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WEIGHT CONJECTURES FOR FUSION SYSTEMS

RADHA KESSAR, MARKUS LINCKELMANN, JUSTIN LYND, AND JASON SEMERARO

Abstract. Many of the conjectures of current interest in the representation theory of finite

groups in characteristic p are local-to-global statements, in that they predict consequences

for the representations of a finite group G given data about the representations of the p-local

subgroups of G. The local structure of a block of a group algebra is encoded in the fusion

system of the block together with a compatible family of Külshammer-Puig cohomology

classes. Motivated by conjectures in block theory, we state and initiate investigation of a

number of seemingly local conjectures for arbitrary triples (S,F , α) consisting of a saturated

fusion system F on a finite p-group S and a compatible family α.

1. Introduction

Throughout this paper we fix a prime number p and an algebraically closed field k of
characteristic p. A block B of a finite group algebra kG gives rise to three fundamental
invariants encoding the local structure of B: a defect group S, a saturated fusion system
F on S, and a family α = (αQ)Q∈Fc of second cohomology classes αQ ∈ H2(OutF(Q), k×).
The αQ are called the Külshammer-Puig classes of the block B. They are defined for each
F -centric subgroup Q of S, and satisfy a certain compatibility condition (recalled in Section
4). The triple (S,F , α) is determined by B uniquely up to G-conjugacy. If B is the principal
block of kG, then S is a Sylow p-subgroup, F = FS(G), and all the classes αQ are trivial.
In what follows, we freely use standard notation on fusion systems as in [AKO11]. For a
finite dimensional k-algebra B, we denote by `(B) the number of isomorphism classes of
simple B-modules and by z(B) the number of isomorphism classes of simple and projective
B-modules. If B is a block of a finite group algebra kG, then we denote by k(B) the number
of ordinary irreducible characters of G associated with B.

The prominent counting conjectures in the block theory of finite groups express numerical
invariants of B in terms of (S,F , α). Alperin’s weight conjecture (henceforth abbreviated
AWC) predicts the equality

`(B) =
∑

Q∈Fc/F

z(kα OutF(Q)) ,

where F c/F is a set of representatives of the isomorphism classes in F of F -centric subgroups
of S, and where kα OutF(Q) is the group algebra of OutF(Q) = AutF(Q)/ Inn(Q) twisted by
αQ. The right side in this version of AWC clearly makes sense for arbitrary saturated fusion
systems and arbitrary choices of second cohomology, classes, and this is the starting point of
the present paper.

Let (S,F , α) be a triple consisting of a finite p-group S, a saturated fusion system F on S,
and a family α = (αQ)Q∈Fc of classes αQ ∈ H2(OutF(Q); k×), for any F -centric subgroup Q

Key words and phrases. fusion system, block, finite group.
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of S, such that the family α is F -compatible in the sense of Definition 4.1 below. If α is the
family of Külshammer-Puig classes of a fusion system F of a block B with defect group S,
then α is F -compatible by Theorem [Lin18, 8.14.5]; in that case we will say that the triple
(S,F , α) is block realizable and that it is realized by the block B.

For any F -centric subgroup Q of S and any subgroup H of OutF(Q) or of AutF(Q), by
kαH we will mean the twisted group algebra of H over k with respect to the restriction of
αQ to H. Using the notation in [Lin18, Section 8.15], the number of weights of (S,F , α) is
the positive integer w(F , α) defined by

w(F , α) :=
∑

Q∈Fc/F

z(kα OutF(Q)) ,

where the notation Q ∈ F c/F means that Q runs over a set of representatives of the isomor-
phism classes in F of F -centric subgroups of S. Note that z(kα OutF(Q)) = 0 unless Q is also

F -radical (cf. Lemma 4.11 below), and hence we have w(F , α) =
∑

Q∈Fcr/F

z(kα OutF(Q)). By

Proposition 4.5 or the above remarks, if (S,F , α) is realized by a block B of a finite group
algebra, then B satisfies AWC if and only if w(F , α) = `(B).

If x is an element in S such that 〈x〉 is fully F -centralized, then CF(x) is a saturated
fusion system on CS(x), there is a canonical functor CF(x)c → F c, and restriction along this
functor sends the F -compatible family α to a CF(x)-compatible family α(x); see Proposition
4.5 below. Denote by [S/F ] a set of F -conjugacy class representatives of elements of S such
that 〈x〉 fully F -centralized. We set

k(F , α) :=
∑

x∈[S/F ]

w(CF(x), α(x)) .

By Proposition 4.5, if (S,F , α) is realized by a block B of a finite group algebra such that B
and the B-Brauer pairs satisfy AWC, then k(F , α) = k(B).

For any F -centric subgroup Q of S we define the set NQ to be the set of non-empty normal
chains σ of p-subgroups of OutF(Q) starting at the trivial subgroup; that is, chains of the
form

σ = (1 = X0 < X1 < · · · < Xm)

with the property that Xi is normal in Xm for 0 6 i 6 m. We set |σ| = m, and call m the
length of σ. We define the following two sets:

WQ = NQ × Irr(Q) ,

W∗Q = NQ ×Qcl ,

where Irr(Q) is the set of ordinary irreducible characters of Q and where Qcl is the set of
conjugacy classes of Q. There are obvious actions of the group OutF(Q) on the sets NQ,
Irr(Q), and Qcl, hence on the sets WQ, W∗Q. We denote by I(σ, µ) and by I(σ, [x]) the
stabilisers in OutF(Q) under these actions, where (σ, µ) ∈ WQ and (σ, [x]) ∈ W∗Q, with [x]
the conjugacy class in Q of an element x ∈ Q. For any F -centric subgroup Q of S we set

wQ(F , α) =
∑

(σ,µ)∈WQ/OutF (Q)

(−1)|σ|z(kαI(σ, µ))
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w∗Q(F , α) =
∑

(σ,[x])∈W∗Q/OutF (Q)

(−1)|σ|z(kαI(σ, [x])) ,

and we set
m(F , α) =

∑
Q∈Fc/F

wQ(F , α) ,

m∗(F , α) =
∑

Q∈Fc/F

w∗Q(F , α) .

There are refinements of the above numbers which take into account defects of ordinary
irreducible characters and which appear in conjectures of Dade and Robinson. These will be
considered in Section 2.

Theorem 1.1. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. Then

m∗(F , α) = k(F , α) .

Theorem 1.1 is a cancellation theorem for arbitrary fusion systems inspired by cancellation
theorems of Robinson such as in [Rob96, Theorem 1.2].

Theorem 1.2. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. If AWC holds, then m(F , α) = m∗(F , α).

Theorem 1.2 shows that AWC implies an equality (for arbitrary fusion systems) of two
numerical invariants dual to each other in the sense that one is obtained by summing over
conjugacy classes of p-groups and the other by summing over irreducible characters. Given
that the numerical invariants m, m∗, k are entirely defined at the ‘local’ level of fusion
systems and compatible families, it seems surprising that Alperin’s Weight Conjecture is
needed to obtain the conclusion of Theorem 1.2.

Corollary 1.3. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. If AWC holds, then m(F , α) = k(F , α).

If (S,F , α) is block realizable, then Corollary 1.3 follows from work of Robinson and
expresses the fact that a coarse version of the Ordinary Weight Conjecture is implied by
AWC (see Theorem 2.4 below).

The paper is organised as follows. Section 2 contains a list of conjectures inspired by their
block theoretic counter parts. In Section 3 we collect background material, Section 4 contains
relevant properties of F -compatible families, Section 5 contains technicalities needed for the
proofs of Theorems 1.1 and 1.2 in Section 6 and Section 7, respectively. In an Appendix, we
collect some foundational material from work of Robinson.

Acknowledgements. Many of the key ideas in this paper were worked out during the
workshop “Group Representation Theory and Applications” at the Mathematical Sciences
Research Institute (MSRI) in February 2018. The authors would like to thank MSRI for its
hospitality, and for providing such a pleasant environment in which to carry out research.
The first and second authors were MSRI members during the Spring 2018 semester which
was supported by the National Science Foundation under Grant No. DMS-1440140. The
second author acknowledges support from EPSRC grant EP/M02525X/1. The third author
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2. Conjectures

We formulate conjectures for fusion systems which are motivated by conjectural or known
statements in block theory. For each of these conjectures, the link with a block theoretic
conjecture is made either via AWC or via the Ordinary Weight Conjecture, the statement of
which will be recalled below. Note that by work of Robinson the Ordinary Weight Conjecture
implies the AWC.

These conjectures make precise the idea that the gap between various local-global block
theoretic conjectures is purely local. Proving or disproving any of these is a win-win scenario.
If one can prove one of these conjectures at the fusion system level, then one would get that
AWC (or the ordinary weight conjecture) implies the corresponding block theoretic version.
If on the other hand one could disprove any of these, one would either have found a counter
example to the corresponding block theoretic conjecture, or one would have found a way to
distinguish exotic fusion systems from block realizable fusion systems. Either outcome would
be interesting.

We keep the notation of the previous section. Let F be a saturated fusion system on a finite
p-group S and let α be an F -compatible family (see Definition 4.1). Recall from Proposition
4.5 that if (S,F , α) is realized by a block B which satisfies AWC, then w(F , α) = `(B), and
if all Brauer correspondents of B also satisfy AWC, then k(F , α) = k(B).

Conjecture 2.1. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. Then k(F , α) 6 |S|.

By the above remark, if (S,F , α) is realizable by a block B such that AWC holds for all
B-Brauer pairs, then Conjecture 2.1 holds if and only if B satisfies Brauer’s k(B)-conjecture,
which predicts the inequality k(B) 6 |S|. Also, note that by Theorem 1.1, the inequality of
Conjecture 2.1 is equivalent to the inequality m(F , α) 6 |S|. In view of Theorem 1.2 and
Corollary 1.3 (see also Conjecture 2.3), one could consider versions of the inequality with
k(F , α) replaced by m(F , α).

Conjecture 2.2. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. Then w(F , α) 6 ps, where s is the sectional rank of S.

If (S,F , α) is realizable by a block B such that AWC holds for B, then the above is
equivalent to the statement that B satsifies the conjecture by Malle and Robinson [MR17]
predicting the inequality `(B) 6 ps. Conjecture 2.2 has been shown to hold for the exotic
Solomon fusion systems by Lynd and Semeraro [LS17].

Next, we refine the integers w(F , α), m(F , α), m∗(F , α) by taking into account defects of
characters. For Q a subgroup of S and d a non-negative integer, we set

IrrdK(Q) := {µ ∈ IrrdK(Q) | vp(|Q|/µ(1)) = d} ;

this is the set of ordinary irreducible characters of Q of defect d. Note that this set is
OutF(Q)-stable. As in the previous section, we denote by NQ the set of nonempty normal
chains of p-subgroups of OutF(Q) starting with the trivial subgroup of OutF(Q). Given such
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a chain σ and an irreducible character µ of Q, we denote by I(σ) and I(σ, µ) the stabilisers
of σ and of the pair (σ, µ) in OutF(Q).

Given a saturated fusion system F on a finite p-group S, an F -compatible family α, and
a non-negative integer d, following [AKO11, Part IV, Section 5.7], we set

wQ(F , α, d) :=
∑

σ∈NQ/OutF (Q)

(−1)|σ|
∑

µ∈IrrdK(Q)/I(σ)

z(kαI(σ, µ)).

and

m(F , α, d) :=
∑

Q∈Fc/F

wQ(F , α, d).

We clearly have

m(F , α) =
∑
d>0

m(F , α, d)

The Ordinary Weight Conjecture (henceforth abbreviated OWC), first stated in [Rob96]
and reformulated in [Rob04], states that if B is a block of the group algebra kG of a finite
group G with defect group S, fusion system F and family of Külshammer–Puig classes α, then
for each d > 0, m(F , α, d) equals the number of ordinary irreducible characters of defect d as-
sociated to the block B (cf. [AKO11, IV.5.49]). As noted above, m(F , α) =

∑
d>0 m(F , α, d).

Thus, OWC implies the following “summed up version” (henceforth abbreviated SOWC): if
B is a block of the group algebra kG of a finite group G with defect group S, fusion system
F and family of Külshammer–Puig classes α, then m(F , α) = k(B), the number of ordinary
irreducible characters of G associated with B. On the other hand, AWC predicts that k(F , α)
equals k(B). This leads to the following conjecture.

Conjecture 2.3. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. We have

k(F , α) = m(F , α).

Now Corollary 1.3 may be restated as follows.

Theorem 2.4. Suppose that AWC holds for all blocks. Then Conjecture 2.3 holds for all
(S,F , α), S a finite p-group, F a saturated fusion system on S and α an F-compatible family.

By [Rob96], [Rob04], AWC is equivalent to SOWC in the sense that a minimal counter-
example to AWC is a a minimal counter-example to the other. The difficult implication is
that AWC implies SOWC. Theorem 2.4 may be viewed as an extension of Robinson’s result
to arbitrary fusion systems.

Conjecture 2.5. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. For each positive integer d, we have m(F , α, d) ≥ 0.

