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Abstract

Background: The disease and phenotype track was designed to evaluate the relative performance of ontology
matching systems that generate mappings between source ontologies. Disease and phenotype ontologies are
important for applications such as data mining, data integration and knowledge management to support
translational science in drug discovery and understanding the genetics of disease.

Results: Eleven systems (out of 21 OAEI participating systems) were able to cope with at least one of the tasks in the
Disease and Phenotype track. AML, FCA-Map, LogMap(Bio) and PhenoMF systems produced the top results for
ontology matching in comparison to consensus alignments. The results against manually curated mappings proved
to be more difficult most likely because these mapping sets comprised mostly subsumption relationships rather than
equivalence. Manual assessment of unique equivalence mappings showed that AML, LogMap(Bio) and PhenoMF
systems have the highest precision results.

Conclusions: Four systems gave the highest performance for matching disease and phenotype ontologies. These
systems coped well with the detection of equivalence matches, but struggled to detect semantic similarity. This
deserves more attention in the future development of ontology matching systems. The findings of this evaluation
show that such systems could help to automate equivalence matching in the workflow of curators, who maintain
ontology mapping services in numerous domains such as disease and phenotype.

Keywords: Biomedical ontology, Ontology alignment, OAE, Evaluation, Phenotype, Disease

Background
The Pistoia Alliance Ontologies Mapping project1 was set
up to find or create better tools and services for mapping
between ontologies (including controlled vocabularies) in
the same domain and to establish best practices for ontol-
ogy management in the Life Sciences. The project has
developed a formal process to define and submit a request
for information (RFI) from ontology matching system
providers to enable their evaluation.2 A critical compo-
nent of any ontology alignment system is the embedded
matching algorithm, therefore the Ontologies Mapping

*Correspondence: ian.harrow@pistoiaalliance.org
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1Pistoia Alliance Ontologies Mapping Project, Pistoia Alliance Inc, USA
Full list of author information is available at the end of the article

project is supporting their development and evaluation
through sponsorship and organisation of the Disease and
Phenotype track (added in 2016) for the OAEI campaign
[1]. In this paper we describe the experiences and results
in the OAEI 2016 Disease and Phenotype track.3
The Disease and Phenotype track is based on a real

use case where it is required to find two pairwise align-
ments between disease and phenotype ontologies: (i)
Human Phenotype Ontology [2] (HP) to Mammalian
Phenotype Ontology [3] (MP), and (ii) Human Disease
Ontology [4] (DOID) to Orphanet Rare Disease Ontol-
ogy4 (ORDO). The first task maps between human and
the more general mammalian phenotype ontologies. This
is important for translational science in drug discovery,
since mammalian models such as mice are widely used

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-017-0162-9&domain=pdf
mailto: ian.harrow@pistoiaalliance.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Harrow et al. Journal of Biomedical Semantics  (2017) 8:55 Page 2 of 13

to study human diseases and their underlying genetics.
Mapping human phenotypes to other mammalian phe-
notypes greatly facilitates the extrapolation from model
animals to humans. The second task maps between two
disease ontologies: the more generic DOID and the more
specific ORDO, in the context of rare human diseases.
These ontologies can support investigative studies to
understand how genetic variation can cause or contribute
to disease.
Currently, mappings between the aforementioned

ontologies within the disease and phenotype domain are
mostly generated manually by bioinformaticians and dis-
ease experts. Inclusion of automated ontology matching
systems into such curation workflows is likely to improve
the efficiency and scalability of this process to expand the
coverage across many source ontologies. Automation of
mappings is also important because the source ontologies
are dynamic, often having more than ten versions per year
which means the mappings must be maintained to remain
useful and valid.

Preliminaries
In this paper we assume that the ontologies are repre-
sented using the OWL 2 Web Ontology Language [5],
which is a World Wide Web Consortium (W3C) rec-
ommendation.5 Description Logics (DL) are the formal
underpinning of OWL 2 [6].
An ontology mapping (also called match or correspon-

dence) between entities of two ontologies O1,O2 is typ-
ically represented as a 4-tuple 〈e, e′, r, c〉 where e and e′
are entities of O1 and O2, respectively; r ∈ {�,�,≡} is
a semantic relation; and c is a confidence value, usually,
a real number within the interval (0 . . . 1]. Mapping con-
fidence intuitively reflects how reliable a mapping is (i.e.,
1 = very reliable, 0 = not reliable).
An ontology alignment M between two ontologies,

namely O1,O2, is a set of mappings between O1 and
O2. In the ontology matching community, mappings are
typically expressed using the RDF Alignment format [7].
In addition, mappings can also be represented through

standard OWL 2 axioms (e.g., [8]). This representation
enables the use of the OWL 2 reasoning infrastructure
that is currently available.
When mappings are translated into OWL 2 axioms, an

aligned ontology OM = O1 ∪ O2 ∪ M is the result of
merging the input ontologies and an alignment between
them. The aligned ontology is also an OWL 2 ontology.
An ontology matching system is a program6 that, given

two input ontologies O1 and O2, generates an ontology
alignmentMS.
An ontology matching task is typically composed by

one or more pairs of ontologies with their correspondent
reference alignments MRA. Reference alignments can be
of different nature: gold standards, silver standards and

baselines. Gold standards are typically (almost) complete
mapping sets that have been manually curated by domain
experts, while silver standard mapping sets are not nec-
essarily complete nor correct. Finally, baseline mappings
typically represent a highly incomplete set of the total
mappings. In this paper we use a type of silver standard
that has been created by voting the mappings produced by
several matching systems. In the remainder of the paper,
we refer to this (silver standard) mapping set as consensus
alignments.
The standard evaluation measures, for a system gen-

erated alignment MS, are precision (P), recall (R) and
f-measure (F) computed against a reference alignment
MRA as follows:

