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Abstract 
While specialized, adaptive behavioral traits are ubiquitous in the animal 

kingdom, at least in humans, there are considerable debates on whether the mind 

is primarily characterized by various special-purpose, domain-specific 

mechanisms, or by a few general-purpose, domain-general mechanisms. Drawing 

from research on artificial language learning, associative learning, serial learning, 

executive control and formal linguistics, I argue that neither domain-specificity 

nor domain-generality provide satisfactory descriptions when considering how 

cognitive mechanisms are implemented. I suggest that some cognitive 

mechanisms are “domain-bound” – they are available in multiple domains (and 

thus not domain-specific), but not in other domains (and thus not domain-

general). Hence, these computations can be performed in many domains but not in 

others, can be recruited simultaneously by multiple domains, and, across domains, 

individual abilities with a given computation are relatively uncorrelated. Domain-

bound mechanisms have a straightforward evolutionary interpretation: 

Analogously to the evolution of molecular and morphological structures, 

cognitive mechanisms can become duplicated over evolution, with independent 

copies in different domains. This and previous evidence for the importance of 

duplications for our cognitive abilities call for a revision of the concept domain-

generality, suggesting that, in many cases, mechanisms traditionally seen as 

domain-general might really reflect a collection of local copies of specialized 

mechanisms.  

 
Keywords: Domain-Generality; Domain-Specificity; Domain-Boundedness; 

Artificial Grammar Learning; Duplication; Serial Learning; Statistical Learning; 

Executive Function; Perceptual or Memory Primitives 
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Duplications and domain specificity 

Karl Marx and Adam Smith might differ in their political philosophies, but 

they agree on one thing: division of labor leads to greater efficiency. Does such a 

division of labor also exist in the brain? Are there “domain-specific” 

computational mechanisms that are constrained to operate in only one domain 

(e.g., face processing) and others in other domains (e.g., language)? Are there 

“domain-general” mechanisms that can operate in all domains alike? For 

example, are there domain-specific mechanisms involved in language acquisition 

(Chomsky, 1980; Fodor, 1983; Lenneberg, 1967), or does language acquisition 

rely on computational mechanisms available in essentially any domain (Aslin & 

Newport, 2012; McClelland, Rumelhart, & Group, 1986; Seidenberg, 1997)? 

Here, I propose a new view on such questions, whereby cognitive 

mechanisms can become duplicated over the course of evolution (see also Barrett, 

2012; Chakraborty & Jarvis, 2015; Endress, Nespor, & Mehler, 2009; Kaas, 1989; 

Marcus, 2004; Markram et al., 2004; Samuels, 2000; Shukla, 2005; Sperber, 

1994, for related proposals). This allows independent copies of a mechanism to be 

available in multiple domains, without being fully domain-general. I will first 

provide several case studies that seem to require duplication accounts of some 

sort. For example, humans and other animals can detect identity-relations (e.g., 

noticing that the last syllable is repeated in a sequence such as dubaba). While 

identity-relations seem to be detected by a specialized mechanism, this 

mechanism is available in many domains and species, from language to vision 

and olfaction, and from humans to ducklings to bees, and thus cannot be domain- 

or human-specific (see below for a more detailed review and specific references). 
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However, even in the domain of language, identity-relations can be computed for 

only some classes of items but not for others, an unexpected result if the identity-

detector were truly domain-general. However, if cognitive mechanisms can 

become duplicated over evolution, the mechanism detecting identity-relations 

might be what Endress, Nespor, et al. (2009) called “domain-bound:” There might 

be distinct and independent instances of the mechanism detecting identity-

relations for language, vision, olfaction and so on. (Hereafter, I will use the term 

identity-detector to refer to an instance of the mechanism detecting identity-

relations.) Further, I will argue that each of these domains may have several 

independent identity-detectors and that identity-detection might possibly occur 

through fairly simple circuit motifs. If so, these identity-detectors would allow 

identity-relations to be detected in various domains; each of the individual 

identity-detectors, in contrast, is domain-specific.1  

Following the discussion of identity-relations, I will turn to other case 

studies from statistical learning to executive function, and suggest that the 

situation is similar in these cases: mechanisms that are usually considered 

domain-general might reflect a set of independent, local mechanisms.  

1. What is a domain? 

The definition of a domain is critical for the following discussion, and 

helps illustrating some confusion in the literature. From an informational point of 

view, a domain is a distinct class of information. This class of information is 

  
1

 The term domain-bound mechanism is somewhat of an oxymoron. These mechanisms 
are domain-specific instantiations of mechanisms that perform the same kind of computation. For 
consistency with earlier papers, however, I will use the term “domain-bound” mechanisms.  
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recurrent and ecologically relevant in an organism’s mental life. As a result, the 

organism has evolved mechanisms that process this kind of information (see 

Hirschfeld & Gelman, 1994, for a similar definition), though these mechanisms 

might come to process different kinds of information than what they evolved to 

process (Dehaene & Cohen, 2007; Gould & Vrba, 1982; Sperber, 1994). For 

example, given that faces are a critical source of information in social species, 

they constitute a recurrent class of information, which might have led to the 

evolution of mechanisms that deal with this class of information (Bonatti, Frot, 

Zangl, & Mehler, 2002; Kanwisher, McDermott, & Chun, 1997; Reid et al., 2017; 

Sugita, 2008; van den Hurk, Van Baelen, & Op de Beeck, 2017, but see e.g., 

Gauthier, Skudlarski, Gore, & Anderson, 2000; Gauthier, Tarr, Anderson, 

Skudlarski, & Gore, 1999). Under this view, mechanisms that are domain-general 

can apply to all domains alike, and mechanisms that are domain-specific process 

information only in a single domain.  

However, there are a number of problems with this definition. First, it 

leads to a confusion between the computations a mechanism implements, and the 

implementations themselves (Marr & Nishihara, 1992). For example, some 

computations we perform on faces might be identical to those we perform on 

xylophones (e.g., we might encode the relative spatial positions of object parts for 

either class of stimuli). These computations might well be implemented in distinct 

brain areas, and might thus be independent. Given the information-based 

definition above, these computations would thus count as domain-general 

although the instantiations of these computations are domain-specific, and reside 

as independent instantiations in whatever brain regions process faces and 
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xylophones (see also Nozari & Novick, 2017, for further arguments based on 

monitoring in speech perception and production that we need to distinguish 

notions of domain-generality based on (i) the similarity of the information that is 

processed and (ii) the brain regions that are activated by the corresponding 

processes). As a result, domains cannot be defined exclusively based on the type 

of information that is processed. A viable definition of a domain needs to take 

into consideration how the information is processed in terms of the underlying 

implementations. 

Second, the definition of a domain above is not fine-grained enough to 

account for the hierarchical structure of processing. For example, language is 

clearly a domain, but so is phonology, and, within phonology, prosody. Given 

that, when we process prosodic information, it comes packaged with phonological 

as well as linguistic information, a pure information-based definition of domains 

cannot account for this hierarchical domain structure. To be sure, this is not an 

inherent problem of an information-based definition of a domain. However, given 

that the kinds of domains that populate discussions of domain-specificity tend to 

be fairly broad (e.g., language, face processing, Theory of Mind,…), the kinds of 

domains that are usually discussed do not reflect the hierarchical structure of 

processing.  

To avoid such problems, I opt for a definition that integrates the 

information-based notion of domain with the mechanism-based notion of module, 

that is, the set of mechanisms that process the information in a domain (see 

Samuels (2000) for a similar distinction between what he calls “computational 

modules” and “Chomskian modules”). Specifically, in the discussion below, a 
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“domain” refers to a set of implementations of computational mechanisms that 

process a certain, ecologically recurring class of information, and that, together, 

fulfill an ultimate function in our interactions with the environment. Examples 

might include face recognition, object recognition, music or language. A domain 

is a set of implementations of processing mechanisms that specifically operate on 

the kind of information from which the domain takes its name. 

For example, if face recognition is a domain, its constituent mechanisms 

specifically process face-related information. Even if we process relative spatial 

positions of object parts for both faces and xylophones, the xylophone-related 

instantiation of this mechanism would not be part of the face-domain. Further, 

some processes operate on different kinds of information; for example, face and 

xylophone processing both rely on early visual information processing. These 

shared processes are not part of the domain of face recognition, because they are 

not specifically involved in face processing. 

This notion is similar to Fodorian modules (Fodor, 1983; see also 

Hirschfeld & Gelman, 1994) except that it is defined in terms of functions and 

processes rather than in terms of content, and that it is agnostic with respect to the 

degree of automaticity of a given process (see Sperber, 1994, for a similar view).  

Importantly, this definition is hierarchical. Just as every goal can (but need 

not) have sub-goals, any (ultimate) function can (but need not) have sub-

functions. Domains thus can have sub-domains as well. For example, patients 

with brain damage can have dissociable deficits within the language domain (e.g., 

problems of language perception vs. production, of grammar vs. word-finding 

etc.). These functions thus define at least partially independent sub-domains, and 
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presumably have sub-domains on their own. At least at the genetic level, such a 

hierarchical modular organization might be crucial to the evolvability of 

organisms (Nothwang, 2016). Further, if the output of modules generally serves 

as the input to other modules, such hierarchical processing also increases the 

flexibility of cognitive operations (Sperber, 1994).
2
  

2. Duplication in evolution 

2.1. The importance of duplication in evolution 

The proposal below relies on the duplication of cognitive mechanisms. 

Before presenting my (cognitive) case studies, I will thus briefly outline the role 

of duplications in evolution. The importance of the duplication of genes, whole 

genomes and morphological structures has long been recognized in evolutionary 

biology (Allman & Kaas, 1971; Chakraborty & Jarvis, 2015; Hurley, Hale, & 

Prince, 2005; Innan & Kondrashov, 2010; Kaas, 1989; Magadum, Banerjee, 

Murugan, Gangapur, & Ravikesavan, 2013; Ohno, 1970; Taylor & Raes, 2004; J. 