Remark 2.6. With the above notation, suppose that d is the integer such that |S| = pd.
The only chain contributing to the expression for m(F , α, d) is the chain S of length zero
and the contribution of this chain is a strictly positive integer. This is because OutF(S) is a
p′-group.

We consider next Brauer’s height zero conjecture.
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Proposition 2.7. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. Suppose that S is abelian of order pd. Then m(F , α, d′) = 0 for all
d′ 6= d.

Proof. Since S is abelian, S is the only F -centric subgroup of S, and all characters of S are
linear, hence of defect d. The result follows. �

Conjecture 2.8. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. Suppose that S is nonabelian of order pd. Then m(F , α, d′) 6= 0 for
some d′ 6= d.

If S is non-abelian and (S,F , α) is realized by a block B satisfying OWC, then the above
is equivalent to the statement that B satisfies Brauer’s height zero conjecture. Note that
Navarro and Tiep [NT13] have proved that the height zero conjecture is a consequence of
the Dade projective conjecture and of the fact that the Brauer height zero conjecture has
been checked for finite quasi-simple groups [KM17]. Eaton has proved in [Eat04] that the
Dade projective conjecture is equivalent to the OWC in the sense that a minimal counter-
example to one is a minimal counter-example to the other. Thus the above conjecture for
block realizable triples is a consequence of OWC.

Conjecture 2.9. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. Suppose that S is nonabelian of order pd. Let r > 0 be the smallest
positive integer such that S has a character of degree pr. Then r is the smallest positive
integer such that m(F , α, d− r) 6= 0.

If (S,F , α) is realized by a block B satisfying OWC, then the above is equivalent to the
statement that B satisfies the conjecture by Eaton and Moreto in [EM14].

Conjecture 2.10. Let F be a saturated fusion system on a finite p-group S of order pd and
let α be an F-compatible family. Then

(1) k(F , α)/m(F , α, d) is at most the number of conjugacy classes of [S, S].
(2) k(F , α)/w(F , α) is at most the number of conjugacy classes of S.

If (S,F , α) is realized by a block B satisfying OWC, then the above is equivalent to
the statement that B satisfies the conjecture of Malle and Navarro in [MN06]. Similar to
Conjecture 2.1, one could consider versions of the above inequalities with k(F , α) replaced
by m(F , α) or m∗(F , α).

If F is p-solvable (i.e. if F is constrained with p-solvable model) then for any F -compatible
family α, the triple (S,F , α) is realizable by a block of a p-solvable group (see Proposition
4.8). The OWC has been shown to hold for blocks of p-solvable groups by Robinson, and
AWC for p-solvable groups was proved earlier by Okuyama. The k(B) conjecture for finite p-
solvable groups was proved in [GMRS04] and the height zero conjecture for p-solvable groups
was shown to hold by Gluck and Wolf [GW84]. Thus Conjectures 2.1, 2.3, 2.5, 2.8 all hold
for solvable fusion systems. If moreover F = NF(S), then for any F -compatible family α,
the triple (S,F , α) is realizable by a block of a finite group G containing S as a normal (and
Sylow) subgroup, hence Conjecture 2.10 holds by [MR17, Theorem 2] and Conjecture 2.9
holds by [EM14].
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Let F be a saturated fusion system on a non-trivial finite p-group S and let C be the
full subcategory of F of nontrivial subgroups of S. Following the terminology in [Lin09b],
briefly reviewed at the end of the next section, we denote by SC(C) the subcategory of the
subdivision category S(C) of chains

σ = (Q0 < Q1 < · · · < Qm)

where the Qi are nontrivial subgroups of S which are normal in the maximal term Qm. Such
a chain σ is called fully F-normalized if Q0 is fully F -normalized, and either m = 0 or
σ>1 = (Q1 < · · · < Qm) is fully NF(Q0)-normalized. Denote by S/(C)f the set of all fully
F -normalized chains. For σ ∈ S/(C)f , we denote by NF(σ) the saturated fusion system on
NS(σ) as in [Lin09b, 5.2, 5.3]. By Proposition 4.6 below, an F -compatible family α induces
a canonical NF(σ)-compatible family α(σ), for each fully F -normalised chain σ in S/(C).
The translation to fusion systems of the Knörr-Robinson reformulation of Alperin’s Weight
Conjecture in [KR89] reads as follows.

Conjecture 2.11. Let F be a saturated fusion system on a finite non-trivial p-group S and
let α be an F-compatible family. We have

k(F , α) =
∑
σ

(−1)|σ|k(NF(σ), α(σ))

where in the sum σ runs over a set of representatives of the isomorphism classes of fully
normalised normal chains of non-trivial subgroups of S.

Again, one could consider versions of the above replacing k with m or m∗. Taking into
account defects of characters, we get the following conjecture, which is an analogue of Dade’s
ordinary conjecture:

Conjecture 2.12. Let F be a saturated fusion system on a finite non-trivial p-group S and
let α be an F-compatible family of F . For each d ≥ 0 we have

m(F , α, d) =
∑
σ

(−1)|σ|m(NF(σ), α(σ), d) ,

where in the sum σ runs over a set of representatives of the isomorphism classes of fully
normalised normal chains of non-trivial subgroups of S.

Example 2.13. Let p be an odd prime and let S ∼= p1+2
+ be an extraspecial group of order p3

and exponent p. Using the classification of saturated fusion systems on S by Ruiz and Viruel
[RV04] (which for p = 7 includes three exotic fusion systems), one can show that for any
nonconstrained fusion system on S every compatible family α is trivial. Using computations
in Magma [BCP97] one can show that for any nonconstrained saturated fusion system F
on S the Conjectures 2.1, 2.2, 2.3, 2.5, 2.8, 2.9 and 2.10 all hold for F . The details for the
calculations can be found in Section 8 of [KLLS18].

3. Background material

Lemma 3.1 (Thompson’s A × B Lemma). Let S be a finite p-group and A × B ≤ Aut(S)
be such that A is a p′-group and B is a p-group. If A centralizes CS(B), then A = 1.

Proof. See [Gor80, Theorem 5.3.4]. �
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We will use standard terminology on saturated fusion systems, as can be found in many
sources, including [Cra11], [AKO11]), for instance. We assume familiarity with the notions
of centralizers and normalizers in fusion systems.

Lemma 3.2. Let F be a saturated fusion system on a finite p-group S. Fix Q ≤ S and
K ≤ Aut(Q). Assume that Q is fully K-normalized. Then PQ is F-centric for each NK

F (Q)-
centric subgroup P ≤ NK

S (Q).

Proof. The argument given in the proof of [BLO03, Lemma 6.2] generalizes: Let P ≤
NK
S (Q) be an NK

F (Q)-centric subgroup and let ϕ ∈ HomF(PQ, S). Then ϕ(PQ) 6
NϕKϕ−1

S (ϕ(Q))ϕ(Q). Since Q is fully K-normalized in F , there is a morphism

ψ ∈ HomF(NϕKϕ−1

S (ϕ(Q))ϕ(Q), S)

such that ψϕ(Q) = Q and (ψϕ)|Q ∈ K by [AKO11, Proposition I.5.2(c)]. This means that

ψϕ is a morphism in HomNK
F (Q)(PQ, S). Since CS(ϕ(PQ)) ≤ NϕKϕ−1

S (ϕ(Q)),

ψ(CS(ϕ(PQ))) ≤ CS(ψϕ(PQ)) ≤ CS(ψϕ(P )) ∩NK
S (Q) ≤ ψϕ(P ),

where the middle inequality holds because ψϕKϕ−1ψ−1 = K, and where the last inequality
holds since P is NK

F (Q)-centric. Hence, CS(ϕ(PQ)) ≤ ϕ(P ) 6 ϕ(PQ). Since ϕ was chosen
arbitrarily, this shows that PQ is F -centric. �

Lemma 3.3. Let x ∈ S be such that 〈x〉 is fully F-centralized, and fix Q ≤ CS(x). Then Q
is CF(x)-centric if and only if Q is F-centric. Moreover, OutCF (x)(Q) = COutF (Q)(x) under
either of these assumptions.

Proof. Suppose first that Q is F -centric and let P be CF(x)-conjugate to Q. Then
CCS(x)(P ) ≤ CS(P ) ≤ P and hence Q is CF(x)-centric. Conversely if Q is CF(x)-centric,
then x ∈ Z(CS(x)) ≤ CCS(x)(Q) ≤ Q so Q = Q〈x〉 is F -centric by Lemma 3.2 applied in the
case K = 1. Since OutF(Q) acts by conjugation on Z(Q), COutF (Q)(x) is well-defined. Now
AutCF (x)(Q) = CAutF (Q)(x) is exactly the set of F -automorphisms of Q which fix x, and this
group contains Inn(Q) by assumption. The lemma follows. �

Given an isomorphism ϕ in F from Q to Q′, the conjugation map cϕ : AutF(Q) →
AutF(Q′) given by η → ϕηϕ−1 is an isomorphism which maps Inn(Q) onto Inn(Q′). Thus,
conjugation induces a well-defined isomorphism OutF(Q)→ OutF(Q′), which we denote by
cϕ. The following direct application of the extension axiom is needed in Section 5.

Lemma 3.4. Let Q and Q′ be F-centric subgroups of S, and let R be a subgroup of S
containing Q as a normal subgroup. Let ϕ : Q→ Q′ be an isomorphism in F . Assume that
cϕ(AutR(Q)) 6 AutS(Q′), or, equivalently, that cϕ(OutR(Q)) 6 OutS(Q′). Let R′ 6 S be
the inverse image of cϕ(AutR(Q)) under the canonical homomorphism NS(Q′)→ AutS(Q′).
Then there exists a morphism R → S in F extending ϕ. Moreover, τ(R) = R′ for any such
extension τ .

Proof. Since AutS(Q′) is the full inverse image of OutS(Q′) under the canonical surjection
AutF(Q′)→ OutF(Q′), the two conditions on the image of R are indeed equivalent. Hence,
R 6 Nϕ in the notation of [AKO11, Definition 2.2]. Since each F -centric subgroup is fully
F -centralised, the extension axiom of saturation yields the first assertion.
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If τ and τ ′ are two F -morphisms extending ϕ, then one may find z ∈ Z(Q) such that
τ ′ = τ ◦ cz by [BLO03, Lemma A.8]. Since z ∈ Q 6 R, this shows the second assertion. �

Let C be a full subcategory of F which is closed under isomorphisms and taking super-
groups. Following the notation in [Lin18, Section 8.13], we denote by S(C) the subdivision
category of C. The objects of C can be regarded as non-empty chains of non-isomorphisms

Q0 → Q1 → · · · → Qm

in F with Qi belonging to C. Any homomorphism in S(C) is a composition of a chain
preserving isomorphism in F and an inclusion of a chain as a subchain of another chain.
There is a canonical functor S(C)→ C mapping a chain to its maximal term.

By [Lin18, Proposition 8.13.3], any chain in S(C) is isomorphic, in S(C), to a chain of
proper inclusions

Q0 < Q1 < · · · < Qm

of subgroups Qi of S belonging to C. In other words, the category S(C) is equivalent to
its full subcategory, denoted S<(C) consisting of non-empty chains of proper inclusions of
subgroups of S in C. A chain σ above is said to have length m, and we write |σ| = m. When
convenient, we occasionally write Qσ and Qσ for the smallest and largest subgroups in σ,
respectively.

A morphism between chains Q0 < · · · < Qm and R0 < · · · < Rn is a pair consisting
of an injective map β : {0, . . . ,m} → {0, . . . , n} together with a collection of isomorphisms
Qi → Rβ(i) in F for each i ∈ {0, . . . ,m} which satisfy the obvious compatibility conditions.
Thus, the set of isomorphisms between chains σ, τ in S<(C) can be identified with the set
of chain-preserving isomorphisms ϕ : Qσ → Qτ in F . Whenever σ ∈ S<(C), let AutF(σ) be
the subgroup of AutF(Qσ) consisting of those automorphisms which preserve each member
of the chain. In other words, AutF(σ) is the automorphism group of σ in S<(C).

We denote by S/(C) the full subcategory of S<(C) of all chains

Q0 < Q1 < · · · < Qm

in S<(C) satisfying the additional property that the Qi are normal in the maximal term Qm,
for 0 6 i 6 m.

We denote the set of isomorphism classes of chains in S(C) by [S(C)]. Since C, and hence
S(C), is an EI-category, the set [S(C)] has a canonical partial order given by [σ] 6 [τ ],
whenever [σ], [τ ] are the isomorphism classes of chains σ, τ in S(C) such that HomS(C)(σ, τ)
is non-empty.

If F = FS(G) for some finite group G having S as a Sylow p-subgroup, then [S<(C)] is
isomorphic to the poset of G-conjugacy classes of chains of subgroups in C. For a more
general statement regarding G-conjugacy classes of chains of Brauer pairs of a block, see
[Lin05, Proposition 4.6].

