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Upper and lower bounds of present value distributions of life
insurance contracts with disability related benefits

Jaap Spreeuw

December 10, 2004

Abstract

The distribution function of the present value of a cash flow can be approximated by means
of a distribution function of a random variable, which is also the present value of a sequence
of payments, but has a simpler structure. The corresponding random variable has the same
expectation as the random variable corresponding to the original distribution function and
is a stochastic upper bound of convex order. A sharper upper bound and a nontrivial lower
bound can be obtained if more information about the risk is available. In this paper, it
will be shown that such an approach can be adopted for some life insurance contracts under
Markov assumptions, with disability related benefits. The quality of the approximation
will be investigated by comparing the distribution obtained with the one derived from the
algorithm presented in the paper by Hesselager & Norberg (1996).
JEL Classification code: C65.
SIBC Classification Code: IM10, IM30, IB81, IB83.
Keywords: Convex order, comonotonic joint distribution, multistate life insurance con-

tracts, present value distributions.
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1 Introduction

In life contingencies under a stochastic framework, distributions of the present value of future
payments are a key component in order to derive premiums satisfying a certain criterion. The
most usual principle is that of actuarial equivalence, meaning that premiums are such that the
expected present value of benefits less premiums is equal to zero.

The probability distribution of present values gives an indication of the riskiness of a contract,
such as the variability of the actual benefits paid out or the upper tail of the present values.

De Pril (1989) and Dhaene (1990) derive distributions of such present values in a classical
life insurance framework where only the two states ”Alive” and ”Dead” are relevant (and where
only payment by single premium is considered). As the present value depends on the outcome
of only one random variable, such analyses turn out to be quite straightforward.

Deriving distributions such as those described above in general tends to be much more com-
plicated if instead we are dealing with life contracts involving more than two states. Hesselager
and Norberg (1996) show that an approximated distribution for a multistate life insurance con-
tract under the Markov assumption can be obtained by deriving a set of integral equations.
However, the execution of the algorithm they derive may be time-consuming, especially in cases
where there are many states and/or if the Markov chain is not hierarchical. The question is
whether a method exists to derive an approximate version of the real present value distribution,
which saves computing time (albeit maybe at the cost of some accuracy).

A common method is to replace a random variable by a ”riskier” one, i.e. a random vari-
able which is larger with respect to some ordering relation. The probability distribution of this
”riskier” random variable has a simpler structure. Goovaerts et al. (2000) consider distribu-
tions of the present value of cash flows based on stochastic interest. They conclude that the
comonotonic joint distribution (the distribution that is the largest in convex order) is often a
good approximation of the original distribution. The latter can usually only be derived by means
of simulation.

Kaas et al. (2000) show that the convex upper bound, as derived in Goovaerts et al. (2000),
can be improved if more information is known about the present values of the individual cash
flows. The additional information is represented by a conditioning variable. This approach also
leads to a non-trivial lower bound which can sometimes be a good approximation.

This paper focuses on life insurance contracts catering for benefits payable during any spell of
disability. We will deal with generalized disability annuity treaties, which include many types of
contracts which are common in practice, such as income protection policies and deferred annuity
contracts with a premium reduction when disabled. For such policies, we will derive the convex
upper and lower bounds as considered in Goovaerts et al. (2000) and Kaas et al. (2000). The
quality of the approximations by means of the convex upper and lower bound will be analyzed by
comparing it with the present value distribution derived by means of the algorithm developed by
Hesselager and Norberg (1996). The latter algorithm is executed in such a way that the present
value distribution thus obtained is very close to the real one.

The paper is organized as follows. A general life insurance contract is described in Section 2.
A summary of the algorithm developed in Hesselager and Norberg (1996), based on the general
life insurance contract, is presented in Section 3. We will deal with some special life insurance
contracts providing disability-related benefits and other benefits. These will be explained in
Section 4. If the Markov chain is hierarchical, and the number of states is limited, methods
alternative to Hesselager and Norberg are available. These will be described in Section 5. In
Section 6 the original convex upper bound, as in Goovaerts et al. (2000), is derived. In Section
7, we condition on the remaining future lifetime and hence derive an improved upper bound and
a non-trivial lower bound. Section 8 gives some examples for illustrative purposes. Section 9
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sets out a conclusion.

2 A multi-state life insurance contract

The following assumptions are the same as in Hesselager and Norberg (1996) and Norberg
(1995), except for the specification of the force of interest. In Hesselager and Norberg (1996)
and Norberg (1995), it is state-dependent, but given the state, it is constant. In this paper, the
force of interest is taken to be deterministic but it may vary over time.

Consider a set ζ = {0, ..., J} of all possible states of a general life policy, such that at any time
t ∈ [0,m], the policy is in one and only one state. The state of the policy at time t is denoted
by X(t). The stochastic process is taken to be right continuous with X (0) = 0, implying that
the policy is in state 0 at time 0, being the time at issue. Let Ij (t) be the indicator of the event
that the contract is in state j at time t, and

Njk (t) = # {τ ∈ (0, t] |X (τ−) = j,X (τ) = k} (1)

as the total number of transitions of {X (t)}t≥0 from state j to state k (6= j) by time t. The
payment function B denotes the total amount of benefits paid in the time interval [0, t]. It is
assumed to be continuous from the right. It is specified as

dB (t) =
X
j

Ij (t−) dBj (t) +
X
j 6=k

bjk (t) dNjk (t) , (2)

where each Bj is a deterministic payment function specifying payments due during sojourns in
state j (a general life annuity) and each bjk is a deterministic function, specifying the payments
due upon transition from state j to state k. The left limit in Ij (t−) means that the state annuity
is effective at time t if the policy is in state j just prior to (but not necessarily equal at) time t.
Consistent with this, we define I0 (0−) = 1.

We assume that each Bj decomposes into an absolutely continuous part and a discrete part
as

dBj (t) = bj (t) dt+∆Bj (t) . (3)

Premiums are counted as negative benefits.
It is assumed that {X (t)}t≥0 is a Markov chain. Denote the transition probabilities by

pjk (t, u) = P [X (u) = k|X (t) = j] . (4)

The transition intensities

µjk (t) = lim
h↓0

pjk (t, t+ h)

h
(5)

are assumed to exist for all j, k ∈ ζ, j 6= k. The total intensity of transition out of state j
is µjζ (t) =

P
k;k 6=j

µjk (t). The probability of staying uninterruptedly in state j during the time

interval from t to u is e
−

u

t
µjζ(s)ds

.
We assume δ (t), the force of interest at time t, to be a deterministic and continuous function.

We introduce the following discount function:

ν (τ) = e
−

τ

0

δ(s)ds
. (6)
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Our aim is to derive the distribution function of the random present value, which will be specified
by S. So

S =

mZ
0

ν (τ) dB (τ) . (7)

3 The method by Hesselager and Norberg

The formulae displayed in this section are adopted from Hesselager and Norberg (1996), bearing
in mind the different specification of the interest. The difference in the formulae concerns the
force of interest which in their paper is allowed to be state-dependent and fixed, conditionally
given the state. In this paper, on the other hand, the force of interest is taken to be deterministic
and independent of the state of the policyholder, though not necessarily constant as a function
of time. Hesselager and Norberg (1996) introduce the state-dependent probability functions

Pj (t, u) = P

⎡⎣ mZ
t

ν (τ)

ν (t)
dB (τ) 6 u|Ij (t) = 1

⎤⎦ , t ∈ [0,m] , u ∈ R, j ∈ ζ. (8)

So Pj (t, u) denotes the probability that at time t, given that the contract is then in state j, the
present value of future payments, discounted to t, is smaller than or equal to u.

The starting point in their analysis is the recursive equation

Pj (t, u) =
X
k;k 6=j

mZ
t

e
−

s

t
µjζ(τ)dτ

µjk (s) ds · Pk
µ
s,
ν (t)

ν (s)
u−

Z s

t

ν (τ)

ν (s)
dBj (τ)− bjk (s)

¶

+e
−

m

t
µjζ(s)ds

I

⎡⎣ mZ
t

ν (τ)

ν (t)
dBj (τ) 6 u

⎤⎦ . (9)

Applying the auxiliary function

Qj (t, u) = Pj

µ
t, ν (t)−1

µ
u−

Z t

0
ν (τ) dBj (τ)

¶¶
, (10)

and substituting this in (9) yields

e
−

t

0

µjζ(s)ds
Qj (t, u)

=

mZ
t

e
−

s

0

µjζ(τ)dτ X
k;k 6=j

µjk (s) ds ·Qk

µ
s, u+

Z s

0
ν (τ) d (Bk (τ)−Bj (τ))− e−δsbjk (s)

¶

+e
−

m

0

µjζ(s)ds
I

⎡⎣ mZ
0

ν (τ) dBj (τ) 6 u

⎤⎦ . (11)

By differentiating with respect to t and rearranging, it follows that the functions Qj (t, u) in
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(11) are the unique solutions to the differential equations

dQj (t, u) = µjζ (t) dt ·Qj (t, u)

−
X
k;k 6=j

µjk (t) dt ·Qk

µ
t, u+

Z t

0
ν (τ) d (Bk (τ)−Bj (τ))− e−δtbjk (t)

¶
, (12)

subject to the constraint

Qj (m,u) = I

⎡⎣ mZ
0

ν (τ) dBj (τ) 6 u

⎤⎦ . (13)

The computational scheme follows by taking the finite difference version of the above equation:

Q∗j (t− h, u) =
¡
1− µjζ (t)h

¢ ·Q∗j (t, u)
+h

X
k;k 6=j

µjk (t) ·Q∗k
µ
t, u+

Z t

0
ν (τ) d (Bk (τ)−Bj (τ))− e−δtbjk (t)

¶
. (14)

Then starting from (13) (withQ∗j in the place ofQj) one calculates first the functionsQ∗j (m− h, ·)
by (14) and continues recursively until Q∗j (0, ·) finally can be calculated. In Hesselager and Nor-
berg (1996), the functionsQ∗j (t, u) are defined for t ∈ {0, h, 2h, ...,m} and u ∈ {a, a+ h0, a+ 2h0, ..., b},
where h and h0 are certain step-lengths.