Zhang, 2003). Innan & Kondrashov (2010) argued that “hardly any aspect of 

genome evolution or function is not somehow linked to gene duplications, which 

occur in all kinds of life forms and have taken place since before the last universal 

common ancestor.” For example, in catarrhines (old-world monkeys and apes), 

  
2

 To illustrate the increased flexibility due to several levels of representation, Sperber 
(1994) uses the example of the representations we might maintain of animals. “What you are told 
about cats is integrated with what you see of cats, in virtue of the fact that the representation 
communicated contains the concept CAT. But now you have the information in two modes: as a 
representation of cats, handled by a first-order conceptual module, and as a representation of a 
representation of cats, handled by the second- order metarepresentational module. That module 
knows nothing about cats but it may know something about semantic relationships among 
representations” (p. 61, emphasis added). 
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trichromatic color vision evolved from dichromatic color vision by duplication of 

an opsin (Jacobs, 2009; Surridge, Osorio, & Mundy, 2003), and mammalian 

sound localization circuits for high frequencies might be duplicates of earlier 

circuits (Nothwang, 2016). In fact, just since humans split from chimpanzees, up 

to 1,800 gene duplications took place in the human lineage (Taylor & Raes, 2004; 

J. Zhang, 2003). 

Such results raise the possibility that duplications are important for the 

evolution of cognitive abilities as well, and in some form or another, different 

authors have made similar proposals (Barrett, 2012; Chakraborty & Jarvis, 2015; 

Endress, Nespor, et al., 2009; Kaas, 1989; Marcus, 2004; Shukla, 2005; Sperber, 

1994). For example, Pinker (1998) argued that  

“evolutionary change often works by copying body parts and tinkering 

with the copy. […] A similar process may have given us our language of 

thought. Suppose ancestral circuits for reasoning about space and force 

were copied, the copy’s connections to the eyes and muscles were severed, 

and references to the physical world were bleached out. The circuits could 

serve as a scaffolding whose slots are filled with symbols for more 

abstract concerns like states, possessions, ideas, and desires. The circuits 

would retain their computational abilities […]. When the new, abstract 

domain has a logical structure that mirrors objects in motion […], the old 

circuits can do useful inferential work” (p. 355/356). 

In line with this speculation, more recent research has shown that entire 

brain pathways might indeed become duplicated (Chakraborty & Jarvis, 2015; 

Nothwang, 2016). For example, in vocal-learning bird species, the brain regions 
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involved in song learning might be duplicates of earlier motor regions, and at least 

some parrot species and humans might have yet another duplicate (Chakraborty & 

Jarvis, 2015; Chakraborty et al., 2015). Closer to home, Belyk and Brown (2017) 

proposed that duplicated brain areas might be important for the evolution of 

human speech control as well. They noted that humans have two rather than one 

laryngeal motor areas in each hemisphere and proposed that the more dorsal area 

evolved either as a duplicate of the (ancestral) ventral laryngeal motor area (and a 

subsequent migration of the duplicate to its current location) or as a duplicate of a 

non-vocal motor area (and a subsequent change in the connectivity pattern of the 

duplicate). 

There are also computational reasons for believing that duplicated neural 

circuits might be used across domains. In machine learning, it has been shown 

that classification performance in an artificial neural network improves by using 

connectivity patterns from a network trained on a classification problem in a 

different domain (Caruana, 1997; Donahue et al., 2014). As neural circuits are 

tuned by evolution, duplicated neural circuit might also be computationally 

effective in a different domain, though they likely require fine-tuning. 

2.2. Functional integration of duplicated structures 

Duplicated structures are useful only in so far as they are functionally 

embedded in the rest of the organism. However, this is often the case (see e.g., 

Chakraborty & Jarvis, 2015; Hurley et al., 2005, for reviews). In fact, cell types 

and connectivity are often conserved even if they end up in fairly different 

structures in different animals (Briscoe & Ragsdale, 2018). For example, birds 

and other reptiles do not share the mammalian six-layered neocortex. Still, they 
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share basic circuit types, with some neurons receiving sensory input, others 

providing output to the brain stem, and still others act as relay between input and 

output neurons. These basic circuits are conserved due to a conserved network of 

transcription factors, but can end up in structures that differ vastly across taxa 

such as the mammalian neocortex and the avian dorsal ventricular ridge. They can 

also have strikingly different morphology: in the mammalian neocortex, 

excitatory cells tend to be pyramidal while they have stellate shape in the pallium 

in birds. Briscoe and Ragsdale (2018) sum up this situation as follows: 

 “The core circuits of the pallium [in mammals, birds and other reptiles] 

are conserved, but pallial architectures and the spatiotemporal regulation 

of cell type specification are not. These latter levels of biological 

organization can shift over evolutionary time, so long as sensory 

information gets to the pallium, gets integrated, and elicits an appropriate 

output. Some transcription factor molecules, such as the hypothesized 

input cell determinants, exhibit a conserved correlation with defined 

neuronal cell types across species.”  

A more concrete and well-understood case of how duplicated structures 

can be functionally integrated is the evolution of trichromacy in old-world and 

Howler monkeys (see e.g., Jacobs, 2009; Surridge et al., 2003, for reviews). As 

mentioned above, trichromacy evolved from dichromacy through duplication of 

an opsin. Both the ancestral copy and the duplicate are functional due to a fairly 

simple mechanism. Both copies of the gene are “nearby,” and their expression is 

controlled by a common control region. In each cone, this control region thus 
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stochastically enables expression of only one of the opsins.3 As a result, some 

cones express the ancestral copy, and others the duplicate.  

Another route that leads to (presumably) functional duplicates is the 

duplication of entire brain pathways. In fact, if entire brain circuits are duplicated 

by duplicating transcription factors that control both the number and the 

placement of these circuits within the brain (Chakraborty & Jarvis, 2015; 

Chakraborty et al., 2015), the resulting duplicates would be expected to be 

functionally integrated.4  

2.3. Duplication versus exaptation 

It should be noted that the idea of duplication is related to but different 

from the concept of exaptation (Gould & Vrba, 1982). An exapted trait is co-

opted for a new function that is different from the one (if any) for which it has 

been selected. A classic example involves the evolution of bird feathers. Early 

birds had probably only limited flight abilities. However, even non-avian 

dinosaurs were covered in feathers, suggesting that feathers evolved for other 

  
3

 In Howler monkeys, the control region was duplicated as well. 
4

 Functionally duplicated structures do not even always require duplicated genes. 
Trichromacy provides an example for this possibility as well. In primates, the gene for one opsin 
resides on an autosomal (i.e., non-sex) chromosome, while the gene for the opsin that is duplicated 
in old-world monkeys resides on the X chromosome. Critically, this latter opsin is polymorphic. 
As a result, in females whose X chromosomes differ (i.e., who are heterozygous), cones can 
express the opsin from the non-sex chromosome, or either of the two alleles from the X 
chromosome. Heterozygous females can thus be trichromates in the absence of a duplicated opsin. 
Likewise, in zebra fish, mutations (rather than duplications) of a regulatory gene can result in extra 
copies of functional neurons that drive a behavioral escape response (Liu, Gray, Otto, Fetcho, & 
Beattie, 2003), and even injection of mRNA (the type of RNA based on which ribosomes 
synthesize proteins) from regulatory genes into embryos is sufficient for the development of 
functional extra copies of neurons mediating this escape response (Hale, Kheirbek, Schriefer, & 
Prince, 2004). Hence, duplicated structures are often functional, even when they do not result from 
duplication at the genetic level. 
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purposes such as thermal insulation or display  (Brusatte, O’Connor, & Jarvis, 

2015). As a result, by the time birds evolved from dinosaurs, early birds were 

likely feathered. Feathers thus were not selected for flight in birds, and are rather 

an exaptation for flight (Brusatte et al., 2015; Gould & Vrba, 1982). 

Exaptation has also been proposed for cognitive abilities, such as the 

recycling of originally visual brain areas for reading (Dehaene & Cohen, 2007), of 

mechanism tracking the number of items for symbolic mathematics (Dehaene & 

Cohen, 2007; Halberda, Mazzocco, & Feigenson, 2008), or of serial memory 

mechanisms for language acquisition and use (Endress, Nespor, et al., 2009; 

Fischer-Baum, Charny, & McCloskey, 2011). For example, the “Visual Word 

Form Area,” a region in the left lateral occipitotemporal sulcus, is specifically 

activated when reading visual words (Dehaene & Cohen, 2007); this region might 

have been exapted for reading in humans either because, in non-human primates, 

it has a pattern of connectivity that makes it particular conducive for processing 

visual symbols or because it might be involved in the analysis of visual shapes 

(Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015). 

In contrast to exapted traits, duplicated traits first become duplicated. 

Then, they might retain their original function (or a sub-function thereof), or 

acquire novel functions either through adaptation or exaptation (though, in the 

case of gene duplications, it is debated to what extent both copies of the 

duplicated gene retain a function; M. Lynch & Force, 2000). 

2.4. The conglomerate analogy of duplicated structures 

Figure 1 presents an analogy to illustrate how these evolutionary concepts 

help clarifying cognitive concepts such as domain-specificity. In this analogy, the 
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brain is like a company that manufactures different products in different factories 

(e.g., motorcycles in a motorcycle factor, and pianos in a piano factory); these 

factories correspond to domains or modules. However, each factory requires some 

common functions such as cleaners. If the cleaners are “domain-specific,” they 

exist only in one of the factories, with no cleaners in the other factories. If the 

cleaners are “domain-general,” they are located outside of the factories (e.g., at 

the level of the parent company or with a contractor), and enter the factories only 

to perform their services. Lastly, if the cleaners are domain-bound, each factory 

has its own cleaners. In contrast, an exaptation would be the equivalent of the 

factory workers using, say, a shovel to clean the factories; the shovel-wielding 

workers might be domain-general, domain-specific or domain-bound. 

In addition to existing only in a single factory, there is a second way in 

which cleaners can be domain-specific. All factories might use independent 

cleaners, but the cleaners might operate differently in different factories. For 

example, they might use mops in some factories and vacuum cleaners in others. In 

other words, while their function is identical across factories, the implementation 

of this function differs.  In evolutionary terms, such a situation might arise when 

the mechanisms evolved independently in different domains (e.g., through a form 

of within-species convergent evolution), and, across species, similar functions are 

sometimes implemented using different computational principles (e.g., auditory 

source localization in mammals vs. barn owls; Grothe, 2018).5 

  
5

 It is conceivable that some factories share the same cleaners, while other factories have 
a different set of cleaners (or no cleaners altogether). Psychologically speaking, this might occur 
for at least five reasons. First, the cleaners might not be a proper part of the factory (or domain 
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Below, I will provide evidence from behavioral studies that, I argue, are 

best explained if cognitive mechanisms can become duplicated. I will mostly 

focus on descriptions at the psychological level, simply because we don’t know 

how the relevant mechanisms are implemented at the neuronal level, let alone 

how they evolved. However, I will also review some biologically realistic models 

that might account for some of the case studies below, and argue that these 

duplicated mechanisms might reflect potentially simple circuits that might well be 

found in many brain regions. 

 

 
according to the definition above), but rather be located at the level of the parent company; 
critically, however, the parent company would send the cleaners only into a sub-set of its factories. 
Psychologically speaking, this might correspond to a domain-general set of processes with top-
down connections to only certain domains, either because some domains are not “connected” to 
these domain-general processes to begin with, or because the connections were lost due to pruning 
(see Section 7 below). Second, and relatedly, some lower-level processes might have bottom-up 
connections to some domains, but not others. For example, even if they represent different 
domains, face processing and visual object processing both require visual input; in contrast, visual 
bottom-up input is less important for, say, music processing.  