4. Compatible families of second cohomology classes

We describe properties of Külshammer-Puig classes of blocks which are needed to ensure
that the conjectures stated for saturated fusion systems do indeed specialize to the block
theoretic versions from which they are inspired in case the triple (S,F , α) under consideration
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is realized by a block. We briefly review the construction of Külshammer-Puig classes (see
e. g. [Lin18, Theorem 5.3.12, Corollary 8.12.9, Section 8.14] for more details and proofs).

Let M be a finite-dimensional simple k-algebra; that is, M is isomorphic to a matrix
algebra over k. Let G be a finite group acting on M by algebra automorphisms. By the
Skolem-Noether Theorem, every automorphism of M is inner, and hence for any g ∈ G there
is an element sg ∈ M× such that the action of g is equal to the conjugation action of sg on
M . Since Z(M) ∼= k, the elements sg are only unique up to scalars in k×. Thus for g , h ∈
G we have sgsh = α(g, h)sgh for some α(g, h) ∈ k×. The map α : G × G → k× is then a
2-cocycle whose class in H2(G, k×) is independent of the choices of the sg. We call this class
the class determined by the action of G on M . If G acts trivially on M , then α is the trivial
class.

Suppose now that G has a normal subgroup N such that the action of N on the simple
algebra M lifts to a G-stable group homomorphism τ : N → M×. Let [G/N ] be a set of
representatives of G/N in G. For each g ∈ [G/N ] choose some sg as above, and for each
h ∈ N set sgh = sgτ(h). One checks that the 2-cocycle α determined by this choice has the
property that its values α(g, h) depend only on the images of g, h in G/N , for all g, h ∈ G,
and hence α induces a 2-cocycle β on G/N whose class in H2(G/N, k×) does not depend on
the choices of the sg (but the class of β does depend on the choice of τ lifting the action of
N on M). We call this class the class determined by the action of G on M together with the
group homomorphism τ . Even if G acts trivially on M this does not necessarily imply that
β is trivial (this depends on whether τ is trivial).

This scenario arises if M is a simple algebra quotient of kN by a G-stable maximal ideal in
kN . Here the action of G is the conjugation action and the map τ is induced by the canonical
algebra surjection kN → M . Any such scenario determines a class β in H2(G/N, k×) whose
restriction to G along the canonical surjection G→ G/N is equal to the class α determined
by the action of G on M . For technical Clifford theoretic reasons it is usually more convenient
to consider the inverse class.

The Külshammer–Puig classes arise in turn as special cases of this construction. Let B
be a block of kG with maximal B-Brauer pair (S, e) and associated fusion system F on S.
Let Q be an F -centric subgroup of S. That is, if f is the unique block of kCG(Q) satisfying
(Q, f) 6 (S, e), then Z(Q) is a defect group of f (which is clearly central), and hence
kCG(Q)f is a nilpotent block with a unique simple algebra quotient MQ. The uniqueness
ensures that MQ is NG(Q, f)-stable. By standard facts, MQ is also the unique simple algebra
quotient of kQCG(Q)f . Note that QCG(Q) is a normal subgroup of NG(Q, f), and that
NG(Q, f)/QCG(Q) ∼= OutF(Q). Thus the previous scenario with NG(Q, f) and QCG(Q)
instead of G and N , respectively, yields a canonical class in H2(OutF(Q), k×). The inverse
of this class is the Külshammer–Puig class αQ. Using NG(Q, f) and CG(Q) would yield the
corresponding class, abusively again denoted αQ, in H2(AutF(Q), k×).

Let F be a saturated fusion system on a finite p-group S. We denote by F c the ful-
l subcategory of F -centric subgroups of S. For any Q ∈ F c, we may (and will) identify
without further comment the group H2(OutF(Q), k×) with H2(AutF(Q), k×) via the iso-
morphism induced by the canonical surjection AutF(Q) → OutF(Q). The assignment Q 7→
H2(OutF(Q), k×) is not functorial on F c. In order to interpret certain families of classes in∏

Q∈Fc H
2(OutF(Q), k×) as a limit of a functor, we need to pass to the subdivision category
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S(F c) of F c. By [Lin09a, Theorem 1.1], there is a canonical functor A2
F from [S(F c)] to

the category of abelian groups which sends an object τ of [S(F c)] to H2(AutS(Fc)(σ), k×) for
some σ ∈ S(F c) such that τ = [σ]. The choice of representative σ determines this functor
up to unique isomorphism. Let α = (αQ)Q∈Fc be a family of classes αQ ∈ H2(OutF(Q), k×).
For each τ ∈ [S(F c)], define the element ατ ∈ A2

F(τ) to be the restriction of αQm to the
subgroup AutS(Fc)(σ) of AutF(Qm) where

σ = (Q0 → Q1 → · · · → Qm)

is the representative of τ in S[F c] as above.

Definition 4.1. Let F be a saturated fusion system on a finite p-group S. An F-compatible
family is a family α = (αQ)Q∈Fc of classes αQ ∈H2(OutF(Q), k×) such that the corresponding
family (ατ )τ∈[S(Fc)] as above belongs to lim

[S(Fc)]
A2
F . In that case, we write α ∈ lim

[S(Fc)]
A2
F for

short.

The set of F -compatible classes forms a subgroup of the abelian group∏
Q∈Fc H

2(OutF(Q), k×).

By [Lin18, Theorem 8.14.5], the family α of Külshammer-Puig classes of a block B of
some finite group algebra kG with defect group S and fusion system F is F -compatible. By
[Lin09b, Theorem 4.7] the inclusions of categories S/(F c) ⊆ S<(C) ⊆ S(C) induce isomor-
phisms

lim
[S(Fc)]

A2
F
∼= lim

[S<(Fc)]
A2
F
∼= lim

[S/(Fc)]
A2
F

Thus to check F -compatibility it suffices to consider normal chains. In fact, it suffices to
consider normal chains of length at most 1.

Lemma 4.2 ([Lin18, Theorem 8.14.5] and its proof). Let F be a saturated fusion system
on a finite p-group S, and let α = (αQ)Q∈Fc with αQ ∈ H2(OutF(Q); k×) for any F-centric
subgroup Q of S. The following are equivalent.

(1) The family α is F-compatible.
(2) For any proper normal F-centric subgroup Q of an F-centric subgroup R of S, the

images of αQ and αR in H2(AutS(Fc)(Q / R), k×) under the maps induced by the
canonical group homomorphisms

AutS(Fc)(Q / R)→ AutF(Q)

AutS(Fc)(Q / R)→ AutF(R)

are equal.

We need to follow compatible families through passages to centralizers of elements and
normalizers of chains of p-subgroups.

Lemma 4.3. [Lin18, Proposition 8.3.7] Let F be a saturated fusion system on a finite p-
group S, and let Q be a fully F-centralized subgroup of S. If R is a CF(Q)-centric subgroup
of CS(Q), then QR is an F-centric subgroup of S. The correspondence R 7→ QR extends to
a unique functor

CF(Q)c → F c

which sends a morphism ϕ : R → R′ in CF(Q)c to the unique morphism ψ : QR → QR′ in
F c which is the identity on Q and coincides with ϕ on R.
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This functor extends obviously to a functor between subdivision categories, and hence this
functor sends an F -compatible family α to a CF(Q)-compatible family α(Q). In order to
ensure that the conjectures involving this functor specialize to known facts or conjectures,
we need to check that if α is realized by a block B of kG, then α(Q) is realized by the
corresponding block of kCG(Q).

Proposition 4.4. Let G be a finite group, B a block of kG, and (S, e) a maximal B-
Brauer pair. Let F be the fusion system of B on S determined by the choice of e, and
let α = (αQ)Q∈Fc be the family of Külshammer–Puig classes of B. Denote by eQ the unique
block of kCG(Q) such that (Q, eQ) 6 (S, e) and by f the unique block of CCG(Q)(CS(Q)) =
CG(QCS(Q)) satisfying (CS(Q), f) 6 (S, e). Then (CS(Q), f) is a maximal (CG(Q), e)-
Brauer pair which determines the fusion system CF(Q) on CS(Q). The restriction of α
to a family α(Q) along the canonical functor CF(Q)c → F c is the family of Külshammer–
Puig classes of the block kCG(Q)eQ with respect to the maximal (CG(Q), eQ)-Brauer pair
(CS(Q), f).

Proof. The fact that (CS(Q), f) is a maximal (CG(Q), e)-Brauer pair which determines the
fusion system CF(Q) on CS(Q) is well-known, and proved, for instance, in [Lin18, Proposition
8.5.4]. For the statement on Külshammer–Puig classes, we need the contruction of these
classes as reviewed at the beginning of this Section. Let R be a CF(Q)-centric subgroup of
CS(Q). By 4.3, QR is F -centric. Note that CCG(Q)(R) = CG(QR). Thus if g is the unique
block of kCG(QR) such that (QR, g) 6 (S, e), then g is also the unique block of kCCG(Q)(R)
such that (R, g) 6 (CS(Q), f). These blocks have therefore the same unique simple quotient
(as they are nilpotent blocks), and clearly NCG(Q)(R, f) is a subgroup of NG(QR, f). Since
the Külshammer–Puig classes of R and QR for CF(Q) F are determined by the respective
actions of the groups NCG(Q)(R, f) and NG(QR, f) on that simple quotient, it follows that
the class of R in CF(Q) is indeed obtained from restricting the class of QR in F along the
canonical map AutCF (Q)(R)→ AutF(QR). �

We apply this for cyclic Q. Let x be an element in S such that 〈x〉 is fully F -centralized.
For α an F -compatible family, we denote by α(x) the corresponding CF(x)-compatible family,
obtained from restricting α along the canonical functor

CF(x)c → F c

from Proposition 4.3 applied with Q = 〈x〉. By Proposition 4.4, if α is a family of
Külshammer–Puig classes of a block, then α(x) is a family of Külshammer–Puig classes
of the relevant Brauer correspondent of the block.

Proposition 4.5. Suppose that (S,F , α) is realizable by a block B of a finite group algebra
kG. Then w(F , α) is the number of weights associated with B. In particular, AWC holds for
B if and only if w(F , α) = `(B). Moreover, if AWC holds for B and all its Brauer pairs,
then k(F , α) = k(B), the number of ordinary irreducible characters associated with B.

Proof. For the first assertion see for instance [Kes07, Proposition 5.4]. The fusion system
F is determined by a choice of a block e of kCG(S) such that (S, e) is a maximal B-Brauer
pair (see e. g. [Kes07, Definition 3.8]). Let x ∈ S such that 〈x〉 is fully F -centralized. Let
f be the block of kCG(x) such that (〈x〉, f) is the unique B-Brauer pair contained in (S, e).
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By Proposition 4.4, the triple (CS(x), CF(x), α(x)) is realized by the block f of kCG(x), and
hence it follows that w(CF(x), α(x)) = `(kCG(x)f) thanks to the assumption that B-Brauer
pairs satisfy AWC. A theorem of Brauer (cf. [Lin18, Theorem 6.13.12]) now implies the
second assertion (see also [AKO11, IV. 5.7]). �

For F a saturated fusion system on a finite p-group S, denote by F the associated orbit
category, obtained from F by taking as morphisms the orbits Inn(R)\HomF(Q,R) of mor-
phisms in F from Q to R modulo inner automorphisms of R, for any two subgroups Q, R of
S. In particular, OutF(Q) ∼= AutF(Q). Recall from [Lin09b, Definition 5.1] that a normal
chain

σ = (Q0 < Q1 < · · · < Qm) ∈ S/(F)

is called fully F-normalized if Q0 is fully F -normalized and if either m = 0 or the chain

σ>1 = (Q1 < · · · < Qm)

is fully NF(Q0)-normalized. Every chain in S/(F) is isomorphic to a fully F -normalized
chain. Note that since σ is a normal chain, we have QmCS(Qm) 6 NS(σ). We need an
analogue of Proposition 4.4 for NF(σ).

Proposition 4.6. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. Let σ = (Q0 < Q1 < · · · < Qm) ∈ S/(F) be fully F-normalized.

(1) For every P ≤ NS(σ), if P is NF(σ)-centric, then QmP is F-centric.
(2) Let P , R be NF(σ)-centric subgroups of NS(σ), let ϕ : P → R a morphism in NF(σ),

and let ψ, ψ′ : QmP → QmR be morphisms in F extending ϕ and satisfying ψ(Qi) =
Qi = ψ′(Qi) for 0 6 i 6 m. Then the classes of ψ and ψ′ are conjugate by an element
in Z(P ). In particular, the correspondence sending ϕ to any choice of ψ induces a
functor

Ψ : NF(σ)c → F c.
(3) For any NF(σ)-centric subgroup P of NS(σ), the functor Ψ induces a group homo-

morphism
OutNF (σ)(P )→ OutF(QmP ) ,

and the restriction along these group homomorphisms induces a map from the group
of F-compatible families to the group of NF(σ)-compatible families.