This method is the only general approach to tackle the problem of determining the present
value distributions that has appeared in the literature until now. For practical calculations,
however, it has the drawback that the method is time-consuming if one only needs to calculate
the probability distribution at issue for a certain given state j, that is, Pj (0, ·). If all the states in
the contract are intercommunicating (this means that from one state, one can make a transition
to each other state and vice versa) at any time the contract is valid, the total number of times
that Q∗j (t− h, u) in (14) needs to be computed is of the order of

m

h
· b− a

h0
·A, (15)

In (15), A denotes the total number of states, and m
h and b−a

h0 represent the total number of
values that the first and second argument of Q∗ can adopt, respectively. For instance, if m = 30,
h = 1

1000 , b − a = 10, h0 = 5
1000 and A = 3, the relevant quantity needs to be calculated

about 180 million times. Besides, in each of these evaluations the second argument of the Q∗k
function in the second term of the right hand side of (14) must be rounded to the nearest point
in {a, a+ h0, a+ 2h0, ..., b}, thus slowing down the speed of computing. In practice, with at least
one absorbing state (death) and usually some strongly transient states, fewer calculations have
to be done, but the method can still be cumbersome.

4 Description of the benefits

In this paper, only three states apply, namely “Active”, “Disabled” and “Dead”, denoted by a,
i, and d, respectively.

We distinguish between the following types of benefits

• Annuity type benefits which are payable only if the life is alive, and which depend on
whether the life is Active or Disabled. In the remainder of this paper, these benefits are
specified as the disability related benefits. Such benefits only apply during the first n years
of the contract.
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• Benefits which are payable while alive or on death and which make no distinction between
the states “Active” and “Disabled”. Such benefits are labelled as other benefits. These
benefits comprise annuity type benefits, which are payable after the first n years of the
contract, and lump sum benefits, which may be payable throughout the entire term m of
the contract.

Next, we give a more thorough description of these two categories of benefits.

4.1 Disability related benefits

We assume that disability related benefits only apply during the first n years of the contract,
where n ≥ 0. Benefits are payable during sojourns in states “Active” or “Disabled”. We
disregard from payments due upon transition from the “Active” state to the “Disabled” state
or vice versa.

Hence, the disability related benefits are mathematically specified as:

Ia (t−) dBa (t) + Ii (t−) dBi (t) for t ∈ [0, n]
0 for t > n.

(16)

Benefits related to remaining in the “Active” state are nonpositive:

dBa (t) ≤ 0 ∀t ∈ [0, n] . (17)

Benefits payable during a sojourn in the “Disabled” state are greater than or equal to the benefits
related to “Active”:

dBi (t) ≥ dBa (t) . (18)

Recall that premiums count as negative benefits. Then inequality (18) means that a disabled
life either:

• pays premiums, which are smaller than or equal to the premiums an active life would have
to pay, or

• receives annuity benefits, or
• neither pays nor receives anything.

We consider the following special cases:

Case 1 The benefits payable during a sojourn in the “Disabled” state are exactly the same as
the benefits payable during a sojourn in the “Active” state : dBi (t) = dBa (t). In this case, we
are effectively working in a classical two state environment, comprising the states “Alive” and
“Dead”.

Case 2 The premiums payable during sojourn in the “Disabled” state are smaller than or equal
to the benefits payable during sojourn in the “Active” state : 0 ≥ dBi (t) ≥ dBa (t). Then we
are dealing with a premium reduction in case of disability.

Case 3 The benefits (or premiums) payable during sojourn in the “Disabled” state are 0: dBi (t) =
0. This involves a premium waiver in case of disability.

Case 4 The benefits payable during sojourn in the “Disabled” state are nonnegative: dBi (t) ≥ 0.
In such a case, we are considering a disability annuity or income protection policy.
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4.2 Other benefits

We distinguish between survival benefits and death benefits. Survival benefits are payable only
after time n and are payable during a sojourn in either one of the states “Active” and “Disabled”.
The level of the benefits is independent of whether the individual is active or disabled. We will
specify the total amount of such benefits over [n, t] by Bc (t), nondecreasing in t. Hence,
dBc (t) ≥ 0, and the contribution to the payment function is (Ia (t−) + Ii (t−)) dBc (t) .

Death benefits are comprised of lump sum benefits and annuity type benefits payable on
entering the “Dead” state. The level of the lump sum benefits depends on the time of death
only. We assume that it does not matter whether the life enters the state “Dead” as an active or
as a disabled person. We will specify such benefits as b·d (t), so b·d (t) = bad (t) = bid (t) ∀t ≥ 0.
The benefits payable during the stay in the state “Dead” are considered to be part of the lump
sum benefit.

Hence, the total payment function reduces to:

dB (t) = b·d (t) (dNad (t) + dNid (t))

+I{t≤n} (Ia (t−) dBa (t) + Ii (t−) dBi (t))

+I{t>n} (Ia (t−) + Ii (t−)) dBc (t) (19)

We assume that, for t > n, µad (t) = µid (t) .

Remark 5 As after time n, no disability related benefits are payable, such an assumption is
common in practice. A common additional assumption is that both µad (t) and µid (t) are equal
to µ (t), the standard force of mortality. It will turn out that the above assumption will make
some equations easier to derive.

In the next three sections, we will deal with alternative methods to those of Hesselager and
Norberg (1996) of deriving the distribution of present values. First of all, we show that deriving
such a distribution is a quite straightforward exercise if it is not possible to recover from sickness.
Thereafter, we will allow for recovery from illness and present a way to derive, for some disability
annuity contracts, an approximation to the c.d.f. of V , defined in (7).

5 The probability distribution of the present value if recovery
from disability is impossible

The Markov chain is hierarchical if an individual cannot recover once disabled. The situation is
displayed graphically in Figure 1.

The next two examples show how to derive the distribution of the present value. The first
example concerns the case of only “Disability related benefits”. The second example extends
the first by incorporating “Other benefits”.

Example 6 Consider a disability annuity with a term of n years, equal to bi per annum, payable
continuously while the individual is disabled, and a benefit of ba p.a., payable continuously while
the life is in the“Active” state. The contract is issued at time 0 in the“Active” state. During
periods in the “Active” state, the individual pays a premium equal to c per annum, continuously.
So ba = −c , and the Bj (τ) in the right hand side of (2) are equal to

Bd (t) = 0 ∀t, Ba (t) =

⎧⎨⎩
0 t < 0

ba · t 0 ≤ t < n
ba · n t ≥ n

, Bi (t) =

⎧⎨⎩
0 t < 0

bi · t 0 ≤ t < n
bi · n t ≥ n

. (20)
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Furthermore, we assume δ (·) to be constant and equal to δ. Hence, ν (t) = e−δt. For an active
individual, the probability distribution of the present value at issue proves to be

Pa (0, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for u < G (n) ;

paa (0, n) for u = G (n) ;

paa (0, n)
+paa (0, t1 (u))

R n
τ=t1(u)

paa (t1 (u) , τ)µad (τ) dτ

+paa (0, t2 (u, n)) pai (t2 (u, n) , n)
+
R n
τ=t1(u)

paa (0, t2 (u, τ)) pai (t2 (u, τ) , τ)µid (τ) dτ

for G (n) < u < 0;

paa (0, n) +
R n
τ=0 paa (0, τ)µad (τ) dτ

+paa (0, t2 (u, n)) pai (t2 (u, n) , n)
+
R n
τ=t1(u)

paa (0, t2 (u, τ)) pai (t2 (u, τ) , τ)µid (τ) dτ
for 0 ≤ u < H (n) ;

1 for u ≥ H (n)

,

(21)
with

G (n) =

Z n

s=0
ba e−δsds;H (n) =

Z n

s=0
bi e−δsds

t1 (u) = − ln
£
1− δu

ba

¤
δ

; (t1 (u) : solution to r of u =
Z r

s=0
ba e−δsds)

t2 (u, τ) = −
ln
h
δu+bi e−δτ−ba

bi−ba
i

δ
; (t2 (u, τ) : solution to r of u =

Z r

s=0
ba e−δsds+

Z τ

s=r
bi e−δsds).

(22)

We give a short explanation:

1. The present value can never be lower than G (n). This lower bound is attained if the
contract remains in the state “Active” throughout the term of the contract. This happens
with probability

paa (0, n) = e−
n
s=0 µaζ(s)ds. (23)

2. H (n) is the maximum possible present value, corresponding to the event that the individual
gets disabled immediately after issue and is still disabled at the end of the contract period;

3. For G (n) < u < H (n), we distinguish between the following four mutually exclusive
events:

(a) the individual is still active on maturity of the contract;

(b) the individual will be active until at least time t1 (u), and die, while active, before n;

(c) the individual will be active until at least time t2 (u, n), get disabled before n, and
survive to n.

(d) The individual will die from ”Disabled” at some time τ before n. Given death at time
τ , the individual will be active until at least time t2 (u, τ), and get disabled before τ .
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Remark 7 A simpler example, based on a single premium (rather than level premium) payment,
can be found in Spreeuw (2000).