In contrast to the first two possibilities, only a subset of the factories might have cleaners 
even when the cleaners are part of the corresponding domain. This might arise either because, 
initially, all factories have domain-bound cleaners but then some factories lose them, or because, 
initially, no factory has cleaners, but some factories develop cleaners from the personnel they 
already have. Both possibilities are psychologically attested. First, there is evidence, both at the 
synaptic (Huttenlocher & Dabholkar, 1997) and at the behavioral level (Hannon & Trehub, 2005; 
Pascalis, de Haan, & Nelson, 2002; Polka & Werker, 1994; Werker & Tees, 1984) that certain 
abilities that are present early in life are lost in the absence of relevant experience (see Section 7). 
Alternatively, in its initial stage, none of the factories might have cleaners, but all have employees 
who have the potential and tools to be clearers; in some factories, these employees might thus 
become specialized for cleaning, similar to how certain brain regions become specialized for 
reading when provided with relevant experience such as schooling (Dehaene et al., 2010; Saygin 
et al., 2016 and Section 7). 

Finally, it is also possible that cleaners arise de nuovo only in certain domains. 
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Domain-specific Domain-general Domain-bound 

 

Figure 1: Illustration of the concepts domain-specificity, domain-generality 

and domain-boundedness, using the analogy of a company with factories that 

manufacture different products (e.g., a motorcycle factory and a piano 

factory). All factories require cleaners. (Left) “Domain-specific” cleaners 

exist only in one of the factories, but not in the other one. (Middle) “Domain-

general” cleaners are located outside of the factories (e.g., at the level of the 

parent company or with a contractor), and enter the factories only to clean 

them. (Right) If the cleaners are domain-bound, each factory has its own 

cleaners. Using a shovel to clean the factories would be the equivalent of an 

exaptation. 

 

3. The case of identity-relations 

So far, I argued that cognitive mechanisms might (i) be specific to a 

domain (and thus domain-specific), (ii) exist as a single instantiation that is 

common to all domains (and thus be domain-general), or (iii) have independent 

instantiations in different domains (or thus be domain-bound). Further, I argued 

that the latter possibility would be consistent with the duplication of cognitive 

mechanisms. I will now review the first cognitive case study for this possibility: 

the detection of identity-relations. In syllable sequences such as dubaba, even 
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seven-month-olds notice that the last two syllables are identical, and extend this 

identity-relation to new items. Specifically, Marcus, Vijayan, Rao, and Vishton 

(1999) familiarized seven-months-old infants with syllable sequences such as 

ledidi, wijeje and so on (where the last two syllables were repeated, hereafter 

called an ABB pattern). Following this a familiarization, infants were more 

familiar with novel sequences with novel syllables that shared the identity-pattern 

(e.g., bapopo) compared to novel syllable sequences that had a different pattern 

(e.g., babapo; hereafter called an AAB pattern). They similarly learned AAB 

patterns. Infants thus learned an open-ended regularity based on identity-patterns.  

3.1. How are identity-relations computed? 

According to Marcus et al. (1999), infants learned abstract relationships 

among variables. For example, if the three syllables in a triplet are represented by 

three variables X, Y, and Z, the ABB pattern corresponds to the algebraic relation 

Y=Z. In contrast, based on simulations with artificial neural networks, different 

authors proposed that infants do not need to represent open-ended regularities 

when learning such patterns, and might just exploit statistical regularities of 

various sorts (e.g., Altmann, 2002; Christiansen & Curtin, 1999; McClelland & 

Plaut, 1999; Seidenberg & Elman, 1999; see (Alhama & Zuidema, 2019), for a 

recent review)  

However, identity-relations might be detected by a specialized “repetition-

detector.” Specifically, Endress, Dehaene-Lambertz and Mehler (2007) used 

triplets of piano tones to ask whether participants could learn the identity-based 

rules ABB and ABA and other very simple rules not based on identity-relations 

(i.e., low tone-high tone-middle tone vs. middle tone-high tone-low tone). They 
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showed that learners relying on general algebraic relations between variables 

should learn both types of structures equally well, and that the statistical models 

of Marcus et al.'s (1999) data (e.g., Altmann, 2002; Christiansen & Curtin, 1999; 

McClelland & Plaut, 1999; Seidenberg & Elman, 1999) either predict that both 

types of structures should be learned equally easily, or that the non-identity-

patterns should be easier to learn (depending on the specific models). 

In contrast to both classes of models, participants were much better at 

learning identity-patterns than non-identity-patterns, suggesting that identity-

patterns might be detected by a specialized mechanism. Further results showed 

that Bayesian general-purpose learners (Frank & Tenenbaum, 2011) do not 

explain the learning of identity-relations either (Endress, 2013). If one adopts the 

very assumptions that allow Bayesian learners to account for Endress, Dehaene-

Lambertz and Mehler's (2007) and other data, one ends up with predictions that 

are either empirically refuted or highly implausible at best (see Endress, 2013, 

2014, for discussion). Identity-patterns thus seem to be processed by some sort of 

specialized repetition-detector. 

Identity-relations play an important role in many languages. For example, 

Semitic languages such as Arabic and Hebrew have constraints governing which 

consonants can occur together in a word. These constraints are based on identity-

relations among these consonants (e.g., Berent & Shimron, 1997; Frisch, 

Pierrehumbert, & Broe, 2004; McCarthy, 1979). Other languages use 

reduplications for grammatical purposes (McCarthy & Prince, 1999). For 

example, in Marshallese, “takin” means sock, while “takinkin” means to wear 

socks (Moravcsik, 1978). Such reduplication occur, in some form or another, in 
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85% of the world’s languages (Rubino, 2013).  

Despite their importance for language, identity-relations can be perceived 

in many non-linguistic domains, and by many non-linguistic animals. Humans can 

compute identity matches for speech syllables, tones and visual objects (Dawson 

& Gerken, 2009; Endress et al., 2007; Marcus, Fernandes, & Johnson, 2007; 

Marcus et al., 1999; Saffran, Pollak, Seibel, & Shkolnik, 2007), and are sensitive 

to the identity-relations from birth (Antell, Caron, & Myers, 1985; Gervain, 

Berent, & Werker, 2012; Gervain, Macagno, Cogoi, Peña, & Mehler, 2008), 

though such patterns might be easier to recognize with speech material (Marcus et 

al., 2007). Bees can compute identity-relations for colors, gratings and odors 

(Giurfa, Zhang, Jenett, Menzel, & Srinivasan, 2001). Rats and various non-human 

primate species as well as various bird species can compute such relations for 

speech and non-speech stimuli (de la Mora & Toro, 2013; Hauser & Glynn, 2009; 

Murphy, Mondragon, & Murphy, 2008; Neiworth, 2013; Pepperberg, 1987; 

Smirnova, Zorina, Obozova, & Wasserman, 2015; Yamazaki, Suzuki, Inada, Iriki, 

& Okanoya, 2012; but see Spierings & ten Cate, 2016; van Heijningen, Chen, van 

Laatum, van der Hulst, & Ten Cate, 2013, for evidence that these relations are not 

equally salient to all species), and ducklings and chicks even imprint to abstract 

identity-relations (Martinho & Kacelnik, 2016; Versace, Spierings, Caffini, Ten 

Cate, & Vallortigara, 2017, but see Hupé, 2017; Langbein & Puppe, 2017).  

At first sight, these results seem to suggest that identity-relations are 

computed by a species- and domain-general mechanism, that is, a mechanism that 

has access to all domains and modules. However, at least in humans, a closer 

examination casts doubt on this hypothesis even for linguistic stimuli. Human 
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adults and infants appear to readily learn identity-relations with vowels but not 

consonants, and seem unable to learn identity-patterns carried by syntactic 

categories. 

3.2. Are identity-relations really domain-general? The case from language 

3.2.1. The case of vowels and consonants  

Adult speakers are better at detecting identity-patterns on vowels than on 

consonants, to the extent that they fail to detect the patterns on consonants (Toro, 

Bonatti, Nespor, & Mehler, 2008). In these experiments, participants were 

familiarized with a sequence of words in which either the vowels or the 

consonants conformed to an identity-pattern (e.g., words like tapena and bodako, 

where the first and the last vowel were identical, or words like banubE and tineto, 

where the first and the last consonant were identical). Participants learned the 

identity-pattern over vowels but not over consonants (Toro, Bonatti, et al., 2008), 

even when the salience of the vowels was much reduced (Toro, Shukla, Nespor, 

& Endress, 2008). Similar results have been observed with human infants 

(Hochmann, Benavides-Varela, Nespor, & Mehler, 2011; Pons & Toro, 2010).  

In contrast, rats learn identity-relations equally well on vowels and on 

consonants (de la Mora & Toro, 2013), suggesting that consonants do not have an 

intrinsic acoustic property that makes learning identity-relations particularly 

difficult.  

According to Toro, Bonatti, et al. (2008), the vowel advantage for 

generalizations is due to the role of vowels in grammar, because vowels might 

play an important role for grammar, while consonants might be more important 

for lexical processing (Nespor, Peña, & Mehler, 2003). Given that learning 
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identity-patterns requires rule-like generalizations, they might plausibly be linked 

to grammar, and thus show a vowel advantage (but see the next section for 

evidence that identity-patterns might not be linked to grammatical processes). 

Irrespective of whether this interpretation is correct, these results show that 

learning identity-relations is much easier for some classes of linguistic stimuli 

than others, a result that is problematic for a fully domain-general identity-

detector. 

3.2.2. The case of syntactic categories 

While identity-relations can be learned over a variety of stimuli, adult 

speakers seem unable to learn them over syntactic categories (Endress & Hauser, 

2009). Specifically, participants were familiarized with word triplets conforming 

to either an AAB pattern (noun-noun-verb triplets such as town-leg-choose and 

verb-verb-noun triplets such as choose-speak-leg) or an ABB pattern (noun-verb-

verb or verb-verb-noun). Following this, they were presented with AAB or ABB 

test triplets made from new words, and had to decide which one was like the 

familiarization items. Surprisingly, participants failed to discriminate between 

“correct” and “incorrect” patterns. 

In a desperate attempt to make participants learn these patterns, Endress 

and Hauser (2009) primed them on nouns and verbs by having participants first 

categorize words into nouns and verbs; results showed that they performed at 

ceiling. Then they told them to watch out for a pattern of nouns and verbs, and 

finally familiarized them with the triplets. Even under these conditions, most 

participants failed to notice the patterns.   

