
              

City, University of London Institutional Repository

Citation: Pouliasis, P. K., Visvikis, I.D., Papapostolou, N. C. & Kryukov, A. A. (2020). A 

Novel Risk Management Framework for Natural Gas Markets. Journal of Futures Markets, 
40(3), pp. 430-459. doi: 10.1002/fut.22067 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/22912/

Link to published version: https://doi.org/10.1002/fut.22067

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


1 

 

A Novel Risk Management Framework for Natural Gas Markets 
 

 

 

Panos K. Pouliasis 
*
 

Cass Business School, City, University of London, United Kingdom 
 

Ilias D. Visvikis 

School of Business Administration, American University of Sharjah, United Arab 

Emirates 
 

Nikos C. Papapostolou 

Cass Business School, City, University of London, United Kingdom 
 

Alexander A. Kryukov 

Cass Business School, City, University of London, United Kingdom 
 

 

 

 

Abstract 

 

This paper examines dynamic hedges in the natural gas futures markets for different horizons 

and explores the gains from devising risk management strategies. Despite the substantial 

progress made in developing hedging models, forecast combinations have not been tested. 

We fill this gap by proposing a framework for combining hedge-ratio predictions. Composite 

hedge-ratios lead to significant reduction in portfolio risk, whether spot prices are partially 

predictable or not. We offer insights on hedging effectiveness across seasons, backwardation-

contango conditions and the asymmetric profiles of long-short hedgers. We conclude that 

forecast combinations better reconcile realized performance with the hedging process, 

mitigating model instability. 
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1. Introduction 

Adverse price trends and sharp fluctuations not only affect profit margins, but also impact a 

company’s probability of default or even alter the incentives of investing (e.g., infrastructure 

and transportation) – reducing investment in favor of lower risk projects. Such business 

challenges that are directly linked to, inter alia, production/ purchasing costs, earnings and 

credit availability, create the need for coherent risk management practices. For oil and gas 

projects, where cash flows are almost entirely generated by oil and gas sales, price volatility 

increases the incentive to mitigate such effects. Effective natural gas hedging strategies are 

relevant in reducing price volatility for investors, traders, producers and commercial users in 

the sector. Moreover, hedging policies constitute a key theme for policy-makers and 

regulators to consider alternative reforms and mitigate deficiencies (e.g., transaction costs, 

poor liquidity and transparency) in the current market design. To add, with the Paris 

Agreement in 2015 and its predecessor the Kyoto Protocol in 1997, there is increasing 

interest in energy investments with low emissions, such as natural gas. Therefore, given the 

broad economic and financial impact of natural gas volatility, it is vital to study natural gas 

risk management strategies. 

One crucial parameter of futures-based hedging is the hedge ratio, i.e., the number of 

futures contracts to buy or sell for each unit of the underlying asset on which the hedger bears 

risk. Earlier studies (e.g., Ederington, 1979) derive hedge ratios that minimize the variance of 

the spot/future portfolio based on the principles of portfolio theory. The Optimum Hedge 

Ratio (OHR) is typically found by regressing the returns to holding the physical asset on the 

returns to holding the hedging instrument. However, the regression approach has several 

shortcomings. For example, it omits cointegration between futures and spot prices which 

might lead to biased OHR forecasts, particularly in the long run (Lien, 1996). Moreover, 

Bollerslev (1990) and Kroner and Sultan (1993), among others argue that this approach 
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implicitly assumes constant risk throughout time as new market information arrives.  

Therefore, a number of hedging models have been developed. Kroner and Sultan 

(1993) and Engle and Kroner (1995) apply multivariate Generalised Autoregressive 

Conditional Heteroscedasticity (GARCH) models and derive time-varying hedge ratios from 

the conditional second moments. GARCH models are popular due to their ability to capture 

some of the salient features of financial time-series, such as volatility clustering, non-linear 

dependence and thick tails (see Pouliasis et al., 2018). A popular alternative is the Markov 

Regime Switching (MRS) modeling framework, introduced by Hamilton (1989); see also 

Alizadeh et al. (2008) for an extension to regime switching in a cointegrated GARCH process 

for hedging energy commodities. Switching models overcome the limitation of constant 

parameters, offering better model fit and, thus, are able to improve on the hedging ability.  

The consensus from the literature is that while dynamic OHRs tend to outperform 

static hedges, the alleged gains are market specific, though occasionally, the benefits are 

minimal (Lien and Tse, 2002). Ghoddusi and Emamzadehfard (2017) examine the hedging 

effectiveness of the Henry Hub natural gas future contract for different physical positions and 

find that cointegration and time-varying volatilities only marginally effect hedging ability. 

Overall, studies on the hedging efficiency of natural gas futures are scant, while results 

indicate that gas futures are the least effective contacts compared to other commodities, thus 

offering a rich experimental context for our tests (see Cotter and Hanly, 2012; Hanly, 2017).
1
  

In this paper, we argue that a more effective hedge may be available in the form of a 

“composite hedge”, by exploiting the information content of various models. Model 

combinations have been used extensively. Yet, most of the works focus on price (Baumeister 

and Kilian, 2015) or volatility forecasting (Patton and Sheppard, 2009). We fill this gap by 

                                                 
1
 Natural gas markets exhibit properties that distinguish them from other markets. Such are, for example, the 

region-specific nature of natural gas with restricted access to export markets, as well as the difficulty in storing 

and transporting gas which creates high basis risks (see Hanly, 2017). Moreover, natural gas price trajectories 

and the performance of hedges differ not only from other traditional assets, such as stocks and bonds, but also 

from most commodities, a result of the inherent relatively high volatility. 
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considering a variety of models which feature prominently in the hedging literature, and their 

combination in the decision-making process to minimize operating cash flow variability. To 

this end, this paper investigates the hedging effectiveness of New York Mercantile Exchange 

(NYMEX) Henry Hub and Intercontinental Exchange (ICE) National Balancing Point (NBP 

– virtual trading hub) contracts; the most liquid and mature futures markets in the sector.  

Our contributions extend in several directions. We first build on a diverse set of 

models, each targeting a specific feature of natural gas price movements (seasonality, 

cointegration, time-varying volatility/correlation and regime shifts). From the estimated pool 

of models – given their theoretical pros and cons and mixed results of their empirical 

performance (e.g. see Lien and Tse, 2002) – this paper considers a model combination 

approach in hedging decisions. This way, decision-makers do not rely on some particular 

econometric specification when estimating the OHR which might not fully reflect the risk 

inherent in price movements.
2
 As a number of studies on the predictive power of individual 

hedging models report mixed results,
3
 implementing the proposed framework acts also as an 

insurance tool mitigating the undesirable effects of structural breaks and model 

misspecification, thus, leading to improved forecasting (see, inter alios, Pesaran and 

Timmermann, 2007; Patton and Sheppard, 2009; Baumeister and Kilian, 2015). Therefore, 

we provide a flexible framework in the hedging process under model uncertainty. Based on 

the work of Caldeira et al. (2017), we put forward an approach to combine OHR forecasts 

from candidate models. The combination weights are directly linked to the decision-making 

problem of an investor who wishes to minimize portfolio risk; each model is given 

                                                 
2
 For individual models it is reasonable to discard some modelling features of market dynamics to warrant a 

parsimonious structure. However, depending on the source of market shocks, ignoring relevant information in 

the formulation process might be costly.  
3
 Gagnon and Lypny (1995) provide evidence in support of GARCH models. In contrast, Lien and Tse (2002) 

support the traditional regression approach. GARCH models exhibit few limitations. For example, the observed 

non-normalities in return distributions are more pronounced than those implied by GARCH; the model fails to 

reproduce time variability in higher moments unless explicitly modelled, and a strong degree of persistence is 

imputed to volatility which may be due to structural breaks (Lamoureux and Lastrapes, 1990).  
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importance proportional to its actual performance.  

In addition, we evaluate the hedging ability of different OHR prediction models in 

terms of variance reduction. The analysis is executed both in- and out-of-sample and the 

results are validated on a statistical basis using Hansen’s (2005) reality check and Politis and 

Romano (1994) bootstrap simulation methods. This way we provide robust evidence on the 

potential gains of the proposed forecast combination hedging strategies taking into account 

transaction costs and utility performance fees. We also address the issue of downside risk by 

examining whether the effects of mean-variance OHRs differ for different hedging horizons 

(weekly and monthly), between long and short hedges, during seasons (winter and summer) 

and across market conditions (backwardation and contango).  

Finally, we also assess hedging performance under the supposition of partially 

predictable spot prices. Ederington and Salas (2008) postulate that, when spot prices are 

partially predictable, traditional regression estimates the OHR inefficiently, leading to 

upward-biased riskiness levels for both hedged and unhedged positions and downward-biased 

risk reduction levels. Martínez and Torró (2015) consider seasonality when OHRs are 

computed in European gas markets. Their results indicate that hedging effectiveness is much 

higher when the seasonal pattern in spot price changes is approximated with the basis 

(futures-spot spread). Fama and French (1987) and Viswanath (1993) also find that the basis 

is a useful predictor of future changes in spot commodity prices.  

The structure of this paper is as follows. Section 2 presents the OHR methodology 

and demonstrates the forecast combination procedure. In Section 3, the data and their 

properties are described. Section 4 discusses the empirical results and evaluates the hedging 

effectiveness of the proposed strategies. The reality check for superior hedging ability is also 

discussed, while this section presents information on weight and hedge ratio stability, 

transaction costs, performance fees, downside risk and segmentation to market conditions. 
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Last section concludes. 

 

2. Methodology 

Denote     and     the returns on the cash and futures respectively, and   the hedge 

ratio. A hedger who desires to hedge a future sale (or purchase) price in the future will sell 

(buy)   units to eliminate or alleviate the risk associated with being long (short) one unit of 

the spot position. Based on Ederington (1979), among others, the minimum variance OHR is: 

 

  
               

        
            (1) 

 

which, is equivalent to the slope coefficient,  , of the regression:  

 

                         
             (2) 

 

It follows that the payoff of the hedged portfolio is given by             . The 

variance of the unhedged position in this case is          and the hedged position 

riskiness              . The traditional Hedging Effectiveness (HE) measure is the 

percentage reduction in risk achievable through hedging:  

 

       
        

             
           (3) 

 

In many markets, changes in the spot price are partially predictable. In this respect, 

traditional estimates of   are inefficient (yet unbiased), riskiness of hedged and unhedged 

positions are overestimated and HE is underestimated (see Ederington and Salas, 2008). To 

this end, the hedger’s payoff function can be modified to                          
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where                , is the expected change in the spot price based on information 

variable(s)/predictors     . Following Ederington and Salas (2008) and Martínez and Torró 

(2015) we set    equal to the basis, i.e.,      , as this spread indicates expected future price 

changes for the spot commodity, if markets are efficient. Setting     leads to the hedger’s 

traditional payoff function and the OHR of Eq. (1); this is equivalent to the assumption of no 

predictability which implies that spot prices evolve according to the random walk, i.e., 

           .  However, if              the OHR and HE may be expressed as: 

 

  
                    

        
          (4) 

       
              

                   
        (5) 

 

Finally, let       be either                 or                           and     
  

the         . Eqs. (1) and (5) can be extended to accommodate the conditional OHR which 

is regarded to be more efficient in reducing the risk of a hedged position; because it is 

updated as it responds to the arrival of new information in the market (see for example, 

Kroner and Sultan, 1993). The conditional OHR is then: 

 

   
     

    
             (6) 

 

The search for alternative futures-based risk management strategies has so far focused 

on finding the “right” modelling framework. However, specifying the hedge ratio to be 

dependent upon some model that targets a large set of the stylized features of price 

movements (regime shifts, cointegration, volatility clustering, seasonality, etc.), might not be 

parsimonious and thus lead to instability and misspecification. To reduce such impact at the 
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forecasting stage, we argue that using model combination methods, one may obtain more 

efficient hedge ratios.  

 

2.1. Hedge Ratio Forecast Combination Framework 

Suppose that we have N candidate hedge ratio predictions, with the first T 

observations used as training data. Therefore, the hedger has a toolbox of N different models 

with which to predict the hedge ratio dynamics. Let      be the forecast of the OHR from 

candidate model i. Accordingly, let      be the combination weight of candidate forecast i for 

   that satisfies      
 
     . Then for any t, the hedge ratio forecast after weighting is:  

 

               
 
                         (7) 

 

We specify the combination weights,     , so that they take into account the economic 

decision in which the hedge ratio forecast will be used. That is, the ex-ante      is determined 

based on the past performance of each model in the minimum variance portfolio 

optimization, i.e., the lower the hedged portfolio historical variance implied by a model at 

date t, the higher the weight that this model receives in the combination forecast. In addition, 

we follow Genre et al. (2013) and Caldeira et al. (2017) and consider a more general scheme 

for combining OHR forecasts, introducing a discount parameter    . In this setting, 

portfolio average returns,      and portfolio variance     
  are computed as:  

 

    
       

 

 
 
  

   

                  
 
 

          
 

 
 
 

 
                                          (8) 
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The above formulation explicitly accounts for the stylized facts in financial time 

series, such as time-varying conditional heteroscedasticity and structural breaks (see Diebold 

and Pauly, 1987). Examples of the discount factor       
 effect are plotted in Figure 1, as   

ranges from 0 to 20. The case where     corresponds to no discounting and is equivalent to 

the common expression of the sample mean and sample variance, i.e., all observations have 

an equal influence. If     the importance assigned to older data declines linearly. Values of 

  which are below (above) unity produce structures that decrease the importance of older 

observations at a decreasing (increasing) rate.  