(4) If (S,F , α) is realized by a block B with respect to a maximal B-Brauer pair (S, e), then
(NS(σ), NF(σ), α(σ)) is realized by the block em of kNG(σ, em) such that (Qm, em) 6
(S, e), with respect to the maximal (NG(σ, em), em)-Brauer pair (NS(σ), f), where f
is the unique block of CNG(σ)(NS(σ)) = CG(NS(σ)) satisfying (NS(σ), f) 6 (S, e).

Proof. In order to prove the first statement, we argue by induction over the length m of
the chain σ = Q0 < Q1 < · · · < Qm. Suppose that m = 0, so σ = Q0, and Q0 is fully
F -normalised. Let P be an NF(Q0)-centric subgroup of NS(Q0). Then Q0P is F -centric
by Lemma 3.2. Suppose now that m > 0. Let P 6 NS(σ) be NF(σ)-centric. Set σ′ =
Q0 < Q1 < · · · < Qm−1 and F ′ = NF(σ′). By [Lin09b, 5.4], σ′ is a fully F -normalized chain,
and Qm is fully F ′-normalized. By the statement for m = 0 applied to F ′, it follows that
QmP is F ′-centric. By induction, QmP is F -centric.

For the second statement, note that the two extensions ψ, ψ′ of ϕ are both again morphisms
in NF(σ), and their restrictions to the NF(σ)-centric subgroup P coincide. Thus, by a
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standard fact (see e. g. [BLO03, Lemma A.8]) they differ by conjugation with an element in
Z(P ). That means that the image of ψ in the orbit category F is uniquely determined by ϕ,
whence the second statement. The third statement is a formal consequence of the second.

For the proof of the fourth statement, note first that this makes sense: we have CG(Qm) 6
NG(σ, em) 6 NG(Qm, em), and AutS(F)(σ) ∼= NG(σ, em)/CG(Qm). In particular, by standard
block theory, em remains a block of kNG(σ, em). An interated application of [Lin18, Propo-
sition 8.5.4] shows that NF(σ) is the fusion system of this block with respect to the maximal
Brauer pair as stated. The same argument as at the end of the proof of Proposition 4.4
shows that restricting α yields the family of Külshammer–Puig classes of em as a block of
kNG(σ, em). �

Recall that a saturated fusion system F on a finite p-group S is constrained if F = NF(Q)
for some normal F -centric subgroup Q of S. In that case, by [BCG+05, Proposition C]
(see [AKO11, Theorem 4.9]), F is the fusion system of a finite group L with S as Sylow
p-subgroup, such that Q is normal in L satisfying CL(Q) = Z(Q); that is, L is p-constrained.
In particular, we have canonical isomorphisms L/Q ∼= OutF(Q) and L/Z(Q) ∼= AutF(Q).
The group L is called a model for F .

Proposition 4.7 ([Lin09a, Section 6]). Let F be a saturated fusion system on a finite p-group
S such that F = NF(Q) for some normal F-centric subgroup Q of S. Let L be a finite group
such that S is a Sylow p-subgroup of L, such that Q is normal in L satisfying CL(Q) = Z(Q),
and such that F = FS(L). The restriction from F c to AutF(Q) and the canonical map L→
AutF(Q) induce isomorphisms

H2(F c, k×) ∼= H2(AutF(Q), k×) ∼= H2(L, k×).

In particular, any F-compatible family α is uniquely determined by the component αQ.

Proposition 4.8 (cf. [AKO11, Proposition IV.5.34], [Lin04, 5.3] ). Let F be a saturated
fusion system on a finite p-group S such that F = NF(Q) for some normal F-centric sub-
group Q of S. Let α be an F-compatible family. Let L be a finite group such that S is a
Sylow p-subgroup of L, such that Q is normal in L satisfying CL(Q) = Z(Q), and such that
F = FS(L). Choose a finite cyclic subgroup Y of k× containing all values of a 2-cocycle

representing the class αQ. Then (S,F , α) is realized by a block of the central extension L̂ of
L by Y determined by αQ, regarded as a class in H2(L, Y ).

In particular α = 0 if and only if b is the principal block of kL̂ (which is isomorphic to
the principal block of kL). More generally, the blocks arising in the previous Proposition
are twisted group algebras of L; we lay out the connection between p′-central extensions and
twisted group algebras in the next result

Proposition 4.9. Let G be a finite group, and α ∈ H2(G, k×).

(1) There exists a central extension

1→ Z → G̃→ G→ 1

where Z is a cyclic group of order prime to p and a primitive idempotent e of kZ

such for any subgroup L of G, we have an isomorphism kαL ∼= kL̃e, where L̃ is the

inverse image of L in G̃. In particular `(kαL) = `(kL̃e) and z(kαL) = z(kL̃e).
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(2) Suppose that there exists a normal p-subgroup Q of G such that CG(Q) = Z(Q).
Identify α with the corresponding element of H2(G/Q, k×). Let L be a subgroup of G

containing Q, S a Sylow p-subgroup of L, and Ŝ the Sylow p-subgroup of the inverse

image of S in L̃. Denote also by α the FS(L)-compatible family determined by the

restriction of α to L as in Proposition 4.7. Then, kL̃e is a block of kL̃ realizing

(S,FS(L), α) through the canonical isomorphism Ŝ ∼= S. Moreover, AWC holds for

kL̃e if and only if

`(kαL) =
∑
R

z(kαNL/Q(R)/R)

where R runs over a set of representatives of the L/Q-classes of p-subgroups of L/Q.

Proof. Since k is algebraically closed it is well-known that H2(G, k×) is finite, and hence
α can be represented by a 2-cocycle, abusively still denoted by α, with values in a finite
subgroup Z of k×. Then Z is cyclic of order prime to p, since k is a field of characteristic p.
Represent α by a central extension

1→ Z → G̃→ G→ 1

and denote, for any x ∈ G, by x̃ an inverse image of x in G̃ satisfying x̃ỹ = α(x, y)x̃y for all

x, y ∈ G. We regard the elements of Z as elements in the centre of G̃ and not as scalars; if
we do want to consider the elements of Z as scalars, we denote this via the inclusion map
ι : Z → k×. Set e = 1

|Z|
∑

z∈Z ι(z
−1)z. This is a primitive idempotent in kZ, and kZe is

1-dimenional. An easy verification shows that the map sending x̃e ∈ kG̃e to x induces an

algebra isomorphism kG̃e ∼= kαG. This isomorphism restricts to an isomorphism kL̃e ∼= kαL,
for any subgroup L of G. Statement (1) follows.

Let Q̂ be the Sylow p-subgroup of the inverse image Q̃ of Q in L̃. Then Q̃ = Z × Q̂, and

hence Q̂ is normal in L̃. Thus all block idempotents of kL̃ lie in kCL̃(Q̂) = k(Z(Q̂) × Z).

In other words, the block idempotents of kL̃ are precisely the primitive idempotents of kZ.

In particular, kL̃e is a block of kL̃. One easily checks that this block has defect group Ŝ,
which is isomorphic to S, and through this isomorphism, F = FS(L) is the (in this situation

unique) fusion system on S of the block e of L̃. We need to show that α is the family of
Külshammer–Puig classes of this block. By Proposition 4.7, it suffices to show this for the
class αQ̂. We write again α instead of αQ, and consider α as a class of H2(L, k×) whenever

appropriate. Note that e remains the unique block of CL̃(Q̂) = Z(Q) × Z such that (Q̂, e)

is a (L̃, e)-Brauer pair. So the construction of the Külshammer–Puig class at Q̂ is obtained

as the special case of the construction described at the beginning of this section with L̃ and

Z × Q̂ instead of G and N , respectively, and with the 1-dimensional quotient M ∼= k of

k(Z × Q̂) given by the map ι : Z → k× extended trivially to Q̂, still denoted by ι. Since any
group action on a 1-dimensional algebra is trivial, we may choose sx = 1 for x running over

a set of representatives of L̃/(Q̂ × Z) ∼= L/Q. Then also sx = 1 for x running over a set of

representatives of L̃/Z ∼= L, because ι is extended trivially to Q̂. Thus, for a general element
of the form x̃z, with x ∈ L and z ∈ Z, we may choose sx̃z = ι(z); in particular, sx̃ = 1 for x ∈
L. We need to show that this determines α−1. Note that α is determined by its restriction
to L via the map L → L/Q. Let x, y ∈ L. By construction, we have sx̃ = sỹ = sx̃y = 1.
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Since x̃ỹ = x̃yα(x, y), it follows that

sx̃ỹ = sx̃yι(α(x, y)) = ι(α(x, y))

and hence (writing α instead of ι ◦ α) we have

1 = sx̃sỹ = α(x, y)−1sx̃ỹ

This shows that α is the Külshammer–Puig class of this block at Q̂. Note that by the first

statement we have kL̃e ∼= kαL. The last statement on AWC follows from the fact that if P 6
S is FS(L)-centric radical, then P contains Q and if Q 6 P 6 S, then NL/Q(P/Q)/(P/Q)) ∼=
NL(P )/P = OutFS(L)(P ). �

Lemma 4.10. Let G be a finite group with normal subgroup N . Fix a cohomology class
α ∈ H2(G, k×) and write also α for the restriction to N . If z(kαG) 6= 0, then z(kαN) 6= 0.

Proof. Using Proposition 4.9, we fix a p′-central extension 1→ Z → Ĝ→ G→ 1 correspond-

ing to α and a central idempotent e ∈ kZ such that kαG ∼= kĜe. Then the restriction α is the

class corresponding to the induced central extension N̂ of N , and kαN ∼= kN̂e. Assume now

that kαG has a projective simple module. Then kĜe, and hence kĜ, has a projective simple

module, say M . The restriction of M to N̂ is both projective and semisimple. Hence, any

simple summand of ResĜ
N̂
M is projective. Since e still acts as the identity on the restriction

of M , we see that kN̂e has a projective simple module, and hence so does kαN . �

Lemma 4.11. Let G be a finite group and α ∈ H2(G, k×). If Op(G) 6= 1, then z(kαG) = 0.

Proof. As in the proof of Lemma 4.10, let 1 → Z → Ĝ → G → 1 be a p′-central extension

of G determined by α, and let e ∈ kZ be a central idempotent in kĜ such that kαG ∼= kĜe.

Let P = Op(G) and P̂ be the preimage under the quotient map. Since Z is a p′-group, the

restriction of α to P is trivial, and so P̂ = Z × P0 with P0 mapping isomorphically to P .

Then Op(P̂ ) = P0 6= 1 is a normal p-subgroup of Ĝ. Thus, as kP has no projective simple

module, neither does kĜ by Lemma 4.10. Hence neither does kĜe ∼= kαG. �

Fix a finite group G and an abelian group A. Let P be the set of all chains of proper
inclusions

Q0 = 1 < Q1 · · · < Qm

of p-subgroups of G. This is a G-set with respect to the conjugation action of G on chains,
and we denote by NG(σ) the stabilizer of σ in G. Let N be the subset of all such chains
satisfying in addition Qi�Qm for each 0 ≤ i ≤ m. Let E be the set of chains in N consisting
of elementary abelian subgroups. Both N and E are G-subsets of P . For the purpose of
calculating alternating sums indexed by chains, we can pass between P , N , and E :

Lemma 4.12 ([KR89, Proposition 3.3]). Let G, A, P, N , and E be as above. Let f be a
function from the set of subgroups of G to A such that f is constant on conjugacy classes of
subgroups of G. Then∑

σ∈P/G

(−1)|σ|f(NG(σ)) =
∑

σ∈N/G

(−1)|σ|f(NG(σ)) =
∑
σ∈E/G

(−1)|σ|f(NG(σ)).

We shall need the following well-known Lemma in Section 5.
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Lemma 4.13 ([Thé92, Lemma 2.1], [KR89, Proposition 3.3]). Let G, A, and N be as above
and let f be a function from the set of subgroups of G to A such that f is constant on conjugacy
classes of subgroups of G. If Op(G) 6= 1, then∑

σ∈N/G

(−1)|σ|f(NG(σ)) = 0.

Proof. We sketch the proof for the convenience of the reader. Set R := Op(G) and assume
that R > 1. We show that there exists a G-invariant involution η : N → N where NG(σ) =
NG(η(σ)) and |η(σ)| = |σ| ± 1. Given σ = (Q0 < Q1 < · · · < Qm) ∈ N , choose i maximal
with the property that R � Qi. Since R � 1 = Q0, we see that there is such an i. By choice
of i, we have Qi < QiR, and we have QiR 6 Qi+1 if i < m. Define

η(σ) =


Q0 < · · · < Qm < QmR if i = m,

Q0 < · · · < Qi < Qi+2 < · · · < Qm if QiR = Qi+1, and

Q0 < · · ·Qi < QiR < Qi+1 < · · · < Qm if QiR < Qi+1.