This failure is surprising because control experiments show that all the 
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building blocks for learning the patterns are in place. For example, participants 

readily access the categories. They perform at ceiling when categorizing words, 

and learn other sequential regularities about the categories (e.g., whether triplets 

start or end with nouns). Further, participants learn identity-relations over non-

syntactic categories: When semantic categories were used (e.g., animals and 

clothes), or phonological categories, listeners readily learned the identity-

relations. Nor is the failure due to ambiguities between nouns and verbs specific 

to English (i.e., that a verb like “run” can be used as a noun as well): Hungarian 

speakers (where such ambiguities do not exist) show the same pattern of failure. 

It turned out that participants could learn the identity-relations over 

syntactic categories only when the resulting sentences had a syntactic 

interpretation in terms of subjects, objects and so on. For example, when noun-

noun-verb (e.g., baby-water-juggle) and adjective-adjective-noun (e.g., clever-

fragile-water) triplets were used for the AAB pattern, participants readily learned 

the corresponding pattern. While the adjective-adjective-noun order corresponds 

to a legal English construction, participants also learned such syntactically when 

they did not conform to English word order. For example, they readily learned 

ABB patterns such verb-noun-noun or noun-adjective-adjective. In contrast, when 

the triplets had no obvious syntactic interpretation (as in the AAB patterns verb-

verb-noun and adjective-adjective-verb, and the ABB patterns noun-verb-verb 

and verb-adjective-adjective), participants failed as before.  

The kinds of regularities that can be learned with syntactic categories is 

thus highly constrained (Moro, 2008). Most relevant for the current purposes, 

there seem to be surprising holes in our ability to learn such structures, a result 
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that is at odds with views that such relations are computed by domain-general 

mechanisms. Still, they can be computed in variety of domains, including tones, 

odors, visual stimuli and linguistic items, a result that is problematic if they were 

domain-specific. 

3.2.3. Are there multiple identity-detectors? 

One explanation for these puzzling results involves independent identity-

detectors for visual, olfactive and tonal stimuli; within the language faculty, there 

might be independent identity-detectors for vowels, syllables, semantic categories 

and so on, but not for syntactic categories. If so, identity-relations can be detected 

in all domains that have an identity-detector, but not in domains that lack such a 

mechanism. 

Within the domain of language, some support for the idea that the mind is 

equipped with multiple, independent identity-detectors comes from formal 

linguistics, where a very similar idea has been proposed to explain the admissible 

patterns of consonant repetitions in Semitic languages. Specifically, two identical 

consonants can occur at the end of a word root, but not at its beginning (Berent & 

Shimron, 1997; Frisch et al., 2004; McCarthy, 1979). The traditional explanation 

involves two independent computations of identity-relations, one at the 

phonological level, and one at the morphological level. At the phonological level, 

consonant repetitions are illegal in word roots (McCarthy, 1979). However, some 

roots have only two consonants rather than three. This creates a problem at the 

morphological level, where the standard word pattern has three consonant slots. 

As a result, one additional consonant must be added, and this consonant will be a 

repetition of the second consonant, leading to a consonant repetition in the word’s 
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final syllable. Such theories thus assume that there are independent mechanisms 

sensitive to identity-relations at the morphological and at the phonological level. 

Identity-relations might thus be computed by what we called “domain-

bound” mechanisms (Endress, Nespor, et al., 2009), consisting of independent 

copies of mechanisms in different domains with similar computational functions; 

these copies might have arisen through duplication over evolution.  

This view is also made plausible by the observation that identity-relations 

might be detected using fairly simple neuronal circuits.6 For example, Endress 

(under review) proposed a simple disinhibition-based circuit that might act as an 

identity detector. This idea is based on the growing evidence for the importance of 

“disinhibitory” circuits (where inhibitory neurons are inhibited by other neurons) 

in a variety of brain regions and taxa (Chevalier & Deniau, 1990; Goddard, 

Mysore, Bryant, Huguenard, & Knudsen, 2014; Hangya, Pi, Kvitsiani, Ranade, & 

Kepecs, 2014; Koyama et al., 2016; Koyama & Pujala, 2018; Lee, Kruglikov, 

Huang, Fishell, & Rudy, 2013; Mysore & Knudsen, 2012; Pfeffer, Xue, He, 

Huang, & Scanziani, 2013; Pi et al., 2013; Xu, Jeong, Tremblay, & Rudy, 2013), 

and in a variety of behaviorally important functions, including attention (van Der 

Velde & de Kamps, 2001; S. Zhang et al., 2014), gain control (Fu et al., 2014), 

discriminations of stimulus strength (Machens, Romo, & Brody, 2005; Miller & 

  
6

 There are a number of biologically realistic models of identity-relations, many of which 
were developed in the context of memory processing(Arena et al., 2013; Carpenter & Grossberg, 
1987; Cope et al., 2018; Engel & Wang, 2011; Hasselmo & Wyble, 1997; Johnson, Spencer, 
Luck, & Schöner, 2009; Ludueña & Gros, 2013; Wen, Ulloa, Husain, Horwitz, & Contreras-Vidal, 
2008). However, they do not explain at least one of two critical features of grammar learning: they 
either do not generalize to unseen exemplars or they require explicit training with labeled counter-
examples (see Endress, under review, for a review). 
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Wang, 2006), categorization (Goddard et al., 2014; Kusunoki, Sigala, Nili, 

Gaffan, & Duncan, 2010; Mysore & Knudsen, 2012), behavioral response 

selection (Jovanic et al., 2016; Zhao et al., 2019), associative learning (Letzkus et 

al., 2011), plasticity (Fu, Kaneko, Tang, Alvarez-Buylla, & Stryker, 2015) and 

social behavior (Marlin, Mitre, D’amour, Chao, & Froemke, 2015; Owen et al., 

2013). 

Endress’ (under review) model acts as a feature detector for identical 

relations. When this circuit is (sequentially or simultaneously) presented with two 

different items, these items are filtered out through inhibition. In contrast, when 

two identical items are presented, either sequentially one after another or 

simultaneously in the same display, the repetition of the items leads to a 

suppression of the inhibitory filtering. As a result, the repeated items can be 

propagated for further processing. While there is no direct experimental support 

for this model yet, it still suggests that simple and ubiquitous circuits might act as 

identity-detectors. 

3.3. Are duplicates hierarchically organized?  

The view that the mechanisms detecting identity-relations exist in 

independent copies appears to be problematic in the light of findings that infants 

and even bees can generalize identity-relations across modalities (Giurfa et al., 

2001; Marcus et al., 2007), and that presenting multimodal items helps infants 

generalize such patterns (Frank, Slemmer, Marcus, & Johnson, 2009). While such 

results seem unexpected if an identity-detector were really domain-bound, they 

might reflect the hierarchical nature of perception and cognition. For example, a 

repeated syllable is presumably also a repeated auditory object, which is also a 
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repeated object. If each of these hierarchical levels has its own identity-detector, 

cross-modal generalizations might be possible (see also Sperber, 1994, for the 

proposal that the output of modules might be the input of other modules). In line 

with this view, seven-month-olds can learn hierarchical identity-patterns over 

identity-patterns (Kovács & Endress, 2014; see also Basirat, Dehaene, & 

Dehaene-Lambertz, 2014, for related results). For example, when exposed to 

triplets of syllable triplets such as dubadu lomomo zavuvu, infants appear to 

notice that the last two words have identical identity-patterns. 

While it is an open question to what extent duplicate cognitive 

mechanisms are hierarchically organized, this view would fit well with proposals 

that novel cognitive functions can arise from the duplication of entire brain 

pathways (Chakraborty & Jarvis, 2015; Kaas, 1989). If a brain pathway becomes 

duplicated, its underlying computational functions become duplicated as well. 

Subsequently, individual computational functions (e.g., the detection of identity-

relations) can be lost independently in different duplicates, either over evolution 

or, as I will argue below, over development.  

This leads to the question of whether there are any truly domain-general 

mechanisms, where a single processor has access to a large number of domains. 

Three prime candidates come to mind: associative learning, a sensitivity to 

sequence-edges (i.e., the first and last position; below, edges refer to sequence 

edges and not visual edges) and executive control functions. All three candidate 

mechanisms can be used by a variety of species in a variety of domains, and 

might thus be a species- and domain-general mechanisms. However, I will now 

argue that even these candidates might not be truly domain-general. 
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4. Is associative learning domain-general? 

If there is a mechanism that is a strong contender to be domain-general, it 

is presumably associative learning. Associative learning exists in many domains, 

including vision, olfaction, audition and motor behavior. If we hear, see or feel 

two objects frequently occurring together, we form associations between them 

(e.g., Aslin, Saffran, & Newport, 1998; C. M. Conway & Christiansen, 2005; 

Endress, 2010; Fiser & Aslin, 2002; Saffran, Aslin, & Newport, 1996; Saffran, 

Johnson, Aslin, & Newport, 1999; Turk-Browne, Jungé, & Scholl, 2005; Turk-

Browne & Scholl, 2009). Similar abilities have been observed in many non-

human species, including rats, cotton-top tamarins and Zebra finches (Chen & 

Ten Cate, 2015; Hauser, Newport, & Aslin, 2001; Toro & Trobalón, 2005). It thus 

seems plausible that these computations reflect species- and domain-general 

mechanisms. 

However, such results are open to at least two interpretations. On the one 

hand, associative learning might reflect a single, central and domain-general 

mechanism that resides at a single location in the brain and that operates on all 

stimuli among which associations need to be formed. On the other hand, 

associative learning might be domain-bound: different domains might have their 

own, independent associative machinery. If so, associative learning should also be 

available in a variety of domains, in the absence of domain-general machinery. 

In the following, I will show that the fully domain-general view of 

associative learning is untenable: certain associations cannot be learned, even 

closely related forms of associative learning have dissociable properties and rely 

on different brain areas and, across domains, associative learning abilities are 
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largely uncorrelated. I will also discuss a possible neural mechanism of 

associative learning that supports the domain-bound view as well. 

4.1. The case of taste aversion 

Animals can associate tastes with visceral sickness and external events 

such as sounds or light flashes with pain; however, they cannot (or only with great 

difficulty) associate taste with pain or external events with sickness (Garcia, 

Hankins, & Rusiniak, 1974, 1976; Garcia & Koelling, 1966). If rats ingest a 

flavor and then become sick, a single exposure to the flavor is sufficient for the 

animals to learn to avoid the taste. Likewise, rats readily learn that a sound 

predicts a shock, but learning is generally more gradual and slower than in the 

taste aversion case (though, in certain situations, faster learning is possible as 

well; see e.g., Domjan, 1983). However, animals fail to learn associations 

between tastes and electroshocks, and between sounds and sickness.  

