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In this review, we provide a summary of recent progress in ontology mapping (OM) at a crucial time when

biomedical research is under a deluge of an increasing amount and variety of data. This is particularly

important for realising the full potential of semantically enabled or enriched applications and for

meaningful insights, such as drug discovery, using machine-learning technologies. We discuss challenges

and solutions for better ontology mappings, as well as how to select ontologies before their application. In

addition, we describe tools and algorithms for ontology mapping, including evaluation of tool capability

and quality of mappings. Finally, we outline the requirements for an ontology mapping service (OMS) and

the progress being made towards implementation of such sustainable services.
Introduction
Biomedical research is under a deluge of an increasing amount and

variety of data. Diverse technologies enable more granular mea-

surements from the laboratory bench to the clinical bedside for

personalised treatments. To realise this promise, such data need to

be brought together to build consistent biological knowledge bases

[1]. As part of this process, different concepts, terminologies, and

data models need to be reconciled. This reconciliation is supported

by a variety of knowledge management resources, which cover a

continuous spectrum of ‘semantic expressivity’ (Fig. 1).

At one extreme, we have simple lists, such as controlled vocab-

ularies. Integration is significantly easier when different data
Please cite this article in press as: Harrow, I. et al. Ontology mapping for semantically enabl
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sources use terms from a standardised list, instead of free text.

Resources that have greater semantic expressivity enable more

support for integration and interoperability, for instance leverag-

ing synonyms or translating across languages. At the other ex-

treme of the semantic spectrum, we have ontologies. These are a

set of concepts in a subject area or domain that shows relations

between concepts represented by properties.

Ontologies go beyond lists, thesauri, and taxonomies to provide a

formal description of definitions of conceptual classes and their

relations (one example being their hierarchical structure). ‘Formal’

means that definitions are based on a logical framework, such as the

Web Ontology Language (OWL). This enables a representation of the

meaning of concepts that is machine processable, ultimately allowing

reasoning, generation of new knowledge, and automatic detection of
ed applications, Drug Discov Today (2019), https://doi.org/10.1016/j.drudis.2019.05.020

icense (http://creativecommons.org/licenses/by/4.0/).
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FIGURE 1

The spectrum of semantic expressivity for knowledge management resources. Abbreviation: URI, Uniform Resource Identifier.
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inconsistencies in the semantic model [2]. In addition, Uniform

Resource Identifiers (URI) uniquely reference each class to support

machine processing and interoperability.

One of the strongest examples of a mature ontology in the

biomedical sciences is Gene Ontology (GO) [3,4], which is used

extensively by a multitude of applications and analytical tools [5].

Ideally, each domaininthe biomedical sciences shouldbesupported

by a single reference ontology [6], an idea that was originally a

strategic objective of the Open Biomedical Ontologies (OBO) con-

sortium [6]. However, the real situation is different and finds

numerous overlapping ontologies, each having their own contexts

of application. This creates problems of reconciliation and even

difficulties in selection of the most appropriate resource [7].

Overlap between ontologies happens for a variety of reasons.

One of these is that a single reference ontology often provides

insufficient coverage for a particular application, which gives rise

to the development of application ontologies, such as the Experi-

mental Factor Ontology (EFO). The EFO uses relevant parts of

reference ontologies and cross references (or mappings) between

them [8]. Mapping between ontologies expands the coverage

across large domains, such as anatomy, disease, phenotype, and

laboratory investigation. Mapping between ontologies in different

domains requires the discovery of the evidence for a relationship

through, for example, data or text mining [9,10].

Another reason is that many applications make use of classification

systems, such as Medical Subject Headings (MeSH), Enzyme Commis-

sion (E.C.) nomenclature, Anatomical Therapeutic Chemical Classifi-

cationofdrugs(ATC),orHumanGeneNomenclature(HGNC),which,

although powerful, were neverdesigned asontologies.However, itcan

be very useful to map between such classification systems and ontol-

ogies, which ontology-matching algorithms are able to do [11].

Although application ontologies and mapping to code lists can

be built by manual curation, it is desirable to augment this process

with ontology-matching algorithms [12]. These bring scalability

while reducing the cost of maintenance.

