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Abstract—The competitiveness of modern enterprises heavily
depends on their ability to make the right business decisions
by relying on efficient and timely analysis of the right business
critical data. In large and data intensive companies such as
Equinor, a Norwegian multinational oil and gas company with
more than 20,000 employees, gathering such data is not a
trivial task due to the growing size and complexity of corporate
information sources. As a result, the data gathering task is often
the most time-consuming part of the decision making process,
in particular when it comes to the work processes of Equinor’s
exploration geologists that should find in a timely manner
new exploitable accumulations of oil or gas in given areas by
analysing data about these areas. In this work we present our
experience in addressing this data challenge tast at Equinor.
We have developed and deployed at Equinor a semantic data
access system that relies on the Ontology Based Data Access
(OBDA) approach. Our system is based on our solid theoretical
contributions and has been extensively evaluated at Equinor.

I. INTRODUCTION

The competitiveness of modern enterprises heavily de-
pends on their ability to make the right business decisions by
relying on efficient and timely analysis of the right business
critical data. Equinor ASA, is a Norwegian multinational
oil and gas company headquartered in Stavanger, Norway.
It is a fully integrated petroleum company with operations
in thirty-six countries. One of the factors determining the
competitiveness of Equinor is the ability of its exploration
geologists to find in a timely manner new exploitable accu-
mulations of oil or gas in given areas by analysing data about
these areas. Gathering such data is not a trivial task due to
the growing size and complexity of corporate information
sources. As a result, the data gathering task is often the
most time-consuming part of the decision making process.

Indeed, Equinor geologists often require data that is
stored in multiple complex and large data sources that
include EPDS, Recall, CoreDB, GeoChemDB, OpenWorks,
Compass, and NPD FactPages (see Section II for more
details). These DBs are mostly Equinor’s corporate data
stores for exploration and production data and Equinor’s
interpretations of this data. Some of these DBs has been
created long time ago, can hardly be accessed by geologists
without a help from IT personnel due to the complexity
of their schemata, e.g., EPDS currently has about 3,000

tables with about 37,000 columns, and a common informa-
tion need of a Equinor geologist corresponds to an SQL
query with hundreds to thousands of terms and 50–200
joins. Moreover, the majority of EPDS table names are not
meant to be read by end-users, e.g., EXTOBJIND_BKUP,
RCA_GRDENS, and SSRF_RCK_SEG are such table names,
while the semantics of a very few others is more understand-
able, e.g., DOCUMENT, WELLBORE, and CORE. Construction
of queries over such schemata is not possible for Equinor
geologists and thus they have to pass their information needs
to IT specialists who then turn the needs into SQL queries.
This drastically affects the efficiency of finding the right data
that should back decision making.

Ontology Based Data Access (OBDA) [1] is a prominent
approach to data access in which an ontology [2]1 is used
to mediate between data consumers and data sources (see
a general diagram of OBDA in Figure 1). The ontology
provides ‘a single point of semantic data access’ for data
consumers, and allows either to export data in a semantic
format or to pose queries over the integrated data sources
in terms of a user-oriented conceptual model that abstracts
away complex implementation-level details typically en-
countered in database schemata. Domain experts are thus
able to express information needs in their own terms without
any prior knowledge about the way the data is organised at
the source, and to receive answers in the same intelligible
form. The ontology is connected to the data via a set of
mappings: declarative specifications that relate ontological
terms with queries over the underlying data. OBDA systems
automatically translate ontological queries, i.e., expressed in
the SPARQL query language2, into database queries, i.e.,
expressed in SQL, and delegate execution of SQL queries
to the database systems hosting the data. OBDA is a natural
fit to address the Equinor data access challenges described

1An ontology us a semantically rich conceptual model of the problem
domain that captures the domain in terms of classes and binary properties
that relate entities that populate classes and assign data values to these
entities. In the last decade a number of standardised machine processable
ontology languages have been developed, where the most popular are W3C
standardised RDF (w3.org/RDF/), OWL 2 (w3.org/TR/owl2-overview/).
Ontologies have been successfully used in many applications, including
Web search [3], Medicine [4], E-commerce [5], Media [6], etc.

2https://www.w3.org/TR/rdf-sparql-query/
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Figure 1. General scheme of the OBDA approach.

above: if complex database schemata are presented to users
via an ontology, then they can formulate queries in terms
of classes and properties in an object-centric fashion, e.g.,
asking for all wellbores penetrating a rock layer of a specific
geological age. Moreover, OBDA is a so-called virtual
approach, providing an access layer on top of databases
while leaving the data in its original stores. Thus, OBDA
has the potential to improve data access with a minimal
change to existing data management infrastructure.

OBDA has recently attracted a lot of attention and a
number of systems have been developed, e.g., [7], [8], [9],
[10], [11]. However, to the best of our knowledge, the
following three critical problems have attracted only limited
attention and in isolation:

(i) How to create ontologies and mappings for a deploy-
ment of an OBDA system in a company?