From an evolutionary viewpoint, this pattern of associations seems 

sensible: Visceral sickness typically results from ingesting toxins, which makes 

association between tastes and sickness adaptive. Further, one-shot learning 

would prevent repeated exposure to the toxins. Conversely, physical pain (e.g., 

from shocks in the experiments, but of course there is no shortage of more 

ecological ways in which animals can get hurt) is typically caused by external 

events, making associations between external events and physical pain adaptive. 

These and many similar results (e.g., Seligman, 1970) suggest that even 

associative learning does not appear to be fully domain-general, but rather 
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presents certain specializations.7 In fact, at least in drosophila, preferential 

associations can be evolved in just 40 generations (Dunlap & Stephens, 2014).  

In line with this view, some apparently closely related forms of associative 

learning have different properties even with respect to fundamental principles of 

reinforcement learning such as blocking and overshadowing.8 For example, 

associative learning of locations shows phenomena such as blocking and 

  
7

 In the 1970s and 1980s, there have been numerous attempts to find alternative accounts 
for these results that (1) do not involve adaptive specializations, and (2) fit within general learning 
theory (see e.g. Domjan, 1983, 2015, for a review of sometimes somewhat complex alternative 
proposals, and evidence that contradicts at least some of these proposals). One such 
counterargument relies on earlier experience: maybe rats have learned that tastes are more 
predictive of sickness than sounds, and vice versa. Critically, however, the preferential 
associations have been observed in 1 and 5 day-old rats (Gemberling & Domjan, 1982; 
Gemberling, Domjan, & Amsel, 1980), suggesting a rather limited role of experience. Other 
developmental studies also reveal the exquisite tuning of preferential associations to the 
environmental niche that rat pups occupy, and are problematic for most proposals that do not 
consider preferential associations to be adaptive specializations. For example, before the age of 
21-22 days, infant rats are monophagous, and drink only their mothers’ milk. They can certainly 
acquire taste aversions at this age, but if the taste is presented in a suckling context, no taste 
aversion develops; in contrast, older infants (who also eat non-milk foods) develop taste aversion 
in a suckling context as well (Martin & Alberts, 1979). Critically, associations between tactile 
stimuli (e.g., air puffs) and electric shocks are not blocked in a suckling context (Alberts & 
Gubernick, 1984). The most striking aspect of these data comes from pups for whom weaning is 
delayed by preventing them from exposure to non-milk foods. Specifically, in 26-day-old pups, 
suckling usually does not block taste aversion, but, when weaning is delayed, a suckling context 
prevents taste aversion in these older pups as well. In contrast, just four hours of experience with 
(non-toxic) solid food is sufficient to prevent blocking of taste aversion – irrespective of whether 
this experience is given two days prior to taste aversion training, or two days afterwards 
(Gubernick & Alberts, 1984). To my knowledge, no theory has been developed that explains these 
dissociations between classical conditioning and taste aversion learning that does not appeal to 
adaptive specializations.  

 
8

 Blocking refers to a reduction in the conditioned response when conditioning occurs in 
the presence of a previously conditioned stimulus. For example, if an animal has already learned 
that the sound of a bell predicts a reward, and the reward is then paired with the bell and a drum 
sound presented simultaneously, the association between the reward and the drum sound will be 
much reduced. Overshadowing is a preferential association of the most “salient” stimulus with a 
reward if several stimuli are simultaneously paired with the reward. 
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overshadowing when learning occurs with respect to landmarks, but not with 

respect to boundaries (Doeller & Burgess, 2008): Reward associations with 

boundaries overshadow associations with landmarks but not vice-versa. Likewise, 

reward associations with distinct landmarks block each other while associations 

with boundaries show no blocking. Further, these types of learning rely on 

different neural substrates (Doeller, King, & Burgess, 2008).  

Other cases against the domain-general view involve preferential 

associations even within the domain of language. For example, associative 

learning works better over consonants than over vowels (Bonatti, Peña, Nespor, & 

Mehler, 2005), although the reasons are debated (Bonatti, Peña, Nespor, & 

Mehler, 2007; Keidel, Jenison, Kluender, & Seidenberg, 2007) 

It thus appears that associative learning is not a unitary, domain-general 

mechanism.  Rather, independent associative learning abilities might exist in a 

variety of domains, perhaps with slightly different properties, which would 

suggest that they might have been duplicated. 

4.2. The case of cross-domain correlations 

Further evidence that associative learning might not be a unitary ability 

comes from Siegelman and Frost's (2015) experiments. They administered a 

battery of statistical learning tasks, and concluded that they did not reflect a 

unitary ability (see Frost, Armstrong, Siegelman, & Christiansen, 2015, for a 

different take on these results from that advocated here).9 Specifically, they 

  
9

 In contrast, when using familiar and meaningful sounds (e.g., the sound of a bell) rather 
than arbitrary computer sounds, Siegelman et al. (2018) found that visual statistical learning was 
related to auditory statistical learning. 
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administered five statistical learning tasks to the same (human adult) participants 

that differed in whether participants had to compute statistical relations among 

adjacent syllables, among adjacent non-linguistic sounds, among non-adjacent 

consonants, or among adjacent visual shapes; they also performed a serial reaction 

time task. Surprisingly, performance in these different tasks was virtually 

uncorrelated. This would be unexpected under a domain-general view. After all, if 

statistical learning reflects a unitary, domain-general mechanism, individuals who 

are good statistical learners in one domain should also be good statistical learners 

in another domain. It thus appears that there is no single, overall mechanism that 

computes associations; rather, associations seem to be computed by more 

localized mechanisms. 

A lack of correlation between statistical learning performance in different 

tasks does not even require the use of stimuli in different domains. For example, 

Tompson, Kahn, Falk, Vettel and Bassett (2019) asked participants to learn the 

statistical structure of a set of fractal pictures. Critically, they told participants 

either that the fractals represented persons (e.g., avatars on a social media 

platform) or rock formations as seen through a microscope. Surprisingly, 

performance in the social condition, where participants thought they were 

learning information about people, was uncorrelated with performance in the rock 

condition, suggesting again that separable statistical learning mechanisms operate 

in different domains.  

Such a pattern of results has an intuitive explanation. For the sake of the 

argument, let us assume that associations are computed according to the principle 

of “what fires together fires together”, and that this type of correlational learning 
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reflects long-term potentiation (LTP) at the neuronal level (see M. A. Lynch, 

2004, for a discussion of this possibility, but see Gallistel, 201710). Given that 

LTP has been observed in different cell types within different brain regions, albeit 

with slightly different properties (Malenka & Bear, 2004), statistical learning 

should occur in different brain regions as well, again with globally similar, but 

slightly different properties, and, crucially, in the absence of a unitary statistical 

processor. Rather, all brain regions would have their own associative machinery 

because they have the machinery required for LTP. Hence, there is no a priori 

expectation either that all associations are equally easy to compute.11  

The situation might be similar with respect to identity-relations: different 

brain regions might have their own “identity-detectors”, with slightly different 

properties each. As a result, such mechanisms are neither domain-general nor 

domain-specific, but rather consist of a collection of localized and domain-

specific copies of the same mechanism. We have called this situation “domain-

bound” (Endress, Nespor, et al., 2009). Such a situation might arise if key 

mechanisms are duplicated over evolution, and potentially acquire domain- and 

species-specific properties; as mentioned above, this possibility is made plausible 

  
10

 Gallistel (2017) argues that associative learning might not rely on LTM, and might 
rather rely on intracellular processes. While Gallistel (2017) makes a strong case, for the current 
purposes, I just assume that associative learning relies on some widely available mechanism, and 
use LTM as a label for it. 

11
 This view also suggests that correlated task performance across different domains 

would not provide evidence for domain-general mechanisms even if such correlations could be 
found. It is possible that individuals differ in some respect that makes all circuits underlying these 
abilities more or less effective, even though there might be distinct and independent instantiations 
of these circuits in different brain areas. In contrast, an absence of cross-domain correlations 
probably provides evidence against a purely domain-general ability. 
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by the observation that, as in the case of associative learning, identity-detection 

might be implemented by fairly simple circuits.  

5. Is a sensitivity to sequence-edges domain-general? 

Humans, and other animals, are sensitive to the items that occur at 

sequence edges (i.e., in the first and last position; below edges refer to sequence 

edges and not visual edges). This sensitivity is probably due to a mechanism of 

serial memory that encodes the positions of items in sequences relative to the first 

and last item. For example, in sequences like ABCD, this mechanism retains that 

A came first, that D came last, and that B and C had some position relative to the 

first and last one (for reviews, see e.g. Fischer-Baum et al., 2011; Fischer-Baum 

& McCloskey, 2015; Henson, 1998). 

Such regularities are extensively used in language. For example, affixes 

(e.g., the English –ed past-tense) tend to occur at word edges, while infixes (e.g., 

fun-fucking-tastic; McCarthy, 1982) are relatively rare. Further, there are many 

other linguistic processes that rely on edges, from stress assignment to the 

coordination of different linguistic hierarchies (see Endress, Nespor, et al., 2009, 

for a review).  

In humans, learning of such affixation-like regularities has been 

demonstrated for syllable sequences, visual action sequences and non-verbal 

vocalizations (Endress, Carden, Versace, & Hauser, 2010; Endress & Hauser, 

2011; Endress & Mehler, 2009; Endress & Wood, 2011; Marchetto & Bonatti, 

2013), though a sensitivity to edges is also important for other aspects of 

language, notably word segmentation (Monaghan & Christiansen, 2010; Seidl & 

Johnson, 2006, 2008; Shukla, Nespor, & Mehler, 2007; Shukla, White, & Aslin, 
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2011), and the representation of written words (Fischer-Baum et al., 2011; 

Fischer-Baum, McCloskey, & Rapp, 2010).  

As with identity-relations, a sensitivity to sequence-edges is found in 

many non-human animals, including chimpanzees, cotton-top tamarins, and Zebra 

finches (Chen, Jansen, & Ten Cate, 2016; Endress, Cahill, Block, Watumull, & 

Hauser, 2009; Endress et al., 2010). Both cotton-top tamarins and Zebra finches 

can even learn language-like affixation patterns (Chen et al., 2016; Endress, 

Cahill, et al., 2009). As a result, a sensitivity to edges is clearly not domain- or 

species-specific.   

However, the patterns found in the world’s languages suggest that the 

sensitivity to edges is not domain-general either. Various theories from formal 

linguistics assume independent copies of edge-based codes for different linguistic 

constituents (see Endress, Nespor, et al., 2009, for a review), and these codes 

account for numerous linguistic regularities (McCarthy & Prince, 1993). 

