IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Renshaw, A. E. & Haberman, S. (2003). Lee-Carter mortality forecasting
incorporating bivariate time series (Actuarial Research Paper No. 153). London, UK: Faculty
of Actuarial Science & Insurance, City University London.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2287/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Cass Busmess School Cass means business
C| ty of London

Faculty of Actuarial
Science and Statistics

Lee-Carter Mortality Forecasting
Incorporating Bivariate Time
Series.

A. Renshaw and S. Haberman

Actuarial Research Paper No. 153

December 2003

ISBN 1-901615-75-8

Cass Business School
106 Bunhill Row
London EC1Y 8TZ

T +44 (0)20 7040 8470
www.cass.city.ac.uk



“Any opinions expressed in this paper are my/our own and not
necessarily those of my/our employer or anyone else l/we have
discussed them with. You must not copy this paper or quote it without
my/our permission”.



Lee-Carter mortality forecasting incorporating bivariate time series
Arthur Renshaw and Steven Haberman
Cass Business School, City University, London, UK

Summary.

We investigate the feasibility of projecting age specific mortality rate by taking a multivariate
time series approach to the time components in the single valued decomposition of a matrix of suitably
transformed empirical log mortality rates.

Keywords. Mortality forecasting; Lee-Carter methodology; Multivariate time series

1. Introduction

The Lee-Carter (LC) approach to mortality forecasting (Lee and Carter (1992), Lee
(2000)) makes use of the singular value decomposition (SVD) of a matrix of suitably
centred log mortality rates, cross-classified by age and period (calendar year). Then,
assuming that the resulting pair of primary singular vectors adequately captures the
salient age-period (and cohort) pattern, standard univariate time series methods are
applied to the primary period component vector to generate period specific forecasts.
Such forecasts are meaningful in the sense that the modelled age specific mortality
trends are projected into the future. Thus, Tuljapurkar et al. (2000) report on the
application of this methodology to mortality rates for each of the G7 countries, in a
comparative study of mortality decline between these countries. In addition,
Tuljapurkar et al justify forecasts based on the primary singular vectors only on the
basis of the proportion of the total temporal variance explained by just the first
component of the SVD, which is found to be over 94% of the mortality variation, in
every G7 country.

However, on applying the LC approach to comparable England & Wales
mortality experiences (for which the proportion of the total temporal variances
explained by the first SVD component is again over 94%), Renshaw and Haberman
(2003a) report on the failure of the first SVD component vectors to capture important
aspects of the data, together with the presence of noteworthy residual patterns in the
second SVD component vectors. As a consequence, Renshaw and Haberman (2003b)
investigate an augmented version of the LC approach by additionally incorporating
the second set of SVD vectors, and applying separate univariate ARIMA processes to
the first two period component vectors to generate forecasts. Further, Booth et al.
(2002) in modelling the Australian mortality experience, also resort to the inclusion of
the second and even third SVD component vectors in order to improve the quality of
fit, but do not attempt forecasting on the basis of this more detailed model.

In this paper, we investigate the potential role of multivariate (bivariate) time
series methods for generating forecasts when the LC approach is augmented to
include the secondary SVD component vectors. In order to implement these, we
make use of the multivariate facilities (and univariate facilities where necessary) of
the time series computer package MICROFIT (Pesaran and Pesaran (1997)) and we
supplement these facilities, specifically when constructing limits for the (component)
time series forecasts. In common with Renshaw and Haberman (2003a), we again
focus on the England & Wales mortality experiences for the two genders separately.



2. An augmented LC approach to mortality forecasting

Let m,, denote the central rate of mortality, cross-classified by age x, grouped into &
ordered categories, and by period ¢ =1,,¢,,...,t, =t, +h—1, withrange A=1¢, —¢t, +1.
Define

‘n
- 1/h
a, =log] [m}

i=t,

and consider the SVD of the matrix [z, ]=[logm_, —a ]. Thus we can write

logm, =a,+Y BOx? + ¢, , T <min(h k) 1)
i=1

where B9,k denote the respective left and right (ordered) singular vectors, subject

x

to the constraints

Y50 =1,3k0 =0,vi @

all x =
and where &,, denotes the residual SVD components. The RHS of (1) comprises a

parameterised systematic (non-random) component and an additive error component
&,- The case 7 =1 (with the redundant prefix i omitted) corresponds to the ‘basic’

LC approach.
The model (1) is fitted to empirical mortality rates 7, by the SVD of [2,,],

subject to the constraints (2), and, in accordance with LC practice, the resulting x

estimates are further adjusted to ensure that the actual total deaths are identical with
the total expected deaths for each ¢, as a means of improving the quality of fit. For a
discussion of three case studies including the England and Wales male experience, for
7=1,2 and using univariate time series methods, together with comparative studies
of two other related modelling approaches, see Renshaw and Haberman (2003b).

In this paper, we focus on the case 7 =2 and seek to generate forecasts by

modelling {# :i =12}, using bivariate time series methods. Denoting the resulting

forecasts by {&?_ :s > 0;i =12}, projected mortality rates

L+
2
e = 1y exp Y B RD, ~RD);s >0
i=1
are then computed by alignment to the latest available empirical mortality rates 7z, .

Given the nature of this expression, in keeping with the terminology of UK actuarial
mortality studies, we could refer to the expression
2
log F(x,, +5) =) P&, ~#P);5>0
i=1
as a log mortality reduction factor: see Renshaw and Haberman (2003c) for further
discussion.



3. Time series modelling for the England & Wales mortality experience

3.1. Preliminaries

The data comprise the number of deaths with matching person-years of exposure to
the risk of death as supplied by the Office of National Statistics. Cross-classification
is by age, categorised in years {<l, 1-4, 5-9, 10-14, ... , 80-84, 85+}, and by
individual calendar years, from 1950 to 1998 inclusive, for each gender. The age
specific mortality trends are plotted in Renshaw and Haberman (2003a). Although
the proportion of the temporal variance in the transformed death rates explained by
the first SVD component exceeds 94% (Renshaw and Haberman (2003a)), we justify
the retention of the second SVD component (for both genders) on the basis of the
distinctive patterns in its constituent parts. In particular, the SVD component
estimates {£” :1 =122}, (incorporating the adjustment to #), are depicted in each
of the respective sets of left and right hand frames in Figs 1 & 2. (A full explanation
of Cases I-III is given in Sections 3.2 and 3.3, to follow). We note that Booth ef al.
(2002) report a similar U-shaped pattern for {£®} in their SVD analysis of annual
age-specific death rates for Australian, 1968-99.