We have just dealt with a relatively simple contract. Some complications could arise in case
where other benefits are to be included. In such cases, it could be convenient to work with the
conditioning random variable as the following example shows:

Example 8 Consider the same contract as the one considered in Example 6, but with a constant
death benefit, denoted by bd, included. Adopting the same approach as in Example 6 would be
complicated. As an intermediate step, however, we could derive the conditional distribution,
given the value of a certain random variable. We will choose the remaining lifetime (or time
on death) of the individual as the conditioning random variable. We denote this variable by
T and condition on the event that T = t. Then for 0 ≤ t ≤ n (death during the term of the
contract), we have the following conditional distribution of the present value of future benefits
less premiums, given T = t (denoted by Pa (0, u |T = t):

Pa (0, u |T = t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for u < G (t) + bd;R t
τ=t1(u)

paa(0,t1(u))paa(t1(u),τ)µad(t)dt
paa(0,t)µad(t)dt+pai(0,t)µid(t)dt

dτ

+
R t
τ=t2(u,t)

paa(0,τ)pai(τ,t)µid(t)dt
paa(0,t)µad(t)dt+pai(0,t)µid(t)dt

dτ
for G (t) + bd ≤ u < bd

R t
τ=0

paa(0,t1(u))paa(t1(u),τ)µad(t)dt
paa(0,t)µad(t)dt+pai(0,t)µid(t)dt

dτ

+
R t
τ=t2(u,t)

paa(0,τ)pai(τ,t)µid(t)dt
paa(0,t)µad(t)dt+pai(0,t)µid(t)dt

dτ
for bd ≤ u < H (t) + bd;

1 for u ≥ H (t) + bd.
(24)

Then Pa (0, u) is derived by integrating Pa (0, u |T = t) over t.

Remark 9 In Section 7, we will apply the method of conditioning on a random variable. Just
as in this example, we will choose a random variable resembling the remaining lifetime.

The above example serves to illustrate that there are cases where one does not need to be
restricted to the method by Hesselager and Norberg. The derivation of the above c.d.f. is quite
straightforward because the present value depends only on two variables: the time of getting
disabled and the time of death. This is due to the fact that:

1. There are only a few number of states applying, and that

2. The Markov chain is hierarchical: the state ”Disabled”, once left, cannot be revisited.

Of course, deriving the present value distribution is quite complicated if there are many states
involved, even if the Markov chain is hierarchical. An example is the multilife insurance contract,
is given by Hesselager and Norberg (1996).

The aim of this paper, however, is to study the consequences of dropping the second assump-
tion. If recovery is possible during the term, an insured can be disabled for more than one time
interval. This makes calculations such as those above much more complicated.

Our method of dealing with problems such as those above involves replacing the random
variable of present value by one being larger in convex order. If X and Y are random variables,
X precedes Y in convex order (notation X ≤c Y ) if E [f (X)] 6 E [f (Y )] for each convex

9



function f . This method has already been applied for distributions of the present value of cash
flows based on stochastic interest, see Goovaerts et al. (2000). In Kaas et al. (2000) it is shown
that an improved upper bound and a nontrivial lower bound can be obtained by conditioning
on a random variable. Illustrations in that paper involve the lognormal discounting process,
amongst others. Vyncke et al. (2001), applying the technique in Kaas et al. (2000), centers on
Vacisek and Ho-Lee models as applications.

The next section deals with the theory on the convex upper bound, as explained in Goovaerts
et al. (2000), and an application to a disability annuity. The section thereafter considers the
theory and applications in Kaas et al. (2000).

We will now assume that it is possible to recover from disability. Hence, Figure 2 applies.

6 Deriving the original convex upper bound

This section starts with an explanation of the theory in Goovaerts et al. (2000) in Subsection
6.1. Thereafter, in Subsection 6.2, we adapt the definition of the total present value to our
needs, specifying the points of time of the several benefits. In Subsection 6.3, we show how the
convex upper bound can be derived for a disability annuity.

6.1 Approach by Goovaerts et al. (2000)

Goovaerts et al. (2000) specify the present value random variable, again denoted by S, as a sum
of r.v.’s, each of them involving a certain point of time:

S =
MX
k=1

Yk, (25)

with
Yk = βke

−Xtk , βk ∈ R. (26)

where Xtk represents the force of interest integrated from 0 to tk, so is actually the stochastic
discounting factor of a payment at time tk. Furthermore, βk is the payment itself. When deriving
the expression for the probability distribution of S, one needs to realize that the Xtk ’s are not
mutually independent. As a consequence, the variables Yk are not independent of one another
either.

The authors first derive the distribution, which, within the class of random vectors
(Y1, ..., YM) with fixed marginals (such a class is called a Fréchet class) is the comonotonic
one. This distribution is the largest in convex order. If F1, ..., FM are the c.d.f.’s of the respec-
tive r.v.’s Y1, ..., YM , this comonotonic joint distribution of Y1, ..., YM is equal to the distribution
of the random vector ¡

F−11 (U) , ..., F−1M (U)
¢
, (27)

where U ∼Uniform(0, 1) and F−1k (u) , k ∈ {1, ...,M}, is defined by
F−1k (u) = min {x| Fk (x) > u} . (28)

The r.v. which is the sum of the components in (27) is denoted by Sc, and:

S ≤c Sc. (29)

Let Y c
k = F−1k (U) , k ∈ {1, ...,M}, so Sc =

PM
k=1 Y

c
k . Then, the joint c.d.f. of Y

c
1 , ..., Y

c
M is

known to be
Pr [Y c

1 ≤ y1, ..., Y
c
M ≤ yM ] = min

k∈{1,...,M}
Fk (yk) . (30)

10



Let FSc (·) be the c.d.f. of Sc and F−1Sc (·) its inverse, the latter defined in the same way as in
(28). The c.d.f. of Sc follows implicitly from the relationship

F−1Sc (u) =
MX
k=1

F−1k (u) , u ∈ [0, 1] . (31)

This is the so called convex upper bound. The quality of the approximation by means of this
c.d.f. can be analyzed by comparing it with the joint distribution obtained, e.g. by means of
Monte Carlo simulation.
In Subsection 6.3, we will derive the convex upper bound in (31) for some disability annuity

contracts. These contracts are a special case of the type of policies we have specified in Section
4, since there are only disability related benefits and no other benefits involved.

Before turning to these examples, we need to change the definition of the random variable
S, as defined in (25). The reason is that Goovaerts et al. (2000) is based on the financial risk
while this paper is centred on the demographic risks. We will do this in the next subsection.

6.2 Specification of total present value

In the remainder of this paper it is assumed that the interval [0, n) (the interval involving the
disability related benefits) can be partitioned into subsequent subintervals
[t0, t1) , [t1, t2) , ..., [tM1−2, tM1−1) , [tM1−1, tM1), while the interval [n,m) can be partitioned into
subsequent subintervals [tM1 , tM1+1) , [tM1+1, tM1+2) , ..., [tM−1, tM). The partitioning is such
that in the period [0, n) , there may only be benefit payments at the M1 different durations
t1, t2, ..., tM1−1, tM1 , while in the period [n,m), there may only be benefit payments at the
M −M1 different durations tM1+1, tM1+2, ...tM−1, tM . If death happens in the period [tk−1, tk),
the benefit will be paid at time tk.

Remark 10 In practice, often premiums are payable upon issue, at duration 0. Without loss of
generality, we will exclude such (negative) benefits from the calculation of present values. This
means that single premiums do not count as part of the present value.

As a consequence, we can write S in (7) as a sum of random variables:

S =
MX
k=1

Yk, (32)

with

Yk = ga (tk) Ia (tk) + gi (tk) Ii (tk)

+g·d (tk) (Nad (tk)−Nad (tk−1) +Nid (tk)−Nid (tk−1)) , (33)

where
gj (tk) = ν (tk) (Bj (tk)−Bj (tk−1)) , j ∈ {a, d} , k ∈ {1, ...,M1} , (34)

gc (tk) = ν (tk) (Bc (tk)−Bc (tk−1)) , j ∈ {a, d} , k ∈ {M1 + 1, ...,M} , (35)

and
g·d (tk) = ν (tk) b·d (tk) , j ∈ {a, d} , k ∈ {1, ...,M} . (36)

In (34), gj (tk) denotes the present value of the benefit paid at time tk in case of remaining in
state j, and g·d (tk) denotes the present value of the benefit paid at time tk in case of death in
(tk−1, tk].

11



Remark 11 The fully continuous case arises as a special case if we let M → ∞ and besides,
for each k ∈ {0, ...,M − 1}, tk+1 − tk → 0 .

So S can be decomposed in M separate random variables where the Yk denotes the stochastic
present value of benefits due to remaining in a certain state at time tk, k ∈ {1, ...,M}. We have

Pr [S = z]

= Pr [Y1 = g·d (t1)] · I{g·d(t1)=z} +
X

j1∈{a,i}
gj1 (t1)+g·d(t2)=z

Pr [Y1 = gj1 (t1) , Y2 = g·d (t2)]

+...

+
X

(j1,...,jM1−1)
t∈{a,i}M1−1;PM1−1

k=1
gjk (tk)+g·d(tM1)=z

Pr
h
Y1 = gj1 (t1) , ..., YM1−1 = gjM1−1 (tM1−1) , YM1 = g·d (tM1)

i

+
X

(j1,...,jM1)
t∈{a,i}M1 ;PM1

k=1
gjk (tk)+g·d(tM1+1)=z

Pr

∙
Y1 = gj1 (t1) , ..., YM1 = gjM1

(tM1) ,

YM1+1 = g·d (tM1+1)

¸

+
X

(j1,...,jM1)
t∈{a,i}M1 ;PM1

k=1
gjk (tk)+gc(tM1+1)+g·d(tM1+2)=z

Pr

∙
Y1 = gj1 (t1) , ..., YM1 = gjM1

(tM1) ,

YM1+1 = gc (tM1+1) , YM1+2 = g·d (tM1+2)

¸

+...