 Phontactic constraints are a case in point. Such constraints determine the 

permissible phoneme sequences in a language. For example, English words 

cannot start with the sound at the end of “sing,” and cannot end with the sound at 

the onset of “hat,” while other languages have different constraints. Many 

constraints appeal to edges of constituents, and some phonotactic appeal to edges 

at different levels of the prosodic hierarchy. For example, in some languages such 

as German, syllable-final obstruents become devoiced in all syllables (e.g., sounds 

such as /d/ are pronounced as /t/); in other languages such as Polish and Walloon, 

syllable-final obstruents are devoiced only at the end of (prosodic) words, and 

thus at the edge of constituents at a different level of the prosodic hierarchy 
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(Wetzels & Mascaró, 2001). Further, the constraints that can be learned at the 

edges of words are different from those that can be learned at syllable edges that 

are not word-edges (Endress & Mehler, 2010). If humans did not have access to 

multiple and independent representations of edges, such results would be difficult 

to explain. 

Another example for the importance for multiple, independent edge 

representations comes from alignment theories (McCarthy & Prince, 1993; 

Nespor & Vogel, 1986). For example, the English plural [s] is a morpheme (in the 

morphosyntactic hierarchy), but not a syllable (in the prosodic hierarchy). 

However, even though the two hierarchies are not isomorphic, the right edge of 

the [s] morpheme is aligned with the syllable comprising the plural [s]. 

Alignment of edges of different linguistic constituents can explain a 

variety of linguistic regularities, from syllabification to morphology and the 

coordination of different hierarchies (McCarthy & Prince, 1993; Nespor & Vogel, 

1986). Critically, however, different edges can only be aligned if each linguistic 

constituent has its own edges to begin with. In the terminology used here, this 

would mean that each linguistic constituent has its own, domain-bound sensitivity 

to edges. 

There is some indirect evidence for this possibility from brain imaging 

experiments. Specifically, different English grammatical affixes (i.e., the plural 

and the third person –s) activate different brain regions (Longe, Randall, 

Stamatakis, & Tyler, 2007), suggesting that there are at least partially independent 

representations of an [s] in an edge position. However, it is unclear whether such 

activation differences reflect the affixes per se, or their different grammatical 
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roles. For example, different brain activations for the inflection of nouns and 

verbs might not reflect the affixation-pattern per se, but rather the interpretative 

processes associated with their respective grammatical functions.  

Be that as it might, the data reviewed above make it at least plausible that 

independent sensitivities to edges might exist in different domains. Further, as in 

the case of the ubiquitous machinery for associative learning, this view is also 

supported by the observation that circuits that are sensitive to onsets and offsets 

have been observed in various brain areas.  

In the visual modality, ganglion cells responding to onsets and offsets of 

signals have been reported since Hartline (1938; see also Nelson & Kolb, 2003). 

In the auditory modality, neurons that respond to sound onsets and offsets are 

found throughout the auditory hierarchy (see He, 2001, and references therein). 

Onset and offset responses seem to rely on different inputs, as they are tuned to 

different frequencies and have a different balance of excitation and inhibition, 

though the latter might be a consequence of the former (Scholl, Gao, & Wehr, 

2010). However, the kinds of edges that are relevant for linguistic alignment 

theories are often abstract, with few perceptual cues. To be sensitive to such 

edges, the edges must be computed at more abstract levels as well. As a result, it 

is an important question for further research whether the neural mechanisms that 

are used to compute perceptual sequence edges can also be used to compute more 

abstract edges. However, it is at least plausible that these mechanisms might 

reflect simple circuits that are duplicated profusely.  

6. Are cognitive control mechanisms domain-general? 

Another set of mechanisms that might be domain-general comprises attentional 
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and executive control mechanisms. These mechanisms include working memory, 

inhibition, and cognitive flexibility (Diamond, 2013). Many of these mechanisms 

have widespread effects on our mental life and, in some cases, on our non-mental 

life as well. For example, resistance to temptation in preschoolers (e.g., in the 

marshmallow test) famously predicts outcomes in variety of domains, from social 

functioning to academic performance (Mischel, Shoda, & Rodriguez, 1989). 

However, as in the other case studies above, such results are open to two 

interpretations. One the one hand, the mind might feature unitary and domain-

general control mechanisms. On the other hand, the control mechanisms might be 

domain-bound as well, with independent control mechanisms in different 

domains.  

I will now review evidence that is problematic for the domain-general 

view for two key executive functions: Working Memory (WM) and Inhibition. 

With respect to WM, different studies suggests that it might not be entirely 

unitary. With respect to inhibition, performance on different inhibitory tasks is 

sometimes uncorrelated, some animals might have a domain-specific inhibitory 

system, and some recent neurobiologically realistic models support the domain-

bound view. 

6.1. The case of Working Memory (WM) 

WM is an Executive Function that is at least partially domain-specific. 

While WM obviously has a memory component that lets us store information, the 

most prominent theories of WM hold that items in WM are actively maintained 

by attentional or executive mechanisms. For example, in Cowan’s (1995) model, 

we retain items in WM by (mentally) attending to them. Accordingly, we have a 
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capacity limit of three or four items because we cannot attend to more than three 

or four items simultaneously. Likewise, other authors proposed that what 

determines WM is Executive Attention (Braver, 2012; Engle, 2002; M. J. Kane, 

Bleckley, Conway, & Engle, 2001; Michael J. Kane & Engle, 2003; Michael J. 

Kane, Poole, Tuholski, & Engle, 2006), such that WM scores predict outcomes 

from IQ (A. R. Conway, Kane, & Engle, 2003) to educational achievement 

(Alloway & Alloway, 2010; Gathercole, Pickering, Knight, & Stegmann, 2004) to 

the frequency of mind wandering (Michael J. Kane et al., 2007).  In other words, 

our WM limitations are really limitations of attention or executive function (see, 

among many others, Braver, 2012; A. R. Conway et al., 2003; Cowan, 1995; 

Engle, 2002). 

If control functions such as executive function or attention were domain-

general, one would thus expect WM to be domain-general as well. This, however, 

does not appear to be the case. In fact, there is substantial evidence that WM is at 

least in part domain-specific (Baddeley, 1996; Cowan, Saults, & Blume, 2014; 

Fougnie, Zughni, Godwin, & Marois, 2015; Wong, Peterson, & Thompson, 2008; 

Wood, 2008, 2009). For example, verbal WM is famously independent of WM in 

other domains (Baddeley, 1996, 2003).  

As a result, if the mechanisms at the root of WM are control mechanisms 

such attention and executive control (e.g., A. R. Conway et al., 2003; Cowan, 

1995; Engle, 2002, but see Banta Lavenex, Boujon, Ndarugendamwo, & Lavenex, 

2015; Carroll et al., 2010; Endress & Potter, 2014; Endress & Szabó, 2017; 

Shipstead & Engle, 2013), and if WM is at least partially domain-specific, then 

these underlying process must be domain-specific as well, and there should 
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domain-specific attentional or executive functions.  

6.2. The case of inhibition 

Inhibition is a second Executive Function that does not appear to be fully 

domain-general. The term inhibition can refer to at least three potentially 

separable aspects: prepotent response inhibition, resistance to distractor 

interference, and resistance to proactive interference (Diamond, 2013; Friedman 

& Miyake, 2004). However, these aspects are not necessarily fully independent 

(see Friedman & Miyake, 2004, and below). Inhibition can have wide-ranging 

consequences in different domains. For example, resistance to temptation in 

preschoolers (e.g., in the marshmallow test) famously predicts outcomes in 

variety of domains, from social functioning to academic performance (Mischel et 

al., 1989). More generally, Diamond (2013) reviews data suggesting that 

executive control functions are impaired in mental disorders from addictions to 

schizophrenia and predict outcomes from physical health to school and job 

success to marital harmony. At first sight such results seem difficult to explain if 

executive function were not domain-general. 

However, in other cases, inhibitory abilities seem much more linked to 

specific domains, suggesting that inhibitory abilities are at least partially domain-

bound and that independent inhibitory abilities exist in different domains. In this 

section, I will suggest that the research on the ability to resist distractors echoes 

that on Statistical Learning: Different measures of distractor resistance show little 

correlation with each other, suggesting that, as in the case of Statistical Learning, 

there are several independent mechanisms for distractor resistance. Following 

this, I show how such specialized inhibitory abilities can evolve, albeit using 
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resistance to prepotent responses as a case study. I then argue that recent 

neurobiological models of inhibition support a domain-bound view, and end by 

discussing how the far-ranging consequences of inhibitory abilities can be 

explained under a domain-bound view. 

6.2.1. Correlations across distractor resistance tasks 

As in the case of Statistical Learning, evidence from cross-tasks 

correlations suggests that inhibitory abilities are at least partially independent. For 

example, Shilling, Chetwynd and Rabbitt (2002) used four Stroop-like tasks, and 

measured correlations in performance.12  

While performance in each task was consistent across blocks in a given 

participant, performance across tasks was uncorrelated (see also Bjorklund & 

Kipp, 1996, for a review of studies suggesting that inhibitory abilities are at least 

partially independent, though cross-task correlations might be observed when the 

tasks are extremely similar; Shilling, Chetwynd and Rabbitt, 2002).  

Likewise, Cipolotti et al. (2016) tested frontal patients on a Stroop task, 

and on the Hayling Sentence Completion test, where participants have to 

complete a sentence fragment with an unrelated word. For example, a correct 

  
12

 During the first task, participants saw a digit made of other digits (e.g., a big 2 made 
of individual 2 characters). If participants have to report the small digit, they show Stroop-like 
interference when the global digit mismatches the local one (Navon, 1977). During the second 
task, participants saw one to four identical digits on a screen, and had to report their number. 
Stroop-like interference ensues if the identity of the digits does not match their number (e.g., 
reporting that there are four digits in 3 3 3 3; Windes, 1968). In the third task, participants saw a 
large arrow pointing in one of the four cardinal directions, and with a word corresponding to a 
direction printed inside the arrow; a mismatch between the printed direction and the arrow 
direction (e.g., the word LEFT printed inside an arrow pointing to the right) leads to interference 
(Shor, 1970). The fourth task was the classic Stroop task, producing interference between color 
labels and their font color (Stroop, 1935). 
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completion of the fragment “London is a very busy…” would be an unrelated 

word such as “…banana”; in contrast, a continuation with a related word such as 

“… city” would be an incorrect response. Cipolotti et al. (2016) found that, after 

controlling for fluid intelligence, performance on the two tasks was uncorrelated. 

Further, patients with left-lateralized lesions were impaired on the Stroop task, but 

much less impaired on the sentence completion task, while patients with right-

lateralized lesions showed the opposite pattern.  

Similar results have been found with dogs (Brucks, Marshall-Pescini, 

Wallis, Huber, & Range, 2017): Performance on tests of inhibitory control do not 

seem to correlate with each other, suggesting that the underlying mechanisms are 

at least partially dissociable. 