Further details of the multivariate time series methods used below, together
with their implementation using MICROFIT, are given in Pesaran and Pesaran
(1997). Other relevant details are given in Chapters 11, 19 and 20 of Hamilton
(1994). A distillation of specific bivariate time series is given in an appendix to a
fuller working paper, available from the authors.

3.2. Vector autoregressive modelling
We consider the augmented vector autoregressive model of order p

V4

Y, =a,+ag+ ZCDiyt-i +€,

i=]
where y, is a vector of jointly determined dependent variables, €, is a vector of
errors, a,,a, are vectors of intercept and trend parameters and @, are square matrices
of autoregressive parameters. It is assumed that the vector of errors g, ~ N(0,Q)
with symmetric positive define Q, and that all roots of

-3 @ =0
i=1

fall outside the unit circle for stability.

We focus on bivariate models for which « = (x”,x®) and consider Case I:

y, =Ax, (where A denotes the differencing operator) and Case II: y, =x,. Given
the extensive use of first order integrated I(1) processes in the basic LC approach, and
the use of two such separate I(1) processes when 7 =2 (Renshaw and Haberman
(2003b)), it is likely that Case II would fail to satisfy the unit root criterion. Further
evidence for this, is provided by the Dicky-Fuller (DF) and the augmented Dicky-
Fuller (ADF(p)) tests for unit roots, based on the respective (univariate) regression
models
yi=agtat+py,, +g
and
Vi =GAY +GAY, , +.t gp—lAyth tag+at+py,, e,



details of which are presented in Table 1. Here the unit root (null) hypothesis
H,: p=1 is not rejected, with the one exception, using the estimated OLS ¢ test

statistic, determined by reference to the Akaike information, Schwarz Bayesian and
Hannan-Quinn criteria. Details of the test statistics are discussed in Chapter 17 of
Hamilton (1994) and in the appendix to our fuller working paper, available from the
authors. The exception concerns the unit root tests for the first SVD component for
the female experience, reflected below, in our choice of simple regression model for
this situation, based on further considerations.

In both cases, we set p = 1. This is justified partly on pragmatic grounds,
consistent with the statistical significance of model parameters, and partly on the basis
of the Akaike information criterion, the Schwarz Bayesian criterjon and likelihood
ratio test for selecting the order of the model, which we report in Tables 2 and 3. Thus
for Case I (Table 2), the likelihood ratio test rejects the null hypothesis H, : p =0 but

not the null hypothesis H; : p =1 for both genders, while one of the two Akaike and
Schwarz criteria are also supportive of p = 1, for each gender. For Case II (Table 3)
and the male experience, the likelihood ratio test rejects Hy : p=0 butnot H, : p =1
and both the Akaike and Schwarz criteria are supportive of p = 1. On the other hand,
for the female experience, these criteria are essentially supportive of p = 2. However,

on fitting this model, it is readily seen to be heavily over-parameterised.
Define

Yy, =a,+at+dy, +¢, (3)

a, =[aw],al :(allj,¢l _ [¢11 ¢12].
a3 ay b

Casel:y, = (A, Ac®)
The Wald test for restrictions imposed on parameters in the form of the null
hypothesis H, : a,; =0,4,, = 0,¢,; =0 implies that H is not rejected on the basis of

with

the statistic y? = 3.50 (p —value = .32) for males and 2% =6.76 (p — value = .08) for
females. Thus, to reflect this hypothesis, we are justified in fitting an ARIMA(1,1,0)
process to {x”} and a separate ARIMA(1,1,0) process plus deterministic trend term
to {x®}. Details of the parameter estimates are recorded in Table 2 and the resulting
time series projections to the year 2020 depicted in Figs 1(a) & 2(a). In particular we
note the quadratic nature of the projections for {x®}, which is discussed, together
with other implications for mortality rate projections, in Section 4.

Casell:y, = (x",x?)

For males, the block Granger non-causality null hypothesis H, : ¢,, =0 is not
rejected on the basis of the likelihood ratio test statistic y? = 0.021(p —value = .88)
so that the model, reported in Table 3, is fitted to reflect this hypothesis. Thus x)

@ impact directly on x”, but only x2) impacts directly on . Projections

and «
to the year 2020, based on this model, are depicted in Fig 1(b). Here, the approximate

linearity of the projection of {x®} is in marked contrast to the quadratic projection of



Case 1. However, the narrowness of the forecast limits, expressly for the first
component, is a cause for concern. This is discussed further in Section 4.

For females, the choice of model is different. Specifically, the Wald test for
restrictions imposed on parameters in the form of the null hypothesis
H;:¢,=0,6,,=0,¢,, =0 is not rejected on the basis of the Wald test statistic

X3 =2.48(p—value = 48). Thus, under this hypothesis we are justified in fitting a
straight line to {«"} and a completely separate ARIMA(1,1,0) process plus a
deterministic trend term to {x®}. Details are presented in Table 3 and the associated

projections depicted in Fig 2(b). Comparison with Fig 1(b) for the male experience
reveals similar patterns and concerns about the narrowness of the first component
prediction limits, this time based on a separate univariate analysis, which are
discussed further in Section 4.

3.3. Vector error correction model (co-integration)
We consider the following simple version of the vector error correction model

p-1
Ay, =a,+a¢-TIly, , + le“iAy,_1 +E,
where y, is a vector of jointly determined I(1) variables, a,,a, are vectors of
intercept and trend parameters, II is a square long-run multiplier matrix of
parameters and I, are square matrices of parameters capturing short term dynamic
effects. It is assumed that the vector of errors €, ~iidN(0,Q), with symmetric
positive definite Q. There are five options to consider in general, determined by the
combination of constraints imposed on the intercept and trend parameters a,,a,. On
the basis of trial and error, we conclude that just two of these are appropriate. Again

the focus is on bivariate models with y, = (x®,x®

. .k,”) and we set p = 1 for the same

reasons as before.

CaseIII: a, # 0and a, = 0 (unrestricted intercepts and no trends)
For this case
Ay, =a,-Ily,, +¢,.

Let IT = af’ where ocand B are 2x 7 matrices and r = rank(II). The columns of B
define co-integration vectors and the rows of B'y, define co-integration relationships.
Because of the nature of the multiplicative decomposition of I, it is necessary to
place additional constraints on the co-integration vectors prior to estimation. We use
Johansen estimation through MICROFIT. The value of r is determined first with the
aid of co-integration likelihood ratio tests based on maximum eigenvalue and trace
statistics, together with the Akaike information, Schwartz Bayesian and Hannan-
Quinn model selection criteria, reported in Table 4. On the basis of complete
agreement between these tests and criteria, we set » =1, resulting in the parameter
estimates reported in Table 4 and projections depicted in Figs 1(c) & 2(c).