+
X

(j1,...,jM1)
t∈{a,i}M1 ;PM1

k=1
gjk (tk)+g·d(tM )

+
PM−M1−1

k=1
g
c(tM1+k)=z

Pr

∙
Y1 = gj1 (t1) , ..., YM1 = gjM1

(tM1) ,

YM1+1 = gc (tM1+1) , ..., YM−1 = gc (tM−1) , YM = g·d (tM)

¸

+
X

(j1,...,jM1)
t∈{a,i}M1 ;PM1

k=1
gjk (tk)

+
PM−M1

k=1
g
c(tM1+k)=z

Pr

∙
Y1 = gj1 (t1) , ..., YM1 = gjM1

(tM1) ,

YM1+1 = gc (tM1+1) , ..., YM−1 = gc (tM−1) , YM = gc (tM)

¸
.

(37)

Note that the above expression consists of M +1 terms. The first term of this equation involves
the event that the insured will die between 0 and t1, the second refers to death between t1 and
t2, the Mth to survival to tM1−1 and death between tM1−1 and n (= tM1), the (M1 + 1)th to
survival to n (= tM1) and death between n (= tM1) and tM1+1, the (M1 + 2)th to survival to n
and death between tM1+1 and tM1+2, the second last term concerns death between tM−1 and tM
and the last term concerns survival to m = tM .
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In terms of states, we get the following equality:

Pr [S = z]

= Pr [X (1) = d] · I{g·d(t1)=z} +
X

j1∈{a,i}
gj1 (t1)+g·d(t2)=z

Pr [X (1) = j1,X (2) = d]

+...

+
X

(j1,...,jM1−1)
t∈{a,i}M1−1;PM1−1

k=1
gjk (tk)+g·d(tM1)=z

Pr [X (1) = j1, ...,X (M1 − 1) = jM1−1,X (M1) = d]

+
X

(j1,...,jM1)
t∈{a,i}M1 ;PM1

k=1
gjk (tk)+g·d(tM1+1)=z

Pr

∙
X (1) = j1, ...,X (M1) = jM1 ,

X (M1 + 1) = d

¸

+
X

(j1,...,jM1)
t∈{a,i}M1 ;PM1

k=1
gjk (tk)+gc(tM1+1)+g·d(tM1+2)=z

Pr

∙
X (1) = j1, ...,X (M1) = jM1 ,

X (M1 + 1) ∈ {a, i} ,X (M1 + 2) = d

¸

+
X

(j1,...,jM1)
t∈{a,i}M1 ;PM

k=1
gjk (tk)+g·d(tM )

+
PM−M1−1

k=1
g
c(tM1+k)=z

Pr

∙
X (1) = j1, ...,X (M1) = jM1 ,

X (M1 + 1) ∈ {a, i} , ...,X (M − 1) ∈ {a, i} ,X (M) = d

¸

+...+
X

(j1,...,jM1)
t∈{a,i}M1 ;PM1

k=1
gjk (tk)+

PM−M1
k=1

g
c(tM1+k)=z

Pr

∙
X (1) = j1, ...,X (M1) = jM1 ,

X (M1 + 1) ∈ {a, i} , ...,X (M) ∈ {a, i}
¸
.

(38)

We define Fk as the c.d.f. of Yk, k ∈ {1, ...,M} . Furthermore, we define, just as above, Y c
k =

F−1k (U) , k ∈ {1, ...,M}, with U ∼Uniform(0, 1). So Sc =
PM

k=1 Y
c
k and

Fk (yk) = Pr [Yk ≤ yk] = Pr [Y
c
k ≤ yk] , k ∈ {1, ...,M} . (39)

Note that these marginals have a support consisting of a finite number of points.

6.3 The convex upper bound for a disability annuity

These contracts are a special case of the type of policies we have specified in Section 4, since
there are only disability related benefits and no other benefits. Hence the term is restricted to
n years, M1 =M and tM = n. We will start with the simplest premium payment arrangement
(payment by single premium) and then proceed to a more complicated type (level premium
payment). Our aim in this subsection is to derive the expression for the convex upper bound
of the present value. In the numerical examples in Section 8, which is based on these annuities,
the quality of the approximation will be judged by comparing the c.d.f. of the random variable
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with an accurate approximation of the c.d.f. of S. An accurate approximation of S is obtained
by applying the algorithm of Hesselager and Norberg with small values for the step-lengths h
and h0, as defined in Section 3.

In both cases, there are no payments due if the individual is dead. So we have:

gd (tk) = Bd (tk) = 0; gi (tk) = ν (tk) (Bi (tk)−Bi (tk−1)) ≥ 0, ∀k ∈ {1, ...,M} . (40)

The only difference between the two policies is the method of premium payment. In Subsub-
section 6.3.1 we deal with payment by single premium, while Subsubsection 6.3.2 considers the
case where premiums are paid as long as the individual is active. In both subsubsections we
will treat the fully continuous annuity (where all benefits are paid on a continuous basis) as a
special case.

We will conclude this subsection with Subsubsection 6.3.3, containing some remarks concern-
ing the calculation of the transition probabilities paa (0, ·), pai (0, ·) and pad (0, ·).

6.3.1 Payment by single premium

Recall that, by assumption, present values do not include single premium payments, so:

Ba (tk) = ga (tk) = 0 ∀k ∈ {1, ...,M} . (41)

In the given case, the marginals Fk (yk) in formula (30) are specified as:

Fk (yk) =

⎧⎨⎩
0 for yk < 0

1− pai (0, tk) for 0 ≤ yk < gi (tk)
1 for yk ≥ gi (tk)

, k ∈ {1, ...,M} . (42)

In practice, disability annuities are often contracts valid for the period that an individual is not
retired. As a consequence, for n not too large (otherwise the death rates will dominate), pai (0, t)
is usually an increasing function of t for t ∈ [0, n]. This leads to the following theorem:

Theorem 12 If dpai(0,t)
dt ≥ 0 for t ∈ (0, n], the comonotonic joint distribution of the present

value corresponding to a disability annuity contract, paid at single premium, with the payment
scheme as specified in (40) and (41) is:

Pr [Sc ≤ s] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for s < 0;

1− pai (0, tw) for
PM

k=w+1 gi (tk) ≤ s <
PM

k=w gi (tk) , w ∈ {1, ...,M} ;

1 for s ≥PM
k=1 gi (tk) .

(43)

Proof. Note that, for any yw < 0 with w ∈ {1, ...,M} :
FY c

1 ,...,Y
c
M
(y1, ..., yM) = FY c

1 ,...,Y
c
M
(0, ..., 0, yw, 0, ..., 0) = 0. (44)

In addition, if pai (0, t) is increasing in t ∈ [0, n] we have for y1, ..., yw−1 ≥ 0 and 0 ≤ yw < gi (tw) ,
w ∈ {2, ...,M} , that

FY c
1 ,...,Y

c
M
(y1, ..., yM) = FY c

1 ,...,Y
c
M
(0, ..., 0, yw+1, ..., yM) . (45)

The above equality states that if an individual is not disabled at time tw, he cannot be disabled
before that time either. This is equivalent to saying that if an individual is disabled at time tw,
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he will remain so with certainty till the expiration of the contract. This implies that the present
value only depends on the time at which the contract enters the state ”Disabled”. This proves
the theorem.

Note that the Markov chain corresponding to the distribution of Sc is hierarchical. The chain
is even more rigorous than the ordinary hierarchical Markov chain considered in Section 5: a
disabled individual can neither recover nor die. In other words: compared to the ordinary
hierarchical Markov chain, the state ”Disabled” is absorbing and not strongly transient.

On the other hand, since the marginals are fixed, the probabilities of getting disabled are
lower and the death rates for an active person are higher.

The fully continuous version of (43) leading to a benefit payment of dBi (t) if the contract is
in state i at time t, with t ∈ (0, n] (so dBi (t) > 0 on the same interval t ∈ (0, n]) is obtained by
letting M →∞ and besides for all i ∈ {0, ...,M − 1}, ti+1− ti → 0 (cf. Remark 11). The result
is:

Pr [Sc ≤ s] =

⎧⎨⎩
0 for s < 0;

1− pai (0, t) for s =
R n
t gi (τ) dτ, t ∈ [0, n] ;

1 for s >
R n
0 gi (τ) dτ.

(46)

The next equations serve to illustrate the transition intensities corresponding to the comonotonic
joint distribution. These are obtained from the forward differential equations of Chapman-
Kolmogorov. For notational convenience, they are accompanied by an asterisk superscript (∗).
The original transition intensities, corresponding to the joint distribution of S, are given between
brackets.

µ∗ia (t) = 0µ
µia (t) =

1

pai (0, t)

µ
dpaa (0, t)

dt
+ paa (0, t) (µai (t) + µad (t))

¶¶
; (47)

µ∗id (t) = 0µ
µid (t) =

1

pai (0, t)

µ
dpad (0, t)

dt
− paa (0, t)µad (t)

¶¶
; (48)

µ∗ai (t) =
1

paa (0, t)

dpai (0, t)

dtµ
µai (t) =

1

paa (0, t)

µ
dpai (0, t)

dt
+ pai (0, t) (µid (t) + µia (t))

¶¶
; (49)

µ∗ad (t) =
1

paa (0, t)

dpad (0, t)

dtµ
µad (t) =

1

paa (0, t)

µ
dpad (0, t)

dt
− pai (0, t)µid (t)

¶¶
. (50)

Next, we will consider annuity treaties where premiums are paid while the contract is in the
”Active” state. We will treat this topic in the same way as above.