Together, results such as Shilling et al.'s (2002), Cipolotti et al.'s (2016) 

and Brucks et al.'s (2017) thus echo the statistical learning results by Siegelman 

and Frost (2015), who showed that statistical learning abilities are largely 

uncorrelated across domains. As mentioned above, such results are difficult to 

reconcile with a purely domain-general view. After all, if inhibition (or statistical 

learning) were domain-general, individuals who are good at one inhibitory task 

should also be good at another inhibitory task. As a result, there appear to be at 

least partially independent inhibitory abilities. 

6.2.2. How do domain-bound inhibitory mechanisms evolve? 

The discussion so far suggests that there are independent inhibitory 

mechanisms even for rather similar tasks. This raises the question of how such 

mechanisms might evolve. It turns out that, for some animals, domain-bound 

inhibitory mechanisms are important for their survival. 
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Cleaner wrasse are a case in point because, in the wild, they face a 

marshmallow test of sorts in feeding contexts. They are fish who feed on 

ectoparasites carried by “client” fish. However, they prefer to eat the client fish’s 

mucus (Grutter & Bshary, 2003). As client fish punish cleaners who feed on their 

mucus (Bshary & Grutter, 2002; Bshary & Schäffer, 2002), cleaner wrasse have 

to inhibit their tendency to feed on client mucus to avoid punishment. 

Danisman, Bshary, and Bergmüller (2010) asked whether this led to better 

domain-general inhibition in a reverse reward contingency task. In this task, 

subjects have to choose the smaller of two rewards to obtain the larger one. This 

task has been used as a test of inhibitory function in many species and is typically 

difficult even for primates (Addessi & Rossi, 2011; Boysen & Berntson, 1995; 

Murray, Kralik, & Wise, 2005; Vlamings, Uher, & Call, 2006; see Shifferman, 

2009, for a review). If the requirement for inhibition during foraging led to an 

improvement in domain-general inhibition, cleaner wrasse should perform well on 

the reverse-contingency task. 

In contrast to this prediction, most cleaner fish simply failed on this task. 

While there are probably many differences between inhibition in a feeding 

context and the task demands of a reverse contingency task, these results are at 

least compatible with the interpretation that cleaner fish did not develop better 

domain-general inhibitory abilities, and that some animals might have domain-

specific copies of inhibitory control mechanisms due to their feeding ecology.13 

  
13

 Domain-specific inhibitory abilities have been proposed in humans as well. For 
example, Bjorklund and Kipp (1996) proposed that females had better inhibitory control in social 
contexts, notably for controlling how they displayed emotions, and for inhibiting  behaviors, 
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6.2.3. How are inhibitory mechanisms related?  

The results discussed so far do not imply that different inhibitory tasks 

have nothing in common. For example, and as mentioned above, Friedman and 

Miyake (2004; see also Miyake et al., 2000) separated inhibitory mechanisms into 

three distinct complexes – prepotent response inhibition, resistance to distractor 

interference, and resistance to proactive interference. Participants then completed 

three tasks tapping into each of these complexes, as well as a number of other 

tasks.
14

 As Shilling et al. (2002), Friedman and Miyake (2004) found that 

correlations across tasks were fairly low. However, using structural equation 

modeling, they found that the tasks testing prepotent response inhibition and 

resistance to distractor interferences correlated with a common latent variable. 

Further, the tasks testing resistance to proactive interference correlated with a 

different latent variable. A very similar conclusion has been reached in dogs 

(Brucks et al., 2017): As mentioned above, performance on tests of inhibitory 

control did not seem to correlate with each other. However, the tasks mapped onto 

 
notably for resisting temptation and self-regulation and that this inhibitory female advantage did 
not translate to an overall inhibitory advantage outside of the social domains. However, Bjorklund 
and Kipp's (1996) review was based on experiments with children whose focus were not 
necessarily gender-differences. In young adults, evidence for such a female advantage is mixed 
(e.g., Cross, Copping, & Campbell, 2011; Silverman, 2003a, 2003b), and might depend on the 
stage of the menstrual cycle (Hosseini-Kamkar & Morton, 2014). As a result, the evidence for 
such gender-differences appears strongest in populations that do not yet reproduce sexually, and 
might also be due to maturational differences between boys and girls.  

14
 Prepotent response inhibition was measured through an antisaccade task, a stop signal, 

where participants had to withhold a trained response on a subset of the trials, and by a Stroop 
task. Resistance to distractor interference was measured using the Eriksen flanker task, a word 
naming task in the presence of distractor words, as well as a shape matching task in the presence 
of distractor shapes. Resistance to proactive interference was measured in a Brown-Peterson task, 
a paired associates task and a cued recall task, where participants learned both a target and a 
distractor list. 
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three common factors (albeit different ones from those found in humans), namely 

persistency, compulsivity and decision speed. 

Friedman and Miyake (2017) thus suggested that the common prepotent 

response and distractor inhibition variable might reflect goal maintenance. 

However, although both of Cipolotti et al.'s (2016) inhibition tasks might well 

map onto this variable, they involved dissociable brain mechanisms, suggesting 

that the question of how different inhibitory tasks are related is still an open one.  

6.2.4. Neurobiological models of inhibition 

The results reviewed so far suggest that inhibitory abilities are partially 

independent and dissociable. I thus suggest that they are domain-bound and might 

reflect duplicates of an inhibitory circuit. This possibility is consistent with some 

recent neurobiological models of inhibition. It has long been observed that frontal 

regions are activated by a variety of tasks, and might thus implement domain-

general mechanisms (e.g., Duncan & Owen, 2000; Fedorenko, Duncan, & 

Kanwisher, 2013), leading some investigators to call these regions the “multi-

demand cortex” (MDC; e.g., Duncan, 2010). However, this common activation in 

the MDC might reflect the requirement to dynamically track task- and goal-

relevant aspects of the task (e.g., Duncan, 2010). Critically, recent models suggest 

that this might occur through a distributed set of duplicated (or at least similar) 

circuit mechanisms. Specifically, if the MDC tracks task- and goal-relevant 

representations, it might provide top-down amplification of these representations. 

In contrast, (inhibitory) control might occur in local circuits through local 

competition among representations. Due to their top-down amplification, task-

relevant representations are more likely to win this competition against irrelevant 
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representations that do not receive such amplification (e.g., Egner & Hirsch, 

2005; Erika-Florence, Leech, & Hampshire, 2014; Hampshire & Sharp, 2015; see 

also Banich & Depue, 2015; Munakata et al., 2011, for related proposals). If so, 

even cognitive control might be implemented through potentially duplicated 

mechanisms that might be as simple as lateral inhibition.
15

 

This view also provides a rather straightforward account of apparently 

domain-specific control abilities. Species and domains with domain-specific 

control abilities might simply have an additional way to maintain goal-relevant 

representations. For example, in cleaner fish, detecting a live client fish might 

lead to amplification of the relevant behavioral responses (feeding on 

ectoparasites rather than mucus), making these responses more likely to win in 

local competitive interactions among possible behavioral responses. Further, even 

though inhibition has the connotation of being effortful and related to self-control, 

this amplification might be fairly automatic and stimulus-driven: salient stimuli 

might simply activate (and thus amplify) salient goals. If this speculation is 

correct, inhibition might fundamentally rely on duplicated, inhibitory circuits 

across the brain. 

This view would also be consistent with proposals that the mind contains 

multiple “allocation mechanisms” that route information to the appropriate 

processing mechanisms (Barrett, 2005; Samuels, 2000, 2012). For example, 

Barrett (2005) proposed that information gets routed in analogy to the lock-and-

  
15

 It should be noted that the view that inhibition often consists of goal monitoring and 
maintenance is not universally accepted (e.g., Anderson & Hanslmayr, 2014, but see e.g., 
Chatham et al., 2012; Jonker, Seli, & MacLeod, 2015). 
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key mechanism of enzymatic reactions. Enzymes are molecules that chemically 

modify other molecules (their substrates). When an enzyme and a substrate 

molecule encounter each other (through random diffusion of the molecules), they 

can “recognize” each other because the substrate has certain features that allow it 

to attach to the enzyme, similarly to how a key fits only into specific locks. 

Mutatis mutandis, the mind might analyze information by an array of feature 

detectors; if a piece of information matches the features, it then gets routed to the 

appropriate processing mechanisms. If such a processing mechanism happens to 

exert top-down control, it might provide a domain-bound control mechanism.   

6.3. Are Executive Control functions fully domain-bound? The possible role of 

hierarchical structure  

The data reviewed so far suggests that at least some inhibitory functions 

are domain-bound, with independent inhibitory mechanisms in different domains. 

These mechanisms might thus have evolved through duplication. However, 

inhibitory functions also have wide-ranging consequences in our mental and 

physical lives (Diamond, 2013; Mischel et al., 1989). How can we reconcile these 

results?  

As in the case of cross-domain effects in the acquisition of identity 

relations, I suggest that the answer to this question is the hierarchical nature of 

processing. If goals are maintained (and thus amplified) by mechanisms at the top 

of the processing hierarchy, these top-level control mechanisms are expected to 

influence processing in a wide variety of domains, even though these top-level 

control mechanisms might be just one of many duplicate goal-maintenance 

mechanisms that exist in the brain. In line with this view, there is evidence that 
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certain prefrontal regions can exert widespread suppression over broad brain 

regions (Banich & Depue, 2015; Munakata et al., 2011). 

In other words, I propose that, among the (domain-bound and duplicated) 

goal maintenance mechanisms we posses, some might exist at the top level of the 

processing hierarchy, which, in turn, might enable them to exert far ranging 

influences.  

7. Alternative explanations 

I have reviewed a variety of results that seem to call for duplicated 

cognitive mechanisms. These results are of four types. First, some mechanisms 

are available in many domains, but not in others. Second, such mechanisms 

perform the same computations in multiple domains simultaneously. Third, 

performance on tasks that appear to reflect very similar computations is 

uncorrelated across domains. Fourth, there are biologically plausible candidate 

implementations that are fairly simple, and might exist widely in the brain. I will 

now discuss two alternative solutions to the first two observations (though they do 

not address the remaining observations). Specifically, the putatively duplicated 

mechanisms might really reflect single central mechanisms. However, these 

central mechanisms might not be “connected” to some domains, and might 

support multiplexing so that they can deal with multiple regularities 

simultaneously.  

7.1. Are domain-general mechanisms selectively connected to different domains? 

A possible alternative to duplicated mechanisms are central mechanisms that are 

selectively connected to some domains, but not others. For example, a single, 

central identity-detector might be connected to a variety of domains, but not to 
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those domains dealing with consonants, syntactic categories and so on.  