Moreover, to obtain the weights,       we introduce tuning parameter     which 

controls how aggressively we adjust the mixing weights in response to changes in the realized 

hedged portfolio risk;   could improve HE via reducing the importance of poor forecast 

models. Large values of   shrink the weights toward the best performing models. As     

the weight on the model that yields the lowest hedged portfolio risk approaches 1. In 

particular:  

 

     
    
  

  
   
   

   

                               (9) 

 

The advantage of inverse weights is that they reflect the recent hedging model 

capacity. In our empirical analysis we also consider as a benchmark the simpler strategy of 

assigning equal weights (1/N) to each of the N hedge ratio forecasts. This approach still 

provides insurance against model misspecification and instability but does not allow for 

structural changes as the weights are constant (Kilian and Baumeister, 2015); still, this issue 

is mitigated as our estimates of     
  are based on rolling estimates of fixed window length T. 
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To implement the forecast combination procedure outlined above we consider ten 

candidate models that can be classified in three categories: regression, regime switching and 

GARCH based hedges. Our pool of models, includes:  

 

(I-II): Naïve 1:1 benchmark hedge (γ = 1) and standard OLS (γ of Eq. 2)  

 

(III-IV): OLS w seas and OLS w basis models which condition the hedge ratio to seasonal 

fluctuations and the lagged basis, respectively:  

 

                
   

    
          

   

    
                    

              

(10) 

                                       
                            (11) 

 

(V-VI): The Vector Error Correction Model (VECM) (see Johansen, 1988). Mathematically: 

 

           
 
                

    
    

                            (12) 

 

where,           
  the vector of spot and futures prices at time t;   and   2x2 coefficient 

matrices measuring the short- and long-run adjustment of the system to changes in    

respectively;               
 
 Gaussian white noise processes with covariance matrix  . The 

OHR is obtained directly from the second moments (see Eq. 1). Restrictions of the VECM to 

Vector Auto-Regressive process (VAR, no error-correction term) is also considered. 

 

(VII-VIII): The Markov Regime Switching (MRS) model (   ; state dependent). This class of 

models treats regimes as latent variables and are estimated together with model parameters by 
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maximum likelihood. Let the unobserved state variable          follow a two-state first 

order Markov process. Transition probabilities are assumed either constant               

      , (MRS) or a logistic function of the basis (MRS w basis), i.e.,          

                         
  

. Allowing Eq. (2) to switch stochastically yields: 

 

                               
                 (13) 

 

The regime switching model generates two state-dependent hedge ratios (   and   ). The 

OHR, at any point, in time is                           is the conditional probability 

that the process will be in a given state at any point in time.   

 

(IX)-(X): The Constant (CC; Bollerslev, 1990) and Dynamic Conditional Correlation (DC; 

Engle, 2002) models. The conditional variances of spot and futures returns       follow a 

GARCH (1,1) as     
                       

          
 ; with                  the 

conditional means. Based on the partition of the of spot and futures variance-covariance 

matrix    (see Bollerslev, 1990),          , with               the     diagonal 

matrix of volatilities and            a positive definite correlation matrix with        , for i 

= 1 (spot; S), 2 (futures; F) for every t. The DC-GARCH model correlation structure can be 

expressed as: 

 

             
                

      

                                                      (14) 

 

where,    a     symmetric positive-definite covariance matrix;      
             the 

standardized residuals. Then, correlation is simply expressed as                        with 
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                                              For   =     the model is 

equivalent to the CC-GARCH model. Parameters are estimated via maximum likelihood.  

 

3. Data Description and Preliminary Analysis  

Our empirical work employs data from the two most liquid and mature natural gas 

markets, Henry Hub in the U.S. and NBP in the U.K. In North America, gas markets started 

to liberalize in the 1970s; almost 50 years later, Henry Hub serves as a very successful 

benchmark hub. The U.S. natural gas (NG) contract was introduced in 1990. It is the third-

largest physical commodity futures contract in the world by volume. For the European 

continent, we limit our analysis to the NBP. The British hub was at the forefront of European 

gas market development, with a liberalized and mature traded market (Heather, 2012); it also 

provides a relatively data rich environment.
4
 The U.K. natural gas futures (NBP) contract, 

launched in 1997. Futures negotiated at the ICE represent more than one-third of gas 

negotiated at NBP. Our dataset consists of daily futures and physical prices from December 

30, 1998 to May 16, 2018, which are then converted to 1,012 weekly (mid-week, i.e., 

Wednesday prices) and 234 monthly (mid-month) observations. The futures prices are for the 

contract which is closer to maturity where volume and liquidity is higher. All series are 

obtained from Datastream. 

Panel A of Table 1 reports summary statistics for the (log) spot and futures returns. 

The unconditional weekly and monthly return of distributions are non-normal, as evidenced 

by the positive skewness and high excess kurtosis. The Ljung and Box (1978) Q statistic on 

the first six-lags of the sample returns’ autocorrelation function is overall significant. Same 

holds for the Q statistic on squared returns for all weekly series’, but on monthly data the 

evidence is weak (ARCH test). Tests for unit root (Phillips and Perron, 1988) reveal that the 

                                                 
4
 Traded volumes of gas on the main European hubs – such as TTF (established in 2003) and Zeebrugge (ZEE 

in 1998), have increased substantially just after 2005 and were developed broadly from 2009 (Heather, 2012).  
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spot and futures prices are integrated of order 1, I(1). Next, in Panel B cointegration is 

examined through the max and trace statistics which test for the rank of  (Eq. 12) to 

determine the number of cointegrating relationships (Johansen, 1988). Both the maximum 

eigenvalue and the trace test statistics confirm one cointegrating relationship between the spot 

and futures prices. Finally, likelihood ratio tests on the hypothesis that there is a one-to-one 

relationship between spot and futures prices, i.e., restrictions (β1 = −1) and (β0 = 0 and β1 = 

−1) invariably give that cointegrating vectors can be reduced to (1, -1, β0), i.e., the basis. 

Panels A and B of Table 2 summarize the dynamic hedge ratio model estimates, for 

both weekly and monthly frequencies: OLS w seas, OLS w basis, MRS, MRS w basis, CC- 

and DC-GARCH. First, the coefficients of OLS w seas indicate strong seasonal patterns in 

the estimated hedge ratios. Second, basis variations (OLS w basis) are significant only in the 

NG market. Third, for MRS models, hedge ratios in state 2 are relatively closer to one, apart 

from the monthly variations of NBP where they appear less distinct. Transition probabilities 

are relatively low indicating that regimes are persistent; time-variation in transition 

probabilities (MRS w basis) is significant only in the low volatility state (with the exception 

of NPB monthly variations). Finally, all ARCH and GARCH parameters are significant with 

      very close to unity. For the correlation processes (DC-GARCH),    , are also 

significant and correlations are also persistent with         . Average weekly-monthly 

correlations (CC-GARCH) are 62-86% and 68-88% for NG and NBP, respectively. 

 

4. Empirical results    

This section discusses the empirical results for both in-sample (IS) and out-of-sample 

(OS) analysis. Note that, the postulated method for combining the hedge ratios of models 

(Section 2.1) is restricted to the OS exercise as the implementation procedure implies that the 

computation of the weighting structure is based on the past IS performance of each model.  
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4.1. In-Sample (IS) Hedging Performance    

The setup of our IS analysis is as follows. We use data covering the period December 

30 1998 to May 16, 2018; this results in 1,011 weekly (233 monthly) return observations. We 

then construct the minimum-variance portfolios of spot and futures and, given the optimized 

hedge ratios, we calculate returns on the portfolio for a holding period of one week (month). 

Table 3 presents the NG (Panel A) and NBP (Panel B) IS variance reduction against the 

unhedged position for weekly and monthly horizons using either the traditional measure of 

hedging effectiveness HE1 (Eq. 3) or the Edernigton and Salas (2008) HE2 (Eq. 5). Ten 

single-model hedging strategies are considered: naïve, OLS, OLS w seas, OLS w basis, VAR, 

VECM, MRS, MRS w basis, CC- and DC-GARCH.   

For NG, the weekly-horizon HE1 of the individual models ranges between 34.55 - 

40.20% while for HE2 the figures improve to 45.26 - 50.97%. Monthly hedging horizon 

yields improved HE consistent with the existing literature (e.g. see Hanly, 2017); this can 

relate to the finding that low frequencies are associated with higher correlations and smaller 

deviations from the normal distribution. In particular, for monthly variations, HE1 lies within 

73.28 - 76.14% while HE2 figures slightly improve to 76.49 - 78.91%. Therefore, the 

traditional HE underestimates the risk reduction potential of hedging; in line with Martínez 

and Torró (2015) or Edenrigton and Salas (2008). Similar results can be obtained for NBP. 

The weekly-horizon single-model HE1 is within 41.99 - 47.21% while for HE2 this is 47.94 - 

51.67%. Moreover, switching to monthly horizon yields better HE, i.e., 72.41 - 78.9%. 

Across our experiments, no model consistently ranks as best or worst, which confirms 

the conjecture that a single model does not work equally well at all times, frequencies and 

performance measures. Examples are: (i) OLS w seas ranks first in the NBP but not the NG 

market, (ii) despite DC-GARCH generates the second highest HE1 for NG weekly horizon, 
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the model is not even in the best five strategies for NBP, (iii) DC-GARCH outperforms naive 

hedges in terms of NBP HE1 but not HE2, and (iv) VAR outperforms weekly naïve hedges but 

not monthly. The above results are not surprising since various studies report mixed 

consensus about the superiority of different models. This can be attributed to estimation and 

misspecification errors, among others, as more complex strategies do not necessarily perform 

better than simpler ones, as any overfitting may be penalized. Moreover, a particular 

formulation, may not be sufficient to provide consistent gains across different time periods 

and market conditions (see, e.g., Baumeister and Kilian, 2015). As such, it is not uncommon 

for a more sophisticated approach to prove inferior in terms of, e.g., HE.
5
  

We next examine risk reduction when combining hedged portfolios. The equal weight 

scheme (1/N) produces very similar results to the best performing single-model, having a HE 

of just 40 basis points (bps) lower, on average. Yet, there might be opportunities to better 

exploit the information content of the estimated hedge ratios using combinations that 

optimize the weight structure. For this reason, we calculate the global minimum-variance 

portfolio with nonnegative weights (       ), which can reveal the potential that model 

OHR combination schemes with     might achieve. Collectively, this leads to an average 

improvement in excess of 180 basis points (bps); 3-660 bps higher compared to the highest 

achieved HE. When allowing for negative combination weights (GMVuncon), the gains over 

the        , deviate from less than 1 to almost 100 bps. For comparison, we also report 

the performance of a model that combines VECM with MRS dynamics in a DC-GARCH 

specification (henceforth, MRS-GARCH
6
). Though MRS-GARCH outperforms the single 

                                                 
5
 For instance, occasionally MRS are found sensitive in forecasting frameworks, attributed to parameter 

instability between IS-OS periods as well as uncertainty regarding the unobserved regime (Engle, 1994). 
6
 Estimation results for the MRS-GARCH are available from the authors upon request. For technical details, we 

refer to Lee and Yoder (2007) and Alizadeh et al. (2008). Note also that, the latter model is not included the 

calculation of neither 1/N nor GMV or the forecast combination methods in the OS experiments because first, it 

encompasses market features already accounted for, and second, computational simplicity is lost, reducing thus 

the practicality of our approach. This model involves estimation of the VECM, plus 16 parameters for the 
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regime GARCH models, it fails to improve on the simple MRS specification in the majority 

of cases. Moreover, 1/N and GMV hedging strategies do a better job than MRS-GARCH. 

For illustration purposes, Figure 2 plots the OHRs from the OLS w seas, OLS w 

basis, MRS w basis, DC-GARCH models (left panel); together with the OHR obtained from 

the OLS of Eq. (2) and the conditional composite OHRs derived using equal weights (1/N) 

and GMV(   ) (right panel). 1/N OHRs are smoother than the time-varying hedges - 

indicative of relative stability – while GMV(   ) OHRs are more volatile. Evidently, models 

that do well IS are allocated more weight. For instance, the strong seasonal pattern of NBP 

gas OHR is clearly depicted in both weekly and monthly hedges; note that OLS w seas 

produces the best IS HE among the individual models for NBP (see Table 3). Therefore, we 

can see the potential of forecast combination methods to produce hedge ratios that follow 

diverse dynamics; which are nevertheless obtained from the individual models. As hedge 

ratio time-variation depends on model performance, in a rolling estimation scheme there 

might be periods of seasonal hedge ratios and periods that dynamics may be driven mostly by 

GARCH or MRS, etc. 

So far, findings suggest that hedge ratio combinations lead to reliable and consistent 

hedging decisions. Besides, different HE measures, frequencies and markets, rank a given set 

of models differently as a hedging model is only able to capture distinct aspects of the 

market. The above strengthens our argument for utilizing forecast combination methods.  