6.3.2 Premium payment in the ”Active” state

In this case, the premiums discounted to time upon issue are:

ga (tk) = ν (tk) (Ba (tk)−Ba (tk−1)) ≤ 0, ∀k ∈ {1, ...,M} . (51)
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The marginals Fk (yk) in equation (30) are, as one might expect, more complicated than in the
single premium case:

Fk (yk) =

⎧⎪⎪⎨⎪⎪⎩
0 for yk < ga (tk) ;

1− pai (0, tk)− pad (0, tk) for ga (tk) ≤ yk < 0;
1− pai (0, tk) for 0 ≤ yk < gi (tk) ;

1 for yk ≥ gi (tk) .

, k ∈ {1, ...,M} . (52)

We again assume that pai (0, t) is an increasing function of t for t ∈ (0, n], leading to the following
theorem:

Theorem 13 If dpai(0,t)
dt ≥ 0, the comonotonic joint distribution of the present value corre-

sponding to a disability annuity contract, with the payment scheme as specified in (40) and (51)
is:

Pr [Sc ≤ s]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for s <
PM

k=1 ga (tk) ;

1− pai (0, tr)− pad (0, tw) for
s ∈ [hd (w) , hd (w − 1)) ∩ [hi (r) , hi (r − 1)) ,

w ∈ {1, ...,M} , r ∈ {rmin, ...,M} ;

1− pai (0, tr) for s ∈ [max [hi (r) , 0] , hi (r − 1)) , r ∈ {1, ..., rmin} ;

1 for s ≥PM
k=1 gi (tk) .

(53)

In the above formulae

hd (w) =
wX
k=1

ga (tk) ;

hi (r) =
MX

k=r+1

gi (tk) +
rX

k=1

ga (tk) ; (54)

rmin = max

"
r ∈ {1, ...,M − 1} |

MX
k=r+1

gi (tk) +
rX

k=1

ga (tk) < 0

#
.

Proof. Note that, for any yw < ga (tw) with w ∈ {1, ...,M} :

FY c
1 ,...,Y

c
M
(y1, ..., yM) = FY c

1 ,...,Y
c
M
(0, ..., 0, yw, 0, ..., 0) = 0. (55)

Furthermore, if pai (0, t) is increasing in t ∈ [0, n] we have the following:

1. If yj ≥ ga (tj) and ga (tw) ≤ yw < 0 for j ∈ {1, ..., w − 1} and w ∈ {2, ...,M} then

FY c
1 ,...,Y

c
M
(y1, ..., yw, ..., yM) = FY c

1 ,...,Y
c
M
(ga (t1) , ..., ga (tw) , yw+1, ..., yM) , (56)

implying that if an individual is active at a certain time, he is active all the time before.
The consequence is that a disabled individual cannot recover.

2. For y1, ..., yw−1 ≥ 0 and 0 ≤ yw < gi (tw) , w ∈ {2, ...,M} , that
FY c

1 ,...,Y
c
M
(y1, ..., yM) = FY c

1 ,...,Y
c
M
(0, ..., 0, yw+1, ..., yM) . (57)
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The above equality states that if an individual is not disabled at time tw, he cannot be
disabled before that time either. This is equivalent to saying that if an individual is
disabled at time tw, he will remain so with certainty till the expiration of the contract.
This implies that the present value only depends on the time at which the contract enters
the state ”Disabled” or the time at which the contract enters the state ”Dead ”. Note that
this part of the proof is equivalent to the proof of Theorem 12.

This proves the theorem.

The fully continuous version of (53) leading to a benefit payment of dBi (t) if the contract is
in state i and a premium payment of −dBa (t) if the contract is in state a at time t, with
t ∈ (0, n] (so dBi (t) > 0 and dBa (t) < 0 on the same interval t ∈ (0, n]), is, just as in the case of
single premium payment, obtained by letting M → ∞ and besides for each i ∈ {0, ...,M − 1},
ti+1 − ti → 0 (cf. Remark 11). The result is:

Pr [Sc ≤ s] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for s <
R n
0 ga (τ) dτ ;

1− pai (0, hi (s))− pad (0, ha (s)) for
R n
0 ga (τ) dτ ≤ s < 0;

1− pai (0, hi (s)) for 0 ≤ s <
R n
0 gi (τ) dτ ;

1 for s ≥ R n0 gi (τ) dτ .

(58)

In the above formula hi (s) and ha (s) are the solutions of t in the equalitiesZ n

t
gi (τ) dτ +

Z t

0
ga (τ) dτ = s (59)

and Z t

0
ga (s) ds = s, (60)

respectively.
The numerical example in Section 8 about disability annuities will deal with the continuous

case, and will therefore be based on equation (58).

6.3.3 Calculation of transition probabilities

Note that up to now we assumed that the transition probabilities were known. In fact, they
need to be computed first by solving a system of forward differential equations of Chapman-
Kolmogorov. It turns out that the method, in order to be computationally efficient, requires
that the numerical calculation of the transition probabilities does not take too much time. With
the availability of modern software packages (such as Mathematica) and powerful computers,
this is likely to be the case, except when the number of states is very high. One can also assume
that only a limited number of transitions can take place in a certain period of time. For instance,
both in the AIDS model and in the disability annuity model used in the Netherlands (cf. Alting
von Geusau, 1990, and Gregorius, 1993, respectively) it is assumed that there can be at most
one transition per year.

In one of the numerical examples of Section 8 concerned with disability annuities, it transpires
that the approximation resulting from the convex upper bound is very good. In the case of a
disability annuity, the convex upper bound is quite easy to derive, given some properties of the
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transition probabilities. However, if we add other benefits, the convex upper bound may become
complicated to derive. As shown in Kaas et al. (2000), improved upper bounds and non-trivial
lower bounds can be obtained by conditioning on a random variable. This is what we do in the
next section.

7 Conditioning on a random variable

We will first of all, in Subsection 7.1, consider the approach in Kaas et al. (2000). Then, in
Subsection 7.2 we will choose our conditioning random variable.

7.1 Deriving an improved upper bound and non-trivial lower bound

In Kaas et al. (2000), it is shown that an improved upper bound an a non-trivial lower bound
can be obtained if more information is known about the distribution of S, through a conditioning
random variable. In what follows, we will denote this random variable by Λ, with c.d.f. FΛ (λ),
which is assumed to be known. We assume that FΛ (λ) decomposes into an absolutely continuous
and a discrete part, such that:

dFΛ (λ) = fΛ (λ) dλ+ (Pr [Λ ≤ λ]− Pr [Λ ≤ λ−]) . (61)

It is assumed that, for all i ∈ {1, ...,M} and any outcome λ of Λ, the conditional distributions
of Yi, given Λ = λ, denoted by Fi|Λ (·), are known.

7.1.1 Improved upper bound

Denote F−1i|Λ (U) for the random variable fi (U,Λ), where the function fi is defined by fi (u, λ) =

F−1i|Λ=λ (u).
Then the improved upper bound, denoted by Su is known to be:

Su =
MX
i=1

F−1i|Λ (U) . (62)

The following convex order applies:

S ≤cx Su ≤cx Sc. (63)

Since, given the event Λ = λ, the conditional random variable Su is a sum of comonotonic
random variables, the distribution function of the unconditional random variable Su is relatively
straightforward to derive:

F−1Su|Λ=λ (p) =
MX
i=1

F−1i|Λ=λ (p) , p ∈ (0, 1) . (64)

Given Λ = λ, the c.d.f. of the conditional Su follows from

FSu|Λ=λ (s) = sup

"
p ∈ (0, 1)

¯̄̄̄
¯
MX
i=1

F−1i|Λ=λ (p) ≤ s

#
. (65)

The c.d.f. of the unconditional Su is then derived by

FSu (x) =

Z ∞

λ=−∞
FSu|Λ=λ (x) dFΛ (λ) . (66)
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7.1.2 Non-trivial lower bound

The convex lower bound, denoted by Sl, is known to be

Sl =
MX
i=1

E [Yi |Λ ] . (67)

We have the following order in convexity:

E [S] ≤cx Sl ≤cx S. (68)

The c.d.f. of the lower bound can be determined as follows:

FSl (x) =

Z ∞

−∞
I

"
MX
i=1

E [Yi |Λ = λ ] ≤ x

#
dFΛ (λ) . (69)

Dhaene et al. (2002a) point out that, if the conditioning random variable Λ is such that all
random variables E [Yi |Λ ] are monotone functions of Λ, then the lower bound Sl is a sum of M
comonotonic random variables and the c.d.f. is relatively straightforward to derive.

7.2 Choice of the conditioning random variable

As pointed out in Dhaene et al. (2002b), the choice of the optimal conditioning random variable
Λ is not a trivial exercise. It is true that, the more Fi|Λ (·) resembles S, the better Sl approxi-
mates S. But this property usually does not hold for Su. Moreover, there is the restriction that
Λ be such that Fi|Λ (·) is known.

In Section 6, we concluded that the original convex upper bound can be easily derived if only
disability related benefits are involved, assuming that pai (0, t) is non decreasing for t ∈ [0, n].
Complications arise if other benefits are involved. The stochastic nature of these benefits is
governed by the complete remaining lifetime of the life involved.

For this reason, we choose the period of death as the conditioning random variable. Denote
the complete remaining lifetime by T . Then Λ is defined as follows:

Λ =

½
i for T ∈ [ti, ti+1) and i ∈ {0, ...,M − 1}
M for T > tM

. (70)

We consider the following special cases applying for tM →∞:

Case 14 (curtate future lifetime) If ti = i, i ∈ {1, ...,M} , then Λ is the curtate future life-
time (usually denoted by K).

Case 15 (complete future lifetime) IfM →∞ and, furthermore, for each i ∈ {0, ...,M − 1} ,
ti+1 − ti → 0, then Λ is the complete future lifetime and we use the notation Λ = T .

In this way, we have chosen a random variable that captures the “Other benefits”. Next, we
derive the c.d.f.’s of Fk|Λ=λ (·).