Case IV: a, #0and a, =y (unrestricted intercepts and restricted trends)

For this case
AYt =a, - H(yr—l _Yt) +&,



where v is 2x1. On introducing IT=ap’ it follows that the rows of B'(y, —v¢)

define the co-integration relationships. This time, on the basis of co-integration
likelihood ratio tests and model selection criteria, we set » = 2 when fitting the model.
The details are reported in Table 5. Since, when r = 2, this model is synonymous with
a re-parameterisation of model (3) under Case II, we do not pursue this case further.

4. Discussion
The time series models used to construct the log mortality reduction factors
log F(x,t, +5) = iﬁf) (K,"is —72',(:)); s>0
i=1
are summarised as follows: l
Male experience Female experience

Case]  ARIMA(1,1,0)/ ARIMA(1,1,0) + trend  ARIMA(1,1,0) / ARIMA(1,1,0) + trend
Case II VAR(1) + block Granger non-causality trend only / ARIMA(1,0,0) + trend

Case III Co-integration model: (rank = 1) Co-integration model: (rank = 1)
unrestricted intercept, no trend unrestricted intercept, no trend

Lc2 ARIMA(1,1,0) / ARIMA(1,1,1) -

LC ARIMA(1,1,0) ARIMA(1,1,0)

Thus ¢ = 2, with the exception of the basic LC approach, for which ¢ = 1. Whereas a
bivariate time series approach is adopted in Cases I to III, model selection procedures
within this approach, justify the retention of a bivariate model in Case II for males
only and in Case III for both genders, otherwise separate univariate time series are
fitted in the remaining cases. Under the two component Lee-Carter approach for
males only, denoted LC2 (Renshaw and Haberman (2003b)), the comparable
modelling equivalent to Case II, separate univariate time series are fitted by design.
Under the LC or LC2 approaches, coupled to univariate ARIMA(0,1,0) processes

(parameters A?), the log mortality reduction factor reduces to

log F(x,t, +5) = [Z[?’E‘)ff) js, s>0,
i=1
which has the same mathematical form as the log mortality reduction factor used in
the GLM approach of Renshaw and Haberman (2003a), using either a hinged or
straight line predictor.

For males, the age specific period profiles of the resulting log mortality
reduction factors for the three cases (I-III) are depicted in Fig. 3(a)-3(c). These bear
direct comparison with each other and with the two equivalent profiles: Fig. 2(h) and
Fig. 3(f) in Renshaw and Haberman (2003a), generated respectively using the basic
LC approach (utilising only the first SVD component vectors) and using a generalised
linear model (GLM) regression based approach (utilising a hinged predictor).

In order to extend this comparison, the year 2020 projections of all five log
mortality reduction factors are superimposed and depicted in Fig 3(d). For
completeness, we additionally include the 2020 projection of the log mortality
reduction factor based on the separate, two component, univariate time series Lee-
Carter type analysis, denoted LC2, reported in Renshaw and Haberman (2003b):
using respective ARIMA(1,1,0) and ARIMA(1,1,1) processes to generate forecasts
for the first and second SVD components. In Fig 3(d), we have highlighted the basic
LC projection, which, although accounting for over 94% of the total temporal



variance, fails to capture the same degree of age variation as the other five
approaches. In particular, as noted in Renshaw and Haberman (2003a), the basic LC
approach fails to capture and project the reported rise in recent male mortality rates, in
the 20 to 34 age bands, which is consistent with positive, or near positive valued log
mortality reduction factors in this age range. In contrast, the extreme nature of the
projections generated by Case I, which is directly attributable to the quadratic nature
of the x® projections, is clearly implausible. The narrowness of the forecast limits

in Case II, especially for the first component, is both unrealistic and a topic for further
investigation. We note that no allowance is made for the uncertainty in the
parameters used when computing the mean square forecast error. However, this is
also true of Case III and we believe this effect to be small. As already noted in
Section 3.2, there is evidence for rejecting this model because it fails to satisfy the
unit root criterion for stability. Further, the pattern of residuals in the early part of the
period (1950s) is also a cause for concern. For a comparison of Case II and Case III
(non-standardised) residuals, see Fig. 4. Under the LC2 univariate time series
approach, which cannot now be justified from the wider perspective of bivariate time
series modelling, there is a failure to capture the more favourable mortality
projections, in the 45-49 age band and above, associated with the other approaches,
with the exception of the basic LC approach. On the basis of these considerations,
there is a case for choosing Case III and comparing the resulting predictions with
those generated by the GLM (hinged) approach.

The equivalent age specific profiles and year 2020 projections for females are
depicted in Fig. 5. For females, Case I is also implausible because of unrealistic
extreme mortality projections at certain ages, again due to the curvature of the x®

time series forecasts. Similarly, narrow forecast limits are also a feature of the first
component Case II female experience, albeit this time based on separate univariate
time series analysis as opposed to the bivariate analysis for males. In contrast to the
male experience, the basic LC approach and GLM (line) approach generate near
identical predictions across the whole of the age range, which, in turn, differ to any
noteworthy extent from the Case IIT (and Case II) predictions, only in the 15-19 to 35-
39 age bands. Within these age bands, Case III predicts heavier mortality than the LC
and GLM approaches, but not to the same extent as in the male experience.

At the practical level, details of the multivariate time series analysis described
above have been dictated by the choice of menus available in the computer software
package MICROFIT (Pesaran and Pesaran (1997)). In particular, we note that the
Lagrange multiplier test provides evidence of residual serial correlation, present
mainly in the first component dependent variable (almost exclusively so for males), in
both of the bivariate analyses reported under Cases II and III. A possible means of
removing this effect is by increasing the order of the respective multivariate models.
However, such a solution runs counter to the tests applied initially to determine p and
results in substantial over parameterisation. Specifically for males, while this
approach is successful in removing residual serial correlation effects in Case III, three
of the four constituent components of the additional matrix I, are not statistically
significant when estimated. Further, both versions (p = 1 and p = 2) in Case III
generate (effectively) identical projections in the age bands 40 and above, while the
over parameterised version (p = 2) generates marginally less optimistic forecasts than
its counterpart (p = 1) in the age bands below 40.