(ii) How to ensure that OBDA query processing is efficient
in practice, that is, comparable to the user’s expecta-
tions or comparable to the query processing time over
company’s database backends?

(iii) How to ensure that the target users are actually able to
efficiently express their information needs against an
OBDA system?

These problems have high practical importance for OBDA
systems in general and in particular for effective and effi-
cient deployment and use of an OBDA system in Equinor.
Indeed, deployment of an OBDA system comes with a high
modelling cost due to the complexity of the domain and
of the database schemata. Moreover, unoptimised OBDA
query processing may become impractical when the on-
tology and/or database are large [12]. Finally, expressing
information needs over an OBDA system as a query written
in a query language, e.g., SPARQL, is error prone and
requires substantial training which significantly limits the
usability of an ODBA system in a company.

In this paper we report our experience from a large scale
4-years long project with Equinor where we addressed
the aforementioned OBDA limitations, developed our own
OBDA platform, deployed and evaluated it at Equinor.

In particular, we developed (i) novel semi-automatic tech-
niques to bootstrap (extract) new ontologies and mappings
from relational databases and to integrate existing ones,
and (ii) novel optimisation techniques to improve query
processing by producing compact and efficient SQL queries,
and then by carefully planning their query execution strategy
over one or several federated DBs. (iii) a novel OBDA
oriented visual query formulation interface. We then imple-
mented these techniques and developed an OBDA deploy-
ment, query optimisation, and query formulation systems
which were integrated in an end-to-end Euqinor semantic
access platform.

We deployed and evaluated our platform at Equinor in
order to improve the data gathering routine of Equinor’s
geologists. The deployment was done over seven prominent,
complex, and large data sources: EPDS, Recall, CoreDB,
GeoChemDB, OpenWorks, Compass, and NPD FactPages.
These DBs are mostly Equinor’s corporate data stores for ex-
ploration and production data and Equinor’s interpretations
of this data, and they are heavily used by Equinor geologists.
We then evaluated our platform over the aforementioned
seven DBs using three metrics:

• quality of the system’s deployment,
• efficiency of the system’s query processing, and
• effectiveness and efficiency of the system’s query for-

mulation support.

In order to objectify the measure of success and facilitate all
three metrics, we gathered a catalogue of queries collected
from Equinor geologists. These queries cover a wide range
of typical information needs, and they are hard to formulate
over Equinor databases.

In order to show the quality of our semi-automatic deploy-
ment, we showed that the system enables formulation of the
queries in the catalog, i.e., it provides enough ontological
terms to do so, it covers a wide range of commonly used
ontological terms from the geological domain, and the
ontology and mappings in combination reflect expectations
of geologists, that is, the answers to queries from the catalog
correspond to expectations of geologists.

In order to show the efficiency of our platform’s query
processing, we conducted a number of experiments. Most
of our experiments showed that our platform can handle
queries from the Equinor’s catalog reasonably well, that
is, in time comparable to the time reported by existing
Equinor’s systems.

In order to show the effectiveness of our platform’s query
formulation support we showed that the semantic queries
that geologists have to formulate are much simpler than the
data queries over the Equinor databases behind our OBDA
deployment. We also conducted a series of user studies to
show that the Equinor’s catalog queries can be formulated
by Equinor’s target personnel in a reasonably short time.

Finally, we integrated our platform in Equinor’s infras-
tructure in order to facilitate the update of the system by
Equinor’s business units. In particular, we integrated the



platform with ArcGIS3 and Petrel4 in order to show query
results computed by the platform on geological maps.

The paper is organised as follows: in Sec. II we explain
why findding data at Equinor is hard; in Sec. III we present
our system for semantic data access; in Sec. IV we explain
how we prepared our system for deployment at Equinor by
developing ontologies and mappings; in Sec. V we present
how we deployed and evaluated our system at Equinor. This
paper reports our experience in the Optique project [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22].

II. FINDING DATA IS AS HARD AS FINDING OIL

The main task of exploration geologists in oil companies
like Equinor, is to find exploitable deposits of oil or gas
in given areas and to analyse existing deposits. This is
typically done by investigating how parts of the earth crust
are composed in the area of interest. By combining infor-
mation from wellbores, seismic investigations, and general
geological knowledge, geologists can, for example, assess
what types of rock are in the reservoir and intersected along
the wellbore. The geologist does this typically in two steps:
(i) find relevant wellbore, seismic, and other data in Equinor
DBs, (ii) analyse these data with specialised analytical tools.