Then η(σ) ∈ N and NG(σ) = NG(η(σ)) for each σ ∈ N , since R is a normal p-subgroup of
G. Also, |η(σ)| = |σ| ± 1. It is a momentary exercise to verify that η is an involution on N .
Hence, the alternating sum vanishes as claimed. �

Remark 4.14. We finish this section with a mention of a recurrent elementary tool for
reordering sums indexed by two or more sets acted upon by a finite group G, which we will
use without much further comment. LetX, Y be finiteG-sets and denote by πX : X×Y → X,
πY : Y ×X the projection maps. Let A be a G-invariant subset of X×Y under the diagonal
action of G on X × Y . Suppose that for any (x, y) ∈ X × Y we have an element α(x, y) in
some abelian group depending only on the G-orbit of (x, y). Then∑

(x,y)∈A/G

α(x, y)

is equal to any of the following double sums∑
x∈X/G

∑
y∈πY (π−1

X (x)∩A)/Gx

α(x, y)

∑
y∈Y/G

∑
x∈πX(π−1

Y (y)∩A)/Gy

α(x, y).

Note that the two double sums make sense as by the G-invariance of A, for each x ∈ X,
πY (π−1X (x) ∩ A) is Gx-invariant and for each y ∈ Y , πX(π−1Y (y) ∩ A) is Gy-invariant. Let
X be a set of representatives of the G-orbits of X and for each x ∈ X , let Yx be a set of
representatives of the Gx-orbits of X and set

U := {(x, y) : x ∈ X , y ∈ Yx}.
Then, U ⊆ A. We will show that U is a set of representatives of the G-orbits of A, and
this will yield the equality of

∑
(x,y)∈A/G α(x, y) with the first double sum. Suppose that

x, x′ ∈ X , y, y′ ∈ Yx are such that (x, y) and (x′, y′) are in the same G-orbit and let g ∈ G be
such that (x′, y′) = g(x, y). By comparing the first components, it follows that x′ and x are
in the same G-orbit of X, hence x′ = x and g ∈ Gx. Now comparing the second components
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implies y′ = y. Conversely, let (x0, y0) ∈ A. We will show that (x0, y0) is G-conjugate to
an element of U . By definition of X , there exists g ∈ G and x ∈ X such that x0 = gx,
hence by replacing (x0, y0) by g(x0, y0) we may assume that x0 ∈ X . Since (x0, y0) ∈ A,
y0 ∈ πY (π−1X (x0) ∩ A). Hence by the definition of Yx0 , y0 is Gx0-conjugate to some element
of Yx0 , say z0 = hy0 with h ∈ Gx0 , z0 ∈ Yx0 . Then

h(x0, y0) = ( hx0,
hy0) = (x0, z0) ∈ U

as required. The proof of the equality with the second sum is entirely analogous.

5. Towards Theorem 1.1

Throughout this section let F be a saturated fusion system on a finite p-group S, and let
α be an F -compatible family.

Our first goal will be to reformulate m∗(F , α) by reindexing the sum over objects in the
full subcategory S/(F c) of the subdivision category of the category of F -centric subgroups.
Recall from Section 3 that S/(F c) has as objects chains of proper inclusions

Q0 < Q1 < · · · < Qm

of F -centric subgroups with the property that the Qi are normal in the maximal term Qm,
for each 0 ≤ i ≤ m. Consider the following sets

M := {(Q, σ, [x]) | Q ∈ F c, σ ∈ NQ, [x] ∈ Qcl},

M̃ := {(σ, x) | σ ∈ S/(F c), x ∈ Qσ}.

The set M is equipped with the equivalence relation

(Q, σ, [x]) ∼M (R, τ, [y])

whenever there exists an isomorphism ϕ : Q → R in F such that cϕ(σ) = τ and such that
ϕ([x]) = [y]. Here cϕ is as defined before Lemma 3.4 and we use cϕ(σ) to denote the image of
σ under the natural extension of cϕ to a map from the set of chains of subgroups of OutF(Q)

to the set of chains of subgroups of OutF(R). The set M̃ is equipped with the equivalence
relation

(σ, x) ∼M̃ (τ, y)

whenever there exists an isomorphism ϕ : σ → τ in S/(F c) such that ϕ(x) = y.

Proposition 5.1. We have

m∗(F , α) =
∑

(σ,x)∈M̃/∼

(−1)|σ|z(kαCAutF (σ)(x) AutQσ(Qσ)/AutQσ(Qσ)).

Proof. This follows from Lemmas 5.4 and 5.5 below. �

We rewrite m∗(F , α) in terms of (M,∼).

Lemma 5.2.

m∗(F , α) =
∑

(Q,σ,[x])∈M/∼

z(kαCI(σ)([x])).
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Proof. Let X be a set of representatives of F -classes in F c and for each Q ∈ X , let YQ be a
set of OutF(Q) representatives of W∗Q. Then {(Q, σ, [x]) : Q ∈ X , (σ, [x]) ∈ YQ} is a set of
representatives of the ∼-equivalence classes of M and the result follows. �

A normal chain σ = (Q0 < · · · < Qm) in S/(F c) induces a normal chain Autσ(Q0) :=
(AutQ0(Q0) < · · · < AutQm(Q0)) of p-subgroups in AutF(Q), and a corresponding normal
chain Outσ(Q0) ∈ NQ0 upon factoring by Inn(Q0). In this context, bars will denote quotients
by Inn(Q0). That is, we set Qi := OutQi(Q0) for each 0 ≤ i ≤ m and we set

σ := Outσ(Q0) = (Q0 < Q1 < · · · < Qm)

for short. Note that Q0 is trivial.

Lemma 5.3. The map M̃ −→ M which sends (σ, x) to (Qσ, σ, [x]) induces a bijection

between M̃/∼ and M/∼.

Proof. We first show that the map is well-defined. Let (σ, x) ∼ (τ, y) in M̃. Fix an iso-
morphism ϕ : σ → τ in S/(F c) such that ϕ(x) = y. Then (Qσ, σ, [x]) ∼ (Qτ , τ , [y]) via the
restriction of ϕ to Qσ.

Next, suppose (Qσ, σ, [x]), (Qτ , τ , [y]) ∈ M are M-equivalent. Let ψ : Qσ → Qτ be an
F -isomorphism such that cψ(σ) = τ and ψ([x]) = [y]. By Lemma 3.4, ψ extends to a chain

isomorphism ψ̂ : σ → τ . Since ψ([x]) = [y], we have ψ(x) = uyu−1 for some u ∈ Qτ . Let

δ : Qσ → Qτ be the composition of ψ̂ with conjugation by u. Then (σ, x) and (τ, y) are

M̃-equivalent via δ. This proves injectivity.

It remains to show that whenever (R, ρ, [z]) ∈ M, there exists (σ, x) ∈ M̃ such that
(Qσ, σ, [x]) is M-equivalent to (R, ρ, [z]). Let ρ = (1 < X1 < · · · < Xm) ∈ NR. Let
α : R→ R′ be an F -isomorphism with R′ fully F -normalised, and consider the chain

cα(ρ) = (1 < cα(X1) < · · · < cα(Xm)).

Since R′ is fully F -normalised and F is saturated, OutS(R′) is a Sylow p-subgroup of
OutF(R′), so by Sylow’s theorem we may fix β ∈ OutF(R′) such that βcα(Xm)β−1 6
OutS(R′). Denote by R′i the inverse image of βcα(Xi)β

−1 in NS(R′), and set

σ := (R′ < R′1 < · · · < R′m) and x := β̂α(z),

where β̂ ∈ AutF(R′) is any lift of β. Then (σ, x) ∈ M̃, and (Qσ, σ, [x]) is M-equivalent to

(R, ρ, [z]) via β̂α. �

The following lemma is now immediate from Lemmas 5.2 and 5.3.

Lemma 5.4. We have

m∗(F , α) =
∑

(σ,x)∈M̃/∼

(−1)|σ|z(kαCI(σ)([x])).

To complete the proof of Proposition 5.1, we give an interpretation of z(kαCI(σ)([x]) in
terms of the automisers of chains in S/(F c).

Lemma 5.5. Fix σ = (Q0 < · · · < Qm) ∈ S/(F c), and let π be the composite

AutF(σ)
res−−−−−→ NAutF (Q0)(Autσ(Q0)) −−−→ I(σ)

def
= NOutF (Q0)(Outσ(Q0)),
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which restricts to Q0 and then factors by AutQ0(Q0). Then

(1) π is surjective,
(2) ker(π) = AutQ0(Qm), and
(3) for each x ∈ Q0, the group CAutF (σ)(x) AutQ0(Qm) is the inverse image of CI(σ)(x)

under π.

Proof. To prove (1), it suffices to show that the restriction map res : AutF(σ) →
NAutF (Q0)(Autσ(Q0)) is surjective. Let α ∈ NAutF (Q0)(Autσ(Q0)). Then cα(AutQi(Q0)) 6
AutQi(Q0) for all 0 6 i 6 m. The first conclusion of Lemma 3.4 then yields an extension α̃
of α to Qm.

Fix i with 0 6 i 6 m, and fix u ∈ Qi. Then since α̃ is defined on u, we have

cα̃(u)|Q0 = α(cu|Q0)α
−1 ∈ AutQi(Q0)

by assumption. Hence, α̃(u) lies in the full inverse image of AutQi(Q0) under NS(Q0) →
AutS(Q0), which is Qi because Q0 is centric. This shows that α̃(Qi) = Qi for each i, and
thus the surjectivity of the restriction map.

That AutQ0(Qm) 6 ker(π) is clear. To see the other inclusion in (2), fix ϕ ∈ ker(π). Then
ϕ|Q0 = cu for some u ∈ Q0, so we may fix z ∈ Z(Q0) such that ϕ = cucz = cuz by [BLO03,
Lemma A.8]. Thus, ϕ ∈ AutQ0(Qm), as desired.

Finally, (3) holds because ker(π) = AutQ0(Qm) acts transitively on the Q0-class [x]. �

Define the following subsets of M̃ :

(1) M̃e is the subset of M̃ consisting of those (σ, x) for which Qσ/Qσ is elementary
abelian.

(2) M̃◦ is the subset of M̃ consisting of those (σ, x) for which CQσ(x) 6 Qσ.

(3) M̃e,◦ is the intersection of M̃e and M̃◦.

(4) M̃e,◦,c is the subset of M̃e,◦ consisting of those (σ, x) for which CQσ(x)Φ(Qσ) is F -
centric.

Observe that all these subsets are unions of M̃-equivalence classes. Let

me(F , α) :=
∑

(σ,x)∈M̃e/∼

(−1)|σ|z(kαCAutF (σ)(x) AutQσ(Qσ)/AutQσ(Qσ))

and define m◦(F , α), me,◦(F , α), and me,◦,c(F , α) analogously.

Proposition 5.6. The following hold.

(1) m∗(F , α) = me(F , α).
(2) m∗(F , α) = m◦(F , α).
(3) m∗(F , α) = me,◦(F , α).

Proof. By Lemma 5.5, Remark 4.14, the obvious analogue of Lemma 5.2 for elementary
abelian chains, and by restricting the inverse of the bijection of Lemma 5.3 to classes of

elements of M̃e, we have

me(F , α) =
∑
Q∈Fc

∑
σ∈EQ/OutF (Q)

(−1)|σ|
∑

[x]∈Qcl/I(σ)

z(kαCI(σ)([x])),
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where EQ ⊆ NQ is the set of all elementary abelian chains. Thus (1) follows on applying Lem-

ma 4.12 with G = OutF(Q) for each Q ∈ F c. We next prove (2). Note that if (σ, x) ∈ M̃ and
CQσ(x) is not contained in Qσ, then CInn(Qσ)(x) AutQσ(Qσ)/AutQσ(Qσ) ∼= CQσ(x)/CQσ(x) is
a non-trivial normal subgroup of CAutF (σ)(x) AutQσ(Qσ)/AutQσ(Qσ) and the result follows

from Proposition 5.1(3) and Lemma 4.11. The same argument holds with (σ, x) ∈ M̃e, so
(3) follows from (1). �

Recall that

(5.1) k(F , α) =
∑

x∈[S/F ]

∑
Q∈CF (x)c/CF (x)

z(kα OutCF (x)(Q)),

where [S/F ] ⊆ S is a fixed set of fully F -centralized F -conjugacy class representatives of the
elements of S. Define

C := {(Q, x) | x ∈ [S/F ], Q ∈ CF(x)c}, and

D := {(Q, x) | x ∈ Z(Q), Q ∈ F c}

and equivalence relations

(Q, x) ∼C (R, y) ⇐⇒ x = y and IsoCF (x)(Q,R) 6= ∅, and

(Q, x) ∼D (R, y) ⇐⇒ there exists ϕ ∈ IsoF(Q,R) such that ϕ(x) = y.

Thus, C/∼ may be viewed as an indexing set for k(F , α). Also, x ∈ Z(Q) whenever
Q ∈ CF(x)c, so that C is a subset of D.

Lemma 5.7. The inclusion C ↪→ D induces a bijection between C/∼ and D/∼; in particular,

(5.2) k(F , α) =
∑

Q∈Fc/F

∑
x∈Z(Q)/OutF (Q)

z(kαCOutF (Q)(x)).

