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Mortality reduction factors incorporating cohort effects

Arthur Renshaw and Steven Haberman
Cass Business School, City University, London, UK

Summary. The Lee-Carter modelling framework is extended through the introduction of a
wider class of generalised, parametric, non-linear models. This permits the modelling and
extrapolation of age-specific cohort effects as well as the more familiar age-specific period
effects. The choice of error distribution is generalised. The potential for incorporating
prescribed non-zero asymptotes, under strict limitations, is investigated.

Keywords: Mortality projections; Mortality reduction factors; Generalised non-linear models;
Time series modelling.

1. Introduction

Mortality reduction factors (CMI (1999)) are seen as an important means of
capturing and projecting historic mortality trends (Renshaw and Haberman (2003b)).
They are central to the extrapolation of mortality trends using the Lee-Carter
methodology (Lee (2000)) and its Poisson based equivalent (Brouhns et al (2002)).
These methods, as originally constituted, are restricted to the capture and projection of
age-period effects, to the exclusion of possibly noteworthy cohort effects. Our

objective is to investigate the feasibility of extending the methodology to the
modelling and projection of historic age-period-cohort effects.

We begin (Section 2) by giving the Lee-Carter approach a wider setting.
Given the central role played by the mortality reduction factor in generating mortality
projections, which is the main object of the exercise, we emphasis the targeting of the
mortality reduction factor, as opposed to the force of mortality. Thus, while the
parametric structure is expanded to allow for age-cohort as well as the familiar age-
period effects, the error structure is imposed by specifying the second moment
properties of the model. This allows for a range of options including Poisson, both
with and without dispersion, as well as Gaussian, as used in the original Lee-Carter
approach. Methods of fitting such models are reviewed and expanded. Extrapolation
is conducted on the familiar basis of parametric time series forecasting. The proposed
age-period-cohort methodology is applied to the 1961-2000 UK population mortality
experience for each gender and the 1947-2002 UK male assured lives’ experience
(Section 3). Here, both the patterns in the parameter estimates and the resulting
projections are particularly informative and differ appreciably from the results
obtained using the standard Lee-Carter approach. It further transpires that this wider
approach to model specification lends itself to the imposition of prescribed non-zero
asymptotes, under certain strict conditions. This is formulated and illustrated in
Section 4. A critical appraisal of the methods is presented in Section 5. This includes
a study of age specific secular trends (actual and projected), in the rates of change of
the logarithms of the force of mortality.

2. Methodology
2.1. Formulation
Let the random variable D,, denote the number of deaths in a population at

age x and time ¢. A rectangular data array (d,,e,,) is available for analysis where

xt?



d,, is the actual number of deaths and e, is the matching exposure to the risk of
death. The force of mortality and empirical mortality rates are denoted by p, and
m,, (=d, /e,) respectively. Cross-classification is by individual calendar year
te[t,t,] (range n) and by age xe[x,,x,], either grouped into k (ordered)
categories, or by individual year (range k), in which case year-of-birth or cohort year
z=t—-x€e[t,—x,,t,—x] (range n + k - 1) is defined. See Fig 1. The purpose of the

analysis is to capture and then project age specific secular mortality trends,
incorporating cohort effects when the data permit. To do this, we model the mortality
reduction factor

F(x,0)= exp(ﬁi‘”tu + ZBS’K?"]
i=1

where
u, =expla, +log F(x,1))

by formulating the generalised non-linear model

Yx, _ D_U , E(YX,) =en, =e, exp(ax)F(x,t) 5 Var(Yx,) = ¢E(Yxr) (: ¢M] (1)

xt

with scale parameter ¢, variance function V(Y,,) = E(Y,,) and prior weights w_, =1.
Under the log link, the non-linear predictor 1, is defined as

(logE(Y,) =) n, =loge, + 0., +logF(x,t).