5. Conclusions

Given the wide interest in the application of the LC approach to generate age-specific
mortality forecasts, it is pethaps somewhat surprising that no previous attempt appears
to have been made to incorporate finer age specific detail into the forecasting process
through the inclusion of secondary SVD components and then undertake a subsequent
multivariate time series analysis. As illustrated in this application, by incorporating
distinctive features in the secondary SVD components and not restricting the
methodology to the first SVD components solely on the basis of a high proportion of
the total temporal variation captured by the first components, important age specific
features may be captured and projected.
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Unit root tests for k". Male experience

Test maximum Akaike Schwarz ~ Hannan-
Statistic log- information ~ Bayesian Quinn

likelihood criterion criterion __criterion

DF -2.489 -32.054 -35.054 -37.696 -36.029
ADEF(1) -1.440 -28.205 -32.205 -35.727 -33.504
ADF(2) -0.718 -23.590 -28.590 -32.590 -30.213
ADF(3) -0.575 -23.293 -29.293 -34.577 -31.241
ADF(4) -0.645 -23.220 -30.220 -36.385 -32.493
ADEF(5) -0.673 -23.190 -31.190 -38.234 -33.788

95% critical value for ADF statistic = -3.516
Unit root tests for k. Male experience

bold = maximum

Test maximum Akaike Schwarz ~ Hannan-

Statistic log- information ~ Bayesian Quinn

likelihood criterion criterion __criterion

DF -0.528 152.20 149.20 146.56 148.23
ADF(1) -0.216 154.56 150.56 147.03 149.26
ADF(2) -0.151 154.77 149.77 145.37 148.15
ADF(3) -0.101 155.25 149.25 143.97 147.30
ADF(4) -0.154 155.33 148.33 142.17 146.06
ADE(5) -0.152 156.67 148.67 141.63 146.08

95% critical value for ADF statistic = -3.516

Unit root tests for k. Female experience

bold = maximum

Test maximum Akaike Schwarz ~ Hannan-

statistic log- information ~ Bayesian Quinn

likelihood criterion criterion  criterion

DF -5.314* -38.258 -41.258 -43.900 -42.232
ADF(1) -3.363 -37.580 -41.580 -45.102 -42.879
ADF(2) -2.281 -36.275 -41.275 -45.678 -42.899
ADF(3) -1.914 -36.065 -42.065 -47.349 -44.014
ADF(4) -2.033 -35.735 -42.735 -48.899 -45.008
ADF(5)  -2.106 -35.507 -43.507 -50.552 -46.105

95% critical value for ADF statistic = -3.516 (*significant); bold = maximum

Unit root tests for k. Female experience

Test maximum Akaike Schwarz ~ Hannan-

statistic log- information ~ Bayesian Quinn
likelihood criterion criterion  criterion

DF -1.923 128.41 125.42 122.78 124.44
ADF(1) -1.702 133.85 129.85 126.33 128.55
ADF(2) -1.638 134.70 129.70 125.30 128.07
ADF(3) -1.626 134.73 128.73 123.44 126.78
ADF(4) -1.522 134.77 127.77 121.61 125.50
ADEF(5) -1.042 136.07 128.07 121.03 125.47

95% critical value for ADF statistic =-3.516

Table 1

bold = maximum



Casel:z, = (Ax®,Ax®)" . Male experience

order log Akaike Schwarz  Likelihood adjusted
()  likelihood information Bayesian ratio test LR test
criterion criterion [p-value] [p-value]
3 139.07 123.07 108.62 -—- -
2 135.69 123.69 112.85 6.76 [.15] 5.56 [.24]
1 132.77 124.77 117.54 12.60 [.13] 10.36 [.24]
0 125.24 121.24 117.62 27.67 [.01]*  22.75[.03]*
bold = maximum * statistically significant
univariate models parameter estimates [p-value]
Ak = ay + 4, MK &,y = —476[.00]; 4, = ~.459[.00]

Ax? = ay +ayt+4,Ax® &, = -.013[.00];d,, =.00046[.00]; 4, = —277[.05]

Casel:z, = (Ax®,Ax®) . Female experience

order log Akaike Schwarz likelihood adjusted
») likelihood information Bayesian ratio test LR test
criterion criterion [p-value] [p-value]
3 100.34 84.34 69.89 - -
2 97.21 85.21 74.37 6.27 [.18] 5.15[.27]
1 92.73 84.73 77.51 15.22 [.06] 12.51 [.13]
0 78.87 74.87 71.26 42.95[.00]*  35.31 [.00]*
bold = maximum * statistically significant
univariate models parameter estimates [p-value]
Ax{ = ay, + 4, Ak 4,y =-.551[.00]; &11 =-.493[.00]

Ax? = ay, +ayt + Ak G, = —018[.00]; 3, =.00065[.00]; ,, =—.320[.02]

Table 2

10



Case Il 1y, = (x¥,x®)" . Male experience

order log Akaike Schwarz liketihood adjusted
(12)] likelihood information Bayesian ratio test LR test
criterion Criterion [p-value] [p-value]
3 147.13 131.13 116.50 -—- -
2 144.68 132.68 121.71 4.89 [.30] 4.04 [.40]
1 140.85 132.85 125.53 12.56 [.13] 10.37 [.24]
0 74.40 70.40 66.74 145.45[.00]*  120.16 [.00]*
bold = maximum * statistically significant
bivariate model parameter estimates [p-value]

™) (a, N by 0 Y0 4,y = 4.641[.00]; a,, = —.010[.00]
k® “lay, a, 0 ¢, \x® a,; =—.190[.00]; 4,, =.00036[.00]
¢, =.364[.01]; 4, = -10.407[.00]

by, =.947[.00]

CaselIl :z, = (x,x™)' . Female experience

order log Akaike Schwarz likelihood adjusted
®) likelihood information Bayesian ratio test LR test
criterion criterion [p-value] [p-value]
3 108.03 92.30 77.67 - -—--
2 104.81 92.81 81.83 6.97 [.14] 5.77[.22]
1 97.16 89.16 81.84 22.28 [.00]* 18.41 [.02]*
0 58.97 54.97 51.31 98.65 [.007* 81.50 [.00]*
bold = maximum * statistically significant
univariate model Parameter estimates [p-value]
& =q,+a,t a,, =8.228[.00];4,, =-.329[.00]

P =ay tayt+dox® Gy =—.0158[.00]; &, =.00054[.00]; 4, = .810[.00]

