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Abstract. Large ontologies still pose serious challenges to state-of-the-art on-
tology alignment systems. In this paper we present an approach that combines a
lexical index, a neural embedding model and locality modules to effectively di-
vide an input ontology matching task into smaller and more tractable matching
(sub)tasks. We have conducted a comprehensive evaluation using the datasets of
the Ontology Alignment Evaluation Initiative. The results are encouraging and
suggest that the proposed methods are adequate in practice and can be integrated
within the workflow of state-of-the-art systems.
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1 Introduction

The problem of (semi-)automatically computing an alignment between independently
developed ontologies has been extensively studied in the last years [1, 2]. As a result,
a number of sophisticated ontology alignment systems currently exist.1 The Ontology
Alignment Evaluation Initiative2 (OAEI) [3] has played a key role in the benchmarking
of these systems by facilitating (i) their comparison on the same basis, and (ii) the repro-
ducibility of the evaluation and results. The OAEI includes different tracks organised
by different research groups. Each track contains one or more matching tasks involving
small-size (e.g., conference), medium-size (e.g., anatomy), large (e.g., phenotype) or
very large (e.g., largebio) ontologies.

Large ontologies still pose serious challenges to ontology alignment systems. For
example, only 6 out of 10 systems participating in the OAEI 2017 largebio track were
able to complete the largest tasks [3]. OAEI systems are typically able to cope with
small and medium size ontologies, but fail to complete large tasks in a given time
frame and/or with the available resources (e.g., memory). Prominent examples across
the OAEI campaigns are: (i) YAM++ version 2011 (best results in conference track, but

1 Ontology matching surveys and approaches: http://ontologymatching.org/
2 OAEI evaluation campaigns: http://oaei.ontologymatching.org/



failed to complete the anatomy task); (ii) CODI version 2011.5 (best results in anatomy
but could not cope with the largebio track); (iii) MAMBA version 2015 (top system in
the conference track but could not complete the anatomy track); (iv) FCA-Map version
2016 (completed both anatomy and phenotype tasks but did not complete the largest
largebio tasks); and (v) POMap version 2017 (one of the top systems in anatomy but
could not finish the largest largebio tasks).

Shvaiko and Euzenat [1] list some potential solutions to address the challenges
that large ontologies pose to ontology alignment systems, namely: parallelization, dis-
tribution, approximation, partitioning and optimization. In this paper we propose a
novel method to effectively divide the matching task into several (independent) smaller
(sub)tasks. This method relies on an efficient lexical index (as in LogMap [4]), a neu-
ral embedding model [5] and locality modules [6]. Unlike other state-of-the-art ap-
proaches, our method provides guarantees about the preservation of the coverage of the
relevant ontology alignments as defined in Section 2.2.

The remainder of the paper is organised as follows. Section 2 introduces the main
concepts that will be used in the paper. Section 3 presents the methods and strategies
to divide the ontology matching task into a set of smaller subtasks. The conducted
evaluation is provided in Section 4. Section 5 summarizes the related literature. Finally,
Section 6 concludes the paper and suggests some lines of immediate future research.

2 Preliminaries

In this section we introduce the background concepts that are used throughout the paper.

2.1 Basic definitions

A mapping (also called match or correspondence) between entities3 of two ontologies4

O1 (i.e., source) and O2 (i.e., target) is typically represented as a 4-tuple 〈e1, e2, r, c〉
where e1 and e2 are entities of O1 and O2, respectively; r ∈ {v,w,≡} is a semantic
relation; and c is a confidence value, usually, a real number within the interval (0, 1]. In
our approach we simply consider mappings as a pair 〈e1, e2〉. An ontology alignment
is a set of mappingsM between two ontologies O1 and O2.

An ontology matching taskMT is composed of a pair of ontologies O1 (typically
called source) and O2 (typically called target) and possibly an associated reference
alignmentMRA. The objective of a matching task is to discover an overlapping of O1

and O2 in the form of an alignment M. The size or search space of a matching task
is typically bound to the size of the Cartesian product between the entities of the input
ontologies: |Sig(O1)| × |Sig(O2)| being Sig(O) the signature (i.e., entities) of O.

An ontology matching system is a program that, given as input the ontologies O1

and O2 of a matching task, generates an ontology alignmentMS .

3 We refer to (OWL 2) classes, data and object properties and named individuals as entities.
4 We assume ontologies are expressed in OWL 2 [7].



The standard evaluation measures for an alignmentMS are precision (P), recall (R)
and f-measure (F) computed against a reference alignmentMRA as follows:

P =
|MS ∩MRA|
|MS |

, R =
|MS ∩MRA|
|MRA|

, F = 2 · P ·R
P +R

(1)

2.2 Matching subtasks and quality measures: size ratio and coverage

We denote division of an ontology matching taskMT , composed by the ontologiesO1

andO2, as the process of finding matching subtasksMTi = 〈Oi
1,Oi

2〉 (with i=1,. . . ,n),
whereOi

1 ⊂ O1 andOi
2 ⊂ O2. The size of the matching subtasks aims at being smaller

than the original task in terms of search space. Let Dn
MT = {MT1, . . . ,MTn} be the

result of dividing a matching taskMT . The size ratios of the matching subtasksMTi
and Dn

MT are computed as follows:

SizeRatio(MTi,MT ) =
|Sig(Oi

1)| × |Sig(Oi
2)|

|Sig(O1)| × |Sig(O2)|
(2)

SizeRatio(Dn
MT ,MT ) =

n∑
i=1

SizeRatio(MTi,MT ) (3)

The ratio SizeRatio(MTi,MT ) is expected to be less than 1.0 while the aggre-
gation

∑n
i=1 SizeRatio(MTi,MT ), being n the number of matching subtasks, can be

greater than 1.0 (as matching subtasks may overlap), that is, the aggregated size of the
matching subtasks may be larger than the original task size in terms of (aggregated)
search space.