 

4.2. Out-Sample (OS) Hedging Performance    

IS testing does not reflect real time forecasting power. Since market participants are 

more concerned with how well strategies perform ex-ante (OS) testing is a more realistic 

evaluation of actual HE. The setup of our OS experiments is as follows. Initially, data 

                                                                                                                                                        
variance-correlation dynamics, plus 2 parameters for the transition probabilities; in addition to implementing a 

collapsing procedure to solve the path-dependency problem (Lee and Yoder, 2007)   
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covering the period from December 1998 to May 2013 are used to estimate the parameters of 

the hedging models; 751 weekly (173 monthly) return observations. We then forecast the 

OHR one-step ahead. Given the 1‐week (month) forecasts we compute realized returns on the 

portfolio for a holding period of one week (month). Using a rolling window forecasting 

scheme, this exercise produces 260 weekly (60 monthly) test observations that cover a period 

of 5 years, from May 29 2013 (June 15, 2013) to May 16, 2018 (May 15, 2018).  

Tables 4 and 5 summarize the OS HE of the forecast models and forecast 

combinations (FC) across different frequencies (weekly and monthly in Tables 4 and 5, 

respectively). Similar to IS results, judged on consistency across Tables 4 and 5, single-model 

forecasts produce fairly unstable results and ranking is indistinguishable among the models. 

In contrast, the performance of the ad hoc 1/N OHR is genuinely stable, generating a HE 

close to the highest performer (lower by 40 bps, on average), while in 2 cases it performs 

even better.  

Although the 1/N strategy has been sometimes shown to provide consistently more 

accurate forecasts compared to more sophisticated techniques (Baumeister and Kilian, 2015), 

equal weights throughout time are unlikely to offer the best available option. Tables 4 and 5 

show that all combination schemes are able to produce higher HE relative to 1/N. Several 

events and market dynamics could give rise to time variations in the combination weights; 

such as economic fundamentals (demand or supply shocks, shifts from contango to 

backwardation periods and vice versa), seasonality effects and differences in the speed of 

some models to respond to changing market conditions. The forecast combination potential 

gain is depicted in the last row of each table. In the NG (NBP) market OHR forecast 

combination can offer benefits in excess of 92 (2) bps; 251 (36) bps on average. Noticeably, 

in more than 80% of the 248 (= 31 comb. x 2 HE x 2 markets x 2 horizons) cases, 

combinations deliver higher HE than the single-models’ maximum HE. In the remaining 
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cases, forecast combinations typically deliver the second or third highest HE; with a 

downside potential no lower than the top-four (only two entries in Table 5; NBP monthly 

HE2). So even if some forecast combinations do not generate the best hedge ratio forecasts, 

they tend to not deliver poor performance and thus, represent a risk averse choice in terms of 

model uncertainty. As for the MRS-GARCH, we can see that, although in some cases it 

outperforms the pool of candidate models, there is no improvement over the combination 

approaches.  

To discount the possibility that HE of some model may be due to data snooping bias 

we employ Hansen’s (2005) reality check. Different strategies may produce satisfactory 

results purely due to chance or due to the use of posterior information rather than the superior 

ability of the competing strategies (Sullivan et al., 1999). We construct a loss function (Pf) 

given as: 

 

                 
 
                      

 
               (15) 

 

If the i
th

 forecast combination outperforms the benchmark(s) single-model(s), the 

expected value of the performance measure will be negative, i.e.,             . The loss 

function of Eq. (15) is constructed using the simulated portfolio returns generated by the 

stationary bootstrap of Politis and Romano (1994).
7
 Tables 4 and 5 report two summary 

information measures for pairwise comparisons: (i) the average p-value (given ξ and η) with 

each of the ten benchmark models, and (ii) whether this combination method is able to 

significantly outperform at least seven out of the ten benchmarks.  

In aggregate, the majority of combinations generate significant improvement in the 

                                                 
7
 Politis and Romano (1994) re-samples blocks of varying length from the original data, where the block length 

follows a geometric distribution; for more technical details, we refer to Politis and Romano (1994) and Sullivan 

et al. (1999, Appendix C). Our tests use 10,000 bootstrap simulations.  
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HE at conventional significance levels; HE significance is achieved in more than 75% of all 

cases considered; either in terms of average p-value (83% for U.S. and 67% for U.K.), or by 

outperforming at least 7 out of the 10 benchmarks (79% for U.S. and 71% for U.K.). Also, 

1/N strategy achieves significant improvement in the weekly U.S. and (HE1) and U.K. (HE2) 

cases, at the 10% significance level, as well as for U.S. monthly (HE1), at 5% level. 

Therefore, combination methods result in superior forecasts, i.e., model instabilities of 

unknown form can be mitigated by diversification gains across forecast methods, which act 

as insurance against instability, misspecification or structural changes (Pesaran and 

Timmermann, 2007).  

Finally, Figure 3 portrays the excess HE (vs. the average single-model performance) 

achieved by combination methods (in terms of bps) when perturbing the discount factor (ξ) 

and the tuning parameter (η) beyond the assumed cases in Tables 4 and 5, i.e., within the 

interval of (0,250) and (0,50), respectively. Both parameters have a diverse impact, 

depending on the market and horizon considered. In general, decisions based on the forecast 

combinations provide reasonable benefits; when considering a single hedge ratio model, the 

decision maker forgoes HE benefits in excess of 100-500 bps. Most importantly, we see that, 

for the most part, benefits are consistent, irrespective of the choice on ξ or η. Therefore, 

market participants should not rely on some particular econometric specification when 

estimating the OHR which might not fully reflect the risk inherent in price movements. 

 

4.2.1.Stability in Combination Weights and Hedge Ratios  

Several authors have documented that a simple equally weighted pooling of forecasts is 

often found to outperform more sophisticated approaches due to the associated estimation 

error of both weights and model parameters (see, for example, De Menezes et al., 2000; 

Genre et al., 2013). Thus, imposing equal weights increases robustness with respect to model 
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uncertainty, parameter instability, and estimation errors (see also Palm and Zellner, 1992; 

Diebold, 1989; Caldeira et al., 2017, among others). Despite this does not hold in our case 

based on our results (see Tables 4 and 5), further investigation into the evolution and stability 

of the combination weights is necessary to better evince the obtained results. 

To provide some estimates, the standard deviation of weekly combination weights, with 

ξ = {0,0.5,1,3,10,20} and η = {0,1,2,3,6,10} ranges between 0.02% - 13.6% (0.06% - 8%) for 

the U.S. (U.K.) weekly horizon. For monthly figures the corresponding interval lies in the 

region 0.03% - 24.5% (0.04% - 25.2%). Weekly (monthly) weight standard deviation of 

“Best FC” strategies is in the range of 2% - 22.7% and 0.3% - 3.7% (0.01% - 4.4% and 

0.02% - 0.25%) for the U.S. and U.K. markets, respectively.  

Figure 4 presents some additional information on the forecast combination weights. For 

brevity, we present the time-variation in the “Best FC” weights only (see also Tables 4 and 

5). The subplots show that weights exhibit variations of mostly transient nature, reverting 

back to a long-run mean; this is also confirmed via unit root testing. In particular, across both 

natural gas markets, irrespective of ξ and η, out of the 2,480 estimated time series for weights 

(31 comb. of ξ and η x 2 HE x 2 markets x 2 horizons x 10 models) 88.5% (97% for weekly 

and 80% for monthly data) of the time series are integrated of order 0 at 5% significance 

level, and 91% (98% for weekly and 84% for monthly data) at the 10% level.  

To further understand the structure of combination weights, we appeal to panel 

regression techniques. We first fix a hedging model N and let        denote the weight 

change on day t of N
th

 hedging model (e.g. Naïve, …, DC-GARCH) using forecast 

combination parameters i = (ξ, η) reported in Tables 4 and 5 incl. Best FC (excl. 1/N, as for 

the latter weights are constant) for any t and as extracted for both HE measures, HE1 and 

HE2. That is, i = 1, 2, …, 62 stacked time series of weights. We include as exogenous 

variables changes in the S&P 500 implied volatility index (VIX) and crude oil implied 
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volatility index (OVX); variables which are common across U.S. and U.K. and are assumed 

to affect the two markets homogeneously. We also employ the news-based economic policy 

uncertainty (EPU) indices for U.S. and U.K. (see Baker et al., 2016) and the magnitude of the 

futures-spot spreads (|Basis|) which vary across U.S. and U.K. reflecting country-specific 

(EPU) and gas contract-specific (|Basis|) effects. All time series are collected from 

Datastream. Finally, we also include a dummy variable which identifies elevated general 

uncertainty, i.e., when all variables VIX, OVX, EPU, |Basis| are in the upper tertile of their 

empirical distributions. Mathematically, the econometric equation is a fixed-effects balanced 

panel equation, for each hedging model N: 

  

                         

 

   

                  

 

   

                  

 

   

                  

 

   

   

                    

 

   

                   

 

   

                                                                                    

 

Results obtained under the least squares dummy variable (LSDV) estimator for fixed-

effects models. The fixed effect for N
th

 model and combination parameters i is represented by 

    . The multiplier form of the model can be written more compactly by inverting the above 

equation as                                       ; L denotes the lag operator. The 

mean responses from the variables are therefore captured by the lag polynomial      

          . We measure the responses up to three periods and their sum (cumulative).  

Results of the above augmented autoregressive model (ARX), are presented in Figure 5. 

The dynamic effects on combination weight changes, estimated separately for each model N. 

Note that the figure displays only responses/cum. responses that are significant at least at 5% 

level. Independent variables are all standardised for ease of interpretation. Overall, models 

with positive responses (either point responses or cumulative) are those that perform better 

(positive impact on combination weight; which in turn is computed based on IS HE) when 
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the independent variables increase. For example, an increase in the magnitude of the absolute 

basis is associated with overall negative impact on the weight assigned to all models apart 

from GARCH (3
rd

 row of the Figure), indicating that GARCH can potentially perform better 

when futures and spot prices deviate from each other; since weights are directly estimated 

from the variances of hedged portfolios and are, thus, directly linked to HE. In particular, an 

increase in the magnitude of the NG basis by one SD for weekly (monthly) variations is 

associated with a cumulative response on the weight assigned to DC-GARCH by 80 basis 

points or 0.8% (1.5%) while the maximum noted response is close to 1.5% per week (1.2% 

per month). For NBP weekly, the cumulative response is statistically zero; that is, basis 

shocks are expected to die out fast, yet, there is a statistically significant response of 0.04% 

per week. Concerning the monthly figures, an increase in the magnitude of the NBP basis by 

one SD is associated with a cumulative response on the weight assigned to DC-GARCH by 

0.4% while the maximum noted response is slightly higher than 0.5% per month.  

It must be noted that, as the resulting model combination weights lead to an actual hedge 

ratio, even if aggressive rebalancing of the hedged positions tends to improve, HE it may 

yield portfolios that require expensive trading due to transaction costs (TC). To study the cost 

of rebalancing strategies implied by the different prediction models, under the assumption of 

the same linear relationship between TC and the size of the rebalancing required for hedging 

instruments, we use the absolute changes in the dynamic hedge ratios as a proxy for TC (see 

Chen and Sutcliffe, 2012) throughout the OS period. We calculate                    
 
   

 i,t| which reflects the impact of weight instability on the composite hedge ratio (portfolio 

turnover); the fraction (in percentage terms) of the futures position that need to be 

liquidated/reallocated (Greyserman et al., 2006).  

Results are presented in Table 6. In Panel A, it appears that the GARCH specifications 

require a higher proportion of the hedged portfolio to be restructured at each rebalancing 
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point which imposes higher TC; their mean PT values lie between 7% - 12% per week and 

8% - 22% per month depending on the hedging horizon. On the other hand, OLS, VAR and 

VECM are the least expensive strategies with mean values less than 0.5%, irrespective of the 

horizon. We find that the mean PT of 1/N strategy is always less than GARCH models, as are 

also both FCavg and Best FC. Given the nature of the problem (trading in futures only) 

transaction costs as a percentage of futures contracts that need to be liquidated/reallocated 

appear reasonable. 

To understand whether TCs are compensated for in forecast combination strategies we 

also compute, in Panel B of Table 6, the ratio of the incremental HE of HEBestFC [HEFCavg] 

relative to the increase in PT, if any; as a measure of benefit-cost trade-off for the hedged 

portfolios. Note that                          
. As such, incremental HE is always 

positive and negative figures simply imply that TC are actually reduced compared to the 

benchmark. With respect to the Naïve zero-PT strategy improvement is a 0.2% to 1.7% (0.2% 

to 2.5%) increase in                   for every 1% increase in PT. Concerning the volatile 

GARCH-based hedge ratios, combination strategies not only improve HE but reduce PT as 

well. Therefore, the proposed hedging approaches act not only as a hedge to unstable hedge 

ratios but offer reasonable benefits versus more stable strategies. It is worth noting that, in 

some cases, the resulting combination hedge ratio is even more stable than the one implied by 

the 1/N strategy. 