P = |MS ∩ MRA|
|MS| , R = |MS ∩ MRA|

|MRA| , F = 2 · P · R
P + R

(1)

Standard precision and recall have, however, limitations
when considering the (OWL 2) semantics of the input
ontologies and the mappings. Hence a mapping m such
that m ∈ MS and m �∈ MRA will penalise the stan-
dard precision value even though OMRA |= m, that is,
m is inferred or entailed (using OWL 2 reasoning) by the
union of the input ontologies O1 and O2 and the refer-
ence mappingsMRA. Analogously, a mappingm such that
m �∈ MS andm ∈ MRA will penalise standard recall, even
though the aligned ontology OMS can entail m. In this
paper we adopt the notion of semantic precision and recall
as defined in Eqs. 2 and 3 to mitigate the limitations of the
standard measures (the interested reader please refer to
[9, 10] for alternative definitions).
Semantic precision and recall, as presented in this paper,

may still suffer from some limitations [11]. In order to
reduce the impact of these limitations, when computing
semantic precision and recall, equivalence mappings (≡)
are split into two subsumption mappings (� and �).
Note that when evaluating the mappings produced by a

matching system against (incomplete) baseline mappings,
only semantic recall should be taken into account.

P(sem) = |{m ∈ MS | OMRA |= m}|
|MS| (2)

R(sem) = |{m ∈ MRA | OMS |= m}|
|MRA| (3)

An ontology is incoherent [12] if it contains logical
errors in the form of unsatisfiable concepts. If the union
of the input ontologies O1 and O2 and the reference
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mappings MRA is incoherent, semantic precision and
recall, as defined in Eqs. 2 and 3, may lead to unex-
pected results. In this case, mapping repair (e.g., [12–14])
techniques should be applied before computing semantic
precision and recall.

Methods
The Ontology Alignment Evaluation Initiative7 (OAEI)
is an annual campaign for the systematic evaluation of
ontologymatching systems [1, 15–17]. Themain objective
is the comparison of ontology matching systems on the
same basis and to enable the reproducibility of the results.
The OAEI included 9 different tracks organised by dif-
ferent research groups and involving different matching
tasks.
The novel Disease and Phenotype8 track was one of the

new additions in the OAEI 2016 campaign. The track aims
at evaluating the performance of systems in a real-world
use case where pairwise alignments between disease and
phenotype ontologies are required.
The Disease and Phenotype track closely followed the

OAEI phases as summarised in Fig. 1.

Dataset
The Disease and Phenotype track comprises two match-
ing tasks that involve the alignment of the Human
Phenotype Ontology (HP), the Mammalian Phenotype
Ontology (MP), the Human Disease Ontology (DOID),
and the Orphanet Rare Disease Ontology (ORDO).
Table 1 shows the metrics provided by BioPortal of these
ontologies.

Task 1: pairwise alignment of the HP and the MP ontolo-
gies (HP-MP matching task).

Task 2: pairwise alignment of the DOID and the
ORDO ontologies (DOID-ORDOmatching task).

Preparation phase
As specified by the OAEI the ontologies and (public)
reference alignments were made available in advance
during the first week of June 2016. The ontologies
and mappings were downloaded from BioPortal [18] on
June 2nd.
The mappings were obtained using a script that, given a

pair of ontologies, uses BioPortal’s REST API9 to retrieve

all mappings between those ontologies. We focused only
on skos:closeMatch (BioPortal) mappings10 as suggested in
[19], and we represented them as equivalencemappings.11
The BioPortal-based alignment between HP and MP con-
sisted in 639 equivalence mappings, while the alignment
between DOID and ORDO included 1,018 mappings.
Mappings were made available in both RDF Alignment
and OWL 2 formats.
The preparatory phase gives the opportunity to both

OAEI track organisers and participants to find and correct
problems in the datasets. During this phase we noticed
that the BioPortal mappings were highly incomplete.12
Hence, the participants were notified that the BioPortal-
based mappings were to be used as a baseline and not as a
gold standard reference alignment. Given the limitations
of the BioPortal mappings we were in need of creating
a (blind) consensus reference alignment to perform the
(automatic) evaluation (see details in the Evaluation phase
section).
All (open) OAEI datasets were released on July 15th,

2016 and did not evolve after that.

Execution phase
System developers had to implement a simple inter-
face and to wrap their tools including all required
libraries and resources in order to use the SEALS
infrastructure.13 The use of the SEALS infrastructure
ensures that developers can perform a full evaluation
locally and eases the reproducibility and comparability of
the results.
This phase was conducted between July 15th and

August 31st, 2016. During this time OAEI organisers
attended technical issues reported by the developers. We
also requested system developers to register their systems
and their intention to participate in the different OAEI
tracks by July 31st. Thirty systems were registered, from
which 14 seemed potential participants of theDisease and
Phenotype track.

Evaluation phase
Participants were required to submit their wrapped tools
by August 31st, 2016. From the 30 registered systems only
21 were finally submitted, and 13 were annotated (by the
system developers) as participants of theDisease and Phe-
notype track. The final results were published on theOAEI
website by October 15th.

Fig. 1 Phases of the OAEI 2016 Disease and Phenotype track. Important Dates: D1 (publication of preliminary datasets), D2 (final datasets released), D3
(system registration), D4 (system submission), D5 (publication of evaluation results and presentation in the Ontology Matching workshop [1])
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Table 1 Metrics of the track ontologies. Source: NCBI BioPortal on 2nd June 2016

Ontology Number of axioms Number of classes Maximum depth Avg. number of children

HP 137,289 11,786 15 3

MP 129,036 11,721 15 3

DOID 124,362 9248 12 3

ORDO 188,991 12,936 11 16

Note that the metric “average number of children” excludes the leaf nodes

Algorithm 1 Steps followed in the evaluation
Input:O1,O2: ontologies in matching task;MRA

m :
manually generated alignment; Systems: ontology
matching systems participating in the task.