Then projected mortality rates

m = n"1x,,n15'(x, t,+5),s>0 )

X, +S

are computed by alignment with the latest available mortality rates 71, . Here,

[4
Fxt, +5)= exp{sa (T e~ 1)+ 2RO (O, -2 )},s >0

i=l

O 1, %" and the time series forecasts

x 2 TzI Nt

is based on the parameter estimates [3

{izzze[tl—xk,tn—xl]}l—){i, :s>0}

=X +S

(RO,&D | &O):relh, b o (&0, %2, k9, )15 > 0}

L+s2 N 4s 0t TN+

where
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2.2. Discussion
In formulating the model, we partition the force of mortality

o = exp(a, )F(x,1) 3)

into the product of a static life-table incorporating the main age effects o, and a
parameterised mortality reduction factor F incorporating age-specific multiple period
effects x” and a single cohort effect 1, .. Under this formulation, we target F, rather

thanp ,, as the primary means of modelling and projecting mortality rates. In
formulating the Poisson error structure, provision for over-dispersion is possible,

typically in the context of life insurance data which may involve duplicate insurance
policies for each individual studied, by incorporating the free standing scale
parameter ¢ . The possibility of structuring ¢ when modelling either policy counts or
policy amounts is under active review.
The age-period Lee-Carter type structures
LC(c):B¥ =0

and the age-period-cohort structures

M:c=1 (Kf” = K,)
together with the substructures

H, ¥ =10 =1; H,:pY =1; H, :pY =1

for which

H,cH,,H,cM,
are of special interest. We shall also have occasion to refer to the age-cohort structure

AC:c=0 (¥ =B,).

The case LC(1) (BS) = Bx) implies the original Lee-Carter bilinear structure, while the
original Gaussian error structure is re-established on replacing (1) with

Y, = log[D"’ ] , E(Y,)=o, +logF(x,t), Var(Y,) = i, “)
e w

xt xt



comprising a free standing scale parameter ¢, variance function V() =1 and prior

weights w,, =1. Under the identity link, the non-linear predictor is given by

(E(,) =) n, =a, +B,x,.

Time series forecasts are typically generated using univariate ARIMA
processes, with the possible exception of LC(c), ¢ >1. The random walk with drift (or
ARIMA(0,1,0) process) features prominently in the application of LC(1). The use of
bivariate time series, including co-integration time series methods in the context of
LC(2), is described in Renshaw and Haberman (2003d). If no provision for alignment
with the latest available mortality rates is made, (see equation (2)), as originally in
Lee and Carter (1992), the extrapolated mortality rates decompose multiplicatively as

~ < A Al .
e p[ +BO4, +3Ip0R0 )m,tn )5 >0,
i=1

which has the same functional form as (3), and bears direct comparison with (2).

2.3. Model fitting

Setting aside fitting by single value decomposition (SVD), which is well
documented, it is informative to survey other likelihood fitting methods. We focus on
two potential procedures: Method A based on an unpublished technical report by
Wilmoth (1993), and Method B based on a method of mortality analysis incorporating
age-year interaction with applications to medical statistics by James and Segal (1982),
which predates Lee and Carter (1992).

LC(1)
Method A.

Following Wilmoth (1993), Brouhns et al. (2002), maximum likelihood estimates are
obtained under the original Lee-Carter Gaussian error structure (4) using an iterative
process, which can be re-expressed as follows:

Set starting values a._,B,,K, ; compute y_,

\

update Q. _; compute y
t

update %, , adjust s.t. Y, =0; compute 3,

=4

update B ; compute

compute D(y,,, ¥,,)

\

Repeat the updating cycle; stop when D(y,,,y,) converges

where

yxi zlogmu’yxl :ax +BXK1’



Y
ol yx —u ol
D(3,,9,) = D dev(x,1) =) 2w, & = du=Y w,(vy = 9,)’
Xt xt 5,” xt

with weights

l,e,>0 )
w, = .
* 10,e,=0

The updating of a typical parameter 8 proceeds according to

2
updated(0) =0 — % 66912)

where D is the deviance of the current model. See Table 1 for details. Effective
starting values, conforming to the standard Lee-Carter constraints

iK, =0,) B, =1 (6)

=4 x

are K,=0, ﬁx =1/k, coupled with the SVD estimate

t
&, =log] [ " ™
t=t,
so that o, is estimated by the logarithm of the geometric mean of the empirical

mortality rates. The model has v =(k—1)(n—2) degrees of freedom. This iterative

fitting process generates maximum likelihood estimates under the Poisson error
structure (1), (Alho (2000), Brouhns et al. (2002), Wilmoth (1993)) on setting

yxl = dxl’ j}xl = dx/ = ext exp(dx + ﬁxkl)

Vu —U
V()

Y
D(ys3) = 2 devx ) =Y 2w, [P —du=Y 2w, {y,log(y, /5. )- (v, - 5. )}
Xt Xt y“n xt

Brouhns et al. (2002) attribute the iterative method for estimating log-linear models
with bilinear terms to Goodman (1979). See Table 1 for details of the parameter
updating relationships.