Application of ontologies and their mappings
Ontology application
Controlled vocabularies have been used for many decades, espe-

cially by industry, to ensure the consistency of metadata while
Please cite this article in press as: Harrow, I. et al. Ontology mapping for semantically enabl
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collecting data of an experiment or conducting analysis, often in

laboratory information-management systems [13]. Seamlessly

integrated into applications, controlled vocabularies and ontolo-

gies can speed up the entry of data sets and facilitate the subse-

quent retrieval of data through simple search interfaces. This is

because experimental metadata for a biological assay can comprise

many elements, including creation date, experimenter, batch/

sample information (e.g., tissue or cell type, cell line, etc.), disease

or normal status, and treatment (stimulant, compound, placebo,

or time course) [14].

Ontologies already have an important role in annotating and

organising the vast wealth of experimental, clinical, and real-

world data and their day-to-day usage is well established in the

scientific community. Therefore, it is not surprising that the

important biomedical literature resource, PubMed, developed

and applies the MeSH taxonomy for indexing and searching

journal articles [15]. In pharmacovigilance, adverse events need

to be reported to the US Food and Drug Administration (FDA)

using the MedDRA ontology as a system to encode regulatory

information [16]. Furthermore, the FDA has mandated that the

Study Data Tabulation Model (SDTM), developed by the Clinical

Data Interchange Standards Consortium (CDISC), must be used as

the standard for the submission of study data. The controlled

terminologies of SDTM are integrated with the NCI Thesaurus

[17]. Real-world data provides a final example, where WHO clas-

sifications of disease, ICD-N, have been used for annotation [18].

Given that precision medicine, personalised healthcare, and trans-

lational medicine are increasingly driving modern research and

development in the biopharmaceutical industry, it is vital to

combine data from the vast number of public and private reposi-

tories using all these different classifications and ontologies.

Therefore, ontology mapping is intrinsically tied to data integra-

tion, which is crucial for the successful discovery and development

of innovative treatments of disease.

Ontologies are one of the mechanisms to encode the seman-

tics for an area of human knowledge in a machine-readable

manner [19,20]. They are vital for capturing meaningful rela-

tionships to allow users to search or browse relationships and to

identify patterns from analysis [21–24]. Consider modern search

engines, such as Google and Bing, which use minimal context
ed applications, Drug Discov Today (2019), https://doi.org/10.1016/j.drudis.2019.05.020
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and, in the case of Wikipedia, users are presented with a disam-

biguation page to select the relevant results. This contrasts with

a search of scientific data and literature, which requires more

consistent and reliable results by harnessing controlled vocabu-

laries, classification systems, and ontologies (Fig. 1), especially

when thousands, if not millions, of results need to be processed

automatically. Consider the example of bone disease, as illus-

trated in Fig. 2, where we can see the positions of Legg–Calve–

Perthes disease and Coxa Magna in the MeSH hierarchy, without

any other prior knowledge. Such hierarchical structure of a

taxonomy or ontology can also help with the visualisation of
Please cite this article in press as: Harrow, I. et al. Ontology mapping for semantically enabl

FIGURE 2

The relational position between two bone diseases, Legg–Calve–Perthes Disease
data, so that a user can start with a broad class, such as bone

disease, and then move on to consider more specific, yet related,

diseases.

Ontologies and their mappings have a central role in open

semantically enabled applications, such as Open PHACTS [25]

and Open Targets [26]. Commercial examples of similar applica-

tions are Elsevier’s Pathway Studio [27] and Clarivate Analytics’

MetaCore/MetaBase [28]. In the case of Open Targets, this public

target validation application makes fundamental use of the EFO,

which has been developed and optimised to support such applica-

tions [29]. Many of these powerful applications use automated
ed applications, Drug Discov Today (2019), https://doi.org/10.1016/j.drudis.2019.05.020
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 and Coxa Magna, in the Medical Subject Heading (MeSH) hierarchy.
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text-mining technology powered by ontologies to facilitate search

for subject–verb–object triplets in scientific texts.

The evidence embedded in these applications is often integrated

with graphical visualisation and statistical analysis, where mapped

ontologies are the key components for being able to examine the

underlying biology of a hypothesis or an experiment [26,30–32].