Proof. If (Q, x) ∼C (R, y), then x = y and there is an F -isomorphism from Q to R which
centralizes x, so that (Q, x) ∼D (R, y). There is indeed a well-defined map on equivalence
classes induced by the inclusion.

Conversely, assume that (Q, x), (R, y) ∈ C are D-equivalent. Fix an F -isomorphism ϕ from
Q to R with ϕ(x) = y. As x, y ∈ [S/F ] are F -conjugate, we have x = y, and so Q and R are
CF(x)-conjugate. This shows that (Q, x) ∼C (R, y), so the induced map is injective.

To complete the proof of the first assertion, it remains to show that each element of D
is D-equivalent to a member of C. Fix (R, y) ∈ D. Let x ∈ [S/F ] be the unique element
which is F -conjugate to y. Since 〈x〉 is fully F -centralized, we may choose a morphism
α ∈ HomF(CS(〈y〉), CS(〈x〉)) such that α(y) = x by [AKO11, I.2.6(c)]. Set Q = α(R). Then
(R, y) ∼D (Q, x) via α. Since R is F -centric, also Q is F -centric, so that Q is CF(x)-centric
by Lemma 3.3. This yields (Q, x) ∈ C and completes the proof of the first assertion.

Now OutCF (x)(Q) = COutF (Q)(x) for each x ∈ Z(Q) by Lemma 3.3. Hence, as C/∼ is
an indexing set for a single sum computing k(F , α) as in (5.1), and as D/∼ is an indexing
set for a single sum computing the right hand side of (5.2), we have that (5.2) follows from
(5.1). �

Proposition 5.8. We have, k(F , α) = me,◦,c(F , α).
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Proof. Let D′ be the subset of M̃e,◦,c consisting of the pairs (σ, x) such that |σ| = 0 and

x ∈ Z(Qσ). Then D′ is a union of M̃-equivalence classes. Regarding an F -centric subgroup
Q as a chain of length zero yields a canonical bijection D/∼D → D′/∼M̃, and so we may
regard k(F , α) as indexed over D′/∼M̃ . We use chain pairing to remove the terms from
me,◦,c(F , α) not in D′. This will yield

me,◦,c(F , α) =
∑

(σ,x)∈D′/∼

(−1)|σ|z(kαCAutF (σ)(x) AutQσ(Qσ)/AutQσ(Qσ)).

The Proposition then follows from the expression for k(F , α) in Lemma 5.7, along with
Lemma 5.5(3).

For each σ = (Q0 < · · · < Qm) ∈ S/(F c), we let Q−1 := CQm(x)Φ(Qm). Define a map

η : M̃e,◦,c\D′ −→ M̃e,◦,c\D′

via

(σ, x) 7−→ (η(σ), x),

where

η(σ) =

{
Q−1 < Q0 < · · · < Qm if Q−1 < Q0, and

Q1 < · · · < Qm if Q−1 = Q0.

It is straightforward to see that η is an involution that preserves M̃-equivalence classes if
well-defined.

To prove that η is well-defined, we assert three points for a given pair (σ, x) /∈ D′ with σ as

above. First, observe that η(σ) is a first component of some member of M̃e,◦,c by definition
of Q−1 and the fact that Q−1 ∈ F c by assumption. In particular, η(σ) is never the empty
chain: if σ has length zero, then CQ0(x) = CQm(x) < Q0 as (σ, x) /∈ D′, so also Q−1 =
CQ0(x)Φ(Q0) < Q0, and hence η(σ) has length 1. Second, note that x ∈ CQm(x) 6 Q−1
in case Q−1 is contained properly in Q0, so that indeed (η(σ), x) ∈ M̃e,◦,c. Lastly, continue
to consider a pair (σ, x) not in D′. We claim that (η(σ), x) is not in D′, and the only case
where this is not immediate has |σ| = 1 and |η(σ)| = 0. In this case either x is not in
Z(Q0), in which case x is likewise not in Z(Q1) 6 Z(Q0), or x ∈ Z(Q0), in which case
CQ1(x) = CQ0(x) = Q0 < Q1 so that again x is not in Z(Q1). This shows that (η(σ), x) /∈ D′
and completes the proof of the last point.

Having shown that η is a well-defined involution, it remains to prove that it preserves the
value of each summand appearing in Proposition 5.1. To establish this, it suffices to show
that

CAutF (σ)(x) = CAutF (η(σ))(x) and AutCQ0
(x)(Qm) = AutCQ−1

(x)(Qm).

As Q−1 is invariant under AutF(σ), one has AutF(σ) 6 AutF(η(σ)) if η(σ) has length one
more than σ. Also, one has the same containment if η(σ) has length one less, since η(σ) is a
subchain of σ in that case. Equality therefore holds in both cases, because η is an involution.
This completes the proof of the first displayed equality. Finally, the second equality holds

since CQ0(x) = CQ−1(x) for each (σ, x) ∈ M̃e,◦,c. �
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6. Proof of Theorem 1.1

In light of Propositions 5.8 and 5.6(3), to complete the proof of Theorem 1.1 it suffices
to establish an equality between me,◦(F , α) and me,◦,c(F , α). We will achieve that in this
section.

If G is a finite group and σ is a chain of p-subgroups in G such that the first subgroup is
a normal subgroup of the last subgroup, then we denote by Gσ 6 NG(Qσ) the stabiliser in
G of the chain and by AutG(σ) the image of Gσ in NG(Qσ)/CG(Qσ).

Lemma 6.1. Let σ = (Q0 < · · · < Qm) be a chain of proper inclusions of subgroups of S
such that Qi is normal in Qm for each 0 6 i 6 m, and let x ∈ Q0 be such that CQm(x) 6 Q0.
Suppose that Qm is F-centric, Q0 is fully F-normalised, and Qm is fully NF(Q0)-normalised.
Let L be a model of NNF (Q0)(Qm). The following hold:

(1) CLσ(x)Q0/Q0
∼= CAutF (σ)(x) AutQ0(Qm)/AutQ0(Qm).

(2) If Q0 is not F-centric, then z(kα(CLσ(x)Q0/Q0)) = 0.

Proof. Set Qσ = Q0 and Qσ = Qm. We have

Lσ/Z(Qm) ∼= AutL(σ) = AutNNF (Q0)
(Qm)(σ) = AutNF (Q0)(σ) = AutF(σ).

The quotient map π : Lσ → AutF(σ) sends CLσ(x) to CAutF (σ)(x). It also sends Qm to
AutQ0(Qm), since Z(Qm) ≤ CQm(x) ≤ Q0 by assumption. Part (1) follows from this.

We now turn to (2), where we first claim that CL(Q0) is a p-group under the given as-
sumptions. Let y be an element of CL(Q0) of order prime to p, and let cy be the image of y
in Aut(Qm). Since CQm(AutQ0(Qm)) = CQm(Q0) 6 CQm(x) 6 Q0, we have

[cy, CQm(AutQ0(Qm))] ≤ [cy, Q0] = 1.

Now Lemma 3.1 implies that cy = IdQm , so that y ∈ CL(Qm) 6 Qm is of order a power of p,
since Qm is self-centralising in L. Hence, y = 1.

Assume that z(kα(CLσ(x)Q0/Q0)) 6= 0. As Q0 is normal in Lσ, we know that CLσ(Q0)Q0

is likewise normal in Lσ. But CLσ(Q0) 6 CLσ(x), so CLσ(Q0)Q0 is normal in CLσ(x)Q0.
Hence, z(kα(CLσ(Q0)Q0/Q0)) 6= 0 by Lemma 4.10. It was just shown that CLσ(Q0) is a
p-group, so we have CLσ(Q0) 6 Q0 by Lemma 4.11. In other words, Q0 is NK

F (Q0)-centric,
where K 6 AutF(Q0) is the subgroup consisting of those automorphisms which extend to
automorphisms of σ. Hence, Q0 is F -centric by Lemma 3.2. �

Lemma 6.2. Let (σ, x) ∈ M̃ e,◦, with σ = (Q0 < · · · < Qm) as before. If CQm(x)Φ(Qm) is
not F-centric, then z(kαCAutF (σ)(x) AutQ0(Qm)/AutQ0(Qm)) = 0.

Proof. Write Q−1 = CQm(x)Φ(Qm), and recall that Q−1 6 Q0 by definition of M̃e,◦. Using
[AKO11, I.2.6(c)], we choose a morphism ϕ ∈ HomF(Qm, S) with ϕ(R) fully F -normalized,
and then a morphism ψ ∈ HomNF (ϕ(R))(Qm, NS(ϕ(R))) with ψϕ(Qm) fully NF(ϕ(R))-
normalized. Set τ = ψϕ(σ) and y = ψϕ(x). Conjugation by ψϕ yields an isomorphism

CAutF (σ)(x) AutQσ(Qσ)/AutQσ(Qσ) ∼= CAutF (τ)(y) AutQτ (Q
τ )/AutQτ (Q

τ ).

Upon replacing (σ, x) by (τ, y), we may therefore assume Q−1 to be fully F -normalized and
Qm to be fully NF(Q−1)-normalized.
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Assume on the contrary that Q−1
def
= CQm(x)Φ(Qm) is not F -centric, but that

z(kαCAutF (σ)(x) AutQ0(Qm)/AutQ0(Qm)) 6= 0. As Q0 is F -centric, Q−1 is a proper subgroup
of Q0. Consider the chain

σ′ = (Q−1 < Q0 < · · ·Qm).

It was shown in the last part of the proof of Lemma 5.8 that

CAutF (σ)(x) AutQ0(Qm)/AutQ0(Qm) = CAutF (σ′)(x) AutQ−1(Qm)/AutQ−1(Qm),

and that argument did not require (σ, x) ∈ M̃c. But then from Lemma 6.1 applied to σ′, we
conclude that Q−1 is F -centric after all, a contradiction. �

Proof of Theorem 1.1. By Proposition 5.1, Proposition 5.6(3), and Lemma 6.2, we have
m∗(F , α) = me,◦,c(F , α). The result now follows from Proposition 5.8. �

7. Proof of Theorem 1.2

Lemma 7.1 (Robinson). Suppose that G is a finite group, Q � G is a p-subgroup and
α ∈ H2(G/Q, k×). We have∑

[x]∈Qcl/G

`(kαCG([x])) =
∑

µ∈Irr(Q)/G

`(kαCG(µ)) .

This Lemma is due to Robinson, and it is obtained as a combination of [Rob87], [RS90]
(see discussion before Theorem 1.2 of [Rob96]). As a convenience to the reader, the main
ideas of the proof are presented in the Appendix.

For a finite group H denote by S(H) the poset of p-subgroups of H (including the trivial
subgroup - so notation is not standard). If Q is a normal p-subgroup of a finite group G,
then for any [x] ∈ Qcl (respectively µ ∈ Irr(Q)), we denote by I([x]) (respectively I(µ)) the
stabiliser in G/Q of [x] (respectively µ) under the action of G/Q and for any subgroup R of
G/Q, we denote by I([x], R) the intersection of I([x]) with NG/Q(R) etc.

Lemma 7.2. Suppose that G is a finite group, Q�G is a p-subgroup and α ∈ H2(G/Q, k×).
Suppose that CG(Q) 6 Q. If AWC holds, then∑

[x]∈Qcl/G

∑
R∈S(I([x]))/I([x])

z(kα(I([x], R)/R)) =
∑

µ∈Irr(Q)/G

∑
R∈S(I(µ))/I(µ)

z(kα(I(µ,R)/R)).

Proof. Let µ ∈ Irr(Q). The full inverse image of I(µ) 6 G/Q in G is CG(µ) and for any
p-subgroup R of L/Q = I(µ), I(µ,R) = NL/Q(R). Hence, by AWC and Proposition 4.9
applied with L = CG(µ), we have that

`(kα(kCG(µ)) =
∑

R∈S(I(µ))/I(µ)

z(kα(I(R, µ)/R)).

Similarly, let x ∈ Qcl. The full inverse image of I([x]) 6 G/Q in G is CG([x]). Thus, by
AWC and Proposition 4.9 applied with L = CG([x]), we have that

`(kα(kCG([x]) =
∑

R∈S(I([x]))/I([x])

z(kα(I(R, [x])/R)).

The result follows by Lemma 7.1. �
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Let F be a saturated fusion system on a finite p-group S and let α be an F -compatible
family. We recall some earlier notation. For any F -centric Q 6 S, by Remark 4.14, we have

(7.1) wQ(F , α) =
∑

σ∈NQ/OutF (Q)

(−1)|σ|
∑

µ∈IrrK(Q)/I(σ)

z(kαQCI(σ)(µ))

(7.2) w∗Q(F , α) =
∑

σ∈NQ/OutF (Q)

(−1)|σ|
∑

[x]∈Qcl/I(σ)

z(kαCI(σ)([x]))

Also, since OutF(Q) = OutNF (Q)(Q) we have

(7.3) wQ(F , α) = wQ(NF(Q), α) and w∗Q(F , α) = w∗Q(NF(Q), α).