� Generation of system alignments with SEALS infras-
tructure:

1: for each Systemi in Systems do
2: MS

i ← Systemi(O1,O2) � Computes system
alignment

3: end for
� Generation of consensus alignments:

4: MRA
c2 ← ConsensusAlignment

(
MS

1 . . .MS
n, 2

) �
With vote 2

5: MRA
c3 ← ConsensusAlignment

(
MS

1 . . .MS
n, 3

) �
With vote 3
� Aligned ontologies for consensus reference align-
ments:

6: OMRA
c2 ← O1 ∪ O2 ∪ MRA

c2 � RepairMRA
c2 if required

7: OMRA
c3 ← O1 ∪ O2 ∪ MRA

c3 � RepairMRA
c3 if required

� Evaluation for each system generated alignments:
8: for eachMS

i inMS
1 . . .MS

n do
� Aligned ontology forMS

i :
9: OMS

i ← O1 ∪ O2 ∪ MS
i � RepairMS

i if required� Results against consensus alignment with vote 2:
10: P2 ← SemanticPrecision

(
MS

i ,OMRA
c2

)

11: R2 ← SemanticRecall
(
MRA

c2 ,OMS
i
)

� Results against consensus alignment with vote 3:
12: P3 ← SemanticPrecision

(
MS

i ,OMRA
c3

)

13: R3 ← SemanticRecall
(
MRA

c3 ,OMS
i
)

� Results against manually generated alignment:
14: Rm ← SemanticRecall

(
MRA

m ,OMS
i
)

� Manual assessment of unique system mappings:
15: US

i ← UniqueMappings
(
MS

i ,OMRA
c2

)

16: {Pm,PC,NC} ← ManualAssessment
(
US
i
)

17: end for

The evaluation for the Disease and Phenotype track was
semi-automatic with support of the SEALS infrastruc-
ture. Systems were evaluated according to the following

criteria for each of the matching tasks of the Disease and
Phenotype track:

• Semantic precision and recall with respect to the
consensus alignments.

• Semantic recall with respect to manually generated
mappings.

• Manual assessment of unique mappings produced by
a participant system.

Algorithm 1 formalizes the steps followed in the evalua-
tion for each of theDisease and Phenotypematching tasks.
The following subsections below comment on the main
points of the evaluation process.

Consensus alignments. The consensus alignments are
automatically generated based on the alignments pro-
duced by the participating systems in each of thematching
tasks of the track. For the evaluation we have selected the
consensus alignments of vote=2 (i.e., mappings suggested
by two or more systems) and vote=3 (i.e., mappings sug-
gested by three or more systems). In the case where both
an equivalence and a subsumption mapping contribute to
the consensus, the equivalence relationship prevails over
the subsumption. The use of vote=2 and vote=3 was
motivated by our experience in the creation of consen-
sus alignments [20]. Consensus alignments with vote≥4
are typically highly precise but also very incomplete unless
the number of contributing systems is significant.14 Note
that, when there are several systems of the same fam-
ily (i.e., systems participating with several variants), their
(voted) mappings are only counted once in order to
reduce bias.15
Note that consensus alignments have numerous lim-

itations. It allows us to compare how the participating
systems perform only in relation to each other. Some of
the mappings in the consensus alignments may be erro-
neous (false positives), as it only requires 2 or 3 systems
to agree on the erroneous mappings they find. Further-
more, the consensus alignments may not be complete,
as there will likely be correct mappings that no or only
one system is able to find. Nevertheless, consensus align-
ments help to provide some insights into the performance
of a matching system.
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Semantic precision and recall. As introduced in the
Preliminaries section, the semantic precision and recall
take into account the implicit knowledge derived from
the ontologies and the mappings via OWL 2 rea-
soning.16 Hence, the methods SemanticPrecision and
SemanticRecall in Algorithm 1 receive as input a set of
mappings M and a coherent ontology O. Both methods
return as output the value of |M′|

|M| whereM′ is a subset of
M such that the mappingsm ∈ M′ are entailed byO (i.e.,
O |= m).

Manually generated mappings. These reference map-
pings were created through manual curation by eight
disease informatics experts, who are authors of this paper,
all working within or for the pharmaceutical industry for
three areas of phenotype and disease; namely carbohy-
drate and glucose metabolism, obesity and breast cancer.
These sets of reference mappings comprised of 29 pair-
wise mappings between HP and MP and 60 pairwise
mappings between DOID and ORDO across the three
areas. They included some relationships of equivalence,
but most of them represented subsumption relationships.
The three areas were selected as representative samples
which were known already to be present across the four
source ontologies. Inclusion of these manually defined
mappings enabled a real-world evaluation of recall for the
two matching tasks. The future editions of the track will
increase the number of manual mappings through inclu-
sion of additional areas relevant to the phenotype and
disease domain.

Unique mappings and manual assessment. Unique
mappings are mappings generated by an ontology match-
ing system that have not been (explicitly) suggested
by any of the other participating systems, nor entailed
by the aligned ontology using the consensus alignment
with vote=2

(
OMRA

c2
)
. The method UniqueMappings in

Algorithm 1 receives as input a set of mappings M and
the (coherent) ontology OMRA

c2 and returns as output M′
where M′ ⊆ M such that the mappings m ∈ M′ are not
entailed byOMRA

c2
(
i.e.,OMRA

c2 �|= m
)
.