Method B.
Following James and Segal (1982), we use the iterative procedure:

Set starting values ﬁx
\

given ﬁx, update &, K,

given ¥, update &_, B,

compute D(y,,,¥.,)
A
Repeat the updating cycle; stop when D(y,,, ) converges

G
&'x

Given ﬁx or k,, updating is by selecting the desired generalised linear model and
fitting the predictor, which is linear in the respective remaining parameters. Thus,
log-link Poisson responses y, =d,, with offsets loge, are declared in order to

generate the same results as the Brouhns et al. (2002) iterative fitting process. The
respective predictors are declared by accessing the model formulae (design matrices),
a feature available in GLIM (Francis et al. (1993)), for example. In specifying the
model formulae, we impose the constraints

K, =0,ZBJc =1,

reverting back to the Lee-Carter constraints (6) once convergence is attained.

LC(c)

Model identification requires the specification of the requisite number of parameter
constraints, typically

I"

D=0, 3BY =1,Vizl,orx =0, Y pY =1,VixI.

=,

The model has v=k(n—c—1)—c(n—2) degrees of freedom. Then estimation can
proceed on the bases of modifications to the first of the iterative fitting cycles above
(Method A), based on the extended definitions of y,. Thus the core of the iterative

fitting cycle is expanded to update & and B in sequence (i = 1, 2, ..., o),
according to the LC(1) updating relationships of Table 1, for each i.

M (H,,H,H,)
It is well known that age-period-cohort modelling is problematic, since the three
factors are constrained by the relationship

cohort = period — age.
In order to ensure a unique set of parameter estimates, we resort to a two-stage fitting
strategy in which a _ is estimated first, typically as in (7) and the original Lee-Carter
SVD approach. Then, the remaining parameters, those of F, may be estimated by



suitably adapting Method B by declaring log-link Poisson responses y,, =d, and the
augmented offsets loge, + &, and adapting the design matrices, incorporating the
constraints

L‘l‘*‘fk ZO’ZBiO) :1a Ktl = O’ZBS) =1.

Obvious simplifications to the design matrices are needed when fitting the associated
sub-models H, and H,, while the iterative element in the fitting procedure is

redundant when fitting H,. We note that the model M has v=(k-2)(n-2)-3
degrees of freedom. Effective starting values are Bio) =B =1/k. Fitting is also
possible under Method A, once o, has been estimated, using the extended definitions
of y, and adapting the core of the iterative cycle in accordance with the relevant

updating relationships (Table 1). Effective starting values are obtained on setting
B =B =1 and fitting H, to generate starting values for 1, and , .

AC
Model identification is conveniently achieved by means of the parameter constraints

Uy = 0,y B, =1.

Model fitting is then possible by reformulation of Method A in terms of a_, B, and
1,_,. Thus, 1,__ instead of k, is updated in the core of the iterative cycle (subject to

the adjustment 1, , =0), using the replacement updating relationships of Table 1.

Fitting is also possible using Method B by replacing k, with 1,_, and modifying the
design matrices accordingly. A possible strategy for generating starting values is to
set ﬁx =1 and additionally fit the main effects structure a, +1,_, in accordance with
the distributional assumptions under Method A. There are v = (k —1)(n—3) degrees

of freedom in this model.

-x

2.4. Discussion

By specifying the second moment distributional properties when defining the
model error structure, the choice of distribution is not restricted to the Poisson and
Gaussian distributions, and may be expanded by selecting different variance
functions. Empirical evidence suggests that, for all practical purposes, maximum
likelihood estimates obtained for LC(1) using the iterative fitting processes under the
Gaussian error structure (4), are the same as those obtained under fitting by SVD.
Unlike modelling by SVD, however, the choice of weights (5) means that estimation
can proceed, in the presence of empty data cells, under the Gaussian, Poisson and any
other of the viable error settings. Wilmoth (1993) uses weights w,=d, in

combination with the Gaussian error setting. Empirical studies reveal that this has the
effect of bringing the parameter estimates into close agreement with Poisson response
based estimates. When cross-referencing results obtained under both modelling
approaches (with identical model structures), we have found that the same number of



iterations is required in order to induce convergence. The adaptation of Method B
does not appear to be appropriate for LC(c), ¢ > 1 modelling because of aliasing under
the expanded model formulae. Convergence is slow when fitting M.