The coverage of the matching subtask aims at providing guarantees about the preser-
vation of the (potential) outcomes of the original matching task. That is, it indicates if
the relevant ontology alignments in the original matching task can still be computed
with the matching subtasks. The coverage is calculated with respect to a relevant align-
mentM, possibly the reference alignmentMRA of the matching task if it exists. The
formal notion of coverage is given in Definitions 1 and 2.

Definition 1 (Coverage of a matching task). Let MT = 〈O1,O2〉 be a matching
task and M an alignment. We say that a mapping m = 〈e1, e2〉 ∈ M is covered by
the matching task if e1 ∈ Sig(O1) and e2 ∈ Sig(O2). The coverage of MT w.r.t.
M (denoted as Coverage(MT ,M)) represents the set of mappings M′ ⊆ M cov-
ered byMT .

Definition 2 (Coverage of the matching task division). LetDn
MT = {MT1, . . . ,MTn}

be the result of dividing a matching taskMT andM an alignment. We say that a map-
ping m ∈M is covered byDMT if m is at least covered by one of the matching subtask
MTi (with i=1,. . . ,n) as in Definition 1. The coverage of DMT w.r.t.M (denoted as
Coverage(DMT ,M)) represents the set of mappingsM′ ⊆M covered by DMT . The
coverage will typically be given as a ratio with respect to the (covered) alignment:

CoverageRatio(Dn
MT ,M) =

|Coverage(DMT ,M)|
|M|

(4)



2.3 Locality-based modules in ontology alignment

Logic-based module extraction techniques compute ontology fragments that capture
the meaning of an input signature with respect to a given ontology. In this paper we
rely on bottom-locality modules [6], which will be referred to as locality-modules or
simply as modules. Locality modules play an important role in ontology alignment
tasks. For example, they provide the scope or context (i.e., sets of semantically related
entities [6]) for the entities in a given mapping or set of mappings as formally presented
in Definition 3.

Definition 3 (Context of a mapping and an alignment). Let m = 〈e1, e2〉 be a
mapping between two ontologies O1 and O2. We define the context of m (denoted
as Context(m,O1,O2)) as a pair of modules O′1 ⊆ O1 and O′2 ⊆ O2, where O′1
and O′2 include the semantically related entities to e1 and e2, respectively [6]. Simi-
larly, the context for an alignment M between two ontologies O1 and O2 is denoted
as Context(M,O1,O2) = 〈O′1,O′2〉, where O′1 and O′2 are modules including the se-
mantically related entities for the entities e1 ∈ Sig(O1) and e2 ∈ Sig(O2) in each
mapping m = 〈e1, e2〉 ∈ M.

2.4 Context as matching task

The context of an alignment between two ontologies represents the overlapping of these
ontologies with respect to the aforesaid alignment. Intuitively, the ontologies in the con-
text of an alignment will cover all the mappings in that alignment. Definition 4 formally
presents the context of an alignment as the overlapping matching task to discover that
alignment.

Definition 4 (Overlapping matching task). LetM be an alignment between O1 and
O2, and Context(M,O1,O2) = 〈O′1,O′2〉 the context ofM. We defineMTMO1-O2

=
〈O′1,O′2〉 as the overlapping matching task forM. A matching taskMT = 〈O1,O2〉
can be reduced to the taskMTMO1-O2

= 〈O′1,O′2〉 without information loss in terms of
findingM.

A matching system should aim at computingMwith both the reduced taskMTMO1-O2

and the original matching taskMT . For example, in the small OAEI largebio tasks [3]
systems are given, instead of the original matching task (e.g., whole FMA and NCI on-
tologies), the context of the reference alignment as a (reduced) overlapping matching
task (e.g.,MT RA

fma-nci = Context(MRA
fma-nci, OFMA,ONCI) = 〈O′FMA,O′NCI〉).

3 Methods

The approach presented in this paper relies on an ‘inverted’ lexical index (we will refer
to this index as LexI), commonly used in information retrieval applications, and also
used in ontology alignment systems like LogMap [4] or ServOMap [8].



Table 1: Inverted lexical index LexI (left) and entity index (right). For readability, stem-
ming techniques have not been applied and index values have been split into elements
of O1 and O2. ‘-’ indicates that the ontology does not contain entities for that entry.

Index key Index value
Entities O1 Entities O2

{ acinus } 7661,8171 118081
{ mesothelial, pleural } 19987 117237

{ hamate, lunate } 55518 -
{ feed, breast } - 113578,111023

ID URI
7661 O1:Serous acinus
8171 O1:Hepatic acinus
19987 O1:Mesothelial cell of pleura
55518 O1:Lunate facet of hamate
118081 O2:Liver acinus
117237 O2:Pleural Mesothelial Cell
113578 O2:Breast Feeding
111023 O2:Inability To Breast Feed

3.1 The lexical index LexI

LexI encodes the labels of all entities of the input ontologies O1 and O2, including
their lexical variations (e.g., preferred labels, synonyms), in the form of pairs key-value
where the key is a set of words and the value is a set of entity identifiers5 such that
the set of words of the key appears in (one of) the entity labels. Table 1 shows a few
example entries of LexI for two input ontologies.