Manual assessment over unique mappings has been
performed by an expert in disease informatics from the
pharmaceutical industry. This assessment aims at comple-
menting the evaluation against the consensus alignments
of those mappings that, although being suggested or voted
by only onematching system,may still be correct.We have
focused the assessment on unique “equivalence”mappings
and we have manually evaluated up to 30 mappings for
each system in order to (roughly) estimate the percentage
of correct mappings (i.e., precision, Pm in Algorithm 1)
and the positive/negative contribution to the total num-
ber of unique mappings (PC and NC in Algorithm 1),

that is, the weight of the correct (i.e., true positives) and
incorrect (i.e., false positives) mappings. Intuitively, the
positive contribution (see Eq. 4) of a system producing a
small set of unique mappings will most likely be smaller
than a system producing a larger set of unique (andmostly
correct) mappings. The negative contribution (see Eq. 5)
will weight the number of incorrect uniquemappings with
respect to the total. Negative and positive contributions,
for a set of unique mappings US

i computed by a system i,
are defined as follows:

PositiveContribution
(
US
i

)
=

∣
∣US

i
∣
∣ · Precision (

US
i
)

∑n
j=1

∣
∣US

j
∣
∣ (4)

NegativeContribution
(
US
i

)
=

∣∣US
i
∣∣ · (

1 − Precision
(
US
i
))

∑n
j=1

∣
∣US

j
∣
∣

(5)

Results
We have run the evaluation of the Disease and Phenotype
track in a Ubuntu Laptop with an Intel Core i7-4600U
CPU @ 2.10 GHz x 4 and allocating 15 Gb of RAM. From
the 13 systems registered to the track (out of 21 OAEI par-
ticipants), 11 systems have been able to cope with at least
one of the Disease and Phenotype matching tasks within
a 24 h time frame. Results for all OAEI tracks have been
reported in [1].

Participating systems
AML [21, 22] is an ontology matching system originally
developed to tackle the challenges of matching biomedical
ontologies. While its scope has since expanded, biomed-
ical ontologies have remained one of the main drives
behind its continued development. AML relies on the use
of background knowledge and it also includes mapping
repair capabilities.

DiSMatch [23] estimates the similarity among concepts
through textual semantic relatedness. DiSMatch relies on
a biomedical domain-adapted variant of a state-of-the-
art semantic relatedness measure [24], which is based on
Explicit Semantic Analysis.

FCA-Map [25] is an ontology matching system based on
Formal Concept Analysis (FCA). FCA-Map attempts to
push the envelope of the FCA to cluster the commonalities
among classes at various levels.

LogMap [26, 27] relies on lexical and structural indexes
to enhance scalability. It also incorporates approximate
reasoning and repair techniques to minimise the number
of logical errors in the aligned ontology.
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LogMapBio [28] extends LogMap to use BioPortal [18]
as a (dynamic) provider of mediating ontologies, instead
of relying on a few preselected ontologies. LogMap-
Bio retrieves the most suitable top-10 ontologies for the
matching task.

LogMapLt is a “lightweight” variant of LogMap, which
essentially only applies (efficient) string matching tech-
niques.

LYAM++ [29] is a fully automatic ontology matching sys-
tem based on the use of external sources. LYAM++ applies
a novel orchestration of the components of the matching
workflow [30].

PhenomeNET [31] alignment system comes in three
flavours, which rely on three different versions of the
PhenomeNET ontology [32]. PhenomeNET-Plain (Phe-
noMP) relies on a plain ontology which only uses the
axioms provided by the HP ontology and the MP ontol-
ogy. PhenomeNET-Map (PhenoMM) utilizes additional
lexical equivalence axioms between HP and MP pro-
vided by BioPortal. Finally, PhenomeNET-Full (PhenoMF)
relies on an extended version of the PhenomeNET ontol-
ogy with equivalence mappings to the DOID and ORDO
ontologies obtained via BioPortal and the AML matching
system [21].

XMap [33] is a scalable matcher that implements parallel
processing techniques to enable the composition of basic
ontology matchers. It also relies on the use of external
resources such as the UMLS Metathesarus [34].

Use of specialised background knowledge
The use of (specialised) background knowledge is allowed
in the OAEI, but participants are required to spec-
ify which sources their systems rely on to enhance the
matching process. AML has three sources of background
knowledge which can be used as mediators between
the input ontologies: the Uber Anatomy Ontology [35]
(Uberon), the Human Disease Ontology [4] (DOID)
and the Medical Subject Headings17 (MeSH). LYAM++
also makes use of the Uberon ontology [35]. LogMap-
Bio uses BioPortal [18] as dynamic mediating ontology
provider, while LogMap uses normalisations and spelling
variants from the general (biomedical) purpose UMLS
Lexicon.18 XMAP uses synonyms provided by the

UMLS Metathesaurus [34]. Finally, PhenoMM, PhenoMF
and PhenoMP rely on different versions of the Phe-
nomeNET19 ontology [32] with variable complexity as
described above.

Evaluation against BioPortal (baseline) mappings
Table 2 shows the results in terms of semantic recall
against the baseline mappings extracted from BioPortal as
described in the “Methods” Section (Preparation phase).
In the DOID-ORDO task, LYAM++ failed to complete
the task while PhenoMM and PhenoMP produced empty
mapping sets.
BioPortal mappings mostly represent correspondences

with a high degree of lexical similarity and, as expected,
most of the systems managed to produce alignments with
a very high recall. DiSMatch, LYAM++, PhenoMM (in
the DOID-ORDO task) and PhenoMP were the exception
and produced very low results with respect to the base-
line mappings. As mentioned in the “Methods” Section,
since the BioPortal mappings were highly incomplete, the
results in terms of (semantic) precision were not signif-
icant. For this reason, we needed to create consensus
alignments for each task.