Diagnostic checks on the fitted model are conducted by plotting the
standardised deviance residuals

1y =sign(y,, — $ NAVL1/6, d=D(y,,5.)/v.

The sole use of the proportion of the total temporal variance, as measured by the ratio
of the first singular value to the sum of singular values under SVD, is not a
satisfactory diagnostic indicator, in our experience. However, this index is widely
quoted in the demographic literature: see, for example, Tuljapurkar ef al. (2000).

It is possible to capture important (secondary) data features, which are
otherwise lost under standard Lee-Carter modelling, by increasing the number of
bilinear terms in the model structure and fitting LC(c), ¢ > 1. One such application,
for ¢ = 2, in which the data are grouped by age, is discussed in Renshaw and
Haberman (2003a), (2003c). While it is possible to capture cohort effects using LC(c)
and increasing ¢ when the data are available by individual year of age, in common
with Booth ez al (2002), we have concluded that such effects are not reflected in the
resulting projections based on the associated multivariate time series. Hence, we have
introduced the model structure M (and its substructures).

The parameters o are estimated simultaneously with the parameters of F in
LC(c) and AC modelling. A two-stage estimation process is necessary, however, in
which a, is estimated separately in order to condition for the estimation of F, when

fitting M (and its substructures). This two-stage approach can also be applied when
fitting LC(c) and AC. For LC(c) modelling, empirical studies show that this has little
practical material effect, due to the robust nature of the o, estimate (7).

3. UK muortality projections

In order to explore the potential of the age-period-cohort model M, we present
results for the UK 1961-2000 mortality experiences by gender, with cross-
classification by individual year of age 0 to 99, and for the UK 1947-2002 male
permanent assured lives experience (policy duration 2+ years), in the age range 22 to
89 by individual year. The Poisson error setting (1) is chosen throughout and a direct
comparison is made with the standard age-period Lee-Carter model LC(1) and the
age-cohort model AC.

The implications of the choice of model structure are immediately apparent
from the respective residual plots, illustrated for the UK female experience (Fig 2).
Here the distinctive ripple effects in the year-of-birth residual plots under age-period
modelling (Fig 2a, RH frame), signifying a failure to capture cohort effects, is
transferred to the calendar-year residual plots under age-cohort modelling (Fig 2b, LH
frame), signifying a reciprocal failure to capture period effects. However, the
distinctive ripple effects are largely removed under age-period-cohort modelling (Fig
2c¢), indicating the relatively successful capture of all three main effects and
representing a significant improvement over the fitted Lee-Carter model. Similar
patterns are observed in the residual plots for the two UK male experiences (not
reproduced here but the details are available from the authors).



The implications for mortality projections are illustrated (Fig 3) by plotting the
latest available log crude mortality rates (computed by averaging over the last three
years) against age for each separate study, coupled with the superimposed 2020 or
2025 projections under the respective age-period and age-cohort modelling
formulations (Fig 3a), and under the respective age-period and age-period-cohort
modelling formulations (Fig 3b). The social and financial implications of these
diverse sets of projections are considerable: we attempt to quantify the latter shortly.

The parameter estimates for the age-period-cohort modelling approach are
also revealing. Focusing first on the population studies for each sex (Fig 4), it is
informative to compare matching frames. Thus the main age effect plots (&, vs x)
display the familiar characteristics, including ‘accident’ humps, of static life-tables
(log scale). Recall that these effects are estimated separately, by averaging crude
mortality rates over ¢ for each x, in order to condition for both period and cohort
effects. The main period effect plot (K, vs ) is linear for females but exhibits mild
curvature for males, which can be characterised as piece-wise linear with a knot or
hinge positioned in the first half of the 1970’s. This effect is also present in the
separate Lee-Carter analysis of mortality data of the G7 countries (Tuljaparker et al.
(2000)) and is discussed further (Renshaw and Haberman (2003a)), in the context of
the England and Wales mortality data. The forecasts for «k, are based on the auto-

regressive time series

P
Y =4 +alt+z¢iyr—i +E, ¥, =K, —K, ®)

i=1

with p = 2, and with ¢, =0 in the female study, that is the ARIMA(2,1,0) process.
The inclusion of the term in ¢ (male experience) is broadly equivalent to modelling
second differences, that is the ARIMA(2,2,0) process. There are noteworthy

differences in the B patterns, which control the age specific rates of mortality

decline by period in the projections. In particular, the trough in the male |§§” pattern
in the 20 to 40 age range is consistent with similar findings in the reanalysis of the
male England and Wales mortality rates (Renshaw and Haberman (2003a)).