Furthermore, to quantify the value of model timing in a combination setting, we follow 

Fleming et al. (2001) and compare the forecast combination dynamic strategies to that of 

individual hedging-models. Denote       
  the gross hedged portfolio return constructed using 

the realized returns from a certain model and        a benchmark’s return. Our evaluation 

focuses on the fee,  , an investor with quadratic utility and degree of relative‐risk aversion 
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δ is willing to pay
8
 for switching from some modelling strategy to the forecast combination 

approaches. This is equivalent to finding the value of   that satisfies: 

 

         
     

 

      
       

    
 
  

             
 

      
        

 
  

        (17)  

 

 

Performance fees are reported in Table 6, Panel C in annual basis points (bps). We set δ 

= 6, which reflects an investor with moderate risk aversion. Forecast combination switching 

fees range, on average, between 486 to 4,828 bps per annum. Combination approaches 

achieve on average a minimum fee of more than 7.6% p.a. with the potential to be in excess 

of 30% p.a. That is, an investor should be willing to pay more than 7.6% overall to switch to 

this strategy. In the absence of TC this can be interpreted as a management fee. If TCs are 

present, it implies that, in comparing the FC strategies with model i, an investor who pays 

(additional) TC lower than the performance fee will prefer the FC strategy.  

Assuming proportional TC paid every time the futures position is rebalanced, if the 

(extra) total TC was less than 0.14% (=7.6/52) per week or 0.63% per month (=7.6/12), the 

investor would still be better off using composite hedge ratios. Note that only for the Naïve 

strategy, the hedge ratio is constant. In this case, if the total TC was less than 0.6% (0.1%) 

per week for the NG (NBP), the investor would be better off, with the potential for this figure 

to go as high as 1.14% = 5914/52 (0.27% = 1414/52). For monthly hedging horizon this 

figure changes to less than 0.38% (0.06%) per month for the NG (NBP), with the potential 

for this figure to go as high as 3.11% (0.25%). In commodity markets Locke and Venkatesh 

(1997) estimate that futures trading costs range between 0.0004% and 0.033% of notional 

value, while Fuertes et al., (2015) take a more conservative view, imposing TCs of 0.033% - 

                                                 
8
 Let W be the investor’s wealth,    the gross portfolio return and λ an absolute relative risk aversion coefficient. 

The investor’s realized utility in period     can be written as                         
         

 
. To 

estimate expected utility,        generated by a given level of the initial wealth   , we hold  

               equal to a fixed value  , so that                                     
  

    .   
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0.066% per trade.  

Therefore, in addition to the economic value associated with higher HE, combination 

strategies yield, on average, positive fees (gains in terms of utility improvement), concluding 

that composite hedge ratios work well vs. both individual models and the 1/N scheme. This 

implies that, even after accounting for TCs, and even though the percentage variance 

reduction might not be large, the composite hedge would evince utility gains. Similar 

conclusions are found when δ increases to 10 or decreases to 4 (results are available upon 

request). 

 

4.2.2. Performance Under Different Market Conditions  

The risk-return profile of energy prices changes fundamentally across periods. For 

example, it has been well recognized that in periods of low stocks, positive demand shocks 

cannot be absorbed by storage and spot prices are likely to exceed the futures prices 

(backwardation); conversely, abundant inventories provide a buffering effect against shifts in 

demand, and the basis is likely to be positive (contango). Another typical feature of natural 

gas prices is that spot price changes are partially predictable; due to demand cycles, weather 

and storage seasonal patterns. Martínez and Torró (2015) find significant differences during 

winter and summer seasons in the natural gas basis, spot and futures returns mean and 

volatility. In the winter, demand inelasticity and higher marginal cost of production make 

active storage management less flexible to absorb demand shocks. In this context, model 

performance may vary when market conditions change, either in terms of market volatility 

and disequilibria (Nomikos and Pouliasis, 2015), volatility forecast accuracy (Nomikos and 

Pouliasis, 2011) or HE (see Chang et al., 2010).  

Based on the above arguments, we divide the hedging horizon into 

backwardation/contango and winter/summer periods. Our definition of backwardation 
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(contango) market is short-term; when the nearest to expiry futures contract is less (greater) 

than the spot price. The sample identifies 149 (110) backwardation, and 111 (150) contango 

weekly periods in the NG (NBP) market. For the monthly frequency, this corresponds to 32 

and 28 (24 and 36), respectively. All HE results are presented in Table 7. For brevity, we 

report the minimum, maximum and average HE value of the 30 combinations for ξ = 

                  and               .  

For NBP, HE is higher in periods of backwardation and during winter (October – 

March), irrespective of the hedging horizon. On average, across models, backwardation HE is 

more than 880 bps in excess of contango HE, while winter HE is more than 370 bps in excess 

of summer (April – September) HE. Asymmetries are more pronounced for NG, yet, results 

are mixed. For monthly horizon, HE is higher in backwardation and during winter (as for 

NBP) by an average of 790 bps and 150 bps in excess. However, for weekly hedges, 

contango and summer HE figures exceed the corresponding backwardation and winter HE by 

4,000 bps. Overall, the risk-return profile of natural gas does not only vary across market 

states but is also market-specific.
9
 An important practical implication from Table 7 is that 

economic agents would benefit more by timing the market and dynamically altering their 

strategies. For instance, hedgers in the U.S. market with weekly horizon (HE1), may adjust 

the hedges according to the OHRs derived from the OLS w basis model in backwardation, 

MRS model in winter and DC-GARCH model in both, summer and contango.  

1/N hedges, perform better than the single-model hedges in more than 60% of the 

table entries. For NBP, 1/N is not significantly better than the benchmarks whereas for NG, 

the recorded p-values provide some evidence of significance. The 1/N strategy generates an 

average HE of 120 bps over the average HE of the individual models. The other forecast 

                                                 
9
 For example, a weekly naïve hedger of NG (NBP), could have achieved, an out-of-sample HE of to 21.79% 

(36.71%). However, depending on whether the market was in backwardation or contango, the HE figure for NG 

(NBP) varies from 16.14% (26.63%) to 53.01% (21.03%). Also, depending on whether the market was in the 

winter or summer, the HE figure varies from 17% (36.45%) to 63.74% (36.74%). 
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combinations achieve statistically higher HE (FCmaxHE) in almost all cases. For the considered 

ξ and η, strategies have the potential to increase HE by 100 bps compared to the best single-

models (FCmaxHE), i.e., more than 320 bps over the average HE of the individual models.  

We also report the average achieved HE of forecast combination methods (FCavg). In 

this respect, FCavg still produces a better HE than the single-model top performers, i.e., 20 bps 

more on average. This is 245 bps over the average HE of the individual models; with this 

improvement being statistically significant in most cases. Interestingly, even the worst of the 

combinations (FCminHE) yields a HE of approx. more than 130 bps over the average HE of the 

single-model strategies. Still, the improvement is significant in almost half of the cases 

shown whereas in few instances this is supported by the average p-value of the reality checks.  

Our findings corroborate that in the majority of cases, regardless of the market 

conditions and/or seasons, such strategies lead to significant improvements in HE. However, 

it is worth emphasizing that the core advantage of the proposed framework is not necessarily 

to guarantee HE gains over the best individual hedging model. Instead, the key practicality of 

such methods is that they provide insurance by circumventing breakdowns and model risk.
10

 

As with all insurance, there might be in some cases a rational cost, that is, the potential loss 

compared with the single-most effective model (see also Baumeister and Kilian, 2015).  

 

4.2.3.Additional Results: Short vs. Long Hedgers 

The analysis so far presents a complete picture of what forecast combinations can 

achieve in terms of OS HE and whether a hedging strategy is consistent across market 

conditions. Nonetheless, the HE measures employed do not distinguish between long and 

short positions (variance assigns the same weight to positive and negative outcomes). To 

                                                 
10

 For example, in the NG U.S. (Table 7), although the DC-GARCH model provides the best HE1, under the 

supposition that spot prices can be partially predicted, the same model provides the worst HE2. Likewise, for 

NBP U.K., although the 1:1 hedge ratio provides the best HE1 for weekly horizon under contango, the same 

model provides the worst performance for monthly horizon during summer. 
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overcome this impediment, tail risk metrics serve as desirable alternatives of how we think 

about risk (see Alizadeh et al., 2008; Hanly, 2017). In particular, downside risk considers the 

relevant distribution of returns below some specific target return, θ. To remove the effect of 

upside gains in the estimation of risk, we formulate HE based on Lower Partial Moments 

(LPMs).  Let      denote the distribution function of realized portfolio returns    . The k
th

 

order LPM is: 

 

                            
           

        
 

  
              (18) 

 

From a downside risk management perspective, hedging should aim at avoiding 

negative outcomes, i.e., to distinguish between positive and negative    , θ is set to zero. We 

consider        . k reflects the weight attached to the shortfalls, i.e., higher k reflects 

higher risk-aversion.
11

 Compared to variance, LPMs do not require restrictive assumptions 

about distributional properties or investor preferences, and reveals information on the 

asymmetry of the joint distribution of spot and futures returns (separating short to long 

hedgers).  

Results for NG (Panel A) and NBP (Panel B) are summarized in Table 8. A short 

(long) hedging position is equivalent to selling (purchasing) futures contracts against the 

purchase of natural gas. Evidently, there are marked asymmetries for short and long hedgers, 

in terms of adjusted HE (HE using LPMs, henceforth HE
*
). For NBP, it appears that HE

*
 is 

higher for consumers (buyers) of gas, irrespective of the hedging horizon and LPM order. 

Results are mixed for NG, with monthly (weekly) hedging horizon long (short) hedges 

producing higher HE
*
. Clearly, hedgers have to alter their strategy depending on their profile 

                                                 
11

 See also Lien and Tse (2002).   depends on the degree of investor’s risk aversion: risk seeking (     ), 

risk neutral (   ), risk averse (   ). For k = 2 and             , the LPM is the semi-variance. For normal or 

symmetric distributions, this would be exactly proportional to variance.  
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(buyers vs sellers) and based on their degree of risk aversion. For example, short hedger in 

the U.S. market with weekly horizon (HE
*
1), may use the MRS model which provides the 

highest HE
*
 (of the individual models; LPM2). Yet, for more risk averse hedgers (LPM3) this 

is by far not the best strategy, resulting in a HE
*
 measure of close to 19%, while GARCH 

hedges’ HE
*
 is more than 30%. Finally, results are market-specific, e.g., regardless of LPM 

order, the OLS w seas weekly horizon long hedge is the best (worst) alternative, in terms of 

HE
*
, in the NG (NBP) market.  

We can see that 1/N hedges perform better than the single-model strategies in almost 

all cases, yet, in only few cases 1/N results significantly better HE
*
. On average, a 1/N 

strategy will produce a HE
*
 of approx. 130 bps over the average HE

*
 of the individual 

models. Concerning the other forecast combinations, these achieve higher HE
*
 (FCmaxHE) 

which is also statistically significant in the majority of cases, that is, either against of at least 

7 benchmarks or in terms of average p-value. As shown by FCmaxHE, forecast combinations 

have the potential to produce a HE of approx. 64 bps more than the best single-model 

performer, while this is more than 340 bps over the average HE
*
 of the benchmarks. On 

average, combination strategies (FCavg) produce a HE
*
 of 260 bps over the average HE

*
 of 

the individual models. Still, improvements offered in excess of single hedge ratio models are 

found statistically significant in half of the cases considered. Lastly, note that, even the worst 

of the combination strategies (FCminHE) still leads to a HE of approx. 110 bps over the 

average HE of the individual models.  

 

5. Conclusion     

This paper postulates a novel futures-based risk management framework capable of 

accommodating alternative hedging strategies, while it can be rectified to fine-tune the 

importance assigned to the best forecast models. To this end, we develop a parsimonious 

hedging model based on combination of forecasts that admits cointegration, seasonality, 
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conditional second moments and regime-switching. We note that this is the first systematic 

empirical study on the economic value of forecast combinations from the perspective of 

hedging effectiveness. To assess the performance of the combined predictors and the related 

candidate models, we focus on weekly and monthly commodity risk exposures for the U.S. 

(NG) and U.K. (NBP) natural gas markets.  

Results show that different hedging effectiveness measures, frequencies and markets, 

lead to diverse model ranking as a hedging model is only able to capture certain market 

aspects. Not only the combination methods offer significant improvement over the single-

model specifications, but in many cases, even the worst of the combination strategies yield 

more effective hedges. We also investigate several other important issues. First, hedgers of 

different horizons have dissimilar risk profiles. Second related conjecture is that shocks in 

spot prices can be partially predicted using the information contained in the basis and 

omitting this information will lead to underestimated risk reduction. Third, there is 

asymmetric hedging performance during backwardation and contango periods, as well as 

winter and summer; suggesting that market agents should not only modify their hedge ratios 

as implied by the inherent model dynamics, but also switch across models. Finally, using 

lower partial moments, we note dissimilar hedging performance for short and long hedgers 

which is market-specific and depends on risk aversion. We provide strong evidence that our 

forecast combination approach leads to stable and more efficient hedge ratios. In- and out-of-

sample tests verify that finding, economically and statistically. The core advantage of the 

proposed framework is not necessarily to guarantee hedging gains over the best individual 

hedging model, although this holds in most cases. Rather, such an approach provides 

insurance against model instability, over-parameterization, breakdowns and structural 

changes. Overall, we can conclude that our framework generates robust forecasts due to the 

resulting diversification gains, unlikely to be replicated by individual models. Even if a single 
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model generates a higher hedging effectiveness, this better performance will entail higher 

likelihood to result in extreme losses.  