Table 3
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Case III: a, # 0,a, = 0 (unrestricted intercepts, no trends). Male experience

eigenvalues: 0.43152 0.1281E-3
alternative eigenvalue 95% trace 95%
confidence statistic confidence

null
hypothesis hypothesis  statistic
value value
r=0 r=1 27.11* 14.88 27.12* 17.86
r<l1 r=2 .0062 8.07 .0062 8.07
* statistically significant
rank maximised Akaike Schwarz  Hannan-
r log information Bayesian  Quinn
likelihood criterion Criterion  Criterion
0 112.500 110.50 108.63 109.79
1 126.055 121.06 116.38 119.29
2 126.058 120.06 114.44 117.94
bold = maximum
a, with & with cointegration relationship
[p-value] [p-value] By,
— 298[.00] 169[.81] (0316x® +1.881x?)
-.000565[.58] -.0388[.00]

CaseIII: a, #0,a, =0 (unrestricted intercepts, no trends). Female experience

eigenvalues: 0.46031 0.013263
alternative eigenvalue 95% trace 95%
confidence statistic confidence

null
hypothesis hypothesis  statistic
value value
=0 r=1 29.60* 14.88 30.25* 17.86
r<i r=2 .64 8.07 .64 8.07
* statistically significant
rank maximised Akaike Schwarz ~ Hannan-
r log information Bayesian  Quinn
likelihood criterion criterion  Criterion
0 65.16 63.16 61.29 62.46
1 79.97 74.97 70.29 73.20
2 80.29 74.29 68.67 72.17
bold = maximum
a, with & with co-integration relationships
[p-value] [p-value] Pz,
—346[.01] —775[.40] (0224x® +2.3106®)
-.00168[.38] -.0752[.00]
Table 4
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CaselV: a, #0,a, =IIy (unrestricted intercepts, restricted trends). Males
eigenvalues: 0.44858 0.30103 0.00

null alternative eigenvalue 95% trace 95%
hypothesis hypothesis  statistic ~ confidence statistic confidence

value value

r=0 r=1 28.57 19.22 45.76 25.77

r<i r=2 17.19* 12.39 17.19* 12.39

* statistically significant

rank maximised Akaike Schwarz ~ Hannan-
r log information Bayesian = Quinn
likelihood criterion criterion  criterion

0 112.500 110.50 108.63 109.79
1 126.786 120.79 115.17 118.67
2 135.382 127.38 119.90 124.55

bold = maximum

CaseIV: a, #0,a, =IIy (unrestricted intercepts, restricted trends). Females
eigenvalues: 0.51666 0.34941 0.00

null alternative eigenvalue 95% trace 95%
hypothesis hypothesis  statistic  confidence statistic confidence
value value
r=0 r=1 34.90 19.22 55.53 25.77
r<l r=2 20.63* 12.39 20.63* 12.39
* statistically significant
rank  maximised Akaike Schwarz ~ Hannan-
r log information Bayesian  Quinn
likelihood criterion Criterion  Criterion
0 65.164 63.16 61.29 62.46
1 82.613 76.61 71.00 74.49
2 92.930 84.93 77.45 82.10

bold = maximum

Table 5
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APPENDIX

This appendix contains an outline of mainly first order autoregressive bivariate
time series models. Attention is given to model fitting and the subsequent
construction of bivariate forecasts and their mean square forecast error (MSFE).
Whereas the orthogonal decomposition of the MSFE, as described below, is readily
available in MICROFIT, its value, which is used to construct forecast limits, is not
available. Thus all the details described below have been programmed independently
of MICROFIT and the results cross-referenced, whenever possible.

Bivariate Vector Autoregressive (VAR) Time Series Modelling
The Model.
Consider

P
y o =ag+ar+ ) @y, +6;t=12,..n (A1)
i=1
where
Y,.€, are mx1 vectors of joint responses and independent errors

ag,a, are mx1 vectors of intercept and trend parameters
@, are mxm matrices of autoregressive parameters

Assumptions:
g, ~iidN(0,Q) where Q is symmetric positive definite, and all roots

L n
of [T, - Zd)ik’ |=0 fall outside the unit circle.

i=1
Consider first order bivariate cases in detail, for whichm=2,p=1, ®, =®.

Notes:

1. Higher order processes (p > 1), while of potential interest, induce over-
parameterisation in our context.

2. Adopt the convention that {y, :¢ =0,1,2,...,n} is observed. Thus

n = number of observations — 1.

3. The implementation of such models is described in Chapters 7 and 19
of Pesaran, W.H. and B. Pesaran (1997). Working with Micofit 4.0
Oxford University Press.

4. The case a; = 0 is described in detail in Chapter 11 of Hamilton, J.D.
(1994). Time Series Analysis, Princeton University Press, Princeton,
New Jersey.

5. The specific choice of Granger causality model described below is
consistent with the ordering (by SVD) of the time series components.

6. When the deterministic trend term is pre-set to zero (a, =0), the
appropriate rTows and columns are omitted from the detailed matrices
below.

7. Repeated reference to the multivariate Gaussian model is a common
theme throughout this appendix.



Model Fitting.
Refer to the multivariate Gaussian model

Y=GA+¢
for which
Yu Ya I'1 y Y
Y= Y2 Yn ’Gzl 2y Yn ’A,:(aﬂl a; ¢ ¢12]
ap ap Oy Op

Yin  Van L' 7 Yy Vo
and € ~ N(0,Q), so that

n

n Zt Zyu-l ZJ’Z,H Zyl Zyz
=1 =y = =1 =1

2t 2 Y X 2o 2
1=1 =1 =1 =1 ; G'Y = =1 t=1

Zyl,t—l Ztyl,l—l Zylz,t—l Zyl,t—lyZ,t—l Zyl,t—lylt zyu—lJ’z:
1=l =1 =1 1=1 =1 =1

n n n n n n
ZyZ,t-l Zlyz,z-l 2)’1,:413’2,:4 ZJ’ZZ,H Zyz,r—lylt Z)’u-lyu
=1 =1 =1 ) =1 =1

Then the ordinary least squares estimates (OLS) are
A=(G'G)'(GY), Q=¢%/v
with v=n—k degrees of freedom, where Aiskx2.
The residual vector is
E=Y-GA.

Forecasting.
Successive substitution gives
Ve =+ ++ ¥ Ja, +{E+ I+ (@ +s-DP +..¢+ DY, _}Ja, + Ly,
+&,, +¥E, .t +T €
where ¥, = @',
Thus the s step ahead forecast, from time # (= 1), can be expressed either as
Vog =T+ +o + ¥, Jay +{E+ I+ +s-D¥, +..¢+ DT _Ja, + Py,

or as

145 1+

s-1
yH—s[{ = u_{zl¢l}+ q)s(yx - p’) where u= (I _(1))71{30 + (t + s)al} >

i=0

onreplacing €,,, : s >0, by their expected values 0.

t+s

The mean square forecast error (MSFE) and its orthogonal decomposition by
component are obtained in an identical manner to co-integration modelling, described
below.