LexI is created as follows. (i) Each label associated to an ontology entity is split
into a set of words; for example, the label “Lunate facet of hamate” is split into the
set {“lunate”, “facet”, “of”, “hamate”}. (ii) Stop-words are removed, for example,“of”
is removed from the set of words (i.e., {“lunate”, “facet”, “hamate”}). (iii) Stemming
techniques are applied to each word (i.e., {“lunat”, “facet”, “hamat”}). (iv) Combi-
nations of (sub)set of words serve as keys in LexI; for example, {“lunat”, “facet”},
{“hamat”, “lunat”} and so on.6 (v) Entities leading to the same (sub)set of words are
associated to the same key in LexI, for example, the entityO1:Lunate facet of hamate
with numerical identifier 55518 is associated to the LexI key {“hamat”, “lunat”} (see
Table 1). Finally, (vi) entries in LexI pointing to entities of only one ontology are not
considered (see last two rows of LexI in Table 1). Note that a single entity label may
lead to several entries in LexI, and each entry in LexI points to one or many entities.

Each entry in LexI, after discarding entries pointing to only one ontology, is a
source of candidate mappings. For instance the example in Table 1 suggests that there
is a (potential) mapping m = 〈O1:Serous acinus,O2:Liver acinus,≡, c〉 since the en-
tities O1:Serous acinus and O2:Liver acinus are associated to the same entry in LexI
{acinus}. These mappings are not necessarily correct but will link lexically-related en-
tities, that is, those entities sharing at least one word among their labels (e.g., “acinus”).
Given a subset of entries of LexI (i.e., l ⊆ LexI), the function Mappings(l) = Ml

provides the set of mappings derived from l. We refer to the set of all (potential) map-
pings suggested by LexI (i.e., Mappings(LexI)) asMLexI. Note thatMLexI represents a
manageable subset of the Cartesian product between the entities of the input ontologies.

5 The indexation module associates unique numerical identifiers to entity URIs.
6 In order to avoid a combinatorial blow-up, the number of computed subsets of words is limited.



Fig. 1: Pipeline to extract the extended overlapping matching subtasks from LexI.

Most of the state-of-the-art ontology matching systems rely, in one way or another,
on lexical similarity measures to either discover or validate candidate mappings [1, 2].
Thus, mappings outsideMLexI will rarely be discovered by standard matching systems.

Dealing with limited lexical overlapping. The construction of LexI, which is the basis
of the methods presented in this section, shares a limitation with state-of-the-art sys-
tems when the input ontologies are lexically disparate or do not provide enough lexical
information. In this case, the set of mappingsMLexI may be too small or even empty.
As a standard solution, if the ontologies have a small lexical overlapping or are in dif-
ferent languages, LexI can be enriched with general-purpose lexicons (e.g., WordNet
or the UMLS lexicon), more specialised background knowledge (e.g., UMLS Metathe-
saurus) or with translated labels using online translation services like the ones provided
by Google, IBM or Microsoft.

3.2 Overlapping estimation

The mappings inMLexI can be used to extract an (over)estimation of the overlapping
between the ontologies O1 and O2.

Definition 5 (Extended overlapping matching task). Let MLexI be the alignment
computed from LexI for O1 and O2, and Context(MLexI,O1,O2) = 〈OLexI

1 ,OLexI
2 〉

the context ofMLexI. We defineMT LexI = 〈OLexI
1 ,OLexI

2 〉 as the extended overlapping
matching task.

MT LexI = 〈OLexI
1 ,OLexI

2 〉 can also be seen as the result of reducing or dividing
the task MT = 〈O1,O2〉 where only one matching subtask is given as output (i.e.,
D1
MT = {MT LexI}). Figure 1 shows an overview of the pipeline where LexI leads to

the division D1
MT = {MT LexI}.

Hypothesis 1 IfMT = 〈O1,O2〉 is a matching task,MS the mappings computed for
MT by a lexical-based matching system, and D1

MT = {MT LexI} the reduction of the
matching taskMT using the notion of overlapping (over)estimation, thenD1

MT covers
(almost) all the mappings inMS , that is, CoverageRatio(D1

MT ,MS) ≈ 1.0.

Hypothesis 1 suggests that a matching system will unlikely discover mappings with
MT = 〈O1,O2〉 that cannot be discovered with D1

MT = {MT LexI}. This intuition is
not only supported by the observation that most of the ontology matching systems rely
on lexical similarity, but also by the use of the notion of context (see Definition 3 and
Definition 4) in the creation of the extended overlapping matching task.



Fig. 2: Pipeline to extract matching subtasks from LexI.

3.3 Creation of matching subtasks from LexI

Considering all entries in LexI (i.e., one cluster) may lead to a very large number of
candidate mappingsMLexI and, as a consequence, to large overlapping modules OLexI

1

and OLexI
2 . These modules, although smaller than O1 and O2, can still be challenging

for many ontology matching systems. A solution is to divide the entries in LexI in more
than one cluster.

Definition 6 (Matching subtasks from LexI). Let MT = 〈O1,O2〉 be a matching
task, LexI the lexical index of the ontologies O1 and O2, and {c1, . . . , cn} a set of
n clusters of entries in LexI. We denote the set of matching subtasks from LexI as
Dn
MT = {MT LexI

1 , . . . ,MT LexI
n } where each cluster ci leads to the matching subtask

MT LexI
i = 〈Oi

1,Oi
2〉, such that Mappings(ci) = MLexI

i is the set of mappings sug-
gested by the LexI entries in ci and Oi

1 and Oi
2 represent the context ofMLexI

i w.r.t. O1

and O2.