As this is the first study to comprehensively assess the economic value of forecast 

combinations in the hedging decision, there is scope to potentially extend our analysis. For 

example, various studies attempt to incorporate the higher moments (conditional skewness 

and conditional kurtosis) in asset pricing and portfolio analysis; see, for example, Gao and 

Nardari (2018). Given the increasing emphasis on risk management, there is a proliferation of 

measures capturing different types of risk. Creating hedging strategies using alternative risk 

objectives in the optimization procedure (rather than mean-variance), albeit an important 

research question, is left for future research. 

 

Data Availability Statement   

All data that support the findings of this study are available from Refinitiv (formerly 

Thomson Reuters) Datastream database. Restrictions apply to the availability of these data, 

which were used under license for this study. Data are available from the authors with the 

permission of Refinitiv. 
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Table 1: Summary statistics for spot and futures prices  
Panel A: Descriptive Statistics 

 
NG (U.S.)  NBP (U.K.) 

 
Weekly Monthly  Weekly Monthly 

 
Spot Futures Spot Futures  Spot Futures Spot Futures 

Mean  0.0415 0.0401 0.1793 0.1453  0.1700 0.1606 0.5348 0.4741 

Vol     9.1706 7.4788 16.337 13.324  7.5764 5.8784 15.358 14.131 

Skew 0.7336
*
 0.2368

*
 0.4081

*
 -0.0377  0.9392

*
 1.3396

*
 0.1984 -0.1292 

Kurt (Exc) 11.658
*
 2.0626

*
 3.3382

*
 0.5923  4.6701

*
 12.434

*
 1.5890

*
 1.4742

*
 

Q(6) 36.180
*
 19.463

*
 14.779

*
 4.319  24.434

*
 72.430

*
 17.705

*
 31.522

*
 

Q
2
(6) 171.39

*
 115.81

*
 9.514 4.387  121.11

*
 59.763

*
 45.256

*
 9.076 

PP (levels) -2.6652 -2.5488 -2.6975 -2.6494  -2.5396 -2.4897 -2.4967 -2.4329 

PP (returns) -38.030
*
 -34.868

*
 -18.781

*
 -15.326

*
  -33.835

*
 -29.703

*
 -14.021

*
 -11.538

*
 

         

Panel B: Cointegration Tests 

    Normalized CV   LR tests  

 
H0: λmax test λtrace test ( 1   β1   β0) H0: β1 = 1 H0: β1 = 1, β0 = 0 

       

Weekly variations 

NG (U.S.) r = 0 204.49 211.82 (1   -0.994   0.001) 0.5466 7.912  

 
r = 1 7.3273 7.3273 

 
[0.460] [0.019]  

NBP (U.K.)  r = 0 386.91 394.45 (1   -0.996   -0.008) 1.735 17.039  

 r = 1 7.543 7.543  [0.188] [0.000]  

        

Monthly variations 

NG (U.S.) r = 0 89.477 96.718 (1   -1.002   0.023) 0.0421 13.787  

 r = 1 7.241 7.241  [0.837] [0.001]  

NBP (U.K.) 

 
r = 0 89.096 89.096 (1   -0.999  0.007) 0.0012 5.737  

 
r = 1 8.8651 8.8651 

 
[0.972] [0.057]  

        
The table reports summary statistics, unit root and cointegration tests for the NG (U.S.) and NBP (U.K.) markets. Sample period is from 

December 30, 1998 to May 16, 2018; corresponding to 1,012 weekly observations and 234 monthly observations. Panel A reports the 

descriptive statistics for log-returns and unit root tests for both log-prices (levels) and log-price changes (returns). Mean and Vol are the 

mean return and standard deviation of the series. Skew and Kurt are the estimated centralized third and fourth moments of the data. Q(6) 

and Q2(6) are Ljung-Box (1978) tests for 6th order autocorrelation in the level and squared series, respectively. PP is the Phillips and Perron 

(1988) unit root test which tests the null hypothesis that the variable is non-stationary,     , against the alternative that the variable is 

stationary,        . An asterisk * denotes significance at 5% level.  Panel B presents the results from cointegration tests. r represents the 

number of cointegrating vectors (CVs). Based on Johansen (1988), we use the λmax and  λtrace statistics. λmax tests the null hypothesis of r 

CVs against the alternative of r+1. The 5% critical values for H0: r=0 and H0: r=1 are 15.67 and 9.24, respectively. λtrace tests the null 

hypothesis that there are at most r CVs against the alternative that the number of CVs is greater than r. The 5% critical values for H0: r=0 

and H0: r=1 are 19.96 and 9.24, respectively. The LR statistic is a likelihood ratio test on the coefficients of the CV (β2 β1 β0). This is 

           
              where    

  and    denote the largest eigenvalues of the restricted and the unrestricted models, respectively. The 

statistic follows a χ2 distribution with degrees of freedom equal to the total number of restrictions minus the number of the just identifying 

restrictions, which equals the number of restrictions placed on the CV. Exact significance levels are in square brackets [·]. 
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The table presents estimation results of the dynamic hedge ratio models. Sample period is from December 30, 1998 to May 

16, 2018; corresponding to 1,012 weekly and 234 monthly observations. Panel A reports the results for NG (U.S.) and Panel 

B for NBP (U.K.). Note that GARCH model parameters differ only in the correlation dynamics as a two-stage estimation 

procedure (Engle, 2002) is implemented; the first step involves the estimation of univariate models for conditional variances 

and, in the second step, we estimate the correlation dynamics. An asterisk * denotes significance at 5% level. 

 

 

Table 2: Dynamic hedging models  
Panel A: NG (U.S.) 

 Weekly variations   Monthly variations  

                         

 w     m     

OLS w seas 0.0002 0.7821
*
 0.1087

*
 -0.0716  0.0006 1.0320

*
 0.1032 0.1439

*
  

 (0.002) (0.032) (0.043) (0.045)  (0.005) (0.042) (0.059) (0.058)  

OLS w basis -0.0006 0.7909
*
 -2.1230

*
   -0.0022 0.9950

*
 1.7663

*
   

 (0.001) (0.054) (1.051)   (0.005) (0.042) (0.415)   

                                       

Weekly variations 

MRS 0.0027 0.6737
*
 0.1443

*
 0.1620

*
  -0.0003 0.8276

*
 0.0330

*
 0.0417

*
  

 (0.004) (0.110) (0.033) (0.037)  (0.001) (0.018) (0.004) (0.014)  

MRS w basis 0.0063 0.6763
*
 0.1433

*
 1.2532

*
 0.9680 -0.0013 0.8240

*
 0.0323

*
 3.3243

*
 34.754

*
 

 (0.007) (0.109) (0.031) (0.275) (2.737) (0.001) (0.028) (0.004) (0.432) (9.091) 

           

Monthly variations 

MRS 0.0065 1.2449
*
 0.1737

*
 0.3949

*
  -0.0007 0.9750

*
 0.0409

*
 0.0810  

 (0.010) (0.200) (0.045) (0.066)  (0.001) (0.024) (0.006) (0.044)  

MRS w basis 0.0096 1.2523
*
 0.1762

*
 -0.0510 -2.8941 -0.0017 0.9776

*
 0.0411

*
 2.6231

*
 17.698 

 (0.015) (0.143) (0.043) (0.411) (4.108) (0.002) (0.021) (0.005) (0.578) (10.20) 

                           

Weekly variations 

GARCH 0.0020
*
 0.1727

*
 0.6026

*
 0.0005

*
 0.1609

*
 0.7603

*
 0.1476

*
 0.6760

*
 0.6194

*
  

 (5.6E-04) (0.071) (0.082) (1.3E-04) (0.039) (0.051) (0.020) (0.027) (0.029)  

           

Monthly variations 

GARCH 0.0001 0.0880
*
 0.9107

*
 0.0014 0.0333 0.8882

*
 0.1231

*
 0.8757

*
 0.8617

*
  

 (0.001) (0.014) (0.015) (0.001) (0.027) (0.068) (0.018) (0.012) (0.026)  

           

Panel A: NBP (U.K.) 
 Weekly variations   Monthly variations  

                         

 w     m     

OLS w seas -0.0011 0.8654
*
 -0.1165

*
 -0.1717

*
  -0.0033 1.0027

*
 -0.0904 -0.1734

*
  

 (0.002) (0.033) (0.042) (0.051)  (0.005) (0.037) (0.047) (0.057)  

OLS w basis -0.0001 0.8673
*
 -0.0675   0.0005 0.9598

*
 -0.0928   

 (0.002) (0.031) (0.242)   (0.005) (0.036) (0.397)   

                                       

Weekly variations 

MRS 0.0009 0.8159
*
 0.0838

*
 0.1173

*
  -0.0003 0.9724

*
 0.0267

*
 0.0698

*
  

 (0.002) (0.069) (0.006) (0.031)  (0.001) (0.040) (0.002) (0.017)  

MRS w basis 0.0033 0.8198
*
 0.0843

*
 1.8902

*
 5.3416 -0.0018 0.9665

*
 0.0271

*
 3.1609

*
 50.219

*
 

 (0.003) (0.089) (0.008) (0.307) (5.074) (0.001) (0.043) (0.003) (0.526) (17.51) 

           

Monthly variations 

MRS -0.0001 0.9759
*
 0.0953

*
 0.0833  0.0018 0.8988

*
 0.0231

*
 0.1016

*
  

 (0.002) (0.046) (0.012) (0.050)  (0.001) (0.050) (0.004) (0.039)  

MRS w basis -0.0003 0.9705
*
 0.0968

*
 2.2927 -22.35 0.0016 0.9248

*
 0.0240

*
 2.1221

*
 -29.52 

 (0.006) (0.061) (0.021) (1.246) (16.13) (0.002) (0.189) (0.011) (0.377) (33.72) 

                           

Weekly variations 

GARCH 0.0001
*
 0.1592

*
 0.8385

*
 0.0003

*
 0.0673

*
 0.8484

*
 0.1555

*
 0.8271

*
 0.6773

*
  

 (4.8E-05) (0.035) (0.029) (1.0E-04) (0.023) (0.031) (0.040) (0.029) (0.031)  

           

Monthly variations 

GARCH 0.0004 0.2241
*
 0.7737

*
 0.0004 0.1777

*
 0.8166

*
 0.0966

*
 0.8815

*
 0.8809

*
  

 (3.1E-04) (0.072) (0.054) (2.7E-04) (0.064) (0.051) (0.016) (0.025) (0.030)  
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Table 3: In-sample hedging effectiveness  
  Weekly variations  Monthly variations 

 
 

Traditional 

Predictable spot  

(w basis)  Traditional 

Predictable spot  

(w basis) 

 
 

HE1 

vs.  

GMV HE2 

vs. 

 GMV  HE1 

vs.  

GMV HE2 

vs.  

GMV 

Panel A: NG (U.S.) 
 

Individual models 

Naïve 1:1  34.551 6.591 47.048 4.425  74.043 2.492 78.613 0.331 

OLS  38.377 2.765 50.408 1.066  74.254 2.281 78.675 0.269 

OLS w seas  38.892 2.250 50.864 0.609  75.360 1.175 78.913 0.031 

OLS w basis  40.201 0.942 50.856 0.617  76.136 0.400 78.745 0.199 

VAR  38.270 2.873 50.389 1.084  74.170 2.365 78.641 0.304 

VECM  38.222 2.920 50.387 1.086  74.016 2.519 78.626 0.318 

MRS  38.830 2.313 50.967 0.506  75.895 0.640 78.681 0.264 

MRS w basis  38.796 2.346 50.883 0.591  75.859 0.676 78.683 0.261 

CC-GARCH  37.388 3.755 45.261 6.213  73.284 3.251 76.493 2.451 

DC-GARCH  38.999 2.143 46.764 4.709  73.736 2.799 77.133 1.812 

MRS-GARCH  39.142 2.000 48.603 2.287  75.139 1.396 78.259 0.685 
           

Model combinations         

1/N  39.528 1.614 51.125 0.349  75.386 1.149 78.782 0.162 

(GMVuncon)   41.150 -0.008 52.349 -0.876  77.427 -0.892 78.961 -0.017 

GMV (   )  41.142  51.473   76.535  78.944  

           

Panel B: NBP (U.K.) 
 

Individual models         

Naïve 1:1  44.640 2.883 50.060 2.669  75.210 0.751 77.450 1.471 

OLS  45.873 1.650 50.679 2.050  75.481 0.481 77.606 1.316 

OLS w seas  47.212 0.310 51.666 1.063  75.918 0.044 78.885 0.037 

OLS w basis  45.933 1.589 50.743 1.986  75.493 0.468 77.611 1.311 

VAR  45.411 2.112 50.204 2.525  73.924 2.037 76.127 2.795 

VECM  41.989 5.533 47.942 4.787  72.411 3.550 74.955 3.967 

MRS  46.622 0.901 51.250 1.479  75.549 0.412 77.689 1.233 

MRS w basis  46.619 0.903 51.280 1.450  75.504 0.457 77.631 1.291 

CC-GARCH  46.316 1.207 50.683 2.046  75.414 0.548 75.361 3.561 

DC-GARCH  45.662 1.860 49.852 2.877  75.462 0.499 76.738 2.184 

MRS-GARCH  47.835 -0.313 52.570 0.159  75.471 0.490 77.397 1.525 
           

Model combinations         

1/N  46.994 0.529 51.631 1.098  75.616 0.346 77.720 1.202 

(GMVuncon)   48.503 -0.980 52.939 -0.210  76.080 -0.119 79.184 -0.263 

GMV (   )  47.522  52.729   75.961  78.922  

The table shows the degree of in-sample hedging effectiveness (HE) achieved using different models in 

the NG (U.S.) (Panel A) and NBP (U.K.) natural gas markets for both, weekly and monthly, hedging 

horizons. The in-sample period is from December 30, 1998 to May 16, 2018; corresponding to 1,012 

weekly observations and 234 monthly observations. The column(s) “Traditional” of refer to HE1 (Eq. 