For k = λ+ 1 (the period of death), we have that all the mass is concentrated at g·d (tλ+1):
Fλ+1|Λ=λ (yλ) = I{yλ≥g·d(tλ+1)}. For k > λ+ 1 (after the year of death), Fk|Λ=λ (·) ≡ 0.

For k < λ + 1, (before the year of death) we define the c.d.f. as F ∗k|Λ=λ (·). We need to
distinguish between k ∈ {1, ..,M1} (the period when “Disability related benefits” are payable)
and k ∈ {M1 + 1, ..,M} (the period when only “Other benefits” are payable).
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For k ∈ {1, ..,M1}, we have:

F ∗k|Λ=λ (yk)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for yk < ga (tk)

Pr

∙
X (tk) = a

¯̄̄̄
X (0) = a, (X (tλ) = a∀X (tλ) = i) ,

X (tλ+1) = d

¸
for ga (tk) ≤ yk < gi (tk)

1 for yk ≥ gi (tk) .

(71)

Note that Pr [X (tk) = a |X (0) = a, (X (tλ) = a∀X (tλ) = i) ,X (tλ+1) = d ] is the conditional
probability that the contract is in state “Active” at duration tk, given state ”Active” upon
inception and death between tλ and tλ+1. It can be expressed in terms of transition probabilities
in the following way:

Pr [X (tk) = a |X (0) = a, (X (tλ) = a∀X (tλ) = i) ,X (tλ+1) = d ]

=
Pr [X (tk) = a, (X (tλ) = a∀X (tλ) = i) ,X (tλ+1) = d |X (0) = a ]

Pr [(X (tλ) = a∀X (tλ) = i) ,X (tλ+1) = d |X (0) = a ]

=
Pr [X (tk) = a |X (0) = a ] Pr [(X (tλ) = a∀X (tλ) = i) ,X (tλ+1) = d |X (tk) = a ]

Pr [(X (tλ) = a∀X (tλ) = i) ,X (tλ+1) = d |X (0) = a ]

=
paa (0, tk) (pad (tk, tλ+1)− pad (tk, tλ))

pad (0, tλ+1)− pad (0, tλ)

= 1− pai (0, tk) (pid (tk, tλ+1)− pid (tk, tλ))

pad (0, tλ+1)− pad (0, tλ)
. (72)

For k ∈ {M1 + 1, ..,M}, the mass is concentrated at gc (tk): F ∗k|Λ=λ (yk) = I{yk≥gc(tk)}.

7.2.1 Improved upper bound

Theorem 16 If, for each λ ∈ {1, ..,M1 − 1}

pai (0, t1) (pid (t1, tλ+1)− pid (t1, tλ)) ≤ pai (0, t2) (pid (t2, tλ+1)− pid (t2, tλ)) ≤ ...

≤ pai (0, tλ) pid (tλ, tλ+1) (73)

then for λ ∈ {1, ..,M1 − 1}, the distribution of FSu|Λ=λ (s) is given by

FSu|Λ=λ (s)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for s <
Pλ

k=1 ga (tk) + g·d (tλ+1) ;

1− pai(0,tw)(pid(tw,tλ+1)−pid(tw,tλ))
pad(0,tλ+1)−pad(0,tλ) for

s ∈ [hi (w) + g·d (tλ+1) , hi (w − 1) + g·d (tλ+1))
w ∈ {1, ..., λ} ;

1 for s ≥Pλ
k=1 gi (tk) + g·d (tλ+1) .

(74)
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In the above formula:

hi (w) =
λX

k=w+1

gi (tk) +
wX
k=1

ga (tk) . (75)

Proof. Note that, for any yw < ga (tw) with w ∈ {1, ..., λ} :
FY u

1 ,...,Y
u
M |Λ=λ (y1, ..., yλ, 0, ..., 0) = 0. (76)

Furthermore, if inequality (73) holds, we have that if yj ≥ ga (tj) and ga (tw) ≤ yw < gi (tw) for
j ∈ {1, ..., w − 1} and w ∈ {2, ..., λ}, and yλ+1 ≥ g·d (tλ+1), then

FY u
1 ,...,Y

u
M |Λ=λ (y1, ..., yw, ..., yλ, yλ+1, 0, ..., 0)

= FY u
1 ,...,Y

u
M |Λ=λ (ga (t1) , ..., ga (tw) , yw+1, ..., yλ, g·d (tλ+1) , 0, ..., 0) , (77)

implying that if an individual is active at a certain time, he is active all the time before. The
consequence is that a disabled individual cannot recover.
This proves the theorem.

Theorem 17 If, just as in (73),

pai (0, t1) (pid (t1, tλ+1)− pid (t1, tλ)) ≤ pai (0, t2) (pid (t2, tλ+1)− pid (t2, tλ)) ≤ ...

≤ pai (0, tλ) pid (tλ, tλ+1) (78)

then for λ ∈ {M1, ..,M − 1} , we have that the distribution of FSu|Λ=λ (s) is given by
FSu|Λ=λ (s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for s <
PM1

k=1 ga (tk) +
Pλ

k=M1+1
gc (tk) + g·d (tλ+1) ;

1− pai(0,tw)(pid(t1,tλ+1)−pid(t1,tλ))
pad(0,tλ+1)−pid(0,tλ) for

s ∈
"

hi (w) +
Pλ

k=M1+1
gc (tk) + g·d (tλ+1) ,

hi (w − 1) +
Pλ

k=M1+1
gc (tk) + g·d (tλ+1)

!
,

w ∈ {1, ...,M1} ;

1 for s ≥PM1
k=1 gi (tk) +

Pλ
k=M1+1

gc (tk) + g·d (tλ+1) .
(79)

For λ =M, we have that the distribution of FSu|Λ=λ (s) is given by:

FSu|Λ=λ (s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for s <
PM1

k=1 ga (tk) +
PM

k=M1+1
gc (tk) ;

1− pai(0,tw)(pid(t1,tλ+1)−pid(t1,tλ))
pad(0,tλ+1)−pid(0,tλ) for

s ∈
"

hi (w) +
PM

k=M1+1
gc (tk) ,

hi (w − 1) +
PM

k=M1+1
gc (tk)

!
,

w ∈ {1, ...,M1} ;

1 for s ≥PM1
k=1 gi (tk) +

PM
k=M1+1

gc (tk) .

.

(80)

In the above formula:

hi (w) =

M1X
k=w+1

gi (tk) +
wX
k=1

ga (tk) . (81)
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Proof. Consider the case λ ∈ {M1, ..,M − 1} first. Note that, for any yw < ga (tw) with
w ∈ {1, ...,M1} :

FY u
1 ,...,Y

u
M |Λ=λ (y1, ..., yM1 , gc (tM1+1) , gc (tM1+2) , ..., gc (tλ) , g·d (tλ+1) , 0, .., 0) = 0. (82)

Furthermore, if inequality (78) holds, we have that if yj ≥ ga (tj) and ga (tw) ≤ yw < gi (tw)
for j ∈ {1, ..., w − 1} and w ∈ {2, ...,M1}, and yw ≥ gc (tw) for w ∈ {M1 + 1, .., λ}, and yλ+1 ≥
g·d (tλ+1), then

FY u
1 ,...,Y

u
M |Λ=λ (y1, ..., yw, ..., yM1 , yM1+1, yM1+2, ..., yλ, yλ+1, 0, ..., 0)

= FY u
1 ,...,Y

u
M |Λ=λ

µ
ga (t1) , ..., ga (tw) , yw+1, ..., yM1 ,

gc (tM1+1) , gc (tM1+2) , ..., gc (tλ) , g·d (tλ+1) , 0, ..., 0

¶
, (83)

implying that if an individual is active at a certain time before n, he is active all the time before.
The consequence is that a disabled individual cannot recover.
Now consider the case λ =M . Note that, for any yw < ga (tw) with w ∈ {1, ...,M1} :

FY u
1 ,...,Y

u
M |Λ=λ (y1, ..., yM1 , gc (tM1+1) , gc (tM1+2) , ..., gc (tM)) = 0. (84)

Furthermore, if inequality (78) holds, we have that if yj ≥ ga (tj) and ga (tw) ≤ yw < gi (tw) for
j ∈ {1, ..., w − 1} and w ∈ {2, ...,M1} and yw ≥ gc (tw) for w ∈ {M1 + 1, ..,M}, then

FY u
1 ,...,Y

u
M |Λ=λ (y1, ..., yw, ..., yM1 , yM1+1, yM1+2, ..., yM)

= FY u
1 ,...,Y

u
M |Λ=λ (ga (t1) , ..., ga (tw) , yw+1, ..., yM1 , gc (tM1+1) , gc (tM1+2) , ..., gc (tM)) ,(85)

implying that if an individual is active at a certain time before n, he is active all the time before.
The consequence is that a disabled individual cannot recover.
This proves the theorem.

Note that a sufficient condition for (73) to hold is that pai (0, t) (pid (t, tλ+1)− pid (t, tλ)) is in-
creasing for t ∈ [0, tλ]. Taking the derivative of the numerator of this expression with respect
to t, using the Chapman-Kolmogorov backward differential equations (see e.g. Wolthuis, 2003),
leads to:

d
pai (0, t) (pid (t, tλ+1)− pid (t, tλ))

dt

=
dpai (0, t)

dt
(pid (t, tλ+1)− pid (t, tλ))

+pai (0, t)

µ
(pid (t, tλ+1)− pid (t, tλ)) (µia (t) + µid (t))
− (pad (t, tλ+1)− pad (t, tλ)) (µia (t))

¶
. (86)

Assuming that pai (0, t) is increasing in t, which we did in Section 6, this derivative is positive if

pid (t, tλ+1)− pid (t, tλ) ≥ pad (t, tλ+1)− pad (t, tλ) , (87)

(i.e. the death rates for a disabled individual are higher than those for an active person) or

µia (t) ≤
µid (t) (pid (t, tλ+1)− pid (t, tλ))

(pad (t, tλ+1)− pad (t, tλ))− (pid (t, tλ+1)− pid (t, tλ))
, (88)

(i.e. the forces of recovery are “low enough”).
The first condition may hold for λ ≤ M1 − 1, that is, during the period of deferment. The

second condition may hold in general.
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The fully continuous version is obtained by letting M → ∞ and besides for each i ∈
{0, ...,M − 1} , ti+1 − ti → 0. Then for λ ∈ [0, n), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 for s <
R λ
0 ga (s) ds+ g·d (λ) ;

1− pai(0,t)(pia(t,λ)µad(λ)+pii(t,λ)µid(λ))
paa(0,λ)µad(λ)+pai(0,λ)µid(λ)

for s =
R t
0 ga (s) ds+

R λ
t gi (s) ds+ g·d (λ) ;

0 ≤ t < n

1 for s ≥ R λ0 gi (s) ds+ g·d (λ) .