The mapped ontologies vary by application, but typically include

GO, Disease Ontology (DO), Human Phenotype Ontology (HPO),

EFO, MeSH, and NCBI taxonomy. Crucially, such applications

provide links to the literature from which mappings were derived,

which is important to assess the confidence in such information

[30,33].

Mapping between ontologies
Ontology mapping (or matching) is central to providing semantic

access across aggregated data used in knowledge-based products

and services consumed by life science companies, academic insti-

tutions, and universities. When bringing together ontologies and

related resources (Fig. 1), we are faced with different scenarios

reflecting different use cases for mappings.

As mentioned earlier, often different ontologies are used to

annotate the same or similar domains, for example, HPO and

Mammalian Phenotype (MP) Ontology. These ontologies have

been developed independently by different communities or might

be customised to meet specific user needs. In this case, ontology

mapping finds equivalence (exact or synonymous matches) or

relationships in the hierarchy, which can be show narrow or broad

semantic similarity. Another similar example is DO, which is used

widely by the research community, whereas SNOMED CT is used

mostly by healthcare workers and clinicians, for example in the

National Health Service, UK (https://digital.nhs.uk/services/

terminology-and-classifications/snomed-ct). Translational appli-

cations require interoperability by mapping between these two

important ontologies, which has been approached successfully

through lexical mappings supplemented by Unified Medical

Language System (UMLS) concepts [34,35].

Another application of ontology mapping within a domain is

the predictive use of phenotype annotations in different model

organisms. For example, rare human gene mutations can be

annotated by relating homologous mutations to phenotypes in

model organisms for diagnosis of rare inherited diseases [36].

Finally, matching can also relate ontology terms between close-

ly related domains, such as disease and phenotypes [37]. In this

case, we are looking at establishing more generic relations between

concepts, effectively defining a knowledge network. This scenario

is a frequent task in life sciences, where ontology matching can

bridge different domains and support complex research questions.

Challenges and solutions for better mappings
Generating ontology mappings can provide several challenges.

Words in language can have ambiguous meanings that depend on

the context. For example, the English word ‘mole’, in anatomy it is

a skin feature, in chemistry it is a unit of measure, for an animal

there are numerous species of talpid ‘true’ mole or a distantly

related, marsupial mole or golden mole. Beyond the scientific

realm, mole can be a human surname, the name of various

villages, rivers, and creeks, and is also an embedded spy in

an organisation, and so on. This ambiguity means that it is
Please cite this article in press as: Harrow, I. et al. Ontology mapping for semantically enabl
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insufficient to simply match class names, terms, or labels for

successful ontology mapping. Therefore, it is important to make

use of context to resolve ambiguity, which includes background

knowledge and relations among concepts [38]. Another major

challenge to mapping ontologies is managing the consequences

of ontology dynamics, which reflect and represent how scientific

understanding evolves [1,38]. This means that any derived map-

pings have to be maintained, while making sure that source

identifiers and labels are retained. We expand on this challenge

in the OMS section of this review.

A common approach to tackling the challenge of mapping

between different ontologies is to map all the terms to a single

ontology or knowledge resource. Many source ontologies contain

embedded cross-references that can be used as curated matches to

another ontology. An Ontology of Biomedical Associations

(OBAN) is an example of such an approach, which was constructed

as a large-scale, generic term-association model to support con-

struction of a target validation knowledgebase [29]. PhenomeNET

is a further example, where species-specific phenotype ontologies

are mapped based on the overarching, anatomy ontology,

UBERON, which identifies equivalent phenotype features through

anatomical concepts across different species [39,40]. Similarly, the

Monarch Initiative has built a platform for mapping between

phenotypes and genotypes across species, and includes the Mon-

arch Merged Disease Ontology, called MONDO [41].

Guidance, principles, and simple rules for the selection
of ontologies
When several ontologies overlap to cover a scientific domain, we

are faced with the problem of how to select which ontology to use.

In clinical sciences, the best practice is mature enough to be

governed by authorities to meet government regulations, as de-

scribed earlier, whereas, in preclinical and translational research,

best practices and data standards tend to be less mature and even

absent. This situation promises to improve with the MIRO guide-

lines for Minimum Information for Reporting of an Ontology [42].

