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ABSTRACT

Real-time processing of data coming from multiple heterogeneous
data streams and static databases is a typical task in many indus-
trial scenarios such as diagnostics of large machines. A complex
diagnostic task may require a fleet of up to hundreds of queries
over such data. Although many of these queries retrieve data of
the same kind like temperature measurements, they are different
since they access structurally different data sources. We have in-
vestigated how Semantic Technologies can make such complex di-
agnostics simpler by providing an abstraction semantic layer that
integrates heterogeneous data. We developed the system OPTIQUE
to put our ideas in practice. In a nutshell, OPTIQUE allows to ex-
press complex diagnostic tasks with just a few high-level semantic
queries. Then, the system can automatically enrich these queries,
translate them into a fleet with a large number of low-level data
queries, and finally optimise and efficiently execute the fleet in a
heavily distributed environment. We will demo the benefits of OP-
TIQUE on a real world scenario of Siemens Energy. For this pur-
pose we prepared anonymised streaming and static data relevant to
950 Siemens power generating turbines with more than 100, 000
sensors and deployed OPTIQUE on multiple distributed environ-
ments with up to 128 nodes. By registering and monitoring contin-
uous semantic high-level queries that combine streaming and static
data the demo attendees will be able to see how OPTIQUE makes
diagnostics of turbines easy. They will also see how OPTIQUE can
handle more than a thousand concurrent complex diagnostic tasks
that integrate heterogeneous data in real-time with a 10 TB/day
throughput. Finally, they will see that creating a semantic layer,
such as the one over the Siemens demo data, can be done in realis-
tic time with the help of our bootstrapping interactive system.

1. INTRODUCTION

Motivation. Real-time processing of streaming and static data
is a typical task in many industrial scenarios such as diagnostics of
large machines. This task is challenging since it often requires inte-
gration of data from multiple sources. For example Siemens Energy
runs service centres dedicated to diagnostics of thousands power
generating appliances across the globe. A typical task for such cen-
tres is to detect in real-time a failure of appliances caused by, e.g.,
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an abnormal temperature and pressure increase. Such tasks require
simultaneous processing of sequences of digitally encoded coher-
ent signals produced and transmitted from thousands gas and steam
turbines, generators, and compressors installed in power plants, and
of static data that includes structure of equipment, history of its ex-
ploitation and repairs, and even weather conditions. These data is
scattered across multiple and heterogeneous data streams with 30
GB/day throughput and static DBs with hundreds TBs of data.

Even for a single diagnostic task that a turbine may fail, Siemens
engineers have to analyse streams with temperature measurements
from up to 2, 000 censors installed in different parts of the turbine,
analyse historical data of turbine’s temperature, compute tempera-
ture patterns, compare them to patterns in other turbines, compare
weather conditions, etc. This requires to pose a fleet with hundreds
of queries, majority of which are semantically the same (they ask
about temperature) but syntactically different (they are over differ-
ent schemata). Formulating and executing so many queries, and
then assembling computed answers is expensive—it takes up to
80% of overal diagnostic time [10].

Ontology-Based Integration Approach. To tackle this is-
sue in Siemens Energy we propose a data integration approach that
is based on Semantic Technologies. In this paper we will refer
to our approach as Ontology-Based Stream-Static Data Integration
(OBSSDI). 1t follows the classical data integration paradigm that
requires to create a common ‘global’” schema that consolidates ‘lo-
cal’ schemata of the integrated data sources, and mappings that de-
fine how the local and global schemata are related [5]. In OBSSDI
the global schema is an ontology: a formal conceptualisation of
the domain of interest that consists of a vocabulary, i.e., names of
classes, attributes and binary relations, and axioms over the terms
from the vocabulary that, e.g., assign attributes of classes, define
relationship between classes, composed classes, class hierarchies,
etc. The Siemens Energy ontology that we developed [10] contains
hundreds of terms and axioms that encode generic specifications of
appliances, characteristics of sensors, materials, processes, descrip-
tions of diagnostic tasks, etc. OBSSDI mappings relate each onto-
logical term to a set of queries over the underlying data. For exam-
ple, the generic attribute temperature-of-sensor from the Siemens
Energy ontology is mapped to all specific data and procedures that
return temperatures of sensors in dozens of different turbines and
DBs storing historical data, thus, all particularities and varieties of
how the temperature of a sensor can be measured, represented, and
stored are hidden in these mappings.