3), where the variance of the unhedged position is calculated as         . The column(s) “Predictable 

spot (w basis)” refer to HE2 (Eq.5), i.e., Ederington and Salas (ES, 2008) approach for calculating HE; 

the variance of the unhedged position is calculated as                    .  Numbers in bold 

indicate the best individual model performance in terms of HE.  We construct three alternative hedges, 

namely 1/N, GMV and   GMV (   ). 1/N corresponds to the hedging portfolio after weighting 

equally the hedge ratios derived from the individual models. GMV assigns weights to the hedge ratios 

derived from the individual models under the objective to minimize overall portfolio variance. GMV 

(   ) is the GMV with the additional restriction that the weights assigned to the individual models 

cannot be negative. Columns “vs. GMV” denote the improvement in the HE when GMV (   ) 

model is used. For model estimation results, see Table 2.  Note that, MRS-GARCH is not used in 

forecast combinations. All figures are in % terms. 
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Table 4: Out-of-sample hedging performance for weekly hedging horizon 
  NG (U.S.)  NBP (U.K.)  

 
 

Traditional 

Predictable spot  

(w basis) 

 

Traditional 

Predictable spot  

(w basis) 

 

 

HE1 

vs.  

max of i 

models HE2 

vs.  

max of i 

models 

 

HE1 

vs.  

max of i 

models HE2 

vs.  

max of i 

models 

Individual models           

Naïve 1:1  21.794  30.060   36.713  45.515  

OLS   22.373  30.962   39.258  46.492  

OLS w seas  20.591  29.113   39.472  46.561  

OLS w basis  20.903  30.552   39.182  46.443  

VAR  22.520  30.968   38.985  45.388  

VECM  22.540  30.969   37.970  42.467  

MRS  22.602  31.401   38.863  46.251  

MRS w basis  22.433  31.779   39.180  46.335  

CC-GARCH  21.075  30.629   34.391  42.268  

DC-GARCH  21.093  31.046   35.677  44.055  

MRS -GARCH  23.087  31.810   39.556  47.038  

Forecast combinations            

1/N  23.437[c] 0.836 31.371 -0.408  38.893 -0.580 45.864c -0.697 

ξ =  0, η = 1  23.587[c] 0.986 31.437 -0.342┼  40.064[c,&] 0.592 47.097[c,&] 0.537 

ξ  =  0, η = 2  23.624[c,&] 1.022 31.512 -0.266┼  40.066[c,&] 0.594 47.099[c,&] 0.538 

ξ  =  0, η = 3  23.711[c,&] 1.110 31.597 -0.182┼  40.068[c,&] 0.596 47.100[c,&] 0.540 

ξ  =  0, η = 6  23.915[c,&] 1.313 31.937 0.159  40.075[c,&] 0.603 47.105[c,&] 0.544 

ξ  =  0, η = 10  23.957[c,&] 1.355 32.371[c] 0.593  40.084[c,&] 0.611 47.111[c,&] 0.550 

ξ  =  0.5, η = 1  23.604[c,&] 1.002 31.461 -0.318┼  40.060[c,&] 0.588 47.091[c,&] 0.530 

ξ  =  0.5, η = 2  23.688[c,&] 1.087 31.567 -0.211┼  40.062[c,&] 0.590 47.092[c,&] 0.532 

ξ  =  0.5, η = 3  23.801[c,&] 1.200 31.689 -0.089┼  40.064[c,&] 0.592 47.093[c,&] 0.533 

ξ  =  0.5, η = 6  24.005[c,&] 1.404 32.132 0.353  40.070[c,&] 0.597 47.097[c,&] 0.536 

ξ  =  0.5, η = 10  23.878[c,&] 1.277 32.726[c] 0.948  40.077[c,&] 0.605 47.101[c,&] 0.541 

ξ  =  1, η = 1  23.598[c] 0.997 31.485 -0.294┼  40.029[c,&] 0.557 47.101[c,&] 0.540 

ξ  =  1, η = 2  23.753[c,&] 1.151 31.643 -0.135┼  40.030[c,&] 0.558 47.102[c,&] 0.541 

ξ  =  1, η = 3  23.886[c,&] 1.285 31.838 0.059  40.032[c,&] 0.560 47.102[c,&] 0.542 

ξ  =  1, η = 6  24.058[c,&] 1.457 32.360[c] 0.582  40.036[c,&] 0.564 47.105[c,&] 0.544 

ξ  =  1, η = 10  23.785[c,&] 1.184 33.002[c,&] 1.223  40.042[c,&] 0.570 47.108[c,&] 0.547 

ξ  =  3, η = 1  23.731[c,&] 1.130 31.599 -0.180┼  39.895[c,&] 0.422 47.110[c,&] 0.550 

ξ  =  3, η = 2  23.993[c,&] 1.392 31.920 0.142  39.893[c,&] 0.421 47.110[c,&] 0.549 

ξ  =  3, η = 3  24.169[c,&] 1.568 32.233[c] 0.454  39.892[c,&] 0.420 47.109[c,&] 0.548 

ξ  =  3, η = 6  24.096[c,&] 1.495 33.077[c,&] 1.298  39.888[c,&] 0.415 47.107[c,&] 0.547 

ξ  =  3, η = 10  23.576[c,&] 0.974 33.540[c,&] 1.762  39.882[c] 0.410 47.105[c,&] 0.544 

ξ  =  10, η = 1  24.145[c,&] 1.543 32.160[c] 0.381  39.619 0.146 47.032[c,&] 0.471 

ξ  =  10, η = 2  24.570[b,&] 1.969 32.786[c,&] 1.008  39.616 0.144 47.025[c,&] 0.464 

ξ  =  10, η = 3  24.575[b,&] 1.973 33.243[c,&] 1.464  39.613 0.141 47.019[c,&] 0.458 

ξ  =  10, η = 6  23.951[c,&] 1.350 33.876[c,&] 2.097  39.603 0.131 47.009[c,&] 0.448 

ξ  =  10, η = 10  23.144[c] 0.543 33.517[c,&] 1.739  39.575 0.103 47.001[c,&] 0.440 

ξ  =  20, η = 1  24.490[b,&] 1.888 32.460[c] 0.682  39.592 0.120 47.029[c,&] 0.468 

ξ  =  20, η = 2  24.845[b,&] 2.243 33.213[c,&] 1.435  39.583 0.111 47.020[c,&] 0.460 

ξ  =  20, η = 3  24.688[b,&] 2.087 33.847[c,&] 2.068  39.576 0.103 47.014[c,&] 0.454 

ξ  =  20, η = 6  23.925[c,&] 1.323 33.953[c,&] 2.174  39.561 0.089 47.002[c,&] 0.441 

ξ  =  20, η = 10  23.138[c] 0.536 33.468[c,&] 1.690  39.525 0.052 46.982[c,&] 0.421 

Best FC        25.493[a,&] 2.892 34.733[b,&] 2.954  40.166[b,&] 0.694 47.170[b,&] 0.609 

  (250,2)  (250,4)   (0,50)  (0,50)  

The table shows the of out-sample hedging effectiveness (HE) achieved using different models in the NG (U.S.) (Panel A) and NBP (U.K.) 

natural gas markets for weekly hedges. The out-sample period is from May 29 2013 to May 16, 2018; corresponding to 260 weekly 

observations. To forecast the hedge ratios we use rolling windows of equal length to estimate the parameters of the hedging models starting 

with data covering the period from December 1998 to May 2013. ξ and η are the discount factor and tuning forecast combination parameters; 

see Eq. (8) and (9).  “Best FC” (Forecast Combination) reports the best hedging outcome (in terms of HE), when perturbing forecast 

combination parameters with,           and          (see also Figure 3). Numbers in bold indicate the best individual model 

performance. a, b and c, in the square brackets [·], correspond to significance levels of 1%, 5% and 10%, respectively, indicating whether the 

combination approach is significantly better than the individual models’ performance, using Hansen’s (2005) reality check and 5,000 

simulations of the Politis and Romano (1994) stationary bootstrap method. Note that a, b and c represent the average p-value of the test (pair-

wise comparisons of combination forecasts vs. ith model). & denotes whether the combination significantly outperforms at least 7 out of the 10 

individual models. Column “vs. max of i models” computes the difference in the HE between a combination procedure and the best performer 

of the individual models. In the case of negative differential, ┼ denotes whether the combination ranks second best.  For comparison, we also 

report the hedging performance of the MRS-GARCH, but this model is not included in any of the forecast combination strategies. 



40 

 

 

 

 

 

 

 

 

Table 5:  Out-of-sample hedging performance for monthly hedging horizon 
  NG (U.S.)  NBP (U.K.)  

 
 

Traditional 

Predictable spot  

(w basis) 

 

Traditional 

Predictable spot  

(w basis) 

 

 

HE1 

vs.  

max of i 

models HE2 

vs.  

max of i 

models 

 

HE1 

vs.  

max of i 

models HE2 

vs.  

max of i 

models 

Individual models           

Naïve 1:1  78.419  84.876   77.993  78.193  

OLS   80.044  83.556   78.447  78.606  

OLS w seas  77.766  82.371   77.604  77.722  

OLS w basis  68.990  83.416   78.503  78.674  

VAR  79.182  84.232   77.890  75.719  

VECM  77.974  84.334   75.492  73.571  

MRS  78.979  84.033   78.119  78.269  

MRS w basis  78.804  84.156   78.040  77.980  

CC-GARCH  81.917  82.799   75.581  75.788  

DC-GARCH  81.360  80.992   75.191  75.380  

MRS -GARCH  83.230  83.000   78.193  78.615  

Forecast combinations            

1/N  82.134[b,&] 0.217 84.116 -0.760  77.718 -0.785 77.687 -0.986 

ξ  =  0, η = 1  81.997[b,&] 0.080 85.803[b,&] 0.927  78.597[c,&] 0.093 78.701[c,&] 0.027 

ξ  =  0, η = 2  81.853[b,&] -0.064┼ 85.802[b,&] 0.926  78.594[c,&] 0.091 78.699[c,&] 0.025 

ξ  =  0, η = 3  81.702[c,&] -0.215┼ 85.800[b,&] 0.925  78.592[c,&] 0.088 78.697[c,&] 0.023 

ξ  =  0, η = 6  81.197[&] -0.720 85.797[b,&] 0.921  78.584[c,&] 0.080 78.691[c,&] 0.017 

ξ  =  0, η = 10  80.383[&] -1.534 85.792[b,&] 0.916  78.572[c,&] 0.069 78.681[c,&] 0.007 

ξ  =  0.5, η = 1  82.043[b,&] 0.126 85.581[b,&] 0.705  78.597[c,&] 0.093 78.699[c,&] 0.025 

ξ  =  0.5, η = 2  81.945[b,&] 0.028 85.582[b,&] 0.706  78.594[c,&] 0.091 78.698[c,&] 0.024 

ξ  =  0.5, η = 3  81.839[b,&] -0.078┼ 85.582[b,&] 0.707  78.591[c,&] 0.088 78.696[c,&] 0.022 

ξ  =  0.5, η = 6  81.467[&] -0.450┼ 85.585[b,&] 0.709  78.583[c,&] 0.080 78.692[c,&] 0.018 

ξ  =  0.5, η = 10  80.826[&] -1.091 85.589[b,&] 0.713  78.572[c,&] 0.069 78.685[c,&] 0.011 

ξ  =  1, η = 1  82.952[b,&] 1.035 85.642[b,&] 0.766  78.595[c,&] 0.092 78.630[&] -0.044┼ 

ξ  =  1, η = 2  82.870[b,&] 0.953 85.642[b,&] 0.766  78.593[c,&] 0.090 78.630[&] -0.044┼ 

ξ  =  1, η = 3  82.781[b,&] 0.864 85.643[b,&] 0.767  78.590[c,&] 0.087 78.629[&] -0.045┼ 

ξ  =  1, η = 6  82.467[b,&] 0.551 85.646[b,&] 0.770  78.582[c,&] 0.079 78.628[&] -0.046┼ 

ξ  =  1, η = 10  81.930[c,&] 0.013 85.651[b,&] 0.775  78.572[c,&] 0.069 78.625[&] -0.049┼ 

ξ  =  3, η = 1  83.353[b,&] 1.436 85.537[b,&] 0.662  78.514[c] 0.011 78.679[&] 0.005 

ξ  =  3, η = 2  83.485[b,&] 1.568 85.523[b,&] 0.647  78.514[c] 0.011 78.679[&] 0.005 

ξ  =  3, η = 3  83.596[b,&] 1.679 85.508[b,&] 0.632  78.514[c] 0.011 78.679[&] 0.005 

ξ  =  3, η = 6  83.795[b,&] 1.878 85.461[b,&] 0.585  78.513[c] 0.010 78.680[&] 0.006 

ξ  =  3, η = 10  83.863[b,&] 1.946 85.404[b,&] 0.528  78.512[c] 0.008 78.680[&] 0.006 