Figure 2 shows an overview of the pipeline where LexI is split into n clusters and
these clusters lead to n matching subtasks Dn

MT = {MT LexI
1 , . . . ,MT LexI

n }.
Since the matching subtasks in Definition 6 also rely on LexI and the notion of

context of the derived mappings from each cluster of entries in LexI, it is expected that
the resulting matching subtasks in Dn

MT will have a coverage similar to D1
MT .

Hypothesis 2 IfMT = 〈O1,O2〉 is a matching task andMS the mappings computed
forMT by a lexical-based matching system, then, with independence of the clustering
strategy of LexI and the number of matching subtasks n,Dn

MT = {MT LexI
1 , . . . ,MT LexI

n }
will cover (almost) all the mappings inMS (i.e., CoverageRatio(Dn

MT ,MS) ≈ 1.0).

Intuitively each cluster of LexI will lead to a smaller set of mappingsMLexI
i (with

respect toMLexI) and to a smaller matching taskMT LexI
i (with respect to bothMT LexI

and MT ) in terms of search space. Hence SizeRatio(MT LexI
i ,MT ) will be smaller

than 1.0, as mentioned in Section 2.2. Reducing the search space in each matching
subtaskMT LexI

i has the potential of enabling the use of systems that can not cope with
the original matching taskMT in a given time-frame or with (limited) computational
resources. The aggregation of ratios may be greater than 1.0 and will depend on the
clustering strategy.

Hypothesis 3 Given a matching taskMT and an ontology matching system that fails
to completeMT under a set of given computational constraints, there exists a division



of the matching task Dn
MT = {MT LexI

1 , . . . ,MT LexI
n } for which that system is able to

compute an alignment of the individual matching subtasksMT LexI
1 , . . . ,MT LexI

n under
the same constraints.

Decreasing the search space may also improve the performance of systems able to
cope withMT in terms f-measure.

Hypothesis 4 IfMT = 〈O1,O2〉 is a matching task,MS the mappings computed for
MT by a state-of-the-art matching system and F the f-measure ofMS w.r.t. a given
reference alignmentMRA, then the set of mappingsMS

p =MS
1 ∪ . . .∪MS

n computed
by the same system over the matching subtasks in Dn

MT = {MT LexI
1 , . . . ,MT LexI

n }
leads to an f-measure F ′ such that F ′ ≥ F .

Hypothesis 4 is based on the observation that systems in the OAEI largebio track [3]
show a better performance when, instead of the original matching task (e.g., whole
FMA and NCI ontologies), they are given the overlapping matching task for the refer-
ence alignments (as in Definition 4).

3.4 Clustering strategies

We have implemented two clustering strategies which we refer to as: naive and neural
embedding. Both strategies receive as input the index LexI and the number of desired
clusters n, and provide as output a set of clusters {c1, . . . , cn} from LexI. As in Defini-
tion 6, these cluster lead to the set of matching subtasksDn

MT = {MT LexI
1 , . . . ,MT LexI

n }.
The choice of strategy, according to Hypothesis 2, will not have an impact on the

coverage; but it may influence the size of the matching subtasks. Note that, neither of
the strategies aims at computing optimal clusters of the entries in LexI, but clusters that
can be efficiently computed.

Naive strategy. This strategy implements a very simple algorithm that randomly splits
the entries in LexI into a given number of clusters of the same size. The matching tasks
resulting from this strategy are expected to have a high overlapping as different entries
in LexI leading to similar set of mappings may fall into different clusters. Although the
overlapping of matching subtasks will impact the global search space, it is still expected
to be smaller than in the original matching task.

Neural embedding strategy. This strategy aims at identifying more accurate clusters,
leading to matching tasks with less overlapping, and thus, reducing the global size of
the computed division of the matching task Dn

MT . It relies on StarSpace toolkit7 and
its neural embedding model [5], which aims at learning entity embeddings. Each entity8

is described by a finite set of discrete features (bag-of-features). The model is trained by
assigning a d-dimensional vector to each of the discrete features in the set that we want

7 StarSpace: https://github.com/facebookresearch/StarSpace
8 Note that in the context of neural embedding models the term entity refers to objects of differ-

ent kind, e.g., a word, a sentence, a document or even an ontology entity.



to embed directly. Ultimately, the look-up matrix (the matrix of embeddings - latent
vectors) is learned by minimizing the loss function in Equation 5.∑

(k,v)∈E+,v−∈E−

Lbatch(sim(k, v), sim(k, v−1 ), . . . , sim(k, v−k )) (5)

In this loss function, we need to indicate the generator of positive entry pairs (k, v) ∈
E+ – in our setting those are key-value pairs from LexI– and the generator of nega-
tive entries (k, v−) ∈ E− (the so-called negative examples) – in our setting, the pairs
(k, v−) that do not appear in LexI. The similarity function sim is task-dependent and
should operate on d-dimensional vector representations of the entities, in our case we
use the standard Euclidean dot product. The aforementioned neural embedding model
corresponds to the TagSpace training setting of StarSpace (see [5] for more details).
Applied to the lexical index LexI, the neural embedding model would learn vector rep-
resentations for the individual words in the index keys, and for the individual entity
identifiers in the index values. Since an index key is a set of words (see Table 1), we
use the mean vector representation of the vectors associated to each word (in principle
other aggregated representation could be applied). Based on these aggregated neural
embeddings we then perform standard clustering with the K-means algorithm.