Equinor has a number of databases of different formats
and sizes that have different content and provided by differ-
ent vendors and that geologists have access to and need to
analyse: (i) Exploration and Production Data Store (EPDS)
is the Equinor’s central repository of geological data of the
type described above, i.e., for exploration, production data,
and its interpretations. EPDS is stored in an Oracle database.
It was created about 15 years ago and it currently has about
3,000 tables and views that have about 37,000 columns all
together; (ii) Core DB contains information about samples
taken from the wellbore, and measurements done on them
(iii) Openworks is a project database that contains work
in progress. (iv) Recall contains wellbore logs, that is,
measurements made down along the wellbore, both during
drilling, and on later occasions; (v) GeoChem contains,
mostly spectrometry, measurements from the wellbore in
the field of geochemstry; (vi) Compass has geometric and
geographic information about wellbores; (vii) Norwegian
Petroleum Directorate FactPages (NPD FP) is an external
data source governed by the NPD, which reports to the
Norwegian Ministry of Petroleum and Energy.

Equinor geologists typically access data via a variety of
query interfaces and data extraction tools, such as geograph-
ical information system (GIS) tools and specialised data
manipulation tools, that we shall collectively refer to as
access points. The flexibility of the access points is limited
and in general users can control them only by inserting
values for certain query parameters. When information needs
cannot be satisfied with any of the available access points,
geologists, possibly with the help of IT staff, try to combine

3https://www.arcgis.com/
4https://www.software.slb.com/products/petrel

Figure 2. Each box in this FME diagram describes a data manipulation
task. The contents of the boxes are blurred for privacy reasons.

answers obtained from several access points. In some cases,
geologists have to contact IT staff to provide a new access
point. Since access points are typically based on materialised
special purpose database views, to make a new view or
to modify an existing one, IT staff typically use external
tools, such as Feature Manipulation Engine (FME).5 The
process of making such view consists of the three ETL
steps (extracting, transforming, and loading data) Building
such ETL processes that establishes an access point for
a complex information need consists of a myriad of data
access and processing steps, many of which require deep
knowledge of the data that is being processed and how it is
represented. Figure 2 shows an excerpt of an FME process
that establishes an access point for gathering the information
for the information need about overlapping core samples that
we took from Equinor and anonymised.

It is common that Equinor geologist have to involve
IT staff for data access especially when geologists need
to ‘explore’ the data, e.g., in the case when the concrete
information need is not clear and depends on the available
data or when a new access point has to be created. Thus,
IT staff become the de facto mediators between geologists
and databases and this is the case not only for Equinor
but for large and data intensive companies in general [23].
In practice, it is often the case that the availability of IT
personnel that both understand the information need of the
geologist and the inner workings of the data sources and
tools necessary to answer the information need is scarce, and
such people are often overloaded. Moreover, development
of a new access points is a very time consuming process
and may take up to several weeks; e.g., in Equinor it
commonly takes up to several days to produce an access
point that completely answers the required information need.
The concrete time of course depends on the complexity of
the query task and the degree of the involvement of the
IT staff. As the result, the IT staff involvement became the
(time) bottleneck of the data access.

There are around 900 geologists and geophysicists in
Equinor and accessing data is their routine. Currently, if the
access is done via existing access points, then the data can

5http://www.safe.com/



be extracted relatively fast, while the average turnaround
for new access points is about four days. Reducing this
time from several days to several hours would potentially
bring a significant saving by improving the effectiveness
of Equinor’s exploration department, which is key to their
overall competitiveness and profitability.

III. SEMANTIC DATA ACCESS FOR EQUINOR

One way to reduce the data access time is to provide
Equinor geologists with a way to express their information
needs to the system directly, without an intervention of the
IT staff. We now describe the Ontology Based Data Access
(OBDA) approach that aims such direct semantic access.

The main idea behind OBDA [1] is to provide the user
with access to the data store via the use of a domain specific
vocabulary of classes, i.e., unary predicates, and properties,
i.e., binary predicates, that the user is familiar with. This
vocabulary is related to the database schema via view defini-
tions, called mappings; thus, technical details of the database
schema are hidden from end-users. The user formulates
queries in terms of the classes and properties in an object-
centric fashion. Queries over the domain vocabulary are then
unfolded into queries over the database schemas and exe-
cuted over the data by DBMS. An important feature of the
OBDA approach is that the domain vocabulary is enhanced
with a set of formal axioms that constitute an ontology, In
contrast to database constraints, ontological axioms can be
exploited to enrich query answers with implicit information.
Enrichment of answers is done via logical reasoning: a user
query Q over the domain vocabulary can be rewritten into a
new query over this vocabulary that is logically equivalent
to Q w.r.t. the ontology and ‘absorbs’ a fragment of the
ontology relevant for answering Q.

In our project we decided to apply OBDA in Equinor but
this required from us to address the following challenges:
C1. The first challenge is to obtain the required components

to install an OBDA system, i.e., ontologies and map-
pings. To overcome this we developed a bootstrapper
that is able to extract ontologies and direct mappings
from relational schemata.

C2. The second challenge is to guarantee that our OBDA
system is able to process semantic queries over massive
amounts of data, as in Equinor. Since query processing
in OBDA requires rewriting, unfolding, and query ex-
ecution with an RDBMS, this is not a trivial task.