The main cohort effect plots (1, vs z = - x) are particularly revealing. Thus,
noteworthy discontinuities occur corresponding to the ending of hostilities in World
War I and II. While it is possible to identify the first of these with the 1919 influenza
epidemic, we are not aware of the likely cause of the second discontinuity. (The 1887
discontinuity can be traced to a set of outliers, and is possibly due to mis-stated
exposures in this particular cohort.) The pronounced decline in the 1, profile in the
inter-war years is consistent with the reported rapid mortality improvements
experienced by generations born between 1925 and 1945 (for both sexes) and reported
by Willets (2004). The seemingly stable linear trends in the 1, profiles, established
since the late 1940’s, form the basis of the depicted time series forecasts, generated
using ARIMA(1,1,0) processes. The B patterns, which control the age specific
cohort contributions to the mortality projections, are similar, for both sexes, for ages
up to 65.

For the male assured lives experience, we present age-period-cohort parameter
estimates (Fig 5), under both M and H, modelling. Since the assured lives experience



comprises a small select subset of the wider UK male population experience, it is
informative to contrast these parameter estimates with those of the wider population
(Fig 4b), recognising, however, that the time domains of the two data sets are not
completely over-lapping. Thus, while the main period effect (k, plot) exhibits the
curvature associated with the wider male population, the main cohort effect (1, plot)
is markedly different. Thus, while the selection process has ensured that the pattern
has remained largely constant up to the late 1940’s, the trend has subsequently been
upward. The forecasts depicted are all based on the auto-regressive time series (8)
with p = 1. Forecasting is started from year of birth 1972 (instead of the outer limit of
the data set 1979) in the case of 1,, because of the paucity of exposure in the lower

RH corner of the data array (Fig 1). Recall that the static life tables &, are identical
under M and H, (Fig 5). The projections in the lower RH frame in Fig 3 are based
onH,, rather than M, for the reasons given in Section 5.

In order to illustrate the impact of such diverse projections, we depict (in Fig
6) complete life expectancies at age 65 e, (f) and immediate annuity values at age 65
ags(t) , calculated assuming a 5% pa fixed interest rate, up to the year 2005, based on
both the age-period (LC(1)) and age-period-cohort (M or H,) model projections.
Computation proceeds according to the formulae

2l +D{-1g,.,+i)} DL+
e (1) =" Lo sa ()= 0 ©
where
g ()~ 1-exp(-1,), Lt +1) = {1~ (). () (10)

with discount factor v, requiring extrapolations up to the year 2040 for the population
studies and the year 2030 for the assured lives study. (We note that the annuity values
represent the expected present value of an income of 1 paid annually in arrears while
the individual initially aged 65 remains alive). In addition, we have superimposed
cross-sectional (by period) life expectancies and 5% annuity values (at age 65),
computed by suppressing the variation in ¢ in expressions (9) and (10). With the
exception of the first few years of each projection, these involve the empirical
mortality rate {i, =m, only (otherwise values are computed using the respective
age-period-cohort model projections). Thus, the computation of the dynamic (by
cohort) life expectancies and annuities requires lengthy extrapolations in comparison
to the more immediate cross-sectional computations, and this contributes a source of
increased uncertainty. The reserves that insurance companies selling annuities and
pension funds would have to hold to meet their future contractual liabilities are
directly related to terms likeag(f) : Booth et al (2005). The financial implications of
the upwards trends in Figure 6(b) are clear and significant and indicate the burden that
increasing longevity may place on such institutions.

10



4. Prescriptive asymptotes
4.1. Formulation

Consider LC(1). Simplify the notation by omitting the prefix i (Section 2.1)
so that the reduction factor is

F(x,t) =expf x,
with projections
F(xt, +s)=expP,(k, ., —&, ),s>0. (11)

A criticism of the structural form of such reduction factors and the Lee-Carter method
in general, concerns the nature of their long-run asymptotic behaviour: with typically
a combination of positive B, and decreasing «, leading to zero asymptotic values.