Hypothesis 5 There exists a number of clusters or matching subtasks ‘n’ for which
the clustering strategies can compute Dn

MT = {MT LexI
1 , . . . ,MT LexI

n } for a given
matching taskMT such that SizeRatio(Dn

MT ,MT ) < 1.0.

Hypothesis 5 suggests that there exists a division Dn
MT ofMT such that the size

(or search space) of Dn
MT is smaller than MT , and Dn

MT can be computed by the
proposed naive and neural embedding strategies.

4 Evaluation

In this section we aim at providing empirical evidence to support the Hypothesis 1-5
introduced in Section 3. We rely on the datasets of the Ontology Alignment Evaluation
Initiative (OAEI) [3], more specifically, on the matching tasks provided in the anatomy,
largebio and phenotype tracks. Table 2 provides an overview of these OAEI tasks and
the related ontologies.

The methods have been implemented in Java9 and Python10 (neural embedding
strategy), tested on a Ubuntu Laptop with an Intel Core i7-4600U CPU@2.10GHz (4
cores) and allocating up to 15 Gb of RAM. Datasets, evaluation results, logs and other
supporting resources are available in the Zenodo repository [10].

We have performed the following experiments, which we describe in detail in the
following sections:

– We have computed the extended overlapping matching task (i.e., D1
MT ) for each

of the matching tasks as in Definition 5 and calculated the coverage with respect to
the available reference alignments (Section 4.1).

9 Java codes: https://github.com/ernestojimenezruiz/logmap-matcher
10 Python codes: https://github.com/plumdeq/neuro-onto-part



Table 2: Matching tasks. AMA: Adult Mouse Anatomy. DOID: Human Disease Ontol-
ogy. FMA: Foundational Model of Anatomy. HPO: Human Phenotype Ontology. MP:
Mammalian Phenotype. NCI: National Cancer Institute. NCIA: Anatomy fragment of
NCI. ORDO: Orphanet Rare Disease Ontology. SNOMED: Systematized Nomencla-
ture of Medicine – Clinical Terms. Phenotype ontologies downloaded from BioPortal.
OAEI track Source of MRA Task Ontology Version Size (classes)

Anatomy Manually created AMA-NCIA
AMA v.2007 2,744
NCIA v.2007 3,304

Largebio UMLS-Metathesaurus
FMA-NCI FMA v.2.0 78,989

FMA-SNOMED NCI v.08.05d 66,724
SNOMED-NCI SNOMED v.2009 306,591

Phenotype
Consensus alignment
(vote=2) [9]

HPO-MP
HPO v.2016-BP 11,786
MP v.2016-BP 11,721

DOID-ORDO
DOID v.2016-BP 9,248
ORDO v.2016-BP 12,936

Table 3: Coverage results for D1
MT

Task |LexI| D1
MT statistics

|O1
1| |O1

2| SizeRatio CoverageRatio time (s)
AMA-NCIA 4,048 2,518 2,841 0.784 0.982 0.55
FMA-NCI 11,507 33,744 35,409 0.226 0.994 10.3

FMA-SNOMED 29,677 55,469 119,488 0.273 0.982 28.8
SNOMED-NCI 45,940 190,911 56,076 0.521 0.968 28.2

HPO-MP 10,514 8,165 10,041 0.589 0.995 1.93
DOID-ORDO 13,375 7,166 10,741 0.637 0.999 2.81

– We have applied the naive and neural embedding11 strategies to compute divisions
Dn
MT of the matching tasks and evaluated their adequacy with respect to coverage

and size (Section 4.2).
– We have evaluated the performance of a selection of OAEI matching systems over

the computed matching subtasks and compared with their original results (if any)
in the OAEI campaigns (Section 4.3).

4.1 Coverage of the extended overlapping matching task

We have evaluated the coverage of D1
MT = {MT LexI} computed for each of the

matching tasks in Table 2 with respect to the available reference alignments. Table 3
summarizes the obtained results. The second column of the table gives the number of
entries in LexI, while the last column represents the time to compute LexI, the de-
rived mappingsMLexI and the context ofMLexI (i.e., the overlapping matching task).
The obtained coverage (ratio) values range from 0.967 to 0.999, which strongly sup-
ports our intuitions behind Hypothesis 1. Furthermore, since we have calculated the

11 Please refer to [10] for information about the used StarSpace input parameters.



2 10 20 50 100 200
Subtasks

0.93 0.93

0.94 0.94

0.95 0.95

0.96 0.96

0.97 0.97

0.98 0.98

0.99 0.99

1.00 1.00

Co
ve

ra
ge

AMA-NCIA
FMA-NCI

FMA-SNOMED
SNOMED-NCI

HPO-MP
DOID-ORDO

(a) Naive strategy

2 10 20 50 100 200
Subtasks

0.93 0.93

0.94 0.94

0.95 0.95

0.96 0.96

0.97 0.97

0.98 0.98

0.99 0.99

1.00 1.00

Co
ve

ra
ge

AMA-NCIA
FMA-NCI

FMA-SNOMED
SNOMED-NCI

HPO-MP
DOID-ORDO

(b) Neural embedding strategy

Fig. 3: CoverageRatio of Dn
MT with respect to the number of matching subtasks n.

coverage with respect to the reference alignments instead of system mappings (i.e.,
CoverageRatio(D1

MT ,MRA)), the results also suggest that the information loss with
respect to system-generated alignments will be minimal. At the same time the size (ra-
tio) of the matching tasks is significantly reduced for the largest matching tasks. For
example, for the FMA-NCI case, the resulting task size has been reduced to 27.3% of
the original task size. The achieved high coverage in combination with the reduction
of the search space and the small computation times provide empirical evidence of the
suitability of LexI to reduce the alignment task at hand.

