same voxels between subjects doing the rotation-specific and the rotation-

invariants task (unpaired t-test, p < 0.05). Plus signs over bars and linked to them via a dotted line indicate 

significant correlation of content-specific information and behavioral accuracy (p < 0.05). XYZ(MNI) for occipito-

temporal (left to right, LOC: [-44 -70 -4], [-44 -70 -4], [-28 -88 16], [46 -82 10], [46 -82 10] & [42 -84 -2]; calcarine 

sulcus: [-1 -82 10] & [10 -88 10]), parietal (left to right, PPC: [-22, -72, 50], [-24, -72, 44], [-16, -74, 52], [34, -50, 



41 

 

48], [20, -72, 44] & [34 -62 54]; Precuneus: [-2, -64, 30] & [2, -64, 30]) and frontal (FEF: [-54 8 34], [-52 6 32], [-

20 -12 56], [52 8 32], [52 8 40] & [22 -4 66]; DLPFC: [-44 52 21] & [44 52 21]) regions refer to the voxels from 

which data is extracted from the searchlight maps. Please note that in LOC data for two voxels are plotted twice as 

they were identified as peaks in analyses of the rotation-invariant task data and of all data collapsed. 

 

Figure 6. Regions of the brain showing information about the rotational view of the memorized shape 

during presentation in searchlight classification analysis using data from the rotation-specific task. Medial 

views of a semi-transparent rendered surface of the human brain showing in orange regions which showed above 

chance classification for support vector machine classifiers trained to distinguish between different views of the 

same shape and tested on independent data. The same analysis performed on data from the rotation-invariant task 

yielded no results at the same threshold (see also Figure 5). No additional clusters are visible when the renders are 

shown from a different perspective. 

 

 

Figure 7: Frontal eye field region-of-interest analyses and time-series of invariant content-specific 

information across all areas. (A) Lateral views of a rendered representation of the human brain showing in yellow 

the results of the pattern distinctness analysis probing the recorded fMRI data for rotation invariant representations 

collapsed across the rotation-invariant and the rotation-specific task (one-sample t-test, p < 0.0001, cluster-corrected 

p(FWE) < 0.05). In red we show two overlapping left and right hemispheric frontal eye field regions-of-interests 

(ROIs) which were defined on the group level using an eye movement localizer task (see methods section). (B) ROI 

pattern distinctness probing the frontal eye field for rotation-invariant information about the memorized shape in the 

two tasks. Bar plots show pattern distinctness D. Asterisk indicate significance (one-sample t-test, p < 0.05). (C) 

Delay-period time-series of pattern distinctness D across the three areas found in the main analyses (Figure 4) shown 

to illustrate the temporal evolution of content-specific activity. D-values are extracted from normalized and 

smoothed searchlight maps of D and are shown for statistical peaks reported during the rotation-invariant task 

(green), the rotation-specific task (orange) and a version of the analysis which collapsed across the two tasks (empty 

squares connected by lines). To provide an unbiased estimate of the effect size, we show data for regions-of-interest 

that were defined using independent data by plotting data from the rotation-invariant task shown in regions defined 

using the rotation-specific task and vice versa. For comparisons between the two tasks, we use regions-of-interest 

defined using the collapsed data set. For descriptive purposes only, we also report data from a given task for the 

regions defined within the same data for the sake of completeness. Data within regions defined using the same data 

cannot be used as an unbiased estimator of effect size. 
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