Creation of consensus alignments
In the MP-HP matching task 11 systems were able to
produce mappings. Mappings voted by LogMap and Phe-
nomeNET families were only counted once, and hence
there were 7 independent system groups contributing to
the consensus alignment. In the DOID-ORDO match-
ing task 8 systems generated mappings and there were 6
independent system groups contributing to the consensus
alignment.
Table 3 (resp. Table 4) shows the size of the differ-

ent consensus alignments from vote=1, i.e., mappings
suggested by one or more system groups, to vote=7
(resp. vote=6), i.e., mappings suggested by all system
groups, in the HP-MP matching task (resp. DOID-ORDO
task). It is noticeable that in the HP-MP task there
were 0 mappings where all systems agreed, while in
the DOID-ORDO task there were only 36. The num-
ber of mappings suggested by one system or more is
specially large because PhenomeNET systems produce a
large number of subsumption mappings. If only equiv-
alence mappings of PhenomeNET systems are taken
into account, the number of mappings with vote=1
would be 3433 in the HP-MP task and 2708 in the
DOID-ORDO task.

Table 2 Recall against BioPortal (baseline) mappings

System AML DiSMatch FCA-Map LYAM++ LogMap LogMapBio LogMapLt PhenoMF PhenoMM PhenoMP XMap

HP-MP 1.0 0.25 0.998 0.014 0.997 1.0 0.994 1.0 1.0 0.412 0.995

DOID-ORDO 0.993 0.048 0.984 - 0.942 0.950 0.943 0.994 0.0 0.0 0.967
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Table 3 Consensus alignments for the HP-MP matching task

Min. Votes 1 2 3 4 5 6 7

Mappings 217039 2308 1588 1287 677 152 0

Seven (family) system groups contributing

As described in the “Methods” Section we have selected
the consensus alignments of vote=2 and vote=3. These
consensus alignments for HP-MP contain 2308 and
1588 mappings, respectively; while for DOID-ORDO
they include 1883 and 1617 mappings, respectively.
Table 5 shows some examples of mappings included with
the consensus alignments of vote=2 and vote=3. Also
shown are some examples of manually created mappings
and (correct/incorrect) unique mappings from ontology
matching systems.

Results against consensus alignments
The union of the input ontologies together with the con-
sensus alignments or the mappings computed by each of
the systems was coherent and thus, we did not require to
repair any of the mapping sets to calculate the semantic
precision and recall. Note that the downloaded ontol-
ogy versions from BioPortal did not contain any explicit
or implicit disjointness. Tables 6 and 7 show the results
achieved by each of the participating systems against the
consensus alignments with vote=2 and vote=3. In the
DOID-ORDO task, LYAM++, PhenoMM and PhenoMP
failed to produce mappings and they were not included in
Table 7.
We deliberately did not rank the systems since, as men-

tioned in the “Methods” section, the consensus align-
ments may be incorrect or incomplete. We have simply
highlighted the systems producing results relatively close
to the consensus alignments. For example, in the HP-MP
task, LogMap is the system producing an alignment that
is closer to the mappings voted by at least 2 systems, while
FCA-MAP produces results very close to the consensus
alignments with vote=3.
The use of semantic precision and recall allowed us to

provide a fair comparison for the systems PhenoMF, Phe-
noMM and PhenoMP. These systems discover a large set
of subsumption mappings that are not explicit in the ref-
erence alignments, but they are still valid (i.e., they are
entailed by the aligned ontology using the reference align-
ment). For example, the standard precision of PhenoMF

Table 4 Consensus alignments for the DOID-ORDO matching
task

Min. Votes 1 2 3 4 5 6

Mappings 50,998 1883 1617 1447 991 36

Six (family) system groups contributing

in the HP-MP task is 0.01 while the semantic precision
reaches the value of 0.76.
Tables 6 and 7 also include the results of BioPortal map-

pings against the consensus alignments. Precision values
are perfect, but recall is very low, which confirms our
intuitions (recall “Preparation phase” section) about the
incompleteness of BioPortal mappings.
It is striking howXMap and LogMapLt produced results

very similar to the ones obtained by the BioPortal map-
pings. Closer scrutiny of these results showed us that
the computed mappings were indeed very similar to the
BioPortal mappings (i.e., the F-measure of XMap and
LogMapLt against the baseline mappings provided by
BioPortal is ≥ 0.95 in both tasks).
This could be expected for LogMapLt, since it only

relies on simple string matching techniques as the match-
ing system underlying BioPortal [36]. However, the results
for XMap are unexpected since it produced top-results
in the other biomedical-themed tracks of the OAEI
2016 [1].

Results against manually created mappings
Table 8 shows the results in terms of semantic recall
against the manually created alignments. The results
obtained in the HP-MP are relatively large positive values
in general, especially for PhenoMF and PhenoMM that
achieve a semantic recall of 0.90. The numbers for the
DOID-ORDO, however, are much smaller values and only
LogMap, LogMapBio and DisMatch are able to discover
a few of the manually curated mappings. LogMapBio
obtained the best semantic recall value with 0.17, which
is far from the top results in the HP-MP task. The afore-
mentioned results are also reflected when considering the
consensus alignments. In the HP-MP task, both the con-
sensus alignments with vote 2 and 3 obtained reasonably
good results. However the picture changes dramatically
in the DOID-ORDO task where none of the manually
curated mappings are covered by the mappings agreed by
2 or more systems. The most likely explanation for this
result is that the manual mappings for DOID-ORDO rep-
resent more complex subsumption mappings which were
not possible to (semantically) derive for the other map-
pings. Table 8 also shows the results for the BioPortal
mappings, which, as expected, have a coverage of curated
mappings very similar to the obtained by LogMapLt and
XMap systems.
The use of semantic recall together with the standard

measure, as in previous section, allowed us to provide
more realistic results and a fair comparison with the Phe-
nomeNET family systems. As it can be observed in the
HP-MP task (Table 8), the standard recall, unlike the
semantic recall, obtained by the other participants was
very low and not comparable to the PhenomeNET family
systems.
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Table 5 Example mappings in the Disease and Phenotype track