C3. The third challenge comes with the assumption that
the users can formulate queries over the ontological
vocabulary. SPARQL is the standard query language
over ontologies; however, it is not end-user oriented.
Thus we need to develop a query language tailored for
users that are not familiar with formal query languages.

In order to address these Equinor challenges we developed
a semantic data access platform and its high level architec-
ture is in Figure 3. The platform has two user roles: the end-
user, in our case typically a geoscientist that wants some
specific access to data, and the IT-expert, whose job it is

End-user

Federated Data Sources

Figure 3. Architecture of our Semantic Platform.

in part to provide such end-users with access to data. The
platform consists of various components that are integrated
in a common framework. Ontologies, mappings, queries and
other specifications, like SPARQL repository settings, are
stored in a central repository that all components can access.

In the following we describe the different modules of the
Semantic Equinor platform along with the challenges they
address in parenthesis:

A. Deployment Support

Our platform equips the IT-expert with interfaces to setup
and maintain the platform and its artefacts, in particular
our deployment module can construct ontologies and map-
pings over the data sources using the data schemas as
input [24]. We now give a short overview of what our
deployment support can do. To this end, recall that an
OBDA specification [1] is defined as a 4-tuple composed
by an ontology vocabulary V , a set of axioms, i.e., an
ontology O, a set of mappings M and a database schema S.
An OBDA instance is an OBDA specification where the
database schema S is replaced by D, a database instance
for S, that satisfies O and M [1]. The deployment module
supports the following tasks for bootstrapping ontologies and
mappings from RDBs in order to create an OBDA instance.
(i) Bootstrapping: Given a relational database D, generate
an instance (D,V,O,M). This task can be naturally divided
into two sub-tasks. Vocabulary and Ontology generation:
Given D, create a vocabulary V and an ontology O over
V . Mapping generation: Given D, V , and O create a set
of mappings M relating D with V . (ii) Importing: Given
an instance (D,V,O1,M) and an ontology O2, return an
instance (D,V,O,M), where O is the alignment of O1

and O2. The bootstrapping is based on information from
the database schema and statistics on database instances and
addresses Challenge C1 above.

B. Query Transformation, Planning, and Execution

Queries over ontologies (expressed in SPARQL) posed
by the users to the system are processed by our query



Figure 4. Our visual query formulation tool.

transformation and planning module, and then executed by
our execution component. They addresses Challenge C2
above and we refer the reader to [14] for technical details
that are out of the scope of this paper.

The query tranformation module considers the informa-
tion in the ontology, mappings, data source schemas, and
additional optimisation settings, to transform the SPARQL
query into an optimised federated SQL query over all the
sources connected to the platform. The module performs
several optimisations that address the following: (i) redun-
dancy in SPARQL queries where SPARQL fragments may
be subsumed by other SPARQL fragments within the same
query; (ii) inefficiency of rewriting that is in the worst case
exponential in the ontology size. Additional optimisations
are performed on the unfolding of SPARQL queries to
SQL queries that address: (i) redundant unions caused by
redundancies in the bootstrapped ontology and mappings;
(ii) redundant joins originating from the fact that database
n-ary relations are mapped to RDF ternary relations.

The SQL query created in the previous step is passed on to
our query planning and execution module that deconstructs
the SQL query and orchestrates the evaluation of the query
parts to the correct underlying data sources. The data sources
evaluate the query parts as any other SQL query and return
the results back to query execution module, which assembles
the query answering results of the sources to form the
final result of the end-user query. In order to perform
cost estimation of different query plans, data statistics are
obtained for all external tables that are referenced in the
mappings. A transformation-based optimiser has been devel-
oped, that takes into consideration common subexpressions
coming from different parts of a query in order to find
an efficient execution plan. The option to push specific
operators, like joins, to external databases is considered
as a post-optimization step. After the final execution plan
has been chosen, data transfer operators import external
data. An intermediate result caching mechanism has also
been implemented, so that a different eviction policy can be
specified per data source. Existence of temporary results in
this mechanism is taken into consideration during optimiza-
tion and can lead to important improvements by avoiding
execution the the external sources.

C. Query Formulation
The end-user interacts primarily with our visual query

formulation tool that addresses the above Challenge C3
and that allows to formulate SPARQL queries over the
ontological vocabulary without any prior knowledge of
SPARQL: by iteratively combining visual components and
setting filters [19], [15]. Such queries are then sent to the
query transformation module described above. The client
side interface of our query formulation tool is driven by
information in the ontology, and this information is fed
to the client by a server side part that can also exploit
ranking using query logs to improve the user’s efficiency
and user experience. Our visual query formulation tool is
composed of communicating widgets that offer flexibility,
modularity, and adaptability, see Figure 4 for an example
Equinor query formulated in our tool. In Equinor’s case
five widgets are adopted for: (i) navigating through the
concepts and roles of an ontology (widget W1 in Figure 4);
(ii) visual representing the query as a directed graph (widget
W2); (iii) performing selection and projection operations on
attributes of a concepts (widget W3); (iv) presenting sample
results; (v) constraining attributes by value selection from a
wellbore map.