Bivariate Granger Causality Modelling.
Consider the first order bivariate VAR model under the null hypothesis H, : ¢,, =0
so that

Y= tapl+ 0y, +0,Y,, T,

Yo =8y tant TOnYy tEy

. ) . . . G, ©
with € ~ N(0,Q) and symmetric variance-covariance matrix Q = [ 1 '2] .
Can Op

Model Fitting.
Method I:
Stage 1: Implement the (restricted) regression

Vo =8y Fayl+QpYy, . &y

for which
Y=GA+¢
with
Yo L1 yy a €3
12 ® €
Y= Yo G= Ya A=|a, | &= 2
?

You I n y,..4 = €2

and €,, ~ iidN(0,5,,) , where A is k x1, so that
A=(G'G)'(G'Y), £=Y~GA and 6,, = 8¢/(n-k).

Stage 2: Implement the (intermediate) regression
Ve =ap+ai+doy, +d,y, +dyy,, +E,

for which
Y=GA+¢
with
2y
i L' vy Y Yo a g
Y= Y2 G- 12 yy yu Ya A= d:) e= €,
d
Vin L n Yy Vipa Youa d €,

and g, ~ iidN(0,h), so that
A=(G'G)"'(G'Y),2=Y—GA and h=&8/(n-k+1).

Stage 3: Use the following sequence of transformations to compute the outstanding
parameters

O =0, =dy0y

a,=a,+223 a =g 4+
10 =~ %o 200¢11 — % 21
22 22

Op . 01207
(Pnzdla(Plz:dz""G— @y Oy =h+ .

2 O



Method II:
Refer to the partitioned multivariate Gaussian model
Y=GA+¢

or
Y, _ G, 0)YA N g,
Y,) {0 G,\A,) \s
with
n 11y, ¥y 00 O
Yi2 12 3, ¥, 00 O
Y= Y, =|Yu| g= G 0 - 1nY1,1Y2,.00 0
Y, |Yu| 0 G,/ |00 0 0 11y,
Yn 00 0 0 12y,
Yon 00 0 0 lny,,,
and € ~ N(0,Q). Also
Q=E®In, Z:[O'n 512]
Gy Op
so that
G'E eI )G=[0-1_1G11 GI_ZGIZJ ¥l :[
! 616Gy 0,6,
where
n Zt Zyl,r-l ZY2,z-1
=1 =1 =1
Zt th ZW[,I-] Ztyz,l-l
G” - nt:l n::l t:] nz=1 5G12_
Zyl,t-l Ztyl,l-l Z.Vf,:-l Zyl,:-l.}’2,x.1
e =1 =1 =1
ZJ’z,;.l Ztyz,m Zyl,t-lyz,r-l ZYzz,z-l
=1 =1 =1 t=1
n Dt
t=1
G, =G};,Gy, = Zt th
=1 =1
Zyz,t—-l ZW:,H
=1 =1
and

O

O

612]
Oy

n

n
Dt
t=1

Z p4TE
=1

n
Z Yara
=1

n
Z Va1
=1

n
22
=1

n

2

Z Va1
=1

n n
Z t Z Yar
1=1 =1
n n
2.t 202
t=1 t=1
n n
Ztyl,t-l Zyl,u}’z,z-l
t=1 t=1

n n
2
Z Zyl.t-l Z yz,r—l
t=1 t=1




n n
oy Z.Vn + G;zzJ’z:
t=1 t=1
n n
c“Ztyu + Ulzztym
P =1
n n
On Zyl,HYu +6p, Zyl,z-d’z:
=] =1
n n
rey -1 _ - =
G'Z ®I,)Y= Gllzyl,t-lyll +Gy, Zyl,t-lyzr
t=1 =1
n n
cnzyu +6222y21
=] =
n n
GZIZtyl/ +0y, zlyzr
= =1

n n
o ZYZ,H Yy +0oy, Z YaraYu

t=1 t=1

Thus the parameter estimates satisfy
A=G'C"®1,)GG'E" ®I,)Y A2)

Set up the following iterative fitting process:

2

Step 1: Determine starting values for A= [}:1 J , using

A, =(G,G,))(GY)),i=12
where

g}’z,z-l%z

Step 2: Compute estimates for T, using

z}"m
=1

s G;Yz = Ztyzz
=

D VoV
=1

G'G,=G,,i=12GY, =

i

£8. .
6, = ——t—,where §, =Y, -G ,A,,i=1,2.
\[(n "ki)(n_kj)
Step 3: Use (A.2) to update the estimate for A .
Step 4: Iterate between Step 2 and Step 3. Convergence is established by monitoring
the difference between consecutive estimates of A .

Forecasting.

As above, with @ = [q)“ Pz J
P



Univariate Dickey-Fuller (DF) and augmented Dickey-Fuller (ADF) unit root
tests.

Consider 7 + p observations (¥._,,;, ¥..5»-,¥,). The DF regression model
Yy, =agtat+py,, +g,t=12,...n
and the ADF(p) regression models
V=G AV +GAY, , +.+ qp_lAy,_p+l tagtagtpy,  +e5t=12,....n
are central to the tests.
Thus writing u, = Ay, , it follows in general, that

Y=GA+ege
with

S
0 Uy U, 1 1 y €
Y= V2 G= U U,y 1 2y A= Gp1 g €,

3
Y Uyt un—p+] 1 n yn—l a'] en

p

and g, ~ iidN(0, c?), so that
A=(G'GY (G'Y), 8=Y-GA and 6> = 8&/(n- p-3).
Then the test statistic for the OLS ¢ test for the unit root null hypothesis H, : p=1 is
p-1 _ p-1
J8%e(GG) e s.elp)
where e is a (p + 3) vector with unity in the last position and zeros elsewhere.

Notes.

@) The tests may be applied without the linear trend by setting a, =0 and
making and consequential adjustments.

(if)  The vector e is designed to capture the standard error of f.

(iii)  Chapter 17 of Hamilton, J.D. (1994) discusses the tests in great detail.

(iv)  In MICROFIT, results are reported by pre-selecting a value p, . for p and
computing the test statistic for the DF and ADF(p),p = 1, 2, ..., p,..-1
models, with conditioning on the first p, . observations. Akaike

information, Schwarz Bayesian and Hannan-Quinn criteria are quoted as a
guide to model selection.



Multivariate Vector Autoregressive (VAR) Times Series Modelling
Consider the general VAR(p) process, based on m components, given by (A.1).

Model Fitting.
This proceeds by conditioning on the first p components of the multivariate data set

{y_,,+1,y,,,+2,~--,YoayU---,y,,} .

