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Abstract. Large ontologies still pose serious challenges to state-of-the-art on-
tology alignment systems. In this paper we present an approach that combines a
lexical index, a neural embedding model and locality modules to effectively di-
vide an input ontology matching task into smaller and more tractable matching
subtasks. We have conducted a comprehensive evaluation using the datasets of
the Ontology Alignment Evaluation Initiative. The results are encouraging and
suggest that the proposed methods are adequate in practice and can be integrated
within the workflow of state-of-the-art systems.

1 Introduction
Large-scale ontology matching tasks still pose serious challenges to ontology alignment
systems. For example, only 6 out of 10 systems participating in the OAEI 2017 largebio
track were able to complete the largest tasks [2]. OAEI systems are typically able to
cope with small and medium size ontologies, but fail to complete large tasks in a given
time frame and/or with the available resources (e.g., memory). Prominent examples
across the OAEI campaigns are: (i) YAM++ version 2011 [3] (best results in conference
track, but failed to complete the anatomy task); (ii) CODI version 2011.5 [4] (best
results in anatomy but could not cope with the largebio track); (iii) MAMBA version
2015 [5] (top system in the conference track but could not complete the anatomy track);
(iv) FCA-Map version 2016 [6] (completed both anatomy and phenotype tasks but did
not complete the largest largebio tasks); and (v) POMap version 2017 [7] (one of the
top systems in anatomy but could not finish the largest largebio tasks).

In this paper we propose a novel method to effectively divide the matching task into
several (independent) smaller subtasks. This method relies on an efficient lexical index
(as in LogMap [8]), a neural embedding model [9] and locality modules [10]. Unlike
other state-of-the-art approaches, our method provides guarantees about the preserva-
tion of the coverage of the relevant ontology alignments as defined in Section 2.2.

2 Preliminaries
In this section we introduce the background concepts that are used throughout the paper.

? An extended version of this paper is available in arXiv.org [1].



2.1 Basic definitions
A mapping (also called match or correspondence) between entities1 of two ontologies2

O1 and O2 is typically represented as a 4-tuple 〈e1, e2, r, c〉 where e1 and e2 are en-
tities of O1 and O2, respectively; r ∈ {v,w,≡} is a semantic relation; and c is a
confidence value, usually, a real number within the interval (0, 1]. In our approach we
simply consider mappings as a pair 〈e1, e2〉. An ontology alignment is a set of mappings
M between two ontologies O1 and O2.

An ontology matching taskMT is composed of a pair of ontologies O1 (typically
called source) and O2 (typically called target) and possibly an associated reference
alignment MRA. The objective of a matching task is to discover an (implicit) over-
lapping of O1 and O2 in the form of an alignment M. The size or search space of a
matching task is typically bound to the size of the Cartesian product between the en-
tities of the input ontologies: |Sig(O1)| × |Sig(O2)| being Sig(O) the signature (i.e.,
entities) of the ontology O.

An ontology matching system is a program that, given as input the ontologies O1

and O2 of a matching task, generates an ontology alignmentMS .
The standard evaluation measures for an alignmentMS are precision (P), recall (R)

and f-measure (F) computed against a reference alignmentMRA as follows:

P =
|MS ∩MRA|
|MS |

, R =
|MS ∩MRA|
|MRA|

, F = 2 · P ·R
P +R

(1)

2.2 Matching subtasks and quality measures: size ratio and coverage
We denote division of an ontology matching taskMT , composed by the ontologiesO1

andO2, as the process of finding matching subtasksMTi = 〈Oi
1,Oi

2〉 (with i=1,. . . ,n),
whereOi

1 ⊂ O1 andOi
2 ⊂ O2. The size of the matching subtasks aims at being smaller

than the original task in terms of search space. Let Dn
MT = {MT1, . . . ,MTn} be the

result of dividing a matching taskMT . The size ratios of the matching subtasksMTi
and Dn

MT are computed as follows:

SizeRatio(MTi,MT ) =
|Sig(Oi

1)| × |Sig(Oi
2)|

|Sig(O1)| × |Sig(O2)|
(2)

SizeRatio(Dn
MT ,MT ) =

n∑
i=1

SizeRatio(MTi,MT ) (3)

The ratio SizeRatio(MTi,MT ) is expected to be less than 1.0 while the aggre-
gation

∑n
i=1 SizeRatio(MTi,MT ), being n the number of matching subtasks, can be

greater than 1.0 (as matching subtasks may overlap).
The coverage of the matching subtask aims at providing guarantees about the preser-

vation of the (potential) outcomes of the original matching task (i.e., information loss).
That is, it indicates if the relevant ontology alignments in the original matching task can
still be computed with the matching subtasks. The coverage is calculated with respect
to a relevant alignmentM, possibly the reference alignmentMRA of the