IV. ONTOLOGIES AND MAPPINGS FOR EQUINOR

The use of our OBDA platform at Equinor required
the development of appropriate ontologies and mappings.
We now present Equinor requirements for ontologies and
mappings and then explain how we developed them.

A. Practical Requirements to Ontologies and Mappings
Clearly, the main requirement is that our OBDA solution

should enable efficient formulation of information needs
from Equinor geologists. In order to achieve this, we con-
ducted interviews with Equinor geologists and IT experts
who support them by creating access points. This gave us
a few hundreds of information needs expressed in English,
that look as follows:

1) In my area of interest, e.g., the Gullfaks field, return
wellbores penetrating a specific chronostratigraphic
unit, and information about the lithostratigraphy and
the hydrocarbon content in the wellbore interval pene-
trating this unit.

2) Show all core samples overlapping with Brent Group.
3) Show all permeability measurements in Brent.

Then, we aggregated thees needs in patterns since many
of them asked about essentially the same (or very similar)
entities but relied on different concrete ‘constants’, e.g.,
several needs were about penetration of stratigraphic layers
and they differed only on the names of concrete layers.
This aggregation gave us a Equinor query catalog of 73
representative Equinor queries in SPARQL, with references
to the underlying information needs expressed in natural
language. Clearly, our collection of both information needs
and corresponding queries is not exhaustive—it is only a
sample of what geologist typically ask. At the same time,



bootstrapped

bootstrapped & manual

SE

manual

Figure 5. How we create an OBDA instance over a given database.

as we verified with domain experts, the Equinor query cat-
alogue provides a good coverage of topics that are typically
of interest for Equinor geologists. From this we derived
the first natural minimum requirement for the ontology and
mappings:

Requirement 1: The ontology should enable for-
mulation of queries from the Equinor query cata-
log and mappings should enable answering these
queries.

To fulfil Requirement 1, the ontology must contain all the
terms occurring in the catalogue. For example, the example
information need 1 presented above contains the terms well-
bores, penetrating, chronostratigraphic unit, lithostratigra-
phy, hydrocarbon content, and wellbore interval. All in all
the catalogue contains more than 150 relevant domain terms.
As we verified with Equinor geologists, the terms occurring
in the catalogue are important, but, as expected, do not
provide a sufficient domain coverage; that is, geologists
need many more domain specific terms for expressing their
information needs. Via interviews with geologists, we deter-
mined six domains that should be reflected in the ontology:
geospatial, geometrical, enterprise, production, seismic and
oil related facilities, which gave the following requirement:

Requirement 2: The ontology should cover a
wide range of geological domain terms including
the ones from the catalogue and the six relevant
domains.

A desired requirement of the ontology and mappings
is, not only to cover the necessary vocabulary to enable
the formulation of queries, but also to enable the correct
answering of these queries.

Requirement 3: The ontology and mappings
should lead to the expected query results in the
OBDA solution.

B. Development of Ontologies and Mappings

In order to meet the aforementioned requirements, the
ontology developed for Equinor consists of two parts. The
fist part was bootstrapped from the Equinor databases us-
ing our bootstrapping module. For example, running the
bootstrapper over the EPDS database extracted an ontology
comprising 3,329 classes, 68,737 properties, and 139,037
axioms from explicit and implicit constraints. See Table I
for the complete list of ontology metrics. The second part of
the ontology was manually developed by us together wit the

Equinor engineers. It is called the Subsurface Exploration
(SE) ontology and it covers parts of the petroleum subsurface
exploration domain with a special focus on the information
needs (i.e. query catalog) to meet Requirement 1. This
includes concepts and relations for describing, e.g., fields,
wells, wellbores, and subsurface conditions and environ-
ments. The SE ontology contains 106 classes, 49 object
properties, 42 datatype properties, and 520 logical axioms.

Figure 5 shows an overview of the resulting OBDA
instance for each of the Equinor databases together with
the (imported) SE ontology. Next we provide more details
about the creation of the OBDA instance.

The bootstrapped part helps us to meet both Require-
ment 1 and Requirement 2 in order to include a broader
set of terms which may be relevant for future information
needs covering the six indentified domains. The bootstrapped
ontologies and the SE ontology were aligned using the tech-
niques described in Section III (see column Align in Table I).
Special care was taken to avoid introducing unwanted con-
sequences: for instance the alignment techniques will avoid
adding alignment axioms that would lead to inconsistencies,
or faulty consequences like Well v WellBore that are not
supported by the input ontologies [25] and would prevent
meeting Requirement 3.