In OBSSDI the integrated data can be accessed by posing queries
over the ontology, i.e., ontological queries. These queries are hy-
brid: they refer to both streaming and static data. Evaluation of an
ontological query in OBSSDI has three stages: (i) in enrichment
stage the ontological query is automatically reformulated with the
help of axioms in another ontological query in order to access as
much of relevant data as possible, (ii) in unfolding stage the en-



riched ontological query is automatically translated with the help
of mappings in possibly many queries over the data, (iii) in execu-
tion stage the unfolded data queries are executed over the data.

The main benefit of OBSSDI is that the combination of ontolo-
gies and mappings allows to ‘hide’ the technical details of sow the
data is produced, represented, and stored in data sources, and to
show only what this data is about. This allows to formulate the
Siemens Energy diagnostic task above using only one ontological
query instead of a fleet of hundreds data queries that today Siemens
IT specialists have to write. Observe that these fleet of queries does
not disappear: the enrichment and unfolding stages of the eval-
uation by an OBSSDI system will turn the high-level ontological
query into the fleet of low-level data queries automatically. An-
other important benefit of OBSSDI is modularity and composition-
ality of its assets: every mapping relates only one ontological term
to the data, thus, the semantics of the ontology is modularised for
each separate term which allows to construct its assets indepen-
dently from each other and on demand; then, the same ontological
terms can be used in different queries, thus, by defining mappings
for only a few ontological terms one will be able compose many
queries using these mapped terms.

OBSSDI extends existing semantic data integration solutions that
either assume that data is in (static) relational DBs, e.g [3, 4], or
streaming, e.g., [2, 6] but not of both kinds. OBSSDI also extends
existing solutions for unified processing of streaming and static se-
mantic data e.g. [13], since they assume that data is natively in the
WC3 standardised RDF semantic data format while we assume the
data to be relational and mapped to the semantic format.

Research Challenges. The benefits of OBSSDI come with a
price. The main practical challenges for OBSSDI that are not ad-
dressed by existing Semantic Technologies include:

[C1] development of tools for semi-automatic support to construct
quality ontologies and mappings over relational and stream-
ing data,

[C2] development of a query language over ontologies that com-
bines streaming and static data and allows for efficient en-
richment and unfolding that preserves semantics of ontolog-
ical queries,

[C3] development of a backend that can optimise large numbers of
queries automatically generated via enrichment and unfold-
ing and efficiently execute them over distributed streaming
and static data.

Construction of ontologies and mappings in OBSSDI is done inde-

pendently and prior to query formulation and processing. Never-

theless, addressing C1 is practically important since such tools can
dramatically speedup deployment and maintenance, e.g., adjust-
ment to new query requirements, of OBSSDI systems. Addressing

C2 is crucial since to the best of our knowledge no devoted query

language for hybrid semantic queries has required properties. Ad-

dressing C3 is vital to ensue that OBSSDI queries are executable in
reasonable time. Note that C3 is not trivial since even in the con-
text where the data is only static and not distributed, query execu-

tion without devoted optimisation techniques performs poorly [3],

since the queries that are automatically computed after enrichment

and unfolding can be very inefficient, e.g., they contain many re-
dundant joins and unions.

Our Contributions. Besides proposing OBSSDI we addressed
the challenges C1-C3 and implemented our solutions in the OP-
TIQUE system. For C2, we introduced STARQL [12] query lan-
guage that allows to pose semantic queries over both streaming and
static data. STARQL queries are expressed over OWL 2 QL on-
tologies and OBSSDI mappings that relate each ontological term to
a set of queries over the underlying data in the global-as-view fash-
ion [5]. STARQL queries admit polinomial-time enrichment and

can unfoldable into SQL() queries, i.e. SQL queries enhanced
with the essential operators for stream handling. For C3, we intro-
duced EXASTREAM [11, 14], a highly optimised engine capable of
handling complex hybrid queries in real time. EXASTREAM sup-
ports parallel query execution and its Infrastructure as a Service ar-
chitecture enables us to elastically scale the system to support user-
demand in complex diagnostic scenarios. EXASTREAM incorpo-
rates several query optimisations, such as adaptive main-memory
indexing of stream measurements and native User Defined Func-
tions that permit a user to express complex operators in a concise
way. Finally, for C1, we developed BOOTOX [9], a system for
bootstrapping, i.e., extracting, ontologies and mappings from static
and streaming relational schema and data that proved its efficiency
in creating OBSSDI assets. See Section 2 for more details on OP-
TIQUE solutions for C1-C3 challenges.

Demo Overview. During the demonstration the attendees will
be able to see how OPTIQUE makes diagnostics for Siemens easy:
they will set and monitor continuous diagnostic tasks as STARQL
queries, see how EXASTREAM can handle more than a thousand
complex diagnostic tasks, and deploy OPTIQUE over Siemens data
using BOOTOX. See Section 3 for more details on demo scenarios.