,

(89)
while for λ ∈ [n,m), we get⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 for s <
R n
0 ga (s) ds+

R λ
n gc (s) ds+ g·d (λ) ;

1− pai(0,t)(pia(t,λ)µad(λ)+pii(t,λ)µid(λ))
paa(0,λ)µad(λ)+pai(0,λ)µid(λ)

for
s =

R t
0 ga (s) ds+

R n
t gi (s) ds

+
R λ
n gc (s) ds+ g·d (λ) ; 0 ≤ t < λ

1 for s ≥ R n0 gi (s) ds+
R λ
n gc (s) ds+ g·d (λ) .

, (90)

Finally, the case λ = m yields the following result⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for s <
R n
0 ga (s) ds+

Rm
n gc (s) ds;

1− pai(0,t)(pia(t,λ)µad(λ)+pii(t,λ)µid(λ))
paa(0,λ)µad(λ)+pai(0,λ)µid(λ)

for s =
R t
0 ga (s) ds+

R n
t gi (s) ds+

Rm
n gc (s) ds;

0 ≤ t < n

1 for s ≥ R n0 gi (s) ds+
Rm
n gc (s) ds.

.

(91)
The numerical examples in the next section will be based on this continuous version.

As stated before, we assume that µad (s) = µid (s) for s > n. This leads to the following
lemma.

Lemma 18 Assume that, for each s > n, µad (s) = µid (s). Then, for λ ≥M1 and t ≤ n :

pai (0, t) (pid (t, tλ+1)− pid (t, tλ))

pad (0, tλ+1)− pad (0, tλ)
=

pai (0, t) (1− pid (t, n))

1− pad (0, n)
. (92)

Proof. For t ≤ n and λ ≥M1, we have

pai (0, t) (pid (t, tλ+1)− pid (t, tλ))

(pad (0, tλ+1)− pad (0, tλ))

=
pai (0, t) (pia (t, n) (pad (n, tλ+1)− pad (n, tλ)) + pii (t, n) (pid (n, tλ+1)− pid (n, tλ)))

paa (0, n) (pad (n, tλ+1)− pad (n, tλ)) + pai (0, n) (pid (n, tλ+1)− pid (n, tλ))

=
pai (0, t) (1− pid (t, n))

1− pad (0, n)
, (93)

since pad (n, tλ+1)− pad (n, tλ) = pid (n, tλ+1)− pid (n, tλ) for µad (s) = µid (s) , s > n.

The numerical examples will be based on this simplification as well.
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7.2.2 Nontrivial lower bound

For k = λ+ 1, we have that
E [Yλ+1 |Λ = λ ] = g·d (tλ+1) , (94)

while for k > λ+ 1, E [Yk |Λ = λ ] = 0.
For k ≤ λ, and k ∈ {1, ..,M1}, the following results:

E [Yk |Λ = λ ] =

paa (0, tk) (pad (tk, tλ+1)− pad (tk, tλ)) ga (tk)
+pai (0, tk) (pid (tk, tλ+1)− pid (tk, tλ)) gi (tk)

pad (0, tλ+1)− pad (0, tλ)
, (95)

while for k ≤ λ, and k ∈ {M1 + 1, ..,M}, we get
E [Yk |Λ = λ ] = gc (tk) . (96)

Hence Sl |Λ = λ for λ ∈ {0, ..,M1 − 1} is equal to:
λX

k=1

paa (0, tk) (pad (tk, tλ+1)− pad (tk, tλ)) ga (tk) + pai (0, tk) (pid (tk, tλ+1)− pid (tk, tλ)) gi (tk)

(pad (0, tλ+1)− pad (0, tλ))

+g·d (tλ+1) , (97)

while for λ ∈ {M1, ..,M − 1}, we get
M1X
k=1

paa (0, tk) (pad (tk, tλ+1)− pad (tk, tλ)) ga (tk) + pai (0, tk) (pid (tk, tλ+1)− pid (tk, tλ)) gi (tk)

(pad (0, tλ+1)− pad (0, tλ))

+
λX

k=M1

gc (tk) + g·d (tλ+1) . (98)

Finally, for λ =M , we get:

M1X
k=1

paa (0, tk) (pad (tk, tλ+1)− pad (tk, tλ)) ga (tk) + pai (0, tk) (pid (tk, tλ+1)− pid (tk, tλ)) gi (tk)

(pad (0, tλ+1)− pad (0, tλ))

+
MX

k=M1

gc (tk) (99)

The expectation E
£
Sl |Λ = λ

¤
is not necessarily monotone as a function of λ.

The fully continuous version of the above is obtained by letting M → ∞ and besides for
each i ∈ {0, ...,M − 1} , ti+1− ti → 0. The result is that Sl |Λ = λ for λ ∈ [0, n) is degenerate atZ λ

t=0

paa (0, t) (paa (t, λ)µad (λ) + pai (t, λ)µid (λ))

paa (0, λ)µad (λ) + pai (0, λ)µid (λ)
ga (t) dt

+

Z λ

t=0

pai (0, t) (pia (t, λ)µad (λ) + pii (t, λ)µid (λ))

paa (0, λ)µad (λ) + pai (0, λ)µid (λ)
gi (t) dt+ g·d (λ) (100)

while for λ ∈ [n,m), we get:Z n

t=0

paa (0, t) (paa (t, λ)µad (λ) + pai (t, λ)µid (λ))

paa (0, λ)µad (λ) + pai (0, λ)µid (λ)
ga (t) dt

+

Z n

t=0

pai (0, t) (pia (t, λ)µad (λ) + pii (t, λ)µid (λ))

paa (0, λ)µad (λ) + pai (0, λ)µid (λ)
gi (t) dt+

Z λ

t=n
gc (t) dt

+g·d (λ) (101)
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Finally, for λ > m, we get:Z n

t=0

paa (0, t) (paa (t, λ)µad (λ) + pai (t, λ)µid (λ))

paa (0, λ)µad (λ) + pai (0, λ)µid (λ)
ga (t) dt

+

Z n

t=0

pai (0, t) (pia (t, λ)µad (λ) + pii (t, λ)µid (λ))

paa (0, λ)µad (λ) + pai (0, λ)µid (λ)
gi (t) dt+

Z m

t=n
gc (t) dt (102)

In the next section, we present some numerical examples.

8 Some insurance contracts

This section aims to illustrate how the quality of the approximation differs with the relevant
weight of the “Disability related benefits”, compared with the “Other benefits”. The examples
will be presented in increasing order of the weight of the benefits of the latter type. We start with
the disability annuity (as discussed in Spreeuw, 2000), then deal with the combined policy as
discussed in Hesselager and Norberg (1996) and Norberg (1995), and finally consider a deferred
annuity with a premium waiver during any spell of disability during the period of deferment.
All annuity benefits are payable continuously. In all three examples, a level premium of c
per annum, is payable continuously whenever the insured is in the state “Active”. Hence, the
premium payment function has the shape Ba (t) = −ct; t ∈ [0, n].

The following figures we use are the same as those applied in the numerical example 5.3 in
Hesselager and Norberg (1996) and Table 4 of Norberg (1995):

µad (t) = µid (t) = 0.0005 + 10
−4.12+0.038 (30+t); µia (t) = 0.005;

µai (t) = 0.0004 + 10−5.46+0.06 (30+t); n = 30; δ = ln (1.045) . (103)

Note that, since µad (t) = µid (t) for all t ≥ 0, the mortality rates for an active and disabled
individual are the same. Hence inequality (87) is satisfied and so we can use the results from
Theorems 16 and 17.

The value of δ corresponds to an annual level of interest of 4.5%. In all examples, the
steplengths are taken to be h = 1

1000 and h0 = 1
2000 , just as in the numerical examples of

Hesselager and Norberg (1996). The specification of the transition intensities results in the
transition probabilities paa (0, t), pai (0, t) and pad (0, t) as displayed graphically in Figure 3.
Although it may not be completely clear from the graphics, all functions are smooth. It is clear
that, for t ∈ [0, n], pai (0, t) is an increasing function of t.

8.1 The disability annuity

We take the same example as in Spreeuw (2000). In this case there are no “Other benefits” in-
volved and the contract expires at time n. Hencem = n, Bc (t) = 0, and b·d (t) = 0. The contract
pays an amount of 1 on a continuous basis while the insured is in the state “Disabled”. Hence
Bi (t) = t; t ∈ [0, n]. Furthermore, the level premium satisfying the principle of equivalence is
in this case equal to

c =

R n
0 e−δtpai (0, t) dtR n
0 e−δtpaa (0, t) dt

= 0.0175456. (104)

The maximum possible present value is equal toZ 30

0
1 · (1.045)t dt = 16.6527. (105)
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while the minimum, attained in case the individual remains in the state ”Active” from the
beginning till the end of the contract period, proves to be

−c
Z n

0
e−δtdt = a = −0.2922. (106)

The algorithm by Hesselager and Norberg has in this case been executed for a = −0.35 and
b = 16.7.