Most of the axioms in the ontologies, including all boot-
strapped axioms, fall in the OWL 2 QL profile, which is
required for OBDA to guarantee correctness in the query
rewritting (see Table I). Examples of OWL 2 QL axioms
are NaturalGasLiquid v Petroleum (natural gas liquids are
a sort of petroleum), Wellbore v ∃hasLicense (each wellbore
has a license associated to it), and Company v ∃hasName
(each company has a name). The SE ontology contains a
few non-OWL 2 QL axioms, which we approximated in
OWL 2 QL using the techniques of [26].

In order to fulfil Requirement 3, the SE ontology was
manually linked via R2RML mappings to the data sources:
EPDS, OpenWorks, Recall, CoreDB and GeoChemDB and
a total of 75 mappings were created. The bootstrapped
mappings were also complemented with manually create
complex mappings since there were cases where the boot-
strapped mappings did not sufficiently reflect their relation to
the correspondent database in order to meet the information
needs. See Table II for metrics about the manually created
and bootstrapped mappings.

The column Federated contains mappings where the
source SQL query touches more than one database. These
mappings are only usable in a federated OBDA setting. All
the other mapping rules have SQL queries that each selects
data only from a single database.

We try to avoid such federated mappings because of
Equinor policy on SQL queries: Because of the complexities
in the SQL schemas, and the rate of change, there is for each
database a single team of people who are tasked with the
writing of all SQL queries towards that database. Requiring
these teams to overlap is organizationally hard, hence, no
single person should have to be able to write SQL towards



Table I
ONTOLOGY METRICS FOR THE SUBSURFACE EXPLORATION (SE) ONTOLOGY, AND FOR ALL BOOTSTRAPPED (BOOT) ONTOLOGIES, WHICH ARE ALSO

ALIGNED (ALIGN) WITH THE SE ONTOLOGY. THE METRICS ARE CALCULATED BY THE OWLAPI JAVA API. ZERO- AND FALSE-VALUES ARE
REMOVED FROM THE TABLE TO INCREASE READABILITY.

SE EPDS Recall GeoChemDB CoreDB OpenWorks
Boot Align Boot Align Boot Align Boot Align Boot Align

Overview
Axioms 759 433 624 434 545 15 358 16 263 73 024 73 929 1 140 2 046 212 609 213 519
Logical axioms 520 139 037 139 576 4 895 5 419 22 280 22 804 363 888 63 666 64 195
Classes 106 3 329 3 435 35 141 136 242 16 122 1 472 1 578
Object properties 49 5 560 5 609 17 66 15 64 21 70 3 734 3 783
Data properties 42 63 177 63 219 1 853 1 895 9 329 9 371 117 159 34 581 34 623
Individuals 6 1 8 1 7 1 7 1 7 1 7
Imports 1 1 1 1 1 1 1 1 1 1 1

Profiles
OWL2 X X X X X X X X X X X
OWL2 QL X X X X X
OWL2 EL X X X
OWL2 RL

Class Axioms
SubClassOf 150 12 034 12 187 122 275 442 595 46 199 4 988 5 141
Equivalent 16 1 1 2 6
Disjoint 188 188 188 188 188 188
GCI count
Hidden GCI Count 24 1 2 3 11
Max. superclasses 2 2 2 2 2 2
Avg. superclasses 1.019 1.0 1.001 1.0 1.014 1.0 1.008 1.0 1.016 1.0 1.001
Multiple inheritance 21 21 21 21 21 21

Object Property Axioms
SubPropertyOf 20 5 001 5 021 10 30 2 22 9 29 1 647 1 667
Equivalent
Inverse 12 12
Disjoint
Functional 9 9 9 9 9 9
InverseFunctional
Transitive
Symmetric 1 1 1 1 1 1
Asymmetric
Reflexive
Irrefexive
Domain 37 3 506 3 543 14 51 14 51 17 54 1 916 1 953
Range 38 3 256 3 294 17 55 15 53 21 59 2 124 2 162
SubPropertyChainOf

Data Property Axioms
SubPropertyOf 12 32 041 32 053 1 421 1 433 5 878 5 890 53 65 14 262 14 274
Equivalent
Disjoint
Functional 15 15 15 15 15 15
Domain 24 40 376 40 400 1 458 1 482 6 600 6 624 100 124 18 143 18 167
Range 20 42 823 42 843 1 853 1 873 9 329 9 349 117 137 20 574 20 594

Annotation Property Axioms
Annotations 39 222 510 222 687 8 547 8 724 41 253 41 430 612 789 109 145 109 322
Domain
RangeOf

Individual Assertions
Class 6 6 6 6 6 6
ObjectProperty
DataProperty
NegativeObjectProperty
NegativeDataProperty
SameIndividual
DifferentIndividuals

more than one database. This implies that each single SQL
query also should only be towards a single database. Future
work is to explore the implementation of SWRL rules to
replace these federated mappings.

Together with Equinor geologists we manually evaluated
sample classes and properties form the constructed ontolo-
gies. As the result 44% of the classes in the query catalog
have a good (lexical) match (greater or equal 0.8) with
terms of the bootstrapped ontology; furthermore, 29% of the

classes are fully (lexically and structurally) covered (i.e., true
positives), while 19% of the matches are semi-true positives.