4.2 Adequacy of the clustering strategies

We have evaluated the adequacy of the clustering strategies in terms of coverage (as in
Equation 4) and size (as in Equation 3) of the resulting division Dn

MT of the matching
task. We have compared the two strategies for different number of clusters or resulting
matching subtasks n ∈ {2, 5, 10, 20, 50, 100, 200}. For the naive strategy, as a random
split of LexI is performed, we run 10 experiments for each of the values of n to evalu-
ate the effect of different random selections. The variations in the size of the obtained
matching tasks was negligible.12 The results reported for the naive strategy represent
the average of the 10 experiments.

Coverage ratio. Figure 3 shows the coverage of the different divisions Dn
MT of the

matching task for the naive (left) and neural embedding (right) strategies. As in the case
of D1

MT = {MT Lex} the coverage ratio is very good, being 0.927 in the worst case
(n = 200 in SNOMED-NCI) and 0.99 in the best case (n = 2 in FMA-NCI). This
means that, in the worst case, almost 93% of the available reference mappings are cov-
ered by the matching subtasks in Dn

MT . The differences in terms of coverage between
the naive and neural embedding strategies are minimal, with the neural embedding strat-
egy providing slightly better results on average. These results reinforce Hypothesis 2 as
the coverage with respect to system-generated mappings is expected to be even better.
12 Details about matching task sizes and standard deviations can be found in [10].
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Fig. 4: SizeRatio of Dn
MT with respect to the number of matching subtasks n.
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Fig. 5: Source and target module sizes in the computed subtasks for AMA-NCIA.

Size ratio. The results in terms of the size (i.e., search space) of the selected divi-
sions Dn

MT are presented in Figure 4 for the naive (left) and neural embedding (right)
strategies. The results with the neural embedding strategy are extremely positive, while
the results of the naive strategy, although slightly worse as expected, are surprisingly
very competitive. Both strategies improve the search space with respect to the origi-
nalMT for all cases with the exception of the naive strategy in the AMA-NCIA case
with n < 50, and the SNOMED-NCI case with n > 20, which validates Hypothesis 5.
SNOMED-NCI confirms to be the hardest case in the largebio track. Here the size ratio
increases with the number of matching subtasks n and gets stable with n > 100.

Size of the source and target modules. The scatter plots in Figures 5 and 6 visu-
alize the size of the source modules against the size of the target modules for the
matching tasks in each division Dn

MT . For instance, the (orange) triangles represent
points

(
|Sig(Oi

1)|, |Sig(Oi
2)|
)

being Oi
1 and Oi

2 the source and target modules (with
i=1,. . . ,5) in the matching subtasks of D5

MT . Figure 5 shows the plots for the AMA-
NCIA case while Figure 6 for the FMA-NCI case, using the naive (left) and neural em-
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Fig. 6: Source and target module sizes in the computed subtasks for FMA-NCI.

bedding (right) strategies. The naive strategy leads to rather balanced an similar tasks
(note differentiated cloud of points) for each division Dn

MT for both cases. The neural
embedding strategy has more variability in the size of the tasks within a given divi-
sionDn

MT . In the FMA-NCI case the tasks generated by the neural embedding strategy
are also less balanced and the target module tends to be larger than the source mod-
ule. Nonetheless, on average, the (aggregated) size of the matching tasks in the neural
embedding strategy are significantly reduced as shown in Figure 4.

Computation times. The time to compute the divisions of the matching task is tied to
the number of locality modules to extract, which can be computed in polynomial time
relative to the size of the input ontology [6]. The creation of LexI does not add an
important overhead, while the training of the neural embedding model in the advance
strategy ranges from 21s in AMA-NCI to 224s in SNOMED-NCI. Overall, for example,
the required time to compute the division with 50 matching subtasks ranges from 2s in
AMA-NCIA to 413s in SNOMED-NCI with the naive strategy, and from 24s (AMA-
NCIA) to 647s (SNOMED-NCI) with the neural embedding strategy. Complete list of
relevant times can be obtained from [10].

4.3 Evaluation of OAEI systems

In this section we support Hypothesis 3 by showing that the division of the align-
ment task enables systems that, given some computational constraints, were unable
to complete an OAEI task. We have selected the following five systems from the lat-
est OAEI campaigns:13 MAMBA [11], GMap [12], FCA-Map [13], KEPLER [14],
and POMap [15]. MAMBA and GMap failed to complete the OAEI 2015 Anatomy
track [16] with 8Gb of allocated memory, while FCA-Map, KEPLER and POMap could
not complete the largest tasks in the largebio track within a 12 hours time-frame (with
16Gb of allocated memory) [3, 17].14 Note that GMap and MAMBA were also tested

13 Other systems were also considered but they threw an exception during execution.
14 In a preliminary evaluation round a 4 hours time-frame was given, which was later extended.



Table 4: Evaluation of systems that failed to complete OAEI tasks in the 2015-2017
campaigns. (*) GMap was tested allocating 8Gb of memory. Time reported in hours (h).