The Pistoia Guidelines were devised as a pragmatic step to support

the selection of ontologies before the application and mapping of

ontologies. These guidelines are available on a public wiki of

Ontologies Mapping Resources, hosted by the Pistoia Alliance

(https://pistoiaalliance.atlassian.net/wiki/spaces/PUB/pages/

43089928/Ontologies+Mapping+Resources). They comprise of

three types of guideline: general, technical, and content in Table

1. This table shows how the Pistoia guidelines align with the

principles of the Open Biological and Biomedical Ontologies

(OBO) Foundry (http://www.obofoundry.org), which are under

constant development and review by the OBO community. In

addition, Table 1 also shows alignment to the paper entitled ‘Ten

Simple Rules for Selecting a Bio-ontology’ published by Malone

et al. [7].

The suitability of ontologies for a particular application, such as

gene expression analysis or mapping between ontologies, can be

reviewed using the available rules and guidelines. The National

Center for Biomedical Ontology has developed a tool for this

purpose, called the Ontology Recommender 2.0 [43].

‘Sometimes an Ontology is Not Needed at All’ is the tenth

simple rule of Malone et al. [7]. This is because more light-weight

knowledge management systems might be sufficient (see Fig. 1 for
ed applications, Drug Discov Today (2019), https://doi.org/10.1016/j.drudis.2019.05.020

https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://pistoiaalliance.atlassian.net/wiki/spaces/PUB/pages/43089928/Ontologies+Mapping+Resources
https://pistoiaalliance.atlassian.net/wiki/spaces/PUB/pages/43089928/Ontologies+Mapping+Resources
http://www.obofoundry.org
https://doi.org/10.1016/j.drudis.2019.05.020
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TABLE 1

Comparison of guidelines, principles, and simple rules for the selection of ontologies

Type Pistoia Guidelines OBO principles Simple rules paper [7]

Generic License Open Open
Maintenance Maintenance Active development
Versioning Versioning Previous versions available
Users Plurality of users documented; commitment to collaboration Development with the community
Locus of authority Locus of authority

Technical Format Format
URIs URIs Persistence of classes and relationships
Relations Relations
Textual definitions Textual definitions Textual definitions for domain experts
Documentation Documentation
Naming conventions Naming conventions Textual definitions for domain experts
Conserved URIs Persistence of classes and relationships

Content Content delineation Content delineation Specific domain
Content coverage Current understanding reflected
Content quality Textual definitions for domain experts
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examples). Therefore, selection of an ontology or related resource

should be driven by understanding the needs of the users.

Ontologies mapping tool evaluation
Tool requirements and capabilities
A set of minimal requirements can be used to compare the numerous

academic and commercial tools designed for mapping between

ontologies. These functional requirements comprise of three

aspects: (i) user Interface to include visualisation of source ontolo-

gies and mapping alignment editor; (ii) framework to include work-

flow and ontology matching (OM) algorithm; and (iii) import

ontologies or mappings and export of mappings (Fig. 3). These

requirements include elements of the ontology alignment life cycle

that have been described by Euzenat and Shvaiko ([44] Chapter 3).

Such functional requirements can be used to compare and

evaluate the capabilities of public and commercial ontology-

mapping tools. This process was undertaken in 2016, and found

that one academic tool (AML [45]) and two commercial tools

[Infotech Soft (http://infotechsoft.com) and Mondeca (http://

en.mondeca.com)] satisfied more than 80% of the functional

requirements illustrated in Fig. 3.
Please cite this article in press as: Harrow, I. et al. Ontology mapping for semantically enabl
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FIGURE 3

Functional requirements of an ontology mapping tool.
Evaluation of ontology matching algorithms
OM algorithms are computational tools that map between two

ontologies, and have wide application beyond life sciences [44].

The Ontology Alignment Evaluation Initiative (OAEI; http://oaei.

ontologymatching.org) is a mature and open annual challenge

that has operated since 2004. It provides a competitive platform to

showcase and evaluate the performance of latest algorithms.