V. DEPLOYMENT AND EVALUATION AT EQUINOR

We deployed our platform at Equinor using the ontologies
and mappings that we discussed in the previous section. We
now present how we integrated our platform in the Equinor’s
infrastructure and then how we evaluated it.



Table II
MAPPING METRICS. EACH COLUMN REPORTS NUMBERS FOR ONE MAPPING COLLECTION, WHICH EACH TARGET ONE DATA SOURCE. UNLESS

LABELED Boot. (BOOTSTRAPPED), THE MAPPING COLLECTION IS MANUALLY CONSTRUCTED.

Datasource: SE EPDS Recall CoreDB GeoChemDB Open Works Federated
Boot. Boot. Boot. Boot

Mappings
rr:TriplesMap 75 3111 5 34 17 15 11 135 10 1303 1
rr:sqlQuery 75 0 4 0 15 0 11 0 9 0 1
rr:tableName 0 3111 0 34 0 15 0 135 0 1291 0
rr:TermMap 189 0 14 0 39 0 18 0 25 0 2
rr:PredicateMap 0 0 0 0 0 0 0 0 0 0 0
rr:ObjectMap 114 43882 9 1472 22 117 7 6614 15 20071 1
rr:GraphMap 0 0 0 0 0 0 0 0 0 0 0
rr:PredicateObjectMap 114 43882 9 1472 22 117 7 6614 15 20071 1
rr:RefObjectMap 0 137 0 0 0 0 0 0 0 181 0
rr:Join 0 0 0 0 0 0 0 0 0 0 0
rr:subject 0 0 0 0 0 0 0 0 0 0 0
rr:predicate 48 43882 7 1472 12 117 7 6614 12 20059 1
rr:object 0 0 0 0 0 0 0 0 0 0 0
rr:class 26 3111 0 34 7 15 5 135 6 1279 0

Database
Sum tables 150 3111 4 34 29 15 39 135 15 1291 3
Sum distinct tables 44 3111 1 34 7 15 9 135 7 1291 3
Min. joins per triplemap 0 0 0 0 0 0 0 0 0 0 2
Max. joins per triplemap 6 0 0 0 4 0 3 0 3 0 2
Avg. joins per triplemap 1.0 0.0 0.0 0.0 0.933 0.0 2.545 0.0 0.667 0.0 2.0

Ontology
Sum distinct ontology terms 74 46993 7 1506 19 132 12 6749 18 21338 1

Figure 6. Our Semantic Platform at Equinor

A. Integration in Equinor’s Infrastructure
Equinor has made available ten servers exclusive to our

project. Our servers communicate with Equinor databases
using the ordinary Java Database Connectivity (JDBC) inter-
face. Equinor users interact with the platform via hypertext
transfer protocol (HTTP/HTTPS) and may be authenticated
through an lightweight directory access protocol (LDAP)
service. An overview of the system architecture of these
servers can be seen in Figure 6.

Moreover, our platform is integrated with GIS client tools
at Equinor using the Linked Open Data for Web Feature
Services Adapter (LOD4WFS)6[27]. The adapter is used to
translate the result of SPARQL SELECT queries into Web
Feature Services (WFS) that may be directly read by GIS
tools. The adapter installed at Equinor is set up to synchro-
nise with the queries in the collection of queries registered in
our OBDA platform that contain geographical data. Equinor
users may hence use our visual query formulation tool to
formulate queries that output geographical data, save the

6https://github.com/jimjonesbr/lod4wfs

query to this collection, and then immediately execute the
query from the GIS client tool where the results of the query
will be displayed. Figure 7 shows a screenshot that illustrates
how results of querying from a GIS client tool look like. The
list of available queries/WFS layers that may be fetched from
our OBDA platform are also available directly from the GIS
tool. This usage pattern shows how our platform platform
can be used to efficiently share queries across the enterprise.
Figure 8 shows a screenshot of how our semantic platform
is integrated with the Petrel system.

B. Evaluation of Visual Query Formulation

Since the goal of our OBDA deployment is to make
gathering of data from EPDS more efficient; this leads us to
the next requirement:

Requirement 4: Queries from the Equinor cat-
alogue should be expressible in our visual query
system. Moreover, these queries expressed over the
ontology should be much simpler than the data
queries in the corresponding access points.

We evaluated our solution against this requirement with
positive result. By analysing Equinor query catalogue we
observed that 83% of its queries are either linear or three-
shaped conjunctive queries and the others contain aggregate
functions while a very few of them contain negation. No
query in the catalogue has a cycle. Therefore, a visual query
formulation system should primarily support tree-shaped
conjunctive queries and aggregation. Data sources at Equinor
have a spatial dimension; therefore, domain experts could
greatly benefit from an interaction mechanism where maps
are used. This requires us to provide a domain specific map
component to address spatial data sources. Our visual query
formulation tool meets these requirements as it is combines
multiple representation and interaction paradigms through



Figure 7. ArvGIS and the Semantic platform integration.

various widgets including a map widget. Currently, 67% of
the queries in the query catalogue are supported, that is,
tree-shaped conjunctive queries and queries with aggregation
(i.e., excluding queries with negation).