The original convex upper bound is derived as follows. The distribution of Sc, displayed in
formula (58), reads as:

Pr [Sc ≤ s] =

⎧⎪⎪⎨⎪⎪⎩
0 for s < −0.29;

1− pai (0, hi (s, n))− pad (0, ha (s)) for −0.2922 ≤ s < 0;
1− pai (0, hi (s, n)) for 0 ≤ s < 16.6527;

1 for s ≥ 16.6527.
(107)

In (107),

hi (s, u) = −
ln
³
δs+e−δu+c

1+c

´
δ

; (solution to hi of s = −c
Z hi

w=0
e−δwdw +

Z u

w=hi

e−δwdw)

ha (s) = − ln
¡
1 + δs

c

¢
δ

(solution to ha of s = −c
Z ha

w=0
e−δwdw). (108)

The improved upper bound follows by conditioning on the random variable Λ = min [T, n]. The
conditional minimum and maximum values that Su, given Λ = λ can attain are given in Figure
4. Although it may not be completely clear from the figure, the conditional minimum values are
a smooth function of the time of death.

By integrating over all possible values of T , we get:

Pr [Su ≤ s]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for s < −0.29;

R n
u=ha(s)

paa (0, hi (s, u))

µ
paa (hi (s, u) , u)µad (u)
+pai (hi (s, u) , u)µid (u)

¶
du

+paa (0, hi (s, n)) (1− pad (hi (s, n) , n))
for −0.2922 ≤ s < 0;

pad (0, hd (s)) + paa (0, hi (s, n)) (1− pad (hi (s, n) , n))

+
R n
u=hd(s)

paa (0, hi (s, u))

µ
paa (hi (s, u) , u)µad (u)
+pai (hi (s, u) , u)µid (u)

¶
du

for 0 ≤ s < 16.6527;

1 for s ≥ 16.6527.

(109)

with hi (s, u) and ha (s) as defined before. Besides,

hd (s) = − ln (1− δs)

δ
(solution to hd of s =

Z hd

w=0
e−δwdw). (110)

The conditional expectationE [Su |Λ = λ ] is depicted in Figure 5. We can see thatE [Su |Λ = λ ]
is not a monotone function of t. The minimal value is attained for T = 15.4241, corresponding
to E [Su |T = 15.4241] = −0.129096. The maximal value is attained for T = n (survival to the
end of term), corresponding to E [Su |T = 30] = 0.0143711.
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In Figure 6, the four c.d.f.’s are displayed. One can see that the convex upper bound gives
a very good approximation which can hardly be distinguished from the real distribution. As
expected, the improved upper bound works out even better. The lower bound, on the other
hand, performs very badly.

This observation is also confirmed by comparing the variances with each other:

V ar [S] = 1.80677;V ar [Sc] = 1.94873;V ar
h
Sl
i
= 0.00141346;V ar [Su] = 1.87002. (111)

8.2 The combined policy

We use the same values as in Hesselager and Norberg (1996) and Norberg (1995). Compared
to the previous example, there are other benefits involved, namely a lump sum benefit of 1
payable immediately on death. Moreover, the disability annuity is reduced to 0.5 per annum,
payable continuously. Like the previous example, the contract expires at time n = 30. Hence
m = n, Bi (t) = 0.5 t, and b·d (t) = 1; t ∈ [0, n]. Furthermore, the level premium satisfying the
principle of equivalence is equal to

c =
0.5
R n
0 e−δtpai (0, t) dt+

R n
0 e−δt (paa (0, t)µad (t) + pai (0, t)µid (t)) dtR n
0 e−δtpaa (0, t) dt

= 0.0131083. (112)

The minimum possible value is attained in case the contract survives to the end of term and
stays active during an uninterrupted period of time. This value is equal to:

−c
Z n

0
e−δtdt = a = −0.218289. (113)

In this case, the maximal possible value is attained if the life gets disabled immediately after
issue, stays disabled until death just before the end of term. This value is equal to:

0.5

Z n

0
e−δtdt+ e−δn = 8.59335. (114)

(Note that this is not so obvious: it all depends on the levels of the interest rate, the death benefit
and the disability annuity. If the volume of the disability annuity is relatively low compared
to the level of the death benefit, and interest rates are high, the maximal possible value could
correspond to immediate death after issue.)

In Figure 7, the conditional minima and maxima, given the time of death, are displayed.
This applies if death happens before the end of term. This example is more complicated than
the previous one as the minimal and maximal values in case of survival to the end of term differ
from those in case of earlier death. Given that the contract survives to the end of term, the
minimal and maximal values are equal to −0.218289 and 8.32635, respectively. This implies that
the minimal and maximal values S can take are equal to −0.218289 and 8.59335, respectively.

The conditional expected values for the lower bound in case of earlier death are given in
Figure 8. We see that the maximum expected value corresponds to immediate death. The
minimum expected value attained if the contract survives to the end of the term is equal to
−0.0637065.

Figure 9 displays the three different c.d.f.’s. One can see that the improved upper bound is
again almost perfect. The lower bound is still poor, though relatively better than in the previous
case. This is due to the fact that there are other benefits involved. The variances displayed
below illustrate this case.

V ar [S] = 0.486852;V ar
h
Sl
i
= 0.0273882;V ar [Su] = 0.502725. (115)
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8.3 Deferred annuity with premium reduction while disabled

The “Other benefits” involved are in this case equal to a pension benefit of 1 per annum,
payable continuously from duration n. A premium of c per annum, payable continuously, will
be payable during the period of deferment while the life is active. During any spell of disability,
a reduced premium of α · c is payable, with α ∈ [0, 1]. In this example, we have n = 30,m =∞,
Ba (t) = −ct, Bi (t) = −α c t, t ∈ [0, n], and Bc (t) = t, t ∈ [n,∞). The contract pays an
amount of 1 on a continuous basis while the insured is in the state “Disabled”. Furthermore,
the level premium satisfying the principle of equivalence is equal to

c =

R∞
n e−δt (1− pad (0, t)) dtR n

0 e−δtpaa (0, t) dt+ α
R n
0 e−δtpai (0, t) dt

(116)

We will consider the case α = 0 (premium waiver) when the difference between upper and lower
bounds should be most significant. The minimum possible value is attained in case the contract
survives to the end of term, stays active during an uninterrupted period of time until n and dies
just after n. This value is equal to:

−c
Z n

0
e−δtdt = a = −2.82. (117)

The maximal possible value is attained if the contract gets disabled immediately after issue,
stays disabled until retirement and survives until the limiting age. We assume this limiting age
to be equal to 115. So m = 85 and the maximal value is equal to:Z 115

30
e−δtdt = 4.14. (118)

In Figure 10, the conditional minima and maxima, given the time of death, are displayed.
The conditional expected values, for calculation of the lower bound, are depicted in Figure 11.
Obviously, the minimum expected value is attained if the contract survives to the end of the
term. The maximum expected value corresponds to survival to the limiting age.

We will not display the c.d.f.’s of the three distributions, as they can hardly be distinguished
from each other. This is also illustrated by comparing the three variances:

V ar [S] = 2.14702;V ar
h
Sl
i
= 2.08842;V ar [Su] = 2.14869. (119)

As with the other two examples, the improved upper bound still gives the best approximation and
is almost perfect. The lower bound, performs well as well. This is explained by the substantial
weight of the other benefits.

For larger values of α, the two distributions of Sl and Su will be closer to each other,
coinciding completely for α = 1 (when there is effectively no difference between the states
“Active” and “Disabled”).

9 Conclusions and recommendations for further research

In this paper, we have applied the theory of comonotonic risks to life insurance contracts with
disability related benefits. The (conditional) upper bounds are based on removing the possibility
of recovery from illness. This upper bound proves to be a very good approximation in all cases.
The quality of the lower bound depends on the relative weight of the disability related benefits.
The lower the weight, and hence the more significant the contribution of the other benefits,
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the better the approximation by the lower bound. As the other benefits are governed by the
chosen conditioning variable of remaining lifetime, this result is not very surprising. In Kaas
et al. (2000), it was shown that the more the conditioning random variable resembles the
random variable under consideration (the present value of benefits less premiums) the better
the approximation by the lower bound.

This paper gives scope for more research. We intend to extend the model by allowing for
financial risks. Assuming that these risks are independent of the demographic risks, convex
upper and lower bounds can then be derived by applying the techniques in Hoedemakers et
al. (2003, 2004). Furthermore, we intend to derive present value distributions of contract with
more complicated conditions in their design, such as a waiting period and a deferred period, as
specified mathematically in Pitacco (1995) and Haberman and Pitacco (1999).
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Figure 1: Disability without possible recovery (hierarchical Markov chain).
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Dead

Figure 2: Disability with possible recovery (non-hierarchical Markov chain).
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Figure 3: Graphical display of paa (0, t) (dotted), pai (0, t) (solid) and pad (0, t) (dashed) as a function
of t.
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Figure 4: Conditional minima and maxima present values disability annuity, given time of death.
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Figure 5: Conditional expected values disability annuity.
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Figure 6: C.d.f.’s disability annuity compared: real distribution (solid); original convex upper bound
(dashed-dotted); improved upper bound (dotted); lower bound (dashed).
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Figure 7: Conditional minima and maxima present values combined policy, given time of death .
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Figure 8: Conditional expected values in case of death: combined policy.
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Figure 9: C.d.f.’s combined policy compared: real distribution (solid); improved upper bound (dotted);
lower bound (dashed).
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Figure 10: Conditional minima and maxima present values deferred annuity, given time of death.
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Figure 11: Conditional expected values deferred annuity.
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