2. OPTIQUE SYSTEM

OPTIQUE is an integrated system that consist of multiple compo-
nents to support OBSSDI end-to-end. For IT specialists OPTIQUE
offers support for the whole lifecycle of ontologies and mappings:
semi-automatic bootstrapping form relational data sources, import-
ing of existing ontologies, semi-automatic quality verification and
optimisation, cataloging, manual definition and editing of map-
pings. For end-users OPTIQUE offers tools for query formulation
support, query cataloging, answer monitoring, as well as integra-
tion with GIS systems. Query evaluation is done via OPTIQUE’s
query enrichment, unfolding, and execution backends that allow to
execute up to thousands complex ontological queries in highly dis-
tributed environments. In this section we give some details of three
OPTIQUE components that address the C1-C3 challenges above.

Deployment Support. Our BooTOX component allows to ex-
tract W3C standardised OWL 2 ontologies and R2ZRML mappings
from relational streaming and static data. Consider for example a
class Turbine; a mapping for it is an expression: Turbine(f(Z)) +
35 SQL(&, ), that can be seen as a view definition, where SQL(Z, )
is an SQL query, & are its output variables, ¥ are its variables
that are projected out (existentially quantified) and f is a func-
tion that converts tuples returned by SQL into identifiers of ob-
jects populating the class Turbine. Intuitively, mapping bootstrap-
ping of BOOTOX boils down to discovery of ‘meaningful’ queries
3y SQL(Z, ¥) over the input data sources that would correspond to
either a given element of the ontological vocabulary, e.g., the class
Turbine or attribute temperature-of-sensor, or to a new ontologi-
cal term. BOOTOX employs several novel schema and data driven
query discovery techniques. For example, BOOTOX can map two
tables like Turbine and Country into classes by projecting them
on primary keys, and the attribute locatedIn of Turbine into an
object property between these two classes if there is either an ex-
plicit or implicit foreign key between Turbine and Country . For
more complex mappings, BOOTOX requires users to provide a set
of examples of entities from the class, e.g., Turbine, where each
example is a set of keywords, e.g., {albatros, gas,2008}. Then the
system turns these keywords into SQL queries by exploiting graph
based techniques similar to [8] for keyword-based query answer-
ing over DBs. Moreover, BOOTOX also allows to incorporate third
party OWL 2 ontologies in an existing OPTIQUE’s deployment us-
ing ontology alignment techniques.

The ontological terms bootstrapped with BOOTOX are then used



CREATE STREAM S_out AS

CONSTRUCT GRAPH NOW { ?c2 rdf:type :MonInc }

FROM STREAM S_Msmt [NOW-"PT10S"""xsd:duration, NOW]->"PT1S"""xsd:duration,
STATIC DATA <http://www.optique-project.eu/siemens/ABoxstatic>,
ONTOLOGY <http://www.optique-project.eu/siemens/TBox>

USING PULSE WITH START = "00:10:00CET", FREQUENCY = "1S"

WHERE {?cl a sie:Assembly. ?c2 a sie:Sensor. ?cl sie:inAssembly ?c2.}

SEQUENCE BY StdSeq AS seq
HAVING MONOTONIC.HAVING (?c2, sie:hasValue)

CREATE AGGREGATE MONOTONIC:HAVING ($var, $attr) AS

HAVING EXISTS ?k IN SEQ: GRAPH ?k { $var sie:showsFailure } AND

FORALL ?i < ?j 1IN seq, ?x, ?y:
IF ( ?i,

?9 < 2k AND GRAPH ?i {S$Svar $attr ?x} AND GRAPH ?j {$var Sattr 2y}) THEN ?x<=2y

Figure 1: An example diagnostic task in STARQL, where the prefix sie stands for the URI of the Siemens ontology

to formulate STARQL ontological queries and the bootstrapped
mappings — to translate these queries into data queries. We shall
now discuss STARQL queries and their translation.

Diagnostic Queries. In order to express diagnostic tasks we
developed a query language STARQL [12] that allows to perform
complex semantic queries blending streaming with static data.

The syntax of STARQL extends so-called basic graph patterns
of W3C standardised SPARQL query language for RDF databases.
STARQL queries can express basic graph patterns, and typical
mathematical, statistical, and event pattern features needed in real-
time diagnostic scenarios; moreover, STARQL queries can be nes-
ted, thus allowing to employ the result of one query as input when
constructing another query. STARQL has a formal semantics that
combines open and closed-world reasoning and extends snapshot
semantics for window operators [1] with sequencing semantics that
can handle integrity constraints such as functionality assertions.