To address this criticism, Wilmoth (pp87-88 Lee (2000)) has reportedly ‘suggested
that it would be a simple matter to have each age-specific death rate decline towards a
lower bound greater than zero, by subtracting the bound before modelling and
forecasting the death rates, and then adding it back in’. In a parallel situation, the
CMI (1999) has prescribed the mortality reduction factor

E (x,t, +5) = o(x) + {l—a(x)} {1 - f(x)}*'*,5>0. 12)

with non-zero asymptotes a(x), (not to be confused with o ), for adjusting standard
life tables centred on ¢, (for populations with annuity or pensions arrangements).
With this background, we consider therefore the reduction factor

F,(x,0) = o(x) +{1-a(x)}expf x,, 0<a(x) <1, (13)
with projections
E,(xt, +5) = a(@)+ {I-a@}expP,(k,., - %, )}, s >0,  (14)

based on the re paIaIneteIlSathn Of (12)
B 10 {1 f('x)}! K L.
x 20 g t

Asymptotic convergence is then implicit. Once a(x) is prescribed, it is then possible
to estimate the remaining structure of F, using the two-stage estimation process of
Section 3. We do this by rearranging (1)

—Pa py )= (), Var(t,) =20 {: b V(Yx,)]’

- e:l exp(a’x) ’ exr exp(ax) w,

xt

xt

11



with prior weights w_, =e_ exp(,), having first estimated o, either according to
(7) or as a standard life-table. Second stage estimation is then possible, using the non-
linear predictor 1, incorporating the prescribed offset log{l — a.(x)}, in combination
with the ‘own’ link (in GLM terminology)

log{F, (x,1) ~a(x)} =n, =log{l—a(x)}+B,x,, (15)

by adapting the second of the iterative fitting methods (Method B, Section 2.3).
When x, =¢, the predictor is linear and the iterative cycle is redundant.

4.2. Applications

The mortality reduction factor (12) was proposed by the CMI Committee as a
means of adjusting UK actuarial standard life tables, based on the 1991-94
quadrennium, (and with ¢, centred in this quadrennium). Consideration was given to
prescribing the magnitude of the reduction after (a prescribed) 20 year period has
lapsed when specifying (12). This approach is further based on an informal data
analysis and on expert opinion regarding the long run trajectory without recourse to
rigorous modelling. Once o(x) has been specified

0.13, x <60
() =114 0.87(—" _5:)10), x> 60 (16)

and depicted (Fig 7a LH frame), it is informative to estimate f(x) and to compare

results with the prescribed value. This is done, by plotting (Fig 7a RH frame) the
estimates

f(x)=1-exp(20f,)

based on the UK male assured lives’ mortality experience for policy duration 2+ years
covering the period 1947-94 and ages 22-89 years, using the standard life-table for
1991-94 as (first stage) estimates for exp(&, ) and setting k, =¢ in (15). The details
are taken from CMI (1999) and the prescribed value of f(x) is plotted for
comparison. On the bases of this evidence the prescribed level of mortality
improvement is the more conservative: corresponding to a larger value of f(x) and
hence a smaller value of ¥, (x,7).

As a second application, it is instructive to compare the results under LC(1)
modelling, both with and without prescribed asymptotes a(x). We do this by
plotting (Fig 7b) scaled, projected log reduction factor differences (without o(x) as in
(11) minus with o(x) as in (14)), or displaced log reduction factor ratios

log F(x,t)—logF, (x,1) _ - log F, (x,1)
log F(x,1) log F(x,1)

12



for select ¢ >¢,, using the prescribed o(x) of (16), for the UK 1961-2000 mortality

experiences by gender, ages 0-99, and for the UK 1947-2002 males assured lives
experience, policy duration 2+ years, ages 22-89. The magnitude of this displaced
ratio, above the abscissa axis, is a comparative measure of the impact of the imposed
asymptote on the specified projections. The patterns generally reflect the shape of
o(x) (Fig 7a).