It is useful to consider the different features and techniques used

by OM algorithms, which can be classified as summarised in Table

2 ([44] Chapter 3). They harness lexical features (e.g., different

names, synonyms, and definitions of concepts), structural, logical,

or hierarchical features (e.g., the relation one concept has with

other concepts within an ontology), extended information about

the source ontologies (e.g., usage in annotations), and exploit

background information (e.g., UMLS) [45].

OM algorithms produce a set of matches between the classes in

the two ontologies being mapped. Such matches might express

equivalence, binary, or multiple relations with a score of similari-

ty. The quality of the predicted matches of the mapping results will

depend on optimising the algorithm parameters, which will be

specific for the ontologies being mapped.
ed applications, Drug Discov Today (2019), https://doi.org/10.1016/j.drudis.2019.05.020
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TABLE 2

Features and techniques used by OM algorithms

Level Technical basis Short description of technique

Element String based Often used to match names, identifiers, and name descriptions of ontological entities
Language based Considers names as words in some natural languages, such as English
Constraint based Deals with internal constraints applied to definitions of entities, such as types, multiplicity of attributes, and keys
Informal resource based Deduces relations between ontology entities based on how they relate to each other
Formal resource based Makes use of formal resources, such as domain-specific ontologies, upper ontologies. and linked data

Structure Graph based Compares source ontologies (including database schemas and taxonomies) as nodes on labelled graphs
Taxonomy based Hierarchical classifications consider only the specialisation relation
Model based Matches source ontologies based on semantic interpretation
Instance based Compares sets of instances of classes to decide whether they match

Knowledge Fact or data based Exploits facts or data stored in relevant knowledgebase or database
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Numerous algorithms were tasked with matching pairs of

disease and phenotype ontologies in the OAEI 2016 challenge

(http://oaei.ontologymatching.org/2016). Predicted mappings

were compared to a ‘silver standard’ from a consensus vote, given

the absence of ‘gold standard’ mappings, in addition to limited

manual evaluation. Four systems (AML [45], FCA-Map [46], Log-

Map(Bio) [47], and PhenoMF [40]) gave the highest performance

for detection of equivalence matches, but all struggled to detect

semantic similarity [37]. It is clear that a combination of automat-

ed and manual curation is required to generate high-quality

mappings [48]. This is analogous to the workflow for protein

annotation, where a combination of automated and manual cura-

tion is used to produce and maintain the protein knowledgebase,

UniProt [49].

Toward services for ontology mappings
Service requirements
Ontologies are dynamic entities that evolve over time. Common

changes include: class addition; class deprecation; combination of

classes; and hierarchical relationships. Therefore, ontology map-

pings are not static resources and need to evolve in concert with

their source ontologies; it follows that any ontology mapping

needs to be provided not only as a one-off process, but also as

an ongoing service [1].

Whereas the most frequently used ontologies are openly acces-

sible, many researchers and organisations build their own ontol-

ogies, either to expand on a particular branch of a public ontology

or for areas that are not well served. Therefore, there are two key

use cases for an OMS: (i) mapping among public ontologies; and

(ii) mapping between public and internal ontologies. The former

can be achieved with a repository of mappings among popular

public ontologies, which has the benefit that it can manage

updates, utilise existing mappings, and generate new ones. The

second use-case can be approached by providing tooling such that

the user can generate bespoke mappings from their internal

ontologies to public ontologies as required.

For these and other use cases, an OMS should be able to be

used at all levels of an ontology, from single terms to entire

branches and ontologies. This give the flexibility that research-

ers need in daily search and integration tasks. It is useful to

contrast an OMS with an identifier mapping service, such as the

BridgeDb framework, which is focused on mapping between

database identifiers [50].
Please cite this article in press as: Harrow, I. et al. Ontology mapping for semantically enabl
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An OMS for mapping among public ontologies should be able to

incorporate existing mapping sets, such as by utilising the cross-

references between ontologies that are commonly supplied as part

of the source ontology. An OMS should also harness an OM

algorithm, in addition to curation, to enable mapping at scale

across whole ontologies. Ideally, it should also allow the addition

of user-curated content and validation of predicted mappings,

assisted by ‘crowd-sourcing’, which has been used for ontology

validation [51].