Expressing Equinor catalog queries over the ontology
requires from 3 to 13 ontological terms, and the longest
query contains 23 terms. These queries are quite simple
and contain 8 and 13 terms only. At the same time, the
Equinor access points corresponding to such queries are
based on complex SQL queries that involve not less than
dozen of tables, not less than 25 statements in the WHERE
clause with not less than 11 technical statements of the
form ‘T.A is not null’ that ensure correctness of query
execution, and not less than 10 joins. This provides clear
evidence that the catalogue queries over the ontology are
much simpler than the corresponding access point queries.
Moreover, expressing catalogue queries over the ontology is
relatively easy and could be done quite quickly by Equinor
geologists—during user studies they did it in one day.

C. Evaluation of Query Processing
The final requirement is about the system’s efficiency:

Requirement 5: Execution time of queries from
the Equinor catalogue over our OBDA deployment
should be similar to the data extraction time of
the corresponding access points even in the case
of data federation scenario.

We conducted extensive experiments to evaluate the exe-
cution time of our system in several scenarios over Equinor
databases. We now give only a summary of the performance
evaluation results, see details in [14]. Our first set of exper-
iments aimed at showing how our query optimisations lead
to significant reduction of query processing time over one
DB. To this end we focused on the most complex Equinor
DB available for our experiments, EPDS, and showed how
our optimisations affect query execution time for queries
from the Equinor catalog. Since EPDS is not a public DB,
we conducted the same experiments over NPD FactPages,
a public Equinor DB. Since NPD FactPages is small, about
105 MB, we developed and applied a procedure to scale
this data in such a way that the resulting DB respects
the important structural characteristics of the original DB.
Finally, we conducted experiments over federated databases
in order to show practical benefits of our distributed query
planning component. In Table III we give statistics about

Figure 8. Petrel and the Semantic platform integration.

executing queries from the Equinor catalog over EPDS. In
short, our OBDA solution at Equinor currently covers most
information needs with average execution times of about two
minutes for the federation setup, and under one minute for
the EPDS setup. This is a huge improvement in comparison
to the time needed in order to setup a new access point
for Equinor geologists, but it is also comparable to the time
needed for end users to get information from existing access
points, with parameterized queries for example. As effort to
cover all the remaining information needs is ongoing, we
believe that execution times for the rest will not be much
different from the existing ones.

VI. CONCLUSION AND DIRECTIONS

In this paper we presented our practical experience with
addressing the challenge of finding the right data when it
comes to big data of a large and data intensive company
Equinor. We developed and deployed a systems that enables
Equinor geologists to find the right data and eventually oil
faster than with the conventional ETL-based data access
points that they currently use at Equinor. Our approach is
semantic in the sense that it is based on the ontology-based
data access paradigm.

Our solution goes beyond the stat-of-the-art OBDA sys-
tems, non of which to the best of our knowledge could
be directly applied at Equinor. In particular our solution
is equipped with a deployment module for semi-automatic
creation of ontologies and mappings, a query processing
module that ensures efficient OBDA query processing, a
federated query execution module that provides highly op-
timised query plans, and a query formulation module that
allows end-users to construct relatively complex queries
over ontologies without a prior knowledge of Semantic
Technologies and of Equinor databases. We deployed our
solution at Equinor and evaluated it against the requirements
that we derived together with the Equinor engineers via in-
terviews, analysis of their business processes, and against the
catalogue of typical information needs of Equinor geologists.

Moreover, we believe that our work opens new avenues
for research in the areas of semantic access and integration
of federated and distributed relational databases in large en-
terprises, since it shows practical benefits of such approach
and exhibits important practical challenges that should be
addressed in order to ensure success of such technology.



Table III
STATISTICS FROM EXECUTING THE QUERY CATALOGUE OVER EPDS

Mean Median Max Min
SPARQL query size (num chars) 462 456 1110 89
SQL query size (num chars) 4283 2547 37788 0
Unfolding time, ms (with timeouts) 23 15 145 0
DB exec time, s (with timeouts) 89 1.3 3600 0
Total time, s (with timeouts) 147 4.2 3600 0.1
Unfolding time, ms (w/o timeouts) 20 13 131 0
DB exec time, s (w/o timeouts) 36 0.8 508 0
Total time, s (w/o timeouts) 58 2.9 1238 0.1
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Y. Kotidis, and A. Waaler, “Semantic access to streaming and
static data at Siemens,” J. Web Sem., vol. 44, pp. 54–74, 2017.

[19] A. Soylu, M. Giese, R. Schlatte, E. Jiménez-Ruiz, E. Khar-
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