Entity 1 Entity 2 Rel. Source

x-linked chondrodysplasia punctata (DOID_0060292) Chondrodysplasia punctata (Orphanet_93442) ≡ (only) consensus alignment vote=2

Meningeal melanomatosis (DOID_8243) Diffuse leptomeningeal melanocytosis ≡ Consensus alignment vote=3
(Orphanet_252031)

Reactive arthritis (DOID_6196) Reactive arthritis (Orphanet_29207) ≡ Consensus alignment vote=3

Hypoplastic scapulae (HP_0000882) Short scapula (MP_0004340) ≡ (only) consensus alignment vote=2

Macrocytic anemia (HP_0001972) Macrocytic anemia (MP_0002811) ≡ Consensus alignment vote=3

Unerupted tooth (HP_0000706) Failure of tooth eruption (MP_0000121) ≡ Consensus alignment vote=3

Breast leiomyosarcoma (DOID_5285) Rare malignant breast tumor � Manually created
(Orphanet_180257)

Abnormality of body weight (HP_0004323) Abnormal body weight (MP_0001259) ≡ Manually created

Microcephaly (HP_0000252) Decreased brain size (MP_0000774) ≡ AML unique mapping (correct)

Skeletal dysplasia (HP_0002652) Abnormal skeletal muscle morphology ≡ AML unique mapping (incorrect)
(MP_0000759)

Carbohydrate metabolism disease (DOID_0050013) Disorder of carbohydrate metabolism ≡ LogMapBio unique mapping (correct)
(Orphanet_79161)

Spinocerebellar ataxia type 35 (DOID_0050982) Transglutaminase 6 (Orphanet_279644) ≡ LogMapBio unique mapping (incorrect)

Female hypogonadism (HP_0000134) Small ovary (MP_0001127) ≡ PhenoMF unique mapping (correct)

While the top performing algorithms were able to detect
equivalence matches across whole source ontologies for
the two mapping tasks giving high F-measures (Tables 6
and 7), it is clear from detection of the curated align-
ments that these proved much more difficult with a trend
for lower semantic recall across both tasks (Table 8).
This result was not surprising because the curated align-
ments mostly comprised of subsumption relationships
rather than equivalence. Table 5 shows two examples
of curated mappings; the equivalence mapping between
abnormality of body weight and abnormal body weight
was suggested by at least one the systems, while the sub-
sumption mapping between breast leiomyosarcoma and

rare malignant breast tumor was not discovered by any of
the systems.

Results for manual assessment of unique mappings
Tables 9 and 10 show the results of the manual
assessment of the unique mappings generated by the
participating systems. As mentioned in the “Methods”
section we manually analysed up to 30 unique equiva-
lence mappings for each system to estimate the precision
of the generated mappings not agreed with other sys-
tems. Table 5 shows examples of unique mappings com-
puted by AML, LogMapBio and PhenoMF. Note that,
we focus on equivalence mappings since PhenomeNET

Table 6 Results against consensus alignments with vote=2 and vote=3 in the HP-MP task

System-mappings Mappings Precision-2 F-Measure-2 Recall-2 Precision-3 F-Measure-3 Recall-3

BioPortal (baseline) 639 1.00 0.50 0.33 1.00 0.60 0.43

AML 1755 0.93 0.86 0.80 0.85 0.90 0.94

DiSMatch 644 0.55 0.30 0.21 0.45 0.28 0.20

FCA − Map 1590 0.98 0.85 0.75 0.94 0.93 0.92

LYAM + + 381 0.41 0.12 0.07 0.17 0.06 0.04

LogMap 2011 0.94 0.92 0.91 0.77 0.86 0.97

LogMapBio 2151 0.92 0.92 0.93 0.75 0.85 0.98

LogMapLt 667 1.00 0.51 0.34 1.00 0.62 0.45

PhenoMF 204,089 0.76 0.83 0.92 0.63 0.76 0.95

PhenoMM 198,149 0.77 0.83 0.91 0.64 0.76 0.94

PhenoMP 169,660 0.78 0.67 0.58 0.64 0.57 0.51

XMap 650 1.00 0.50 0.33 1.00 0.61 0.44

Precision and Recall represent their semantic variants
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Table 7 Results against consensus alignments with vote=2 and vote=3 in the DOID-ORDO task

System-mappings Mappings Precision-2 F-Measure-2 Recall-2 Precision-3 F-Measure-3 Recall-3

BioPortal (baseline) 1018 0.99 0.71 0.55 0.99 0.76 0.62

AML 2098 0.85 0.91 0.97 0.78 0.87 1.00

DiSMatch 335 0.23 0.08 0.05 0.19 0.07 0.04

FCA − Map 1803 0.97 0.96 0.96 0.89 0.94 0.99

LogMap 1667 0.95 0.91 0.88 0.91 0.92 0.94

LogMapBio 1804 0.92 0.91 0.90 0.86 0.90 0.95

LogMapLt 1000 0.99 0.72 0.56 0.99 0.76 0.62

PhenoMF 40,612 0.95 0.89 0.83 0.95 0.94 0.92

XMap 1030 0.98 0.72 0.57 0.98 0.77 0.63

Precision and Recall represent their semantic variants

systems produce a large amount of (unique) subsumption
mappings.
BioPortal mappings, as expected, contains a very low

number of uniquemappings in the DOID-ORDO task and
no unique mappings in the HP-MP task.
It is noticeable in the HP-MP task that, although DiS-

Match and LYAM++ produced very low results with
respect to the consensus alignments (see Table 3), the pos-
itive contribution of their unique mappings is one of the
highest. Nevertheless, their negative contribution has also
an important weight. PhenomeNET systems produced
the most precise set of unique mappings although their
positive contribution was lower than other systems.
In the DOID-ORDO matching task, AML’s unique

mappings contains the higher number of true positives
with a reasonable number of false positives. LogMapBio

provided the best trade-off between positive and negative
contribution.
The last row in Tables 9 and 10 shows (excluding Bio-

Portal mappings) the total number of unique mappings,
its (average) precision, and the total (aggregated) positive
and negative contribution.