Existing standards to represent alignments should be used by an

OMS ([44] Chapter 10). In addition, it should provide metadata for

mappings, which include: (i) dynamics: all ontologies and any

mappings between them will change over time; thus, the service

needs to reflect such dynamics using both through manual cura-

tion and automation by OM algorithms. A subset of metadata

should record such dynamics for interoperability and reuse; (ii)

provenance. Users should have clear information on the prove-

nance of any mapping, including ontology sources, version num-

ber, download date, and so on. Specifically, for each mapping, the

service should provide annotation with suitable metadata and

documentation, to enable interoperability and reuse; (iii) quality.

The service should provide the quality metrics for, and within,

mappings. This should include similarity scores for each match

(expected to range from exact and equivalent to close similarity to

broadly similar), an indication of confidence (e.g., validated or

not) and global metrics, such as precision (correctness from sam-

ples) and recall (missing matches compared to standard map-

pings); (iv) license limitations. Some ontologies, for example

SNOMED CT, have license restrictions, which might also apply

to derived products, such as mappings. These restrictions should

be captured as part of the OM metadata.

Implementing a prototype service
A prototype ontology mapping service has been implemented as

part of the Pistoia Alliance Ontologies Mapping project (https://

www.pistoiaalliance.org/projects/ontologies-mapping). The pri-

mary objective of this service is to provide mappings between

ontologies, building on existing EMBL-EBI services for the life

sciences [52]. In particular, the OM repository, OxO (https://

www.ebi.ac.uk/spot/oxo) is being developed to store mappings

(or cross-references) between terms from ontologies, vocabularies,

and coding standards. OxO stores cross-references, which are

curated mappings, embedded in >200 public ontologies hosted
ed applications, Drug Discov Today (2019), https://doi.org/10.1016/j.drudis.2019.05.020

http://oaei.ontologymatching.org/2016
https://www.pistoiaalliance.org/projects/ontologies-mapping
https://www.pistoiaalliance.org/projects/ontologies-mapping
https://www.ebi.ac.uk/spot/oxo
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by the Ontology Lookup Service (OLS). OxO makes it easier to

combine mapping data sets that are labelled in different ways.

Even if different standards are used to annotate data sets, they can

still be made interoperable through OM. Companies can use the

public-domain OMs in OxO to bridge the gap between public and

private research data.

The Pistoia Alliance prototype aimed to build on OxO through

development of an OM algorithm to predict mappings between

public ontologies hosted by OLS. The prototype service focussed

on the phenotype and disease ontology domain for ten mappings

between five public ontologies, namely: HPO, DO, Orphanet Rare

Disease Ontology (ORDO), MP, and MeSH. The mappings pre-

dicted by the algorithm, developed for the OMS, were compared

with silver-standard mappings from consensus voting between

top-performing algorithms in OAEI 2017 [37,53]. The predicted

mappings from this prototype service are stored in the OxO

repository, along with the curated cross-references (mappings)

embedded in all the public ontologies hosted by OLS.

TheOM algorithm (technical details will be disclosed in a planned

technical paper), powering the OMS stored in OxO, is able to detect

matches with high similarity score, where labels and synonyms are

equivalent or similar between ontologies. OxO also stores the man-

ually curated cross-references, which can be missed by the silver

standards. This powerful combination of predicted mappings from

an algorithm and curated mappings is an example of a solution that

can deliver a scalable and sustainable mapping service.

Concluding remarks
This review shows the impressive progress made over recent years

with engineering ontologies and their mappings by utilising mod-

ern tools and services. It describes how this progress enables better

support for semantically aware applications. We highlight crucial
Please cite this article in press as: Harrow, I. et al. Ontology mapping for semantically enabl
challenges that must be recognised and overcome by public and

private enterprise working together in sustainable ways to deliver

the necessary tools and services. The important process of provid-

ing quality mappings between ontologies as a sustainable service

should be supported so that it can mature as a standardised and

consolidated activity.

The current flood of big data in the life sciences, especially from

‘omics sources, brings massive challenges for data management.