Due to space limit we cannot present STARQL in details. In-
stead, we will illustrate its main features on the following example
diagnostic task: Detect a real-time failure of the turbine caused
by the a temperature increase within 10 seconds. This task can be
expressed using STARQL over the Siemens ontology [10] as in
Figure 1 and it requires to combine streaming and static data. An
output stream S_out is defined by the following language con-
structs: The CONSTRUCT specifies the format of the output stream,
here instantiated by RDF triples asserting that there was a mono-
tonic increase. The FROM clause specifies the resources on which
the query is evaluated: the ONTOLOGY, STATIC DATA, and input
STREAM(s), for which a window operator is specified with window
range (here 10 seconds) and with slide (here 1 second). The PULSE
declaration specifies the output frequency. In the WHERE clause
bindings for sensors (attached to some turbine’s assembly) are cho-
sen. For every binding, the relevant condition of the diagnostic task
is tested on the window contents. Here this condition is abbrevi-
ated by MONOTONIC.HAVING (?c, sie:hasValue) usinga
macro that is defined at the bottom of Fig. 1 in an AGGREGATE dec-
laration. In words, the conditions asks whether there is some state
?k in the window s.t. the sensor shows a failure message at 2k and
s.t. for all states before ?k the attribute value ?attr (in the exam-
ple instantiated by sie:hasValue) is monotonically increasing.

STARQL has favourable computational properties [12]: despite
its expressivity, answering STARQL queries is efficient since they
can be efficiently enriched and then unfolded into efficient rela-
tional stream queries. STARQL query enrichment is polynomial-
time in the size of the input ontology if the ontology is OWL 2 QL
ontology language and the queries are essentially conjunctive with
value comparison and aggregate functions. STARQL unfolding is
linear-time in the size of both mappings and query and enriched
STARQL queries can be unfolded into relational stream queries.
We developed a devoted STARQLZSQL(H translator that un-
folds STARQL queries to SQL™ queries, i.e. SQL queries en-
hanced with the essential operators for stream handling.

Streaming and Static Relational Data Processing. Re-

lational queries produced by the STARQL2SQL™) translation,
are handled by EXASTREAM, OPTIQUE’s high-throughput distri-
buted Data Stream Management System (DSMS). The EXASTREAM
DSMS is embedded in EXAREME, a system for elastic large-scale
dataflow processing on the cloud [11, 14] that has been publicly
available as an open source project under the MIT License. In the
following, we present some key aspects of EXASTREAM.

EXASTREAM is built as a streaming extension of the SQLite
DBMS, taking advantage of existing Database Management tech-
nologies and optimisations. It provides a declarative language,
namely SQL™), for querying data streams and relations that con-
forms to the CQL semantics [1]. In contrast to other DSMS, the
user does not need to consider low-level details of the execution of a
query. Instead, the system’s query planner is responsible for choos-
ing an optimal plan depending on the query, the available stream/
static data sources, and the execution environment. EXASTREAM’S
optimizer makes it possible to process SQL(*) queries that blend
streaming with static data. This has been proved mostly useful in
the Siemens use case since it allows to combine streaming attributes
(such as temperature measurements of a turbine) with metadata that
remain invariant in time (such as the model or structure of a turbine)
as well as archived stream data (such as past sensor readings, tem-
perature measurements, etc). Static relational tables may be stored
in our system, or, they may be federated from external data-sources.
Moreover, EXASTREAM allows defining database schemata on top
of streaming and static data; this gives a wide range of opportu-
nities for applying Semantic Web technologies and optimisations,
e.g., bootstrapping techniques, that rely on these features.

EXASTREAM supports parallelism by distributing processing ac-
ross different nodes in a distributed environment. Its architecture
is shown in Figure 2. Queries are registered through the Asyn-
chronous Gateway Server. Each registered query passes through
the EXAREME parser and then is fed to the Scheduler module. The
Scheduler places stream and relational operators on worker nodes
based on the node’s load. These operators are executed by a Stream
Engine instance running on each node.

The EXASTREAM system natively supports User Defined Func-
tions (UDFs) with arbitrary user code. The engine blends the ex-
ecution of UDFs together with relational operators using JIT trac-
ing compilation techniques. This greatly speeds-up the execution
as it reduces context switches, and most importantly, only the rel-
evant execution traces are used, allowing the engine to perform
optimizations at runtime that are not possible when the query is
pre-compiled. UDFs allow to express very complex dataflows us-
ing simple primitives. For OPTIQUE we used UDFs to implement
communication with external sources, window partitioning on data
streams, and data mining algorithms such as the Locality-Sensitive
Hashing technique [7] for computing the correlation between val-
ues of multiple streams.