Thus
Y=GA+e¢
for which
Yu Ya Ym 11 y, Ymo N-pa1 YVm,—p+1
Y= Yo Vn Vm2 G- L2 y Ym Yi-pe2 Yim-pe2
= G =
Yin Van Yo L n yy Yan-1 Vin-pt Vmp-pa1
)] 1y (p) (p)
A Ay Oy 1m orf "
1) ( (p) (02
A= Ap Ay 21 bom o5 o
(o)) Q]
A, Ay, O, G ¢Enp1) ¢§r}l2

Thus Yis nxm,Gis nx(2+ pm), Ais (2+ pm)xm, and the estimates
A=(G'G)(G'Y),Q=28%/v
with v=rn—2 — pm degrees of freedom, are computed. The 2™ columns of G and A’

are deleted if the linear trend term is omitted and v increased by 1 accordingly. The
residual vector is

§=Y-GA.



Forecasting.
The trick is to expand equation (A.1) into the form of a VAR(1) process

Yy, I a o o, ©,, D,\V. €,

Y 00 a I 0 0 0|y, 0

Y. |=]0 0(°j+0 I 0 0 |y,|+| 0],
al

Yipn) \0 0 0 0 I 0)\v., 0

which is written as
g =hg+FE_ +v,
where
&8, v, are mpx1, h, is mpx2m, ¢ is 2mx1 and F is mpxmp .
Successive substitution gives
Epe=(h, +Fh, +F°h, ,+..+F7h, )G+FE +v,  +Fv,  +Fv, , +.+F"y

t+s t+1

which is written as
s-1
gws = H1+sg+ Fsgz + ZFlvHs—j .

j=0
Then, extracting the 1% m rows, gives

s-1
— (s)
Yius = Hl,z+sg + Fl gl + Z\PjsH-s—j
Jj=0

where

H,,.,,F? are the 1* m rows of the respective matrices H,,,, F*
and
¥, is the blocked matrix comprising the 1% m rows and 1% m columns of F/.

Thus the s step ahead forecast, from time ¢ (=n) is given by
ylﬂ\/ = H],H-:g + FI(S)gr

on replacing €, :s >0, by their expected values 0. For computational purposes
H, =h, +FH_ ,s=123.;H =0.

The MSFE and its orthogonal decomposition by component (generalised to s and not
2 components) are obtained in identical manner to co-integration modelling, described
below.



The Model.

We consider

where
Y.
a,
a 1
I

Assumption:

Bivariate Cointegration Time Series Modelling

Ay, =a,+at-Ily,  +¢,,t=12,...,n

is a mx1 vector of jointly determined (endogenous) I(1) variables
is a mx1 vector of intercept parameters

isa mx1 vector of trend parameters

isa mxm long-run multiplier matrix

g, ~1idN(0,Q) where Q is symmetric positive definite

The following cases are of potential interest:

Casel:
Case II:
Case I11:
CaseIV:
Case V:

Thus
Case II:

Case III:
Case IV:
where

Y:H

a, =a; =0 (no intercepts and no trends)

a, =IIpanda, =0 (restricted intercepts and no trends)

a, #0anda, =0 (unrestricted intercepts and no trends)

a, #0anda, =TIy (unrestricted intercepts and restricted trends)
a, #0anda, =0 (unrestricted intercepts and unrestricted trends)

Ay, =-TI(y,, - +¢,,t=12,...n
Ay, =a,-Ily, +¢,,t=12,...,n
Ay, =a,-II(y,, —-vt)+¢,,t=12,...;n

are mx1 vectors of parameters.

Consider the bivariate cases in detail, for which m = 2.

Notes:

1.

2.

Case I acts as an outer marker for the set of model structures and is of
little practical value.
Case V has been found to generate unrealistic forecasts in our context.

p-1
Higher order processes, incorporating the terms ZF,.Ay,_,. @>1on
i=1
the RHS are of potential interest, but are found to induce over-
parameterisation in our context.
When ¢ = 1, the RHS of the modelling equations requires the value of
Y,. We adopt the convention that {y,:#=0,12,..,n} is observed.

Thus # = number of observations — 1.

The model is a special case of the more general vector error correction
model (VECM), described in Chapters 7 and 19 of Pesaran, W.H. and
B. Pesaran (1997). Working with Microfit 4.0 Oxford University Press.
Cases II & III are discussed in considerable detail in Chapters 11, 19 &
20 of Hamilton, J. D (1994), Time Series Analysis, Princeton
University Press.

Full rank (r = 2) versions of Cases III & IV are re-parameterised
versions of the bivariate VAR(1) model discussed above, with and
without a, pre-set to zero, respectively.



Cointegration relationships.
These require the decomposition

II=op
where
a,f areboth 2x7 and r = rank(II).
For Case II Iy, -wW=ap'(y,—W

so that B'(y,_, —p) defines the co-integration relationships
8y = Bilyl,r—l +BnYa B, i=1,.r

For Case III Ily,, =af'y,,

while B'y, , defines the co-integration relationships
gy = Bilyl,z—l +Bi2y2,t—1’ i=1..,r

For Case IV (y,, —v) =aP'(y,, —v)

and B'(y,, —v¢) defines the co-integration relationships
8y = Bilyl,H +Bi2y2,t—1 +Bst,i=1,...m

Model Fitting.
1. Refer to the multivariate Gaussian model
Y=GA+¢

where & ~ N(0,Q), so that ordinary least squares (OLS) gives
A=(G'G)(G'Y), 8=Y-GA, Q=8% /v

on v degrees of freedom.

2. Estimating the cointegration relationships:

Step 1: (Case II) Compute £,,, the ¢th component of the residual vector, from

the OLS regression of Ay, on0. Thus trivially
&y = (Ayu Ayzz)-

Stepl: (Case III and Case IV) Compute €,,, the ¢th component of the residual

vector, from the OLS regression of Ay, on1. Thus
Ay, =a,+¢g, fort=1.2,...n

gives
Y=GA+¢
where
Ay, Ay, 1
1
Y= B Ay ,G= sA:(am aoz)'
Ay, Ay, 1
Then
+ 1 _ _
A=;(Ym‘)’m J’2n_J’zo):(Ay1. Ayz.)
and

&y, = (Aylz —Ay, Ay, "Ayz)-

10



Step 2: (Case II) Compute £,,, the #th component of the residual vector, from
the OLS regression of (y'l']j on 0. Thus trivially
€, = (J’1.z-1 Yo 1)'

Step 2: (Case IIT) Compute €,,, the sth component of the residual vector, from
the OLS regression of y,, on1. Thus
Yo =2a,+¢, fort=12,...n

gives
Y=GA+¢
where
Yo Yo 1
1
y=| M On ,G= > A=(3'0| aoz)-
Vi Vona 1
Then

.1 n o
A =—(ZJ’LH ZyZ.t—l\J:(yl. J’2.)
D= =1
and
élr = (yl,z-l _yl_ Yo _?2.)'