It is also possible to impose asymptotes under age-period-cohort modelling,
provided that the pairs of age-period and age-cohort parameters exhibit decreasing
mortality trends. These conditions hold (Fig 4) for the two population studies, but not
for the male assured lives study (Fig 5). For completeness, the displaced ratios for the
population studies, using the same asymptotes (16), are presented in Fig 7c. For the
female study, values of the ratios for ages over 95 are suppressed, because the
convergence criterion underpinning the projections is violated. For this application

F,(x,0) = 0(x) + {1 —a(x)}exp(B®1,_, +BVx, ), 0<a(x) <1. (17)

5. Critical appraisal

In a reference to the possibility of complicating LC(1) by adding higher order
effects (LC(c)), or cohort-effects (M), resulting in an improved fit, Lee (2000)
comments as follows: ‘The question is whether such additional effects would
represent fundamental and enduring aspects of mortality patterns such that the
forecasts would be improved’. We use this as a basis on which to conduct a critical
appraisal of the methodology.

Turning first to the modelling stage and the question of whether the additional
structural effects are fundamental aspects of mortality patterns, answers are provided
by the analysis of residuals. Thus, on the basis of the residual plots (e.g. Fig 2), age-
period-cohort models M and H, are demonstrated (Figs 4 & 5) to have captured

characteristic mortality patterns, directly attributable to age, period and cohort effects.
Then, if modelling were restricted to LC(1), distinctive patterns directly attributable to
cohort effects would be lost. The question of pattern durability, however, is a matter
for conjecture, while established patterns, preferably linear, in the period and cohort
parameters are conducive to forecasting. For age specific declining trends, it is
possible to conjecture further by imposing non-zero asymptotes (Section 4). Note,
however, that in formulating (13), or the more complex version allowing of cohort
terms in the exponent, (17), there are no inbuilt constraints, such as the use of the
modulus sign in the exponent, for the prevention of model failure.

Turning next to the complication of the extrapolation process through the
inclusion of additional age-cohort (or higher order age-period effects), there is the
need to check that the dynamics of the relative contributions from the different
sources, typically age-period and age-cohort effects, are maintained in the projections.
To do this, we monitor the rate of change of logp , over ¢, for each age x, viz.

Ologp, OlogF(x,t) .« Ot O () o () N RO A D)
x - _z+§ D2t B AL+ E YAk
ot ot P oz ‘3 P Ot P : F G P ot

where A is the differencing operator. A representative selection of such rates of
change is depicted in Figs 8 & 9. For the two population studies (Fig 8), with the
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exception of a noteworthy (partially illustrated) trough, transmitted by period with
increasing age in excess of 65 in the female experience, all such plots are consistently
linear over the combined data and forecast periods displayed. The departure from
linearity for females is associated with the relatively large projected life expectancies
and annuities under M (Fig 6). For the assured lives study (Fig 9), there is a marked
change of direction in the otherwise linear patterns at the interface between estimated
and forecast parameters, for ages in the lower quarter of the age range, for model M.
Hence we have chosen model H, when projecting assured lives” mortality rates (Fig

3).
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CAPTIONS
Fig. 1. Observed and projected age-period domains with typical cohort
Fig. 2. UK female study, residual plots- (a) model LC(1); (b) model AC; (c) model M

Fig. 3. Latest and projected logm,, age profiles- (a) LC(1) and AC modelling, all

three studies; (b) LC(1) and M modelling, population studies; (b) LC(1) and H,
modelling, assured lives study

Fig. 4. UK population studies, parameter estimates, model M- (a) females; (b) males
Fig. 5. UK male assured lives study, parameter estimates- (a) model M; (b) model H,

Fig. 6. (a) Life expectancies; (b) annuities, 5% fixed rate interest- all at age 65 for a
range of periods, computed by period and by cohort under age-period and age-period-
cohort modelling

Fig. 7. (a) UK male assured lives study: prescribed asymptotes o(x), matching f(x)
profiles. Displaced ratio 1-log ¥, /log ' age profiles, fixed period (b) model LC(1);
(c) model M

op,

Fig. 8. Secular trends in L
p‘xt
projections- (a) UK female population study; (b) UK male population study

for selected ages x, incorporating model M

0 .
Fig. 9. Secular trends in 1 oy for selected ages x, UK male assured lives study,
13

incorporating- (2) model M projections; (b) model H, projections
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(a) residual plots: age-period modelling
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(a) log(mortality rates): projections by age-pericd & age-cohort
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(b) log(mortality rates): projections by age-period & age-period-cohort
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modelling, assured lives study
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(a) UK male assured lives study: model M
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