Results in the OAEI interactive matching track
The OAEI interactive track20 aims at offering a systematic
and automated evaluation of matching systems with user
interaction to compare the quality of interactive match-
ing approaches in terms of F-measure and number of
required interactions. The interactive track relies on the
datasets of the OAEI tracks: Conference, Anatomy, Large-
bio, and Disease and Phenotype; and it uses the reference
alignments of each track as oracle in order to simulate

Table 8 Results against curated alignments

System-mappings
HP-MP task DOID-ORDO task

Standard recall Semantic recall Standard recall Semantic recall

BioPortal (baseline) 0.17 0.52 0.00 0.00

AML 0.28 0.76 0.00 0.00

DiSMatch 0.07 0.14 0.02 0.03

FCA − Map 0.21 0.62 0.00 0.00

LYAM + + 0.00 0.00 - -

LogMap 0.24 0.66 0.02 0.12

LogMapBio 0.28 0.69 0.03 0.17

LogMapLt 0.17 0.52 0.00 0.00

PhenoMF 0.90 0.90 0.00 0.00

PhenoMM 0.90 0.90 - -

PhenoMP 0.83 0.83 - -

XMap 0.17 0.52 0.00 0.00

Consensus vote = 1 0.90 0.90 0.05 0.20

Consensus vote = 2 0.31 0.79 0.00 0.00

Consensusvote = 3 0.24 0.66 0.00 0.00
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Table 9 Manual assessment of unique mappings and estimated positive and negative contribution in the HP-MP task

System-mappings Unique mappings Precision Positive contrib. Negative contrib.

BioPortal (baseline) 0 -

AML 122 0.87 8.63% 1.33%

DiSMatch 291 0.83 19.80% 3.96%

FCA − Map 26 0.96 2.04% 0.08%

LYAM + + 226 0.70 12.91% 5.53%

LogMap 130 0.93 9.90% 0.71%

LogMapBio 176 0.93 13.40% 0.96%

LogMapLt 0 - - -

PhenoMF 89 1.00 7.27% 0.00%

PhenoMM 85 1.00 6.94% 0.00%

PhenoMP 80 1.00 6.53% 0.00%

XMap 0 - - -

Total 1225 0.91 87.42% 12.58%

the interaction with a domain expert with variable error
rate [1].
In this section we briefly present the results with

the Disease and Phenotype datasets in the OAEI 2016
interactive track, which represents a side contribu-
tion of the work presented in this paper. For more
details and results, the interested reader please refer to
state-of-the-art papers on interactive ontology alignment
[1, 37–39].
The consensus alignment with vote=3 was used as

oracle in the Disease and Phenotype interactive track.
Table 11 shows the obtained F-measure by AML and
LogMap when simulating an interaction with a perfect
user (i.e., always gives the correct answer when asked
about the validity of a mapping).21 Both systems increase
the F-measure with respect to the non-interactive results
(see Tables 6 and 7) with a gain between 0.03 and 0.11.
It is noticeable that the number of required requests by
LogMap is around 4-5 times larger than AML.

Discussion
The OAEI has been proven to be an effective campaign
to improve ontology matching systems. As a result, avail-
able techniques are more mature and robust. Neverthe-
less, despite the impressive state-of-the-art technology in
ontology alignment, new matching tasks like those pre-
sented in this paper are very important for the OAEI
campaign since they introduce new challenges to ontol-
ogy alignment systems. For example, our preliminary tests
with the Disease and Phenotype dataset revealed that only
the 2015 versions of AML and LogMap, among the sys-
tems participating in the OAEI 2015, were able to cope
with the track ontologies.
In the OAEI 2016 campaign there were 11 systems that

were able to produce results in at least one of the Disease
and Phenotype matching tasks. The four systems: AML,
FCA-Map, LogMap (and its Bio variant) and PhenoMF
produced alignments relatively close to the consensus
alignments for theDisease and Phenotype evaluation tasks

Table 10 Manual assessment of unique mappings and estimated positive and negative contribution in the DOID-ORDO task

System-mappings Unique mappings Precision Positive contrib. Negative contrib.

BioPortal (baseline) 5 0.40

AML 308 0.87 30.40% 4.68%

DiSMatch 259 0.40 11.80% 17.70%

FCA − Map 61 0.83 5.79% 1.16%

LogMap 80 0.90 8.20% 0.91%

LogMapBio 144 0.97 15.85% 0.55%

LogMapLt 7 0.50 0.40% 0.40%

PhenoMF 3 1.00 0.34% 0.00%

XMap 16 0.56 1.03% 0.80%

Total 878 0.75 73.81% 26.19%
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Table 11 Results in the OAEI interactive track