Lemma 7.3. Suppose that G is a finite group and Q�G is a p-subgroup with CG(Q) ≤ Q.
Let S be a Sylow p-subgroup of G, F = FS(G), G = G/Q and let PQ denote the set of all
strictly increasing chains of p-subgroups in OutF(Q) starting at 1. Then,

wQ(F , α) =
∑

σ∈PQ/OutF (Q)

(−1)|σ|
∑

µ∈Irr(Q)/I(σ)

∑
R∈S(I(σ,µ))/I(σ,µ)

z(kα(I(R, σ, µ)/R))

and

w∗Q(F , α) =
∑

σ∈PQ/OutF (Q)

(−1)|σ|
∑

[x]∈Qcl/I(σ)

∑
R∈S(I(σ,[x]))/I(σ,[x])

z(kα(I(R, σ, [x])/R)).

Proof. By definition

wQ(F , α) =
∑

σ∈NQ/OutF (Q)

(−1)|σ|
∑

µ∈Irr(Q)/I(σ)

z(kα(I(σ, µ))).

We claim that

wQ(F , α) =
∑

σ∈PQ/OutF (Q)

(−1)|σ|
∑

µ∈Irr(Q)/I(σ)

z(kα(I(σ, µ))).

Indeed, this follows immediately from Lemma 4.12 (or [KR89, Proposition 3.3]). Next,
interchanging the order of summation on the right hand side of the above equation we obtain

wQ(F , α) =
∑

µ∈Irr(Q)/OutF (Q)

∑
σ∈PQ/I(µ)

(−1)|σ|z(kα(I(σ, µ))).

Now we claim that

(7.4) wQ(F , α) =
∑

µ∈Irr(Q)/OutF (Q)

∑
σ∈PQ/I(µ)

∑
R∈S(I(σ,µ))/I(σ,µ)

(−1)|σ|z(kα(I(R, σ, µ)/R)).

To prove the claim, let µ ∈ Irr(Q) and for R a p-subgroup of I(µ), let PRQ be the subset
of PQ consisting of those chains which are normalised by R, i.e. those chains σ such that
R 6 I(σ). Then ∑

σ∈PQ/I(µ)

∑
R∈S(I(σ,µ))/I(σ,µ)

(−1)|σ|z(kα(I(R, σ, µ)/R))

is equal to ∑
R∈S(I(µ))/I(µ)

∑
σ∈PRQ/I(R,µ)

(−1)|σ|z(kα(I(R, σ, µ)/R)) ,
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where we use Remark 4.14 with G = I(µ), X = PQ, Y = S(I(µ)) and A equal to the subset
of X × Y consisting of pairs (σ,R) such that R 6 I(µ, σ).

Suppose that R 6= 1 and let σ = Q0 := 1 < Q1 < · · · < Qn be an element of PRQ . If R is
not contained in Qn, let σ′ be the chain obtained from σ by appending QnR. Otherwise, let
j be the smallest integer such that R is contained in Qj. Note that j 6= 0 since R > 1. If
Qj−1R = Qj, then let σ′ be the chain obtained from σ by deleting Qj. Otherwise, let σ′ be
obtained from σ by inserting Qj−1R in between Qj−1 and Qj. Then the pairing σ → σ′ kills∑

R∈S(I(µ))/I(µ)

∑
σ∈PRQ/I(R,µ)

(−1)|σ|z(kα(I(R, σ, µ)/R)) .

Hence, only the terms with R = 1 survive, and the claim follows. Interchanging the order of
summation in the outer two terms of Equation 7.4 gives the desired expression for wQ(F , α).
The proof for w∗Q(F , α) is entirely similar. �

Proposition 7.4. Let F be a saturated fusion system on a finite p-group S and let α be an
F-compatible family. Suppose that AWC holds. Then wQ(F , α) = w∗Q(F , α) for all F-centric
subgroups Q of S.

Proof. Let Q 6 S be F -centric. By Equation 7.3 we may assume that F = NF(Q) and hence
by [BCG+05, Proposition C] that F = FS(G) for some finite group G with S as a Sylow
p-subgroup and containing Q as a normal subgroup with CG(Q) = Z(Q). By Lemma 7.3, we
have

wQ(F , α) =
∑

σ∈PQ/OutF (Q)

(−1)|σ|
∑

µ∈Irr(Q)/I(σ)

∑
R∈S(I(σ,µ))/I(σ,µ)

z(kα(I(R, σ, µ)/R))

and

w∗Q(F , α) =
∑

σ∈PQ/OutF (Q)

(−1)|σ|
∑

[x]∈Qcl/I(σ)

∑
R∈S(I(σ,[x]))/I(σ,[x])

z(kα(I(R, σ, [x])/ R)).

Let σ ∈ PQ. By applying Lemma 7.2 to the inverse image NG(σ) of I(σ) in G, we obtain∑
µ∈Irr(Q)/I(σ)

∑
R∈S(I(σ,µ))/I(σ,µ)

z(kα(I(R, σ, µ)/R)) =

∑
[x]∈Qcl/I(σ)

∑
R∈S(I(σ,[x]))/I(σ,[x])

z(kα(I(R, σ, [x])/ R)).

The result follows. �

Proof of Theorem 1.2. This is immediate from Proposition 7.4. �

We present an alternate proof of Theorem 1.2 which is shorter but makes use of the fact,
due to Robinson [Rob96], that AWC implies SOWC. Let F be a saturated fusion system on
a finite p-group S, and let α be an F -compatible family. As a consequence of Lemma 4.13,
the quantities m(F , α), m∗(F , α), and m(F , α, d) remain unchanged under restricting the
sums over isomorphism classes of F -centric subgroups of S to F -centric radical subgroups.
We spell this out.
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Lemma 7.5. Let Q be an F-centric subgroup of S and let d be a non-negative integer.
Suppose that Q is not F-radical. Then

wQ(F , α) = w∗Q(F , α) = wQ(F , α, d) = 0 .

Proof. Using Remark 4.14, we have

wQ(F , α) =
∑

σ∈NQ/OutF (Q)

(−1)|σ|
∑

µ∈Irr(Q)/I(σ)

z(kαI(σ, µ))

The quantity in the second sum depends only on I(σ). Since Q is not radical, we have
Op(OutF(Q)) 6= 1. Thus Lemma 4.13, applied to the group G = OutF(Q) and the function
f on subgroups of G defined by

f(H) :=


∑

µ∈Irr(Q)/I(σ)

z(kαI(σ, µ)) if H = I(σ) for some σ ∈ NQ

0 otherwise

implies that wQ(F , α) = 0. Similar arguments show that w∗Q(F , α) = wQ(F , α, d) = 0. �

Note that by Lemma 7.5, we have

(7.5) m(F , α) =
∑

Q∈Fcr/F

wQ(F , α) and m∗(F , α) =
∑

Q∈Fcr/F

w∗Q(F , α).

Lemma 7.6. Suppose that m∗(G, β) = m(G, β) for all pairs (G, β), where G is a saturated
constrained fusion system and β is a G-compatible family. Then m(F , α) = m∗(F , α).

Proof. We prove that wQ(F , α) = w∗Q(F , α) for each fully F -normalized, F -centric, F -
radical subgroup Q ≤ S. Since F is saturated, there is a fully F -normalized subgroup in
each F -conjugacy class, and so the result will then follow from (7.5).

Suppose the above assertion is false, so that wQ(F , α) 6= w∗Q(F , α) for some Q. Among
all such counterexamples F and Q, choose one such that |F| + |S : Q| is minimal, where
|F| denotes the number of morphisms in F . Note that OutNF (Q)(Q) = OutF(Q), and Q is
also fully NF(Q)-normalized, NF(Q)-radical, and NF(Q)-centric. Since the sums wQ(F , α)
and w∗Q(F , α) depend only on Q and OutF(Q) and not on F , it follows by minimality that
F = NF(Q).

We have shown that F is constrained with normal centric subgroup Q. In particular,
m(F , α) = m∗(F , α) by assumption, and Q is contained in every F -centric radical subgroup
(see e. g. [LS17, Lemma 2.4]). From (7.5), m(F , α) is the sum of wQ(F , α) and wR(F , α)
as R ranges over the fully F -normalized, F -centric radical subgroups with R > Q. The
same holds for w∗Q(F , α). By induction wR(F , α) = w∗R(F , α) for each such R > Q (since
NF(R) ( F). It follows that wQ(F , α) = w∗Q(F , α) after all, a contradiction. �

It thus suffices by Lemma 7.6 to prove m(F , α) = m∗(F , α) in the case where F is
constrained.

Proposition 7.7. Suppose AWC holds for all blocks of all finite groups. If F is constrained,
then k(F , α) = m(F , α).
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Proof. Assume that F is constrained. By Proposition 4.8, we may fix a model G for F , a

p′-central extension Ĝ of G, and a block b of kĜ such that (F , α) is realized by kĜb. By
Proposition 4.5, since AWC holds for all blocks, we have

k(F , α) = k(B).

On the other hand, again since AWC holds for all blocks, the results of [Rob96], [Rob04]
show that m(F , α) = k(B). �

Proof of Theorem 1.2. Assume AWC holds for all blocks of finite groups. By Theorem 1.1,
we have k(F , α) = m∗(F , α). Hence, m(F , α) = m∗(F , α) whenever F is constrained by
Proposition 7.7 and assumption. Therefore, m(F , α) = m∗(F , α) by Lemma 7.6. �

Appendix A. On Lemma 7.1

By Proposition 4.9, Lemma 7.1 is equivalent to the following.

Lemma A.1. Let G be a finite group, Q a normal p-subgroup of G, Z a central p′-subgroup
of G and e a central idempotent of kZ. Then

(A.1)
∑

[x]∈Qcl/G

`(kCG([x])e) =
∑

µ∈Irr(Q)/G

`(kCG(µ)e).

The rest of the section is devoted to a proof of Lemma A.1. The basic idea is that,
when e = 1kZ , then both sides count the number of p-sections in G of elements of Q, or
the dimension of the space of ordinary class functions of G vanishing outside p-sections of
elements of Q.

Notation. Let (K,O, k) be a p-modular system which we assume is big enough for the finite
groups considered in this section. Denote by C(G) the K-vector space of all K-valued class
functions on G and by Irr(G) ⊂ C(G) the set of ordinary irreducible characters of G viewed
as K-valued functions.

For X ⊂ G, denote by dX : C(G) → C(G), the K-linear map defined by ϕ → dX(ϕ), ϕ ∈
C(G) where dX(ϕ)(g) = 0 if gp is not conjugate to an element of X and dX(ϕ)(g) = ϕ(g)
otherwise. Thus, dX(C(G)) is the subspace of all class functions which vanish outside the
p-sections of elements of X, that is those class functions ϕ such that ϕ(x) = 0 unless xp is
conjugate to an element of X.

If X = {x} we write dx for dX . For general X and x ∈ X, dx(C(G)) is a subspace
of dX(C(G)) and dX(C(G)) = ⊕x dx(C(G)), where x runs over a set of conjugacy class
representatives of p-elements in X. Note that if X is a normal p-subgroup of G, then dXC(G)
consists of precisely those functions which take the value zero on elements g such that gp /∈ Q.

For a central idempotent f of KG denote by Irr(G, f) the subset of ordinary irreducible
characters of G corresponding to simple KGf modules and by C(G, f) the subspace of C(G)
consisting of those class functions which are in the K-span of Irr(G, f). Recall that the
canonical surjection OG→ kG induces a bijection between the set of central idempotents of
OG and of kG. By abuse of notation, if e is a central idempotent of kG corresponding to the
central idempotent ê of OG we write Irr(G, e) for Irr(G, ê) and C(G, e) for C(G, ê). Thus, if e
is a block of kG, then Irr(G, e) is the subset of ordinary irreducible characters of G belonging
to ê. For N a normal subgroup of G and µ ∈ Irr(N), let C(G, µ) denote the subspace of
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C(G) consisting of those class functions which are in the K-span of irreducible characters of
G which cover µ and for f a central idempotent of KG (or kG) denote by C(G, µ, f) the
intersection of C(G, µ) and C(G, f).

The following gives the desired interpretation of the left hand side of Lemma A.1. When
e = 1kZ , the statement is elementary. Passage to arbitrary e requires an application of
Brauer’s second main theorem which we now recall. Denote by IBr(G) the set of Brauer
characters of simple kG-modules viewed as K-valued class functions on Gp′ , the set of p-
regular elements of G. For x ∈ G a p-element, χ ∈ Irr(G) and ϕ ∈ IBr(CG(x)) denote by dxχ,ϕ
the corresponding generalised decomposition number. By Brauer’s second main theorem, if b
is the block of kG containing χ, then dxχ,ϕ is zero unless ϕ is the Brauer character of a simple
kCG(x) module lying in a block c of kCG(x) which is in Brauer correspondence with b. In
other words, for all y ∈ CG(x)p′ we have that

χ(xy) =
∑
ϕ

dxχ,ϕϕ(y) ,

where ϕ runs over the set of irreducible Brauer characters of CG(x) lying in Brauer corre-
spondents of b.