Semantic alignment and data standardisation are vital to solve if

we are going to harness modern technologies, such as machine

learning, for future drug discovery. These important challenges are

being met by the biopharma industry through the ongoing

implementation of the Findable, Accessible, Interoperable and

Reusable (FAIR) guiding principles for scientific data management

and governance, which make data ‘findable, accessible, interoper-

able, and reusable’ [54,55]. The interoperability principles of FAIR

are supported by the effective application of ontologies and their

mappings to underpin integration between many relevant sources

of data [2,56].

Acknowledgements
We would like to express gratitude for funding of the Ontologies

Mapping project by paying members of the Pistoia Alliance Inc.

We wish to thank Thomas Liener and Helen Parkinson for helpful

discussions, which have influenced this article. S.J. benefited from

funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement no. 654248

(CORBEL). E.J.R. was supported by the AIDA project, funded by the

UK Government’s Defence & Security Programme in support of

the Alan Turing Institute, the BIGMED project (IKT 259055) and

the SIRIUS Centre for Scalable Data Access (Research Council of

Norway, project no.: 237889).
References
1 Rathore, A.S. et al. (2017) Role of knowledge management in development and

lifecycle management of biopharmaceuticals. Pharm. Res. 34, 243–256

2 Grob, A. et al. (2016) Evolution of biomedical ontologies and mappings: overview of

recent approaches. Comput. Struct. Biotechnol. J. 14, 333–340

3 Ashburner, M. et al. (2000) Gene ontology: tool for the unification of biology. The

Gene Ontology Consortium. Nat. Genet. 25, 25–29

4 Blake, J.A. et al. (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res.

43, D1049–D1056

5 The Gene Ontology Consortium (2017) Expansion of the Gene Ontology

knowledgebase and resource. Nucleic Acids Res. 45, D331–D333

6 Smith, B. et al. (2007) The OBO Foundry: coordinated evolution of ontologies to

support biomedical data integration. Nat. Biotechnol. 25, 1251–1255

7 Malone, J. et al. (2016) Ten simple rules for selecting a bio-ontology. PLoS Comput.

Biol. 12, e1004743

8 Malone, J. et al. (2010) Modeling sample variables with an Experimental Factor

Ontology. Bioinformatics 6, 1112–1118

9 Singhai, A. et al. (2016) Pressing needs of biomedical text mining in biocuration and

beyond: opportunities and challenges. Database 2016 baw161

10 Przbyia, P. et al. (2016) Text mining resources for the life sciences. Database 2016

baw145

11 Winnenburg, R.I. and Bodenreider, O.A. (2014) A framework for assessing the

consistency of drug classes across sources. J. Biomed. Semant. 5, 30

12 Dragisic, Z. et al. (2017) Experiences from the anatomy track in the ontology

alignment evaluation initiative. J. Biomed. Semant. 8, 56

13 Harland, L. et al. (2011) Empowering industrial research with shared biomedical

vocabularies. Drug Discov. Today 16, 940–947

14 Perez-Riverol, Y. et al. (2014) Open source libraries and frameworks for mass spectrometry-

based proteomics: a developer’s perspective. Biochim. Biophys. Acta 1844, 63–76
15 Kim, S. et al. (2016) Meshable: searching PubMed abstracts by utilizing MeSH and

MeSH-derived topical terms. Bioinformatics 32, 3044–3046

16 Wang, L. et al. (2014) Standardizing adverse drug event reporting data. J. Biomed.

Semant. 5, 36

17 Anzai, T. et al. (2015) Responses to the Standard for Exchange of Nonclinical Data

(SEND) in non-US countries. J. Toxicol. Pathol. 28, 57–64

18 Mennini, F.S. et al. (2017) Economic burden of diverticular disease: an observational

analysis based on real world data from an Italian region. Dig. Liver Dis. 49, 1003–