Developmental considerations make this view particularly plausible. In 

particular, 4-month-olds might learn certain identity-patterns over musical 

material that 7-month-olds cannot learn (Dawson & Gerken, 2009). This 

observation raises the possibility that apparently domain-bound mechanisms are 

initially present in all domains, but then get pruned. This view would be 

analogous to how certain perceptual abilities are lost within the first year of life 

(Hannon, Soley, & Levine, 2011; Hannon & Trehub, 2005; Kelly et al., 2007; 

Pascalis, de Haan, & Nelson, 2002; Polka & Werker, 1994; Sugita, 2008; 

Weikum et al., 2007; Werker & Tees, 1984). For example, while infants can 

initially discriminate all phonemes from all human languages, they lose those 

discrimination abilities that are not used in their native language within their first 

year of life (Polka & Werker, 1994). Similar results have been found in face 

perception (Kelly et al., 2007; Pascalis et al., 2002).  

This pruning might take at least two routes. First, there might be central 

mechanisms (e.g., an identity-detector), and the connections of these mechanisms 

to different domains get cut. However, existing data are problematic for this and 

other accounts, at least when pruning is assumed to be complete. For example, 

and as mentioned above, infants older than seven months have difficulty learning 

identity-relations with musical stimuli. However, they perform better when 

exposed to identity-relations with speech stimuli before (Dawson & Gerken, 

2009; Marcus et al., 2007). Under a domain-general view with a single, central 

identity-detector, it is not clear why training with one set of stimuli should 

improve detection with a different set of stimuli; after all, the musical stimuli 
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should either be connected to the identity-detector, or they should not.  

In line with this view, once perceptual narrowing took place, exposure to 

the relevant stimuli can reverse it, both during infancy (Pascalis et al., 2005; 

Sugita, 2008) and also later on during childhood (Sangrigoli, Pallier, Argenti, 

Ventureyra, & Schonen, 2005). As a result, it does not seem to be the case that the 

connections between a central processing mechanisms and the different domains 

simply get cut.  

A possible explanation of Dawson and Gerken's (2009) results is that both 

speech items and musical stimuli are connected to this central identity-detector. 

However, the connections between the musical stimuli and the repetition-pattern 

might be weak; as a result, the identity-detector needs to be primed with speech 

items so that musical stimuli can drive it. While this view would obviate the need 

for duplicated mechanisms, more research is needed to establish it. 

Crucially, pruning might also occur through a second route that is 

compatible with the duplication view. Specifically, each domain might initially 

have its own copies of the duplicate mechanisms, and these copies are lost over 

development. Further, if entire brain pathways can become duplicated 

(Chakraborty & Jarvis, 2015), their constituent computational mechanisms can be 

lost individually in each duplicate, either over evolution or over development 

through pruning. 

In addition to pruning, there is, at least theoretically, a second route by 

which duplicate mechanisms might appear only in certain domains but not others: 

Each domain might have the potential for certain computations (that might be 

inherited from the brain region from which the corresponding brain region is 
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copied), but these computations might require appropriate environmental 

stimulation for realizing this potential. For example, and as mentioned above, the 

visual word form area in the left lateral occipitotemporal sulcus might be 

particularly suitable for word processing due to its connectivity with other brain 

areas, but requires specific stimulations (e.g., reading instruction) for becoming 

selective for reading visual words (Dehaene et al., 2010; Hannagan et al., 2015; 

Saygin et al., 2016). If so, it is at least theoretically possible that some duplicate 

computational mechanisms might remain dormant in most domains, and are 

realized only in certain domains due to relevant environmental input.  

Be that as it might, a central, domain-general mechanism (whose 

connections to certain domains get pruned) does not explain why performance on 

tasks such as the Stroop task or statistical learning is uncorrelated across domains 

(e.g., Cipolotti et al., 2016; Shilling et al., 2002; Siegelman & Frost, 2015; 

Tompson et al., 2019), nor how the same mechanism can be used simultaneously 

on multiple stimuli if there is only a single copy of the mechanism. I will discuss 

the latter issue in the next section. 

7.2. Can domain-general mechanisms be multiplexed? 

As mentioned above, there is theoretical and empirical evidence 

suggesting that the same computations can be performed independently and 

simultaneously on multiple stimuli. Examples include the restrictions on 

consonant repetitions in Semitic languages (Berent & Shimron, 1997; Frisch et 

al., 2004; McCarthy, 1979), infants’ ability to learn multi-level repetition-patterns 

(Kovács & Endress, 2014), and the requirement for multiple independent edges in 

alignment theories. 
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One possible solution to make such results consistent with single copies of 

central, domain-general mechanisms is to postulate that these central mechanisms 

are capable of “multiplexing:” They might be able to process stimuli from 

different domains by switching back and forth between the stimuli, or possibly by 

keeping the stimuli separate using some other mechanism, similar to how a radio 

receiver can separate the signals of different radio stations although they are all 

carried by different frequencies in the electromagnetic spectrum. However, such 

multiplexing capabilities come at the cost of a rather complex, and possibly 

implausible, architecture, compared to the fairly simple circuits that might support 

local computations. I will now outline these requirements in more detail. 

In the case of edges, alignment theories require the detection of 

simultaneously occurring edges from different constituents, which likely rules out 

time-sharing-based multiplexing, and likely requires multiple edge detectors 

within the central edge detector. Moreover, it requires the central mechanism to 

keep track of the sources of the different edges. For example, when, during a 

conversation, a phone starts ringing, the ringtone certainly provides auditory 

edges, but these edges are unlikely to have any effect whatsoever on grammatical 

processing of edges during the conversation, among many other reasons because 

the ringtone is perceived in a different “stream” from speech (Bregman, 1990).  

As a result, it is not sufficient to simply detect edges, but the central mechanism 

would also need to keep track of the kinds of edges it detects, and process them 

accordingly. A central, domain-general edge-detector would thus likely postulate 

central copies of the edge-detector within the central edge-detector instead of 

local distributed copies, and would additionally require considerable processing 



Page 52 of 87 

capabilities to keep track of the kinds of edges it is processing.  

Such a view is also in direct contradiction to the hierarchical organization 

of perception and cognition. After all, to detect edges in a variety of domains, and 

for different linguistic constituents, such a mechanism would need access to fairly 

low-level information from a variety of domains and process it. 

For these reasons, I believe that a central, domain-general edge-detector is 

implausible at best. In contrast, local (copies of) edge-detectors can rely on fairly 

simple and possibly widespread circuits, and detecting edge-alignment would 

require little more than coincidence detection of the output of these local circuits, 

even though it is an open question whether these simple circuits would support 

more abstract edges as well.  

A central, domain-general mechanism for repetition-detection is 

implausible for related reasons, but would additionally require a working-memory 

component. Specifically, a central repetition-detector might process hierarchical 

repetition-patterns of repetition-patterns (Kovács & Endress, 2014), either through 

some form of time-sharing-based multiplexing or through some other route. If it 

uses time-sharing, it needs to retain the results of the lower-level repetition-

detection in some kind of memory; these memories then need to be compared in 

order to detect the higher-level repetition-pattern. If multiplexing occurs through 

some other route, the central repetition-pattern would likely need multiple internal 

copies of a repetition-detector that also keep track of the source of the repetition. 

Again, local copies of the mechanisms would simply be replaced with central 

copies. 

In contrast to this complex model, repetition-patterns of repetition-patterns 
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can be detected in a straightforward way by local, but hierarchically organized 

copies of repetition-detectors: repetitions might be detected at the lower level, and 

the output of these detectors might be compared at the next level. In fact, there is 

evidence that the output of an identity detector can be used for further processing. 

For example, five-month-olds can form associations between identity patterns and 

visual symbols (Kabdebon & Dehaene-Lambertz, 2019), while at least bilingual 

12-month-olds can form similar associations between identity patterns and spatial 

locations (Kovács & Mehler, 2009). Hence, local, hierarchically embedded 

identity detectors seem a more plausible architecture than a set of central copies 

of identity detectors with some kind of memory component.  

8. Elemental computations vs. domains 

The discussion so far focused on elemental computations such as identity-

detectors and statistical learning. However, discussions of domain-specificity and 

domain-generality typically focus on larger and complex entities, such as a 

“language module” or a “face processing module,” whether they exist at all, and 

whether they are specific to humans. However, as these “modules” are defined as 

the sets of mechanisms that deal with a certain type of information (e.g., 

language), they are likely complex and diverse, and likely use many different 

elemental computational mechanisms. For example, the language “module” 

includes identity-relations (for reduplication), pitch perception (for prosody), the 

syntactic computations involved in c-command (whatever they are), and many 

others. Some of these elemental computations are likely available in other 

domains and species as well; others might be specific to one domain. Discussions 

of domain- and species-specificity thus become more falsifiable if they are 
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situated at the level of computations as well as their implementations that might 

or might not be domain- and species-specific.  

This conclusion echoes the discussion of a viable notion of a “domain” 

from the introduction. Definitions that are purely based on informational content 

(e.g., “faces”, “language”, and so forth) are unlikely to account for what is 

specific about a domain (and for the hierarchical organization of cognition). That 

is, while the arguments that distinguish the function of a mechanism from its 

implementation are as valid and important as they always were to understand any 

mechanism (Marr & Nishihara, 1992), elucidating the specificity of mechanisms 

requires integrating both their functions and implementations.  

9. Conclusions 

The case studies reviewed above suggest that some cognitive mechanisms 

might have become duplicated for the course of evolution. There are three types 

of evidence for this view. First, some computations can be performed in many 

domains, but not in others. Second, some tasks that tap into apparently similar 

computations are largely uncorrelated across domains; further, tasks such as 

statistical learning seem to have different properties depending on which can of 

stimuli it operates over. Third, some computations can be performed 

simultaneously in multiple domains or at different hierarchical levels. All of these 

observations are explained naturally if each domain has its own instantiations of 

the underlying mechanisms.  

There is a fourth but more speculative argument for the existence of 

duplicated cognitive mechanisms. At least the case studies reviewed here might 

reflect fairly simple circuit motifs, some of which (e.g., lateral inhibition) are 
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known to be ubiquitous in the brain. However, it is entirely unknown whether 

such circuits would support more computations on abstract representations as 

well. 

Considering the computations as well as the instantiations of the 

mechanisms performing these computations will thus reveal a much more fine-

grained picture of domain-generality. Some mechanisms might be truly domain-

specific, others truly domain-general, and yet others domain-bound. As a result, 

what might make a domain special relative to other domains, however, is the set 

of the available elemental computational operations, and how they can be 

combined (Barrett, 2012; Endress, Nespor, et al., 2009). Individual elemental 

computational mechanism can be specific to a single domain as well, but need 

not.  
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