Lemma A.2. Let x be a p-element of G. Let Z 6 G be a central p′-subgroup of G and e a
central idempotent of kZ. Then,

(A.2) dimK d
x(C(G, e)) = `(kCG(x)e).

If Q is a normal p-subgroup of G, then

(A.3) dimK d
Q(C(G, e)) =

∑
x∈Qcl/G

`(kCG([x])e).

Proof. The space dx(C(G)) consists of the class functions on G which vanish outside the p-
section of x, hence dimK d

x(C(G)) equals the number of p′-conjugacy classes of CG(x) and
this number is in turn equal to the number of isomorphism classes of simple kCG(x)-modules.
This proves that the first equation holds when e = 1kZ = 1kG. For the general case, first note
that since Z is central in G, e is a central idempotent of kG and of kCG(x) and Br〈x〉(e) = e,

where Br〈x〉 : (kG)〈x〉 → kCG(x) denotes the Brauer homomorphism. We claim that if b is a
block of kG such that be = b and c is a block of kCG(x) in Brauer correspondence with b, then
ce = c. Indeed, by the uniqueness of central idempotent decompositions and the primitivity
of b, we have be = b. By definition of Brauer correspondence, Br〈x〉(b)c = c. Hence

c = Br〈x〉(b)c = Br〈x〉(be)c = Br〈x〉(b)ec = cec = ce ,

proving the claim. It follows from the claim that all simple kCG(x)c-modules are kCG(x)e-
modules. Thus by Brauer’s second main theorem (and the linearity of dx), if τ ∈ (C(G, e)),
then for all y ∈ CG(x)p′ we have

τ(xy) =
∑
ϕ

dxχ,ϕϕ,

where ϕ runs over the set of Brauer characters of simple kCG(x)e=modules. Since dxτ
is determined by its restriction to the subset of CG(x) consisting of elements whose p-
part is x, it follows that dimK d

x(C(G, e)) 6 `(kCG(x)e). By the same considerations,
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dimK d
x(C(G, 1−e)) 6 `(kCG(x)(1−e)). Since C(G) = C(G, e)⊕C(G, 1−e), dimK d

x(C(G)) 6
dimK d

x(C(G, e))+dimK d
x(C(G, 1−e)). The first equation now follows from the case e = 1kZ .

Let e be the image of e under the canonical surjection of kG → k(G/Q). Recall that
restriction along kG → kG/Q induces a bijection between the set of isomorphism classes of
simple kG/Q-modules and kG-modules sending simple k(G/Q)e-modules to kGe-modules.
Also, for any x ∈ Q, e is a central idempotent of kCG(x) and identifying CG(x)/CG(x) ∩ Q
with CG(x)Q/Q via the isomorphism induced by inclusion of CG(x) in CG(x)Q, the image of
e in k(CG(x)/CG(x) ∩Q) is e. Hence

`(kCG([x])e) = `(kCG(x)Qe) = `(k(CG(x)Q/Q)e) = `(k(CG(x)/CG(x) ∩Q)e) = `(kCG(x)e).

Now the second equation follows from the first since

dQ(C(G, e)) =
⊕

[x]∈Qcl/G

dx(C(G, e)).

�

Lemma A.3. Let Z be a central p′-subgroup of G and e a central idempotent of kZ. Let Q
be a normal p-subgroup of G. Then

(A.4) dQ(C(G, e)) =
⊕

µ∈Irr(Q)/G

dQ(C(G, µ, e)).

Proof. Since

C(G) =
⊕

µ∈Irr(Q)/G

C(G, µ),

we have
dQ(C(G)) =

∑
µ∈Irr(Q)/G

dQ(C(G, µ)).

We show that the sum on the right of the second equation is direct. First note that if ϕ is
an element of C(G,Q), then dQ(ϕ) = 0 if and only if the restriction of ϕ to all subgroups
H containing Q as a Sylow p-subgroup equals zero. Now suppose that ϕµ ∈ C(G, µ), µ ∈
Irr(Q)/G are such that

∑
µ∈Irr(Q)/G d

Q(ϕµ) = 0 and let H be a subgroup of G containing Q

as a Sylow p-subgroup. Then the restriction of
∑

µ∈Irr(Q)/G ϕµ = 0. But it is easy to see
that the restriction of ϕµ to H is in the K-span of irreducible characters of H which cover
G-conjugates of µ. In particular the restriction of ϕµ and ϕµ′ for µ′ 6= µ are orthogonal class
functions on H. Hence the restriction of ϕµ to H equals zero for all H and all µ. It follows
that dQ(ϕµ) = 0 for all µ. Thus

(A.5) dQ(C(G)) =
⊕

µ∈Irr(Q)/G

dQ(C(G, µ)).

The assertion of the lemma now follows as C(G, e) is the direct sum
⊕

µ∈Irr(Q)/G C(G, µ, e). �

Given the above Lemma, it remains to analyse dQ(C(G, µ, e)) for each irreducible character
µ of Q. This is done via standard Clifford theoretic reductions.

Lemma A.4. Let Z be a central p′-subgroup of G and e a central idempotent of kZ.
Let Q be a normal p-subgroup of G and let µ ∈ Irr(Q). Then dimK d

Q(C(G, µ, e)) =
dimK d

Q(C(CG(µ), µ, e)).
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Proof. Induction from CG(µ) to G induces a bijection between Irr(CG(µ)) and Irr(G). Since
Z 6 CG(µ), if χ ∈ Irr(G, µ, e), then IndGCG(µ)(χ) ∈ Irr(G, µ, e). Hence induction induces an
isometric isomorphism between C(CG(µ), µ, e) and C(G, µ, e). Further, it is easy to check
from the induction formula that dQ(IndGCG(µ)(τ)) = IndGCG(µ)(d

Q(τ)) for all τ in C(CG(µ)).
The result follows. �

Lemma A.5. Let Q be a normal p-subgroup of G and let µ be a G-stable irreducible character
of Q. There exist a central extension

1→ Y → G̃
π→ G→ 1,

an irreducible character µ̃ of G̃ and a one dimensional character η of Y such that the following
holds.

(1) Y is a finite p-group, the inverse image of Q in G̃ is a direct product of Y with a

normal subgroup Q′ of G̃ such that π maps Q′ isomorphically onto Q.
(2) Identifying Q′ with Q through π, there exists a bijection

Irr(G, µ)→ Irr(G̃, η−11Q), χ→ χ0

such that for any g ∈ G and g̃ ∈ G̃ lifting g

χ(g) = µ̃(g̃)χ0(g̃).

(3) Suppose that Z is a central p′-subgroup of G, and e is a central idempotent of kZ. Let

Z̃ be the inverse image of Z in G̃. Then Z̃ = Y ×Z ′, where Z ′ is a central p′-subgroup

of G̃ mapping isomorphically onto Z by π. Identifying Z ′ with Z the bijection χ→ χ0

restricts to a bijection between Irr(G, µ, e) and Irr(G̃, η−11Q, e).

Proof. The proof combines elements of standard Clifford theory. We briefly sketch the basic
constructions. Let m be the dimension of µ and let eµ be the central idempotent of KQ
corresponding to µ Then S = KQeµ is a matrix algebra of dimension m2. Since µ is G-

stable, the conjugation action of G on KG induces an action of G on S. The group G̃ is
constructed as a subgroup of G×S×. Let π : G×S× → G and π′ : G×S× be the projections
onto the first and second components respectively and identify K with the scalar matrices in

S. Let Ĝ be the the subgroup of G× S× consisting of all elements of the form (x, s), x ∈ G
and s ∈ S× such that sxas

−1
x = xax−1 for all a ∈ S. Since the action of each element of G

on S is by an inner automorphism and K = Z(S), the restriction of π to Ĝ is a surjective
homomorphism with kernel 1×K×.

Choose a transversal I for Q in G containing Op′(G). In particular, I contains every

central p′-element of G. For each x ∈ I, choose sx ∈ S× such that (x, sx) ∈ Ĝ and such that
the determinant det(sx) of sx equals 1. This can be achieved by replacing K by a suitable
extension containing the m-th roots of det(sx), x ∈ G. Further, if z ∈ I is a central p′-element
of G, we choose sz to be the identity. Extend the map x → sx to s : G → S× by setting
sg = usx if g = ux, u ∈ Q, x ∈ I. For all g, h ∈ G, we have sgshs

−1
gh ∈ K× is a scalar

matrix. Note that since u|Q| = 1 for all y ∈ Q, we have that det(sg)
|Q| = 1 for all g ∈ G and

consequently by taking determinants we see that (sgshs
−1
gh )m

2|Q| = 1 for all g, h ∈ G.
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Let G̃ be the subgroup of Ĝ generated by (sg, g), g ∈ G. The restriction π : G̃→ G of pi

to g̃ is surjective. Let Y 6 1×K× be the kernel of π. For g, h ∈ G̃,

(g, sg)(h, sh) = (gh, sgsh) = (1, sgshs
−1
gh )(gh, sgh),

(g, sg)
−1 = (1, sgsg−1)(g−1, sg−1) = (1, sgsg−1sgg−1)(g−1, sg−1).

It follows that Y = 〈(1, sgshs−1gh ), g, h ∈ G〉. As noted above, Y has exponent dividing m2|Q|.
Since Y is isomorphic to a subgroup of the multiplicative group of a field, Y is cyclic of order
dividing m2|Q|. In particular, Y is a finite p-group. Let Q′ = {(u, su) : u ∈ Q}. Since

susv = uv for all u, v ∈ Q, Q′ is a subgroup of G̃ with the required properties. This proves
(1).

Let η : Y → K× be the irreducible character of Y which sends (1, λ · idS) to λ.

The map π′ : G̃ → S× defines a representation of G̃ whose restriction to Y Q equal-
s ηµ. Let µ̃ be the corresponding character. Then µ̃ is irreducible and covers ηµ. Let
τ = 1

|Y ||Q|
∑

y∈Y,u∈Q η
−1(y)(uy)−1 be the central idempotent of KYQ corresponding to η−11Q.

There is a K-algebra isomorphism

(A.6) ϕ : KGeµ → S ⊗K KG̃τ

satisfying

ϕ(geµ) = sg ⊗ (g, sg)τ, g ∈ G.

Let g ∈ G and let g̃ ∈ G̃ be a lift of g. Then g̃ = y(g, sg) for some y ∈ Y . Since ysg = η(y)sg
and y(g, sg)τ = η−1(g, sg)τ it follows that sg ⊗ (g, sg)τ = π2(g̃) ⊗ g̃τ . Now (2) follows since

Irr(G̃, η−11Q) coincides with the set of irreducible KG̃τ characters.
Let Z be a central p′-subgroup of G. By our choices above, sz is the identity matrix for all

z ∈ Z. Hence Z ′ := {(z, 1) : z ∈ Z} is a central subgroup of G̃ and the inverse image Z̃ of

Z in G̃ is a direct product Z̃ = Y × Z ′. Identifying Z ′ with Z, the image of the idempotent
eeµ under the isomorphism A.6 is idS ⊗ eτ , proving (3). �

Lemma A.6. Let Z be a central p′-subgroup of G and e a central idempotent of kZ. Let Q
be a normal p-subgroup of G and let µ be a G-stable irreducible character of Q. Then

(A.7) dimK d
Q(C(G, µ, e)) = `(kGe).

Proof. Let G̃, Y , η and µ̃ be as in Lemma A.5. The bijection χ→ χ0 extends by linearity to

a K-linear isomorphism i : C(G, µ, e)→ C(G̃, η−11Q, e) defined by

ϕ(g) = µ̃(g̃)i(ϕ)(g̃), i−1(ψ)(g) = µ̃(g̃)ψ(g̃)

for all ϕ ∈ C(G, µ, e), ψ ∈ C(G̃, η−11Q, e). g ∈ G and g̃ ∈ G̃ lifting g̃. Now gp ∈ Q if and only
if (g̃)p ∈ Y Q. It follows that

i−1 ◦ dY Q ◦ i = dQ,

hence

dY Q ◦ i = i ◦ dQ,
where by dY Q we mean the relevant map on class functions on G̃. In particular,

dimK d
Q(C(G, µ, e)) = dimK d

Q(C(G̃, η−11Q, e).
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Let ψ ∈ C(G̃, η−11Q, e). For any u ∈ Q, y ∈ Y , g̃ ∈ G̃, we have ψ(yug̃) = η(y)ψ(g̃) from
which it follows that

dimK d
Y QC(G̃, η−11Q, e) = dimK d

1C(G̃, e) = `(kG̃e) = `(kGe)

where the second equality holds by Lemma A.2 and the last equality holds since every simple

kG̃e-module has Y in its kernel. �

Proof of Lemma A.1. This follows from Lemmas A.2, A.3, A.4 and A.6. �
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237–255.

[RV04] Albert Ruiz and Antonio Viruel, The classification of p-local finite groups over the extraspecial

group of order p3 and exponent p, Math. Z. 248 (2004), no. 1, 45–65.
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