1008

19 Whetzel, P.L. et al. (2013) NCBO Technology: powering semantically aware

applications. J. Biomed. Semant. 15 (Suppl. 1), S8

20 Hoehndorf, R. et al. (2015) The role of ontologies in biological and biomedical

research: a functional perspective. Brief Bioinform. 16, 1069–1080

21 Croset, S. et al. (2016) Flexible data integration and curation using a graph-based

approach. Bioinformatics 32, 918–925

22 Gomez-Cabrero, D. et al. (2014) Data integration in the era of omics: current and

future challenges. BMC Syst. Biol. 8 (Suppl. 2), I1

23 Lapatas, V. et al. (2015) Data integration in biological research: an overview. J. Biol.

Res. 22, 9

24 Zhang, H. et al. (2018) An ontology-guided semantic data integration framework to

support integrative data analysis of cancer survival. BMC Med. Inform. Decis. Mak. 18

(Suppl. 2), 4

25 Williams, A.J. et al. (2012) Open PHACTS: semantic interoperability for drug

discovery. Drug Discov. Today 17, 1188–1198

26 Koscielny, G. et al. (2017) Open Targets: a platform for therapeutic target

identification and validation. Nucleic Acids Res. 45, D985–D994

27 Yuryev, A. et al. (2009) Ariadne’s ChemEffect and Pathway Studio knowledge base.

Expert Opin. Drug Discov. 4, 1307–1318
ed applications, Drug Discov Today (2019), https://doi.org/10.1016/j.drudis.2019.05.020

www.drugdiscoverytoday.com 7

http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0005
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0005
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0010
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0010
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0015
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0015
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0020
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0020
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0025
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0025
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0030
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0030
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0035
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0035
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0040
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0040
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0045
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0045
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0050
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0050
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0055
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0055
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0060
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0060
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0065
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0065
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0070
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0070
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0075
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0075
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0080
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0080
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0085
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0085
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0090
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0090
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0090
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0095
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0095
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0100
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0100
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0105
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0105
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0110
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0110
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0115
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0115
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0120
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0120
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0120
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0125
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0125
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0130
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0130
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0135
http://refhub.elsevier.com/S1359-6446(18)30421-5/sbref0135
https://doi.org/10.1016/j.drudis.2019.05.020


REVIEWS Drug Discovery Today �Volume 00, Number 00 � June 2019

DRUDIS-2475; No of Pages 8

Review
s
�IN

FO
R
M
A
TIC

S

28 Shmelkov, E. et al. (2011) Assessing quality and completeness of human

transcriptional regulatory pathways on a genome-wide scale. Biol. Direct 6, 15

29 Sarntivijai, S. et al. (2016) Linking rare and common disease: mapping clinical disease–

phenotypes to ontologies in therapeutic target validation. J. Biomed. Semant. 7, 8

30 Kafkas, Ş. et al. (2017) Literature evidence in open targets — a target validation

platform. J. Biomed. Semant. 8, 20

31 Maldonado, R. et al. (2018) Deep learning meets biomedical ontologies: knowledge

embeddings for epilepsy. AMIA Annu. Symp. Proc. 2017, 1233–1242

32 Arguello Casteleiro, M. et al. (2018) Deep learning meets ontologies: experiments to anchor

the cardiovascular disease ontology in the biomedical literature. J. Biomed. Semant. 9, 13

33 Garcı́a-Campos, M.A. et al. (2015) Pathway analysis: state of the art. Front. Physiol. 6, 383

34 Raje, S.I. and Bodenreider, O. (2017) Interoperability of disease concepts in clinical

and research ontologies: contrasting coverage and structure in the disease ontology

and SNOMED CT. Stud. Health Technol. Inform. 245, 925–992

35 Dhombres, F. and Bodenreider, O. (2016) Interoperability between phenotypes in

research and healthcare terminologies — investigating partial mappings between

HPO and SNOMED CT. J. Biomed. Semant. 7, 3

36 Petri, V. et al. (2014) Disease pathways at the Rat Genome Database Pathway Portal:

genes in context — a network approach to understanding the molecular

mechanisms of disease. Hum. Genomics 8, 17

37 Harrow, I. et al. (2017) Matching disease and phenotype ontologies in the ontology

alignment evaluation initiative. J. Biomed. Semant. 8, 55

38 Kamder, M.R. et al. (2017) A systematic analysis of term reuse and term overlap

across biomedical ontologies. Semant. Web 8, 853–871

39 Mungall, C.J. et al. (2012) Uberon, an integrative multi-species anatomy ontology.

Genome Biol. 13, R5
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