Tool Task Year Matching Naive strategy Neural embedding strategy
subtasks P R F t (h) P R F t (h)

GMap (*) Anatomy 2015
5 0.87 0.81 0.84 1.3 0.88 0.82 0.85 0.7
10 0.85 0.81 0.83 1.7 0.86 0.82 0.84 0.8

MAMBA Anatomy 2015
20 0.88 0.63 0.73 2.3 0.89 0.62 0.73 1.0
50 0.88 0.62 0.73 2.4 0.89 0.62 0.73 1.0

FCA-Map FMA-NCI 2016
20 0.56 0.90 0.72 4.4 0.62 0.90 0.73 3.1
50 0.58 0.90 0.70 4.1 0.60 0.90 0.72 3.0

KEPLER FMA-NCI 2017
20 0.45 0.82 0.58 8.9 0.48 0.80 0.60 4.3
50 0.42 0.83 0.56 6.9 0.46 0.80 0.59 3.8

POMap FMA-NCI 2017
20 0.54 0.83 0.66 11.9 0.56 0.79 0.66 5.7
50 0.55 0.83 0.66 8.8 0.57 0.79 0.66 4.1

in the OAEI 2015 with 14Gb of memory. This new setting allowed GMap to complete
the task [16].

Table 4 shows the obtained results in terms of computation times, precision, recall
and f-measure over different divisions Dn

MT computed by the naive and neural embed-
ding strategies. For example, MAMBA was run over divisions with 20 and 50 matching
subtasks (i.e., n ∈ {20, 50}). Note that GMap was tested allocating only 8Gb of mem-
ory as with this constraint it could not complete the task in the OAEI 2015. The results
can be summarized as follows:

i) The computation times are encouraging since the (independent) matching tasks
have been run sequentially without any type of parallelization.

ii) Times also include loading the ontologies from disk for each matching task. This
step could be avoided if subtasks are directly provided by the presented framework.

iii) We did not perform an exhaustive analysis, but memory consumption was lower
than 8Gb in all tests; thus, systems like GMap could run under limited resources.

iv) The increase of number of matching subtasks is beneficial for FCA-Map, KE-
PLER and POMap in terms of computation times. However, this is not the case
for MAMBA and GMap.

v) The division generated by the neural embedding strategy leads to smaller compu-
tation times than the naive strategy counterparts, as expected from Figure 4.

vi) The f-measure is slightly reduced as the size of n increases. This result does not
support our intuitions behind Hypothesis 4.

Comparison with OAEI results. There are baseline results in the OAEI for the selected
systems [3, 16, 17], with the exception of MAMBA where the results are novel for
the anatomy track. As mentioned before, GMap, if 14Gb were allocated, was able to
complete the anatomy task and obtained an f-measure of 0.861. KEPLER, POMap and
FCA-Map completed the OAEI task involving small fragments of FMA-NCI (i.e., the
overlapping matching task as in Definition 4) with an f-measure of 0.891, 0.861 and
0.935, respectively. The f-measure using the divisions of the matching task is slightly
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Fig. 7: Performance of top-systems in FMA-NCI task for the divisions Dn
MT . Original

OAEI 2017 results: YAM-BIO (P: 0.82, R: 0.89, F: 0.85, t: 279s), AML (P: 0.84, R:
0.87, F: 0.86, t: 77s), LogMap (P: 0.86, R: 0.81, F: 0.83, t: 92s).

lower for GMap, which once more, does not support our Hypothesis 4. The results are
much lower for the cases of KEPLER, POMap and FCA-Map, but they cannot be fully
comparable as systems typically reduce their performance when dealing with the whole
largebio ontologies [3]. The authors of FCA-Map have also recently reported results
for an improved version of FCA-Map [18]. They completed the FMA-NCI task in near
7 hours, with a precision of 0.41, a recall of 0.87 and a f-measure of 0.56. The results
obtained withD20

MT andD50
MT are thus very positive, since both strategies lead to much

better numbers in terms of computation times and f-measure.

Performance of top OAEI systems. We have also evaluated the top systems in the OAEI
2017 largebio track [3] (LogMap, AML and YAM-BIO) to i) confirm the dismissal of
Hypothesis 4, and ii) evaluate the effect of the divisions of a matching task in the per-
formance of a system. Figure 7 shows the results for the divisions Dn

MT of FMA-NCI
with n ∈ {2, 5, 10, 20, 50, 100, 200}. Solid lines represent the results for the divisions
computed with the naive strategy while the neural embedding strategy results are rep-
resented with dashed lines. For example, in the figure legends, “N AML” stands for the



results of AML with the divisions using the (N)aive strategy while “A AML” stands
for the results of AML with the (A)dvanced (i.e., neural embedding) strategy divisions.
The results for the naive and neural embedding strategies are very similar, with the
exception of LogMap, for which results are slightly different for n > 50. YAM-BIO
maintains almost constant values for precision, recall and f-measure. The f-measure of
YAM-BIO is improved with respect to the original OAEI results. The results for AML
and LogMap are less positive as the number of matching subtasks (i.e., n) increases. Re-
call increases with n but remains relatively constant for n > 50, however precision is
highly impacted by n. These results weaken the validity of Hypothesis 4. The decrease
in LogMap’s precision may be explained by the fact that LogMap limits the cases of
many to many correspondences and, when the alignment task is divided, that filter is
probably not triggered leading to an increase of the false positives. Regarding AML per-
formance, we contacted the developers of AML to get a better insight about the results.
For the type and size of the computed matching tasks AML automatically applies a less
conservative matching pipeline which leads to an increase of the recall, but also to a
notable decrease in precision. We also evaluated AML forcing a (conservative) pipeline
(referred to as AML* in Figure 7). AML* obtains the expected results, which are very
similar to the original OAEI results for all the divisions Dn