ξ  =  10, η = 1  84.408[b,&] 2.491 85.495[b,&] 0.619  78.365 -0.138 78.493 -0.181 

ξ  =  10, η = 2  84.473[b,&] 2.556 85.420[b,&] 0.545  78.359 -0.144 78.488 -0.185 

ξ  =  10, η = 3  84.320[b,&] 2.403 85.326[b,&] 0.451  78.354 -0.149 78.484 -0.190 

ξ  =  10, η = 6  84.195[b,&] 2.278 84.968[c,&] 0.092  78.337 -0.166 78.471 -0.203 

ξ  =  10, η = 10  82.409[b,&] 0.492 84.631[&] -0.245┼  78.315 -0.188 78.454 -0.220 

ξ  =  20, η = 1  84.736[b,&] 2.819 85.436[b,&] 0.560  78.324 -0.179 78.315 -0.359 

ξ  =  20, η = 2  84.405[b,&] 2.488 85.251[b,&] 0.375  78.309 -0.194 78.298 -0.375 

ξ  =  20, η = 3  84.372[b,&] 2.455 85.009[c,&] 0.133  78.293 -0.210 78.282 -0.392 

ξ  =  20, η = 6  82.308[c,&] 0.391 84.434 -0.442┼  78.244 -0.259 78.231 -0.443 

ξ  =  20, η = 10  80.497 -1.419 84.256 -0.620  78.172 -0.331 78.198 -0.476 

Best FC         85.199[a,&] 3.282 85.803[b,&] 0.927  78.599[c,&] 0.096 78.702[c,&] 0.028 

  (120,0.5)  (0,0.5)   (0.75,0.5)  (0,0.5)  

The table shows the degree of out-sample hedging effectiveness (HE) achieved using different models in the NG (U.S.) (Panel A) and NBP 

(U.K.) natural gas markets for monthly hedges. The out-sample period is from June 15, 2013 to May 15, 2018; corresponding to 60 monthly 

observations. See also notes in Table 4. 
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Table 6: Out-of-sample hedge ratio stability and performance fees 
 Weekly variations Monthly variations 

 NG (U.S.) NBP (U.K.)   NG (U.S.) NBP (U.K.) 

 Trad. 

Pred. spot  

(w basis) Trad. 

Pred. spot  

(w basis)  Trad. 

Pred. spot  

(w basis) Trad. 

Pred. spot  

(w basis) 

Panel A: Hedged portfolio turnover 

OLS  0.14 0.12 0.08 0.09 0.32 0.26 0.19 0.30 

OLS w seas 1.30 1.08 1.83 1.55 1.25 0.74 0.96 0.99 

OLS w basis 7.85 4.04 0.24 0.21 12.26 1.74 0.27 0.38 

VAR 0.13 0.11 0.08 0.09 0.27 0.22 0.20 0.21 

VECM 0.11 0.11 0.07 0.05 0.22 0.22 0.15 0.18 

MRS 1.40 1.31 1.15 2.28 0.93 0.28 1.31 1.33 

MRS w basis 1.69 1.92 1.36 1.27 2.16 0.67 3.74 2.49 

CC-GARCH 9.57 7.14 7.36 8.06 21.61 8.43 8.05 8.05 

DC-GARCH 9.83 8.35 11.61 11.67 21.76 9.91 8.83 8.83 

1/N 5.15 4.45 0.62 0.59 6.11 1.10 1.75 1.79 

Best FC 5.07 3.40 2.08 1.65 12.38 2.74 1.54 3.29 

FCavg 3.26 1.68 1.29 1.02 5.71 1.32 1.41 1.57 

 Panel B: FC increase in HE relative to increase in Turnover 

Naïve 1:1 0.7  [0.7] 1.4  [1.4] 1.7  [2.5] 1.0  [1.5] 0.6 [0.8] 0.3  [0.4] 0.4  [0.4] 0.2  [0.2] 

OLS 0.6  [0.5] 1.2  [1.0] 0.5  [0.5] 0.4  [0.6] 0.4  [0.5] 0.9  [1.8] 0.1 [+0.0] +0.  [-0.] 

OLS w seas 1.3  [1.7] 2.4  [5.6] 2.7 [-0.7] 6.4 [-1.0] 0.7  [1.1] 1.7  [5.3] 1.7  [2.0] 0.4 [1.5] 

OLS w basis -1.6 [-0.7] -6.5 [-0.8] 0.5  [0.7] 0.5  [0.8] 137 [-2.1] 2.4 [-4.7] 0.1  [-0.] +0 [-0.1] 

VAR 0.6  [0.5] 1.2  [1.0] 0.6  [0.7] 1.1  [1.8] 0.5  [0.7] 0.6  [1.1] 0.5  [0.5] 1.0  [2.1] 

VECM 0.6  [0.4] 1.2  [1.0] 1.1  [1.6] 3.0  [4.8] 0.6  [0.9] 0.6  [1.0] 2.2  [2.4] 1.7  [3.6] 

MRS 0.8  [0.7] 1.6  [2.8] 1.4  [7.4] -1.5 [-0.7] 0.5  [0.8] 0.7  [1.3] 2.1  [3.7] 0.2  [1.3] 

MRS w basis 0.9  [1.0] 2.0 [-2.7] 1.4 [-9.7] 2.2 [-0.8] 0.6 [1.11] 0.8  [2.0] -0.3 [-0.2] 0.9 [-0.6] 

CC-GARCH -1.0 [-0.5] -1.1 [-0.3] -1.1 [-0.9] -0.8 [-0.7] -0.4 [-0.1] -0.5 [-0.4] -0.5 [-0.4] -0.6 [-0.4] 

DC-GARCH -0.9 [-0.3] -0.7 [-0.2] -0.5 [-0.4] -0.3 [-0.3] -0.4 [-0.1] -0.7 [-0.5] -0.5 [-0.4] -0.6 [-0.4] 

1/N -25 [-0.3] -3.2 [-0.4] 0.9  [1.5] 1.2  [2.8] 0.5 [-1.5] 1.0  [5.9] -4.2 [-2.2] 0.7 [-3.9] 

         Panel C: FC Performance fees  

Naïve 1:1 5135 5914 1414 668 3728 591 298 252 

  [3144] [3429] [1260] [593] [2888] [453] [242] [67] 

OLS 4570 5108 351 253 3158 1242 91 61 

  [2449] [2326] [177] [175] [2132] [1169] [26] [-155] 

OLS w seas 6653 6898 722 572 3896 1677 424 414 

  [4938] [4690] [556] [497] [3096] [1629] [372] [255] 

OLS w basis 6360 5558 358 260 6293 1265 70 32 

  [4598] [2952] [184] [183] [5820] [1193] [4] [-189] 

VAR 4364 5093 468 724 3480 935 354 1150 

  [2191] [2304] [297] [649] [2570] [837] [301] [1041] 

VECM 4323 5093 904 1858 3877 885 1186 1725 

  [2140] [2305] [741] [1789] [3074] [783] [1151] [1636] 

MRS 4250 4589 450 279 3547 1013 342 322 

  [2048] [1559] [278] [202] [2657] [923] [287] [150] 

MRS w basis 4446 4117 358 296 3615 959 318 439 

  [2294] [802] [183] [219] [2744] [863] [263] [282] 

CC-GARCH 6593 5460 2784 1932 2159 1560 1165 1134 

  [4869] [2818] [2648] [1864] [443] [1507] [1129] [1025] 

DC-GARCH 6579 5422 2301 1800 2413 2068 1267 1243 

  [4852] [2766] [2160] [1731] [917] [2037] [1233] [1138] 

1/N 3246 4690 654 594 2250 966 426 483 

 

[732] [1714] [486] [519] [634] [872] [375] [331] 

Average 4710 4828 897 770 3201 1097 495 605 

 
[3114] [2515] [815] [766] [2452] [1115] [489] [507] 

         

Panel A of this table reports the mean out-sample portfolio turnover in % terms. “FCavg” corresponds to the average figure when perturbing 

forecast combination parameters with,     as in Tables 4 and 5. Panel B, shows the ratio of the incremental HE of HEBestFC relative to 

increase in portfolio turnover; numbers [.] perform the same comparison but with HEFCavg. Note that HEBestFC > HEFCavg > HEmodel i, therefore, 

incremental HE is always a positive number. Panel C displays the FC performance fees in annualised basis points; numbers [.] perform the 

same comparison but with FCavg. Results are reported for NG U.S. and NBP U.K. (Panel B) natural gas markets, weekly and monthly 

hedging horizons, using the traditional HE measure, HE1, and the Ederington and Salas (2008) (HE2) approach (see also notes in Tables 4 

and 5).  
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Table 7: Out-of-sample hedging performance under market segmentation 

 Naïve OLS 
OLS 

seas 

OLS 

basis 
VAR VECM MRS 

MRS 

basis 
CC –

GARCH 

DC – 

GARCH 
1/N FCmin HE FCmaxHE FCavgHE 

               

Panel A: NG (U.S.) 

Backwardation 

HE1(w) 16.14 14.91 13.42 17.08 15.21 15.27 15.17 15.18 13.46 13.60 16.44[&] 14.80 17.11[c,&]
†
 16.46 

HE2(w) 24.50 23.05 21.34 24.11 23.14 23.15 23.75 24.03 22.56 25.15 23.94 24.05 26.97[b,&]
†
 25.31[c,&] 

HE1(m) 86.26 87.60 85.39 87.56 86.73 85.57 86.73 86.78 89.11 89.20 88.05[&] 87.65 89.37[&]
†
 88.18[&] 

HE2(m) 89.00 87.77 85.76 88.15 88.51 88.63 88.32 88.44 87.26 88.91 88.49 89.90[c,&] 89.98[c,&]
†
 89.95[c,&] 

Contango 
HE1(w) 53.01 56.24 54.45 41.84 56.47 56.47 57.11 56.39 57.37 57.57 57.05 57.16 60.53[b,&]

†
 58.57[c,&] 

HE2(w) 71.18 73.29 72.28 70.04 73.48 73.49 74.15 74.19 72.72 69.58 73.60 73.47 74.21[&]
†
 73.71 

HE1(m) 75.48 77.06 75.73 50.93 76.47 75.50 76.14 75.69 73.26 69.71 80.95[b,&] 75.78[c] 85.55[b,&]
†
 81.20[c,&] 

HE2(m) 87.27 86.34 87.29 84.96 86.62 86.64 86.67 86.70 85.18 71.95 86.14 81.36 87.37[b,&]
†
 85.91[&] 

Winter 

HE1(w) 17.00 17.70 15.54 16.34 17.76 17.76 17.86 17.73 16.14 16.13 18.74[c,&] 18.44[c,&] 20.33[b,&]
†
 19.31[&] 

HE2(w) 24.42 25.35 23.23 24.91 25.32 25.32 25.77 26.23 25.06 25.57 25.73 25.81 28.68[b,&]
†
 26.99[c] 

HE1(m) 77.77 79.87 77.10 65.79 78.74 77.24 78.45 78.03 83.92 83.33 82.16[c,&] 80.01[&] 85.44[b,&]
†
 82.95[c,&] 

HE2(m) 85.93 84.06 82.88 83.90 84.97 85.12 84.71 84.82 83.06 82.01 84.89 85.92[c,&] 87.70[a,&]
†
 87.20b[&] 

Summer 

HE1(w) 63.74 63.42 64.90 61.07 64.30 64.46 64.21 63.69 65.02 65.25 64.72 64.66 65.30[&]
†
 64.84 

HE2(w) 69.88 70.58 70.67 70.37 70.88 70.89 71.16 70.96 69.95 69.78 71.20[b,&] 71.08[&] 71.24[b,&]
†
 71.16[c,&] 

HE1(m) 80.16 79.38 79.60 81.57 79.88 80.16 80.12 81.23 75.55 75.13 80.76[&] 80.60[&] 81.94[&]
†
 81.14[&] 

HE2(m) 81.20 81.99 81.17 82.22
†
 81.79 81.74 81.83 82.06 82.19 78.54 81.63 79.67 80.19 79.91 

 

Panel B: NPB (U.K.) 