Task System F-measure Gain Requests

HP-MP AML 0.93 0.03 388

LogMap 0.97 0.11 1928

DOID-ORDO AML 0.96 0.09 413

LogMap 0.99 0.07 1602

as described in this paper. The results against curated
alignments proved to be more challenging since they go
beyond equivalent matches to include matches of seman-
tic similarity, especially subsumption relationships. This
finding suggests that while the systems performed well
enough for detection of equivalent mappings, in future it
would be good to improve their performance for detec-
tion of semantic similarity matches. For example, Phe-
nomeNET systems showed potential advantage though
exploiting a specialised background knowledge embed-
ded within the system. LYAM++ is also specialised in the
use of background knowledge, but it did not perform well
in the Disease and Phenotype track, unlike in the OAEI
Anatomy track, probably due to the lack of a suitable
source of background knowledge for this track.
The OAEI also includes two biomedical-themed tracks,

namely Anatomy and Largebio [1]. The complexity of the
matching tasks is similar to the Anatomy track in terms of
ontology size and expressiveness, while the Largebio tasks
represent a significant leap in complexity with respect
to the other OAEI test cases. The main differences with
respect to the evaluation in the Disease and Phenotype
track are the following: (i) we constructed two consen-
sus reference alignments, unlike the Anatomy track where
there exist a curated reference alignment [40] and the
Largebio track where the reference alignment has been
extracted from the UMLS Metathesaurus [8]; (ii) we per-
formed an evaluation with respect to manually created
mappings and a manual assessment of unique mappings
produced by participating systems; and (iii) we used
semantic precision and recall together with the standard
measures.
The findings of the Disease and Phenotype evaluation

show the potential of the top performing ontology match-
ing systems that could help to automate the workflow
of curators, who maintain ontology mapping services in
numerous domains such as the disease and phenotype
domain. Furthermore, the constructed consensus align-
ments substantially improve available mapping sets pro-
vided by BioPortal.

Conclusions
We have presented the methodology followed in the novel
Disease and Phenotype track and the results in the OAEI
2016. The top systems in the track coped well with the

detection of equivalence matches, but struggled to detect
subsumption matches. This deserves more attention in
the future development of ontology matching systems.
The Pistoia Alliance Ontologies Mapping project has

gained much value from participation in the 2016 OAEI
campaign through sponsorship and design of this new
track on Disease and Phenotype. We believe that there is
a real need for ontology matching algorithm developers
to collaborate with ontology curators to improve the scale
and quality of workflows necessary to build and maintain
ontology mapping resources.
We are in an exploding information age with increasing

amounts of human biology and genetics data in particular
from sequencing technology improvements, biobanks and
smart portable devices. This drives the need for stronger
ontological standards, tools and services for ontology
mapping to enable more efficient application of all this
information. We expect that the Disease and Phenotype
track will evolve in future campaigns as a strong use case
which is widely applicable in the life sciences and beyond.

Evolution of the track
The OAEI 2017 will include a new edition of the track,
which will be composed by the same tasks as in 2016
(with updated ontology versions) and two additional tasks
requiring the pairwise alignment of:

• HP and MESH (Medical Subject Headings)
ontologies; and

• HP and OMIM (Online Mendelian Inheritance in
Man) ontologies.

The alignment between HP andMESH is a new require-
ment of the Pistoia Alliance Ontologies Mapping project,
while the mapping between HP and OMIM is placed
within the scope of the Research Council of Norway
project BigMed to improve the suggested genes associ-
ated to a given phenotype in state of the art tools like
PhenoTips [41].
In the future editions of the Disease and Phenotype

track, apart from including new datasets and updated ver-
sions, we aim to enhance the evaluation in a number
of ways. We will consider new metrics like the map-
ping incoherence [12], the functional coherence [42] or
the redundancy (minimality) [43] to evaluate the com-
puted alignments. We also intend to redefine the notion of
semantic precision and recall, using the using the seman-
tic closure of the (aligned) ontologies, in order to include
the cases where the aligned ontology is incoherence (i.e.,
contains unsatisfiable classes).
We plan to increase the number of manually gener-

ated mappings considering additional areas relevant to
the phenotype and disease domain. In addition, we will
also work towards the semi-automatic creation of gold
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standard reference alignments for the tasks by combin-
ing the consensus alignments and the manually generated
mappings.

Endnotes
1 http://www.pistoiaalliance.org/projects/ontologies-

mapping
2 https://pistoiaalliance.atlassian.net/wiki/display/PUB/

Ontologies+Mapping+Resources
3The contents of this paper have been partially reported

in the OAEI 2016 annual report [1], published within
the “informal” proceedings of the Ontology Matching
workshop [44].

4 http://www.orphadata.org/cgi-bin/inc/ordo_
orphanet.inc.php

5 https://www.w3.org/TR/owl2-overview/
6Typically automatic, although there are systems that

also allow human interaction
7 http://oaei.ontologymatching.org/
8 http://oaei.ontologymatching.org/2016/phenotype/
9 http://data.bioontology.org/documentation#Mapping
10 https://www.bioontology.org/wiki/index.php/

BioPortal_Mappings
11We did not consider mappings labelled as

skos:exactMatch since they represent correspondences
between entities with the same URI, and thus these
mappings are redundant if translated into OWL 2 axioms.

12Our tests with last year participants revealed a large
amount of missing valid mappings. The “Results” section
quantifies this degree of incompleteness.

13 http://oaei.ontologymatching.org/2016/seals-eval.
html

14We may consider vote ≥ 4 in future editions of the
Disease and Phenotype track as the contributing partici-
pants increase.

15 There could still be some bias through systems
exploiting the same resource, e.g., UMLS.

16We rely on the OWL 2 reasoner HermiT [45].
17 http://bioportal.bioontology.org/ontologies/MESH
18 https://www.nlm.nih.gov/pubs/factsheets/umlslex.

html
19 http://aber-owl.net/ontology/PhenomeNET
20 http://oaei.ontologymatching.org/2016/interactive/
21 From the Disease and Phenotype track participating

systems only AML, LogMap and XMap implement an
interactive algorithm. We have discarded XMap from the
results since its number of oracle/user requests was very
low in the Disease and Phenotype track.
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