MT . The times reported in
Figure 7d represent averages per matching task. The times for AML were also higher
than expected. As expected the necessary time to complete a task is reduced with n. The
total required time, however, is increased for all three evaluated systems. For example
LogMap requires around 100s to complete the two matching tasks in D2

MT , while it
needs more than 800s to complete the 100 matching tasks in D100

MT . This is explained
by the fact that these systems implement efficient indexing and matching techniques and
a large portion of the execution time is devoted to loading, processing and initialization
of the matching task. Nevertheless, if several tasks are run in parallel, the wall-clock
times can be reduced significantly. For example, the HOBBIT platform adopted for the
OAEI 2017.5 and 2018 evaluation campaigns includes 16 hardware cores devoted for
the system evaluation [19]. Thus, total wall-clock times could potentially be split by 16.

5 Related work

The use of partitioning and modularization techniques have been extensively used within
the Semantic Web to improve the efficiency when solving the task at hand (e.g., ontol-
ogy visualization [20,21], ontology reuse [22], ontology debugging [23], ontology clas-
sification [24]). Partitioning has also been widely used to reduce the complexity of the
ontology alignment task. In the literature there are two major categories of partitioning
techniques, namely: independent and dependent. Independent techniques typically use
only the structure of the ontologies and are not concerned about the ontology alignment
task when performing the partitioning. Whereas dependent partitioning methods rely
on both the structure of the ontology and the ontology alignment task at hand. Our ap-
proach, although we do not compute (non-overlapping) partitions of the ontologies, can
be considered a type of dependent technique.

Prominent examples of ontology alignment systems including partitioning tech-
niques are Falcon-AO [25], COMA++ [26] and TaxoMap [27]. Falcon-AO and COMA++



perform independent partitioning where the clusters of the source and target ontologies
are independently extracted. Then pairs of similar clusters (i.e., matching subtasks) are
aligned using standard techniques. TaxoMap [27] implements a dependent technique
where the partitioning is combined with the matching process. TaxoMap proposes two
methods, namely: PAP (partition, anchor, partition) and APP (anchor, partition, parti-
tion). The main difference of these methods is the order of extraction of (preliminary)
anchors to discover pairs of partitions to be matched (i.e., matching subtasks).

Algergawy et al. [28] have recently presented SeeCOnt, which proposes a seeding-
based clustering technique to discovers independent clusters in the input ontologies.
Their approach has been evaluated with the Falcon-AO system by replacing its native
PBM (Partition-based Block Matching) module [29].

The above approaches, although they present interesting results, did not provide
any guarantees about the coverage (as in Definition 2) of the discovered partitions or
divisions. In [30] we performed a preliminary study with the PBM method of Falcon-
OA, and the PAP and APP methods of TaxoMap. The results in terms of coverage with
the largebio tasks were very low, which directly affected the results of the evaluated
systems. These rather negative results encouraged us to work on the approach presented
in this paper.

Our dependent approach, unlike traditional partitioning methods, computes over-
lapping self-contained modules (i.e., locality modules). Locality modules guarantee the
extraction of all semantically related entities for a given signature, which enhances the
coverage results and enables the inclusion of the relevant information required by an
alignment system. It is worth mentioning that the need of self-contained and covering
modules, although not thoroughly studied, was also highlighted in a preliminary work
by Paulheim [31].

6 Conclusions and future work

We have developed a novel framework to split the ontology alignment task into several
matching subtasks based on a lexical index and locality modules. These independent
matching subtasks can be potentially run in parallel in evaluation platforms like the
HOBBIT [19]. We have also presented two clustering strategies of the lexical index.
One of them relies on a simple splitting method, while the other relies on a fast (log-
linear) neural embedding model. We have performed a comprehensive evaluation of
both strategies which suggests that the obtained divisions are suitable in practice in
terms of both coverage and size. The naive strategy leads to well-balanced set of tasks,
while the overall reduction of the search space with the neural embedding strategy was
very positive. The division of the matching task also allowed us to obtain results for five
systems which failed to complete these OAEI matching tasks in the past.

The results in terms of f-measure were not as good as expected for some of the
systems. The f-measure also tended to decrease as the number of matching subtasks
increased. These results, although not supporting our original intuitions, do not under-
mine the value of the proposed framework as we cannot control the internal behaviour
of the ontology alignment system. Computed matching subtasks for a given division
Dn
MT may have a high overlapping, especially when relying on the naive strategy. That



is, the same mapping can be proposed from different matching subtasks. This can en-
hance the discovery of true positives, but may also bring in a number of false positives,
as for the case of LogMap in the reported evaluation. The adoption of the presented
framework within the pipeline of an ontology alignment system may also lead to im-
proved results, as for the case of YAM-BIO and AML with a conservative pipeline. It
is worth mentioning that the OAEI system SANOM (v.2018) is already integrating the
strategies presented in this paper within its matching workflow.

Both the naive and the neural embedding strategies require the size of the number of
matching subtasks or clusters as input. The (required) matching subtasks may be known
before hand if, for example, the matching tasks are to be run in parallel in a number of
available CPUs. For the cases where the resources are limited or where a matching sys-
tem is known to cope with small ontologies, we plan to design an algorithm to estimate
the number of clusters so that the size of the matching subtasks in the computed di-
visions is appropriate to the system and resource constraints. As immediate future we
also plan to study different notions of context of an alignment (e.g., the tailored modules
proposed in [32]). Locality-based modules, although they have led to very good results,
can still be large in some cases.
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