Backwardation 

HE1(w) 26.63 33.73 35.13 33.62 32.86 29.90 32.89 33.36 25.00 23.52 32.10 34.09[&] 36.18[c,&]
†
 35.54[&] 

HE2(w) 39.52 42.97 43.92 42.86 39.28 32.11 42.32 42.33 31.62 36.09 40.33 44.69[&] 46.46[c,&]
†
 46.00[&] 

HE1(m) 83.60 84.84 84.55 84.85 83.37 78.44 85.19 84.72 79.98 80.35 83.60 85.15[&] 85.74[b,&]
†
 85.61[c,&] 

HE2(m) 83.91 85.10 84.80 85.13 78.79 74.88 85.41 84.95 80.28 80.59 83.33 83.57 86.45[b,&]
†
 85.87[&] 

Contango 

HE1(w) 21.03 26.34 26.70 26.35 25.73 23.51 24.31 24.34 23.14 22.59 25.54 27.14[&] 27.89[b,&]
†
 27.59[c,&] 

HE2(w) 32.52 35.33 35.50 35.36 32.48 26.44 34.00 33.86 26.11 33.02 33.35 37.52[c,&] 38.12[b,&]
†
 37.91b& 

HE1(m) 72.35 73.46 70.48 73.50 72.10 67.36 74.01 73.99 73.16 72.31 72.78 73.85 74.13
†
 73.94 

HE2(m) 72.51 73.48 70.44 73.54 67.52 64.06 74.10 74.28 73.35 72.52 72.40 73.44 74.35[&]
†
 74.19 

Winter 

HE1(w) 36.45 40.06 41.65 39.87 39.63 38.16 39.94 40.67 34.79 35.18 39.84 40.69[&] 41.79[c,&]
†
 41.36[&] 

HE2(w) 46.34 47.79 49.14 47.67 46.12 42.30 47.65 48.25 42.03 44.67 47.09 48.61[&] 49.15[b,&]
†
 49.00[c,&] 

HE1(m) 79.50 80.35 80.07 80.50 79.46 76.03 80.00 80.00 79.32 78.59 79.75 80.83[c,&] 80.96[b,&]
†
 80.89[b,&] 

HE2(m) 79.52 80.37 80.03 80.57 76.11 73.21 80.01 79.71 79.32 78.57 79.41 79.64 81.00[b,&]
†
 80.79[c,&] 

Summer 

HE1(w) 36.74 38.05 35.71 38.10 37.97 37.48 37.30 37.13 34.09 36.22 37.56 37.85 38.27[b,&]
†
 37.97 

HE2(w) 44.24 44.68 43.09 44.70 44.24 42.37 44.27 43.72 42.26 43.31 44.13 44.61 44.81
†
 44.66 

HE1(m) 75.71 75.59 73.91 75.50 75.51 74.62 75.29 75.09 70.07 70.23 74.66 74.12 75.73
†
 75.00 

HE2(m) 75.98
†
 75.94 74.26 75.82 75.08 74.04 75.64 75.37 70.58 70.74 75.08 73.82 75.94 75.20 

The table shows the degree of out-sample hedging effectiveness (HE) in the NG U.S. (Panel A) and NBP U.K. (Panel B) natural gas markets for 

weekly (w) and monthly (m) hedging horizons, using the traditional HE measure, HE1, and the Ederington and Salas (2008) (HE2) approach (see also 

notes in Tables 4 and 5). Results of HE are provided under the market segmentation to backwardation/contango, winter/summer periods. 

Backwardation (contango) relates to periods when the spot price is above (below) the futures price. Winter (summer) periods are from October to 

March (April to September).  a, b and c, correspond to significance levels of 1%, 5% and 10%, respectively. Columns  FCmin HE and  FCmax HE , 

respectively represent the worst and best forecast combination for                     and                  a, b and c indicate whether the 

combination approach is significantly better than the individual model performance using bootstrap simulations (see notes in Table 3 for more 

details). Columns denoted as FCavgHE correspond to the average performance of all considered combination methods when varying   and  . In this 

case a, b and c are derived as the average p-value of the test (average of all 300 pair-wise comparisons of combination forecasts vs. ith model; 30 

combinations – see Tables 4 and 5 – tested against 10 models). & denotes whether the FC significantly outperforms at least 7 out of the 10 individual 

models, on average. Numbers in bold denote the best performing individual model; † denotes the best model overall. 
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Table 8: Out-of-sample hedging performance of short/long positions  

 Naïve OLS 
OLS 

seas 

OLS 

basis 
VAR VECM MRS 

MRS 

basis 
CC –

GARCH 
DC – 

GARCH 
1/N FCmin HE FCmaxHE FCavgHE 

               

Panel A: NG (U.S.) 

Lower partial moment of order 2: LPM2 

Short hedgers 

HE
*
1(w) 23.77 26.19 25.13 24.32 26.18 26.17 26.48 26.23 22.66 23.62 27.21[c,&] 26.05[c,&] 29.95[b,&]

†
 28.11[c,&] 

HE
*
2(w) 48.40 51.81 50.64 50.48 51.84 51.83 52.23 52.78 51.59 48.97 52.16 52.30 56.12[b,&]

†
 53.54[c] 

HE
*
1(m) 75.67 77.31 76.42 57.20 76.38 75.38 76.13 75.65 87.10 87.02 81.78[&] 78.67[&] 87.43[b,&]

†
 84.47[&] 

HE
*
2(m) 84.99 83.79 84.08 83.34 84.26 84.33 84.22 84.30 82.77 83.59 84.23 85.55[b,&] 85.80[b,&]

†
 85.64[b,&] 

Long hedgers 
HE

*
1(w) 20.24 19.33 16.96 18.17 19.60 19.64 19.51 19.40 19.73 19.00 20.42[c] 20.48 20.78[b,&]

†
 20.65[c] 

HE
*
2(w) 21.28 21.05 18.88 21.08 21.04 21.04 21.47 21.75 20.66 22.61 21.48 21.56 23.51[b,&]

†
 22.49[c,&] 

HE
*
1(m) 81.16 82.46 79.13 80.42 81.97 80.56 81.82 81.94 76.44 75.37 82.52 73.37 82.49

†
 81.63 

HE
*
2(m) 84.83 83.39 80.79 83.58 84.26 84.40 83.92 84.09 82.88 78.58 84.08 83.01 86.07[c,&]

†
 85.32[&] 

Lower partial moment of order 3: LPM3 

Short hedgers 

HE
*
1(w) 19.10 18.84 18.04 22.23 19.09 19.11 19.31 19.18 30.14 32.68 24.19 28.37 34.99[c,&]

†
 31.41[c] 

HE
*
2(w) 54.35 57.42 56.60 58.16 57.43 57.44 57.58 57.85 57.22 63.17 59.32 60.96 70.03[c,&]

†
 64.49[c] 

HE
*
1(m) 84.05 86.26 85.06 53.09 85.23 83.87 84.82 84.11 94.76 94.70 91.30[&] 87.99 94.86[c,&]

†
 93.05[&] 

HE
*
2(m) 92.98 92.00 92.46 91.56 92.39 92.44 92.34 92.38 91.13 92.60 92.38 93.48[b,&] 93.64[b,&]

†
 93.57[b,&] 

Long hedgers 

HE
*
1(w) 18.79

†
 15.87 12.30 15.93 16.25 16.33 16.15 16.38 16.04 15.31 16.57 16.59 16.84 16.65 

HE
*
2(w) 18.44

†
 15.89 12.97 16.54 15.91 15.92 16.87 17.34 15.22 14.91 16.23 16.25 16.93 16.55 

HE
*
1(m) 90.31 91.47 89.03 89.33 91.06 89.74 90.92 90.59 88.67 87.55 91.58[&] 85.31 91.55[&]

†
 90.96[&] 

HE
*
2(m) 90.30 88.87 85.93 89.25 89.75 89.90 89.46 89.65 88.50 87.82 89.74 90.72[c] 92.31[b,&]

†
 91.79[c] 

 

Panel B: NPB (U.K.) 

Lower partial moment of order 2: LPM2 

Short hedgers 

HE
*
1(w) 33.19 35.01 31.16 35.24

†
 34.89 34.25 35.00 34.73 23.47 27.55 33.68 33.94 34.80 34.46 

HE
*
2(w) 41.51 42.04 39.11 42.17

†
 41.39 38.83 42.15 41.89 38.61 35.91 41.18 41.55 41.95 41.83 

HE
*
1(m) 75.77 76.00 75.53 75.99 75.63 73.49 75.02 75.34 72.62 71.87 75.12 75.30 76.17[c]

†
 75.96 

HE
*
2(m) 75.81 75.91 75.46 75.91 73.51 71.55 74.97 74.81 72.74 72.00 74.94 73.70 75.93[c]

†
 75.55 

Long hedgers 

HE
*
1(w) 39.91 43.11 44.88 42.75 42.69 41.34 42.36 43.21 44.09 42.88 43.59[&] 44.55[&] 44.93[c,&]

†
 44.80[&] 

HE
*
2(w) 49.14 50.50 52.14 50.30 49.00 45.77 49.97 50.35 45.59 51.16 50.08 52.09[&] 52.35[c,&]

†
 52.16[c,&] 

HE
*
1(m) 79.60 80.22 79.10 80.33 79.53 76.94 80.32 80.00 77.72 77.58 79.60 80.23 80.35[c]

†
 80.31 

HE
*
2(m) 79.91 80.51 79.34 80.62 77.31 75.03 80.64 80.26 77.97 77.80 79.66 79.73 80.73[c]

†
 80.53 

Lower partial moment of order 3: LPM3 

Short hedgers 

HE
*
1(w) 45.45 47.37 43.90 47.59 47.61 46.84 47.51 47.31 31.89 38.14 46.57 46.85 47.63

†
 47.32 

HE
*
2(w) 56.04 56.47 53.91 56.59 55.90 52.29 56.43 56.40 51.95 49.61 55.91 56.32 56.63

†
 56.54 

HE
*
1(m) 81.86 82.19 81.97 82.19 81.74 79.53 81.62 81.58 78.59 77.79 81.34 81.83 82.49[b,&]

†
 82.31[c,&] 

HE
*
2(m) 81.99 82.23 81.96 82.25 79.67 77.69 81.66 81.50 78.83 78.05 81.22 80.44 82.41[c,&]

†
 82.08 

Long hedgers 

HE
*
1(w) 58.13 61.86 63.82 61.36 61.39 59.83 61.46 62.55 62.94 61.49 62.34[&] 63.37[&] 63.91[c,&]

†
 63.75[c,&] 

HE
*
2(w) 68.65 69.93 71.40 69.67 68.45 65.00 69.77 69.96 64.79 70.40 69.55 71.33[&] 71.53[c,&]

†
 71.39[c,&] 

HE
*
1(m) 89.87 90.47 90.03 90.57 89.79 87.32 90.53 90.31 88.85 89.08 89.97 90.72[c] 90.87[c,&]

†
 90.77[c,&] 

HE
*
2(m) 90.24 90.86 90.42 90.96 87.78 85.48 90.90 90.67 89.21 89.43 90.12 90.90 91.28[c,&]

†
 91.22[c] 

The table shows the degree of out-sample hedging effectiveness (HE*) achieved in the NG U.S. (Panel A) and NBP U.K. (Panel B) natural gas markets 

for weekly (w) and monthly (m) hedging horizons, using the traditional measure (   
 ) and the Ederington and Salas (2008) (   

 ) approach (see notes in 

Tables 4, 5 and 6). Results are provided under the segmentation to short/long hedgers using HE* measure as the reduction in the relevant lower partial 

moment (see Eq. 15), rather than variance reduction; These are calculated as    
                                  and    

     
                                        , for k = {2,3} and    the futures-spot spread (basis). 
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Figure 1: Discount factor and weighting scheme. The figure illustrates the effect of changing   on the 

importance given to most recent vs. distant observations. This is measured by the discount factor       for a 

sample size of   = 100 observations. The discount factor is plotted for                    ; as   increases, 

the weight assigned to distant observations decreases.   

 

 
Figure 2: Dynamic hedge ratios. The subplots to the left plot the regression-based, MRS (with basis) and 

GARCH (with dynamic correlation) in-sample (December 1998 to May 2018) hedge ratios for the NG (U.S.) 

and NBP (U.K.) natural gas prices using weekly and monthly hedging horizons. The subplots to the right 

display two combinatory (GMV and 1/N) hedge ratios vs. the constant OLS hedge ratio. The first (GMV) is 

considering a hedge ratio combination by weighting all ten individual hedge ratios based on the performance 

of each hedging portfolio (minimum variance portfolio with    ). The second (1/N) is an equally 
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weighted hedging portfolio based on the ten considered cases (Naïve, OLS, OLS w seas, OLS w basis, VAR, 

VECM, MRS, MRS w basis, CC-GARCH and DC-GARCH). 

 

 
Figure 3: Effects of forecast combination parameters ξ (discount factor parameter; see Eq. 8) and η (tuning 

parameter; see Eq. 9) on relative hedging performance. The figure illustrates the performance of forecast 

combination approaches in the NG (U.S.) and NPB (U.K.) markets, in excess of the average individual 

model HE (in terms of basis points). Results are shown under the traditional (HE1; Eq. 3) and Ederington and 

Salas (2008) (HE2; Eq. 5) HE measures for weekly (w) and monthly (m) hedge horizons. The zero plane 

(gray surface) is also plotted for reference.  
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Figure 4: Forecast combination weight structure. The subplots to the left (right) plot the weights assigned to each model 

(Best FC) throughout the out-of-sample period (May 2013 to May 2018) for the NG (U.S.) and NBP (U.K.) natural gas 

prices for weekly and monthly hedging horizons using the traditional HE measure (the Ederington and Salas, 2008, HE2 

approach; see also notes in Tables 4 and 5). 

 

 
Figure 5: Impulse responses of combination weight changes. Estimates of the impulse responses obtained from a panel 

ARX regression of the changes in weights (in basis points) based on the least-squares dummy variable (LSDV) estimator. 

S&P500 implied volatility index (VIX), crude oil implied volatility index (OVX), Economic Policy Uncertainty (EPU), 

absolute spread between spot and futures         and a Dummy which takes the value of one if the all above variables are 

simultaneously at the upper tertile of their empirical distributions are assumed to be exogenous. All variables are in changes 

apart from the        . Weekly (monthly) data comprise panels of 62 cross sections x 260 (60) obs, where 62 = 31 comb x 2 

HE method, i.e., Traditional (HE1) and Predictable spot w basis (HE2). Numbers reported in the Figure are all significant at 

5% level. 