Whenever SQL abstractions are not sufficient (or efficient) for
complex stream processing scenarios, we use standard SQL to com-
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Figure 2: Distributed Stream Engine Architecture

bine data and process them with UDFs. Two main operators, imple-

mented as UDFs, that incorporate the algorithmic logic for trans-
forming SQLite into a DSMS are timeSlidingWindow and wCache:

o timeSlidingWindow groups tuples that belong to the same
time window and associates them with a unique window id,

e wCache acts as an index for answering efficiently equality

constraints on the time column when processing infinite stre-

ams. The time column may be the window identifier pro-

duced by the timeSliding Window operator. WCache will then

produce results to multiple queries accessing different streams.

These UDFs are transparent to OPTIQUE’s users and are intended
for performing the STARQL2SQL ™) translation.

In order to enable efficient processing of data streams of very
high velocity we have implemented a number of optimisations in
the stream processing engine. An optimisation that will be pre-
sented in the demo is adaptive indexing. With this technique EX-
ASTREAM collects statistics during query execution and, adaptively,
decides to build main-memory indexes on batches of cached stream
tuples, in order to expedite their processing during a complex oper-
ation (as in a join).

3. DEMONSTRATION SCENARIOS

The benefits of OPTIQUE will be demonstrated on the real world
scenario from Siemens Energy. In particular, we will show that:

o formulating diagnostic tasks with OPTIQUE is practical: Sie-
mens diagnostic queries in OPTIQUE are concise and concep-
tually easy while fleets of Siemens data queries are and large
and hard to comprehend,

e running diagnostic tasks in OPTIQUE is practical: OPTIQUE
allows to process in real time up to 1, 024 complex Siemens
diagnostic tasks with the throughput of up to 10, 000, 000
tuples/sec by executing the tasks in parallel on a highly dis-
trbute environment with up to 128 nodes,

e creating OPTIQUE ontologies and mappings is practical: OP-
TIQUE allows to create ontologies and mappings necessary
for system deployment over Siemens streaming and static
data in a reasonable time.

For the demonstration purpose we selected 20 diagnostic tasks
typical for Siemens Energy service centres and expressed these
tasks in STARQL. An example diagnostic task is to calculate the
Pearson correlation coefficient between turbine stream data. Then,
we prepared a demo data set that contains streaming and static data
produced by 950 gas and steam turbines during 2002—2011 years.
This data is anonymised in a way that preserves the patterns needed
for demo diagnostic tasks. During the demo we will ‘play’ the
streaming data and thus emulate real time streams. Then, we dis-
tributed the demo-data in several installations with different num-
ber of nodes (VMs) ranging from 1 to 128, where each node has 2
processors and 4GB of main memory. To demonstrate diagnostics
results we prepared a devoted monitoring dashboard for each diag-
nostic task in the catalog. Dashboards show diagnostics results in
real time, as well as statistics on streaming answers, relevant tur-

Figure 3: OPTIQUE screenshots

bines, and other information that is typically required by Siemens
Energy service engineers. Finally, we deployed OPTIQUE over the
Siemens data by bootstrapping ontologies and mappings and then
manually post-processing and extending them so that they reach
the required quality and contain necessary terms and mappings to
cover 20 Siemens diagnostic tasks.
During the demo OPTIQUE will be available in three scenarios:
[S1] Diagnostics with our deployment: The attendeed will be able
to query our preconfigured Siemens deployment using diag-
nostic tasks from from the Siemens catalog and using their
own STARQL queries, i.e., they will be able to create diag-
nostic tasks as parametrised continuous queries and register
concrete instances of these tasks over specific data streams.
Performance showcase of our deployment: the attendees will
be able to run various tests over our deployment using one
of 128 preconfigured Siemens distributed environments and
one of 10 test sets of queries. While running the tests they
will monitor the throughput and progress of parallel query
execution progresses.
Diagnostics with user’s deployment: the attendees will be
able to deploy OPTIQUE over the Siemens data by bootstrap-
ping ontologies and mappings saving them, and observing
and possibly improving them in devoted editors. Then, the
attendees will query their deployment with diagnostic tasks
from from the Siemens catalog or their own STARQL queries.
In Figure 3 we presented some OPTIQUE screenshots about the

deployment module BOOTOX and monitoring dashboards.

[S2]

[S3]
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