Step2: (Case IV) Compute €,,, the #th component of the residual vector, from

the OLS regression of (y;"j on 1. Thus

(y"lj =a,+¢g,, fort=12,...,n

t
gives
Y=GA+¢
where
Yo Yo 1 1
Yn Ya 2 1
Y= ,G= ’A:(am ap aoz)'
Vit Vona R 1
Then

1 z n(n+1) - - n+l
A=H(§Y1,H ;)ﬁ,z-l 2 )=[J’1. Ya. Tj
and

n+l

g, :(y],t»l =Y. Yo~V t‘TJ-

I1



Step3: Compute the matrices

I&Gaa

S, == &&,, ij=0]

na

and the eigenvalues A, and eigenvectors {3, of the equation
|}“Sn - Slosaéstn': 0.
The first 7 eigenvectors, in order of magnitude of the eigenvalues, form the
cointegration vector B = (B,,B,,...B,). Johansen ((1991) Econometrica, 59,
6, pp 1551-1580) normalisation is by setting
B’SIIB =1,
for which
B: (510565501 )BJ =0,Vi#j.

Estimating the parameters:

Recall that for

Case I1: Ay, =—af'(y,_, —-w)+¢g,t=12,...n
Case III: Ay, =a,-oa'y,, +¢,t=12,..n

Case IV: Ay, =a,—op'(y_, —y)+g,t=12,...n

For all three cases
Y=GA+¢
where

Ay, Ay,
Y= Ay, Ay, .

Ayln Ay2n

For Cases Il and IV and rank r = 1

1 -g,
G-= 1 812 ,A=[a01 aoz]
Gy Qp
1 — 8
n - Zgu Yin =10 Yan = Y20
so that G'G = Gl andG'Y 2 z

" " 1N g Ay, - Ay, I’
_‘Z:l:glt ;glzt ;gn V1t Zglt Vot

t=1

For Cases Il and IV and rank » =2

1 -g, -8
i _gl A9 8p
G- 12 2| A= @, a,
Qy Oy
1 -g, —8
so that

12



n -2.8 - 2.8
; v ; x Yin = Vo Yan = V20

GG=|-Yg, 2g D&y |[.CY=|-DgAy -Dg,An,
t=1 t=1 =1

t=1 =1

_Zgh Zglrgzz zgiz _ZgZIAyl( _Zgerth
t=1 =1 1=1

t=1 =1

For Case II delete the 1% columns of G and G'G together with the 1% rows of
A, G'G and G'Y .
Then the estimates

A=(G'G)'(GY)
Q=(Y-GA)(Y-GA)w,
are computed according to the relevant cointegration relationships g, .

Tests to Determine the Rank of IT.

Let
H, :rank(IT)=r, r=0,1,2
and let
AM>Ah, > >,
denote the ordered eigenvalues of the cointegration relationships.
1. The likelihood ratio test based on the eigenvalue statistic is
LR(H, |H,,,)=-nlog(-1,,), r=0,1.
2. The likelihood ratio test based on the trace statistic is

2 A
LR(H, |H,)=-nY log(l-1,), r=0,1.
i=r+l
Critical values for these tests are generated by stochastic simulation techniques.
3. Compare the Akaike information criterion
AIC={, ¢,
the Schwarz Bayesian criterion

SBC=1, - %'mg(n)

and the Hannan-Quinn criterion
HQC=£, —g, log{log(m)}
forr=0, 1,2, where
B
£, =-nil+log| 2my——
n

is the (constrained) maximum of the appropriate log likelihood, and for

Case I g, =5r—r2,
Case I G, =2+4r—rt,
Case IV G, =2+5r—r2.

For r =0, II =0 and the appropriate log likelihood is that associated with Section 2,
Step 1 of the model fitting section above.
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Forecasting.
1. Forecasts.
Consider Case IV for which
Ay, =a,+at-Ily, +¢g,,t=12,...n
so that
y,=a,+ar+(I-IDy,, +¢,.
Successive substitution implies
Yos =T+ ¥+ + ¥ Ja, +{E+ )L+ (¢ +5- D +..+ ¢+ 1), Ja, + Py,
+ eH—s + \Plsln-l +..t 1I’s-lsﬁl
where ¥, = (I1-II)".
Thus the s step ahead forecast, from time ¢ (= n), is
Vo =T+F + o+ W Jag +{(E+ )L+ +s-DY, +..+ ¢+ DT, Ja, + Ly,

on replacing €, s >0, by its expected value 0.

ForCasell: a,=o[B,],2,=0,T=alB, Bl

For CaseIll: a, =0, II=af’

For CaseIV: a, =a[B,],[I=a [ﬁ,., Biz]

where [B,] is rx1, [B, B.] is rx2 and a is formed by extracting the

relevant elements from A, (part 3 of the model fitting section above), prior to
transposing.

2. Forecast errors.
Since
Yis — iﬂs\t =g, + lIllehs—l +o..t \P.r-lg
the s step ahead mean square forecast error is
MSFE(S’H«:M) = E{(yH-s - 5’1+:|: )(yl+s - 5’1+s|}),} =Q+ \PlQ\Pll +..t+ \PS-IQ\P;-I 0

1+1

The orthogonal decomposition of the MSFE by component, involving the

transformation
u, =A%,
where
Q=ADA’'=PP’
and
a=|' Yp=[% O)p_apn

a lf 0 d,/

is given by

2
MSFE()A':HV) = Z{pip'j + lylpjp;'lllll +...+ \P:»lpjpfi‘Ps(-l}
=

where p; is the jth column of the Cholesky factor P. This decomposition is

conditional on the ordering of the component variables in the bivariate time
series, in parallel with the ordering of the time series components in their
determination by SVD.

14



Footnotes:

1.

For notational convenience, the origin ¢ = 0, is set in the first calendar year for
which data are available (pth. year in general). To generate the same intercept
parameter estimates as MICROFIT, it is necessary to set this origin in the
calendar year immediately prior to the first year for which data are available.

. To generate the same Johansen normalised parameter estimates produced by

MICROFIT, it was found necessary to scale the co-integration vector B,
defined under Section 2, Step 3, by a further factor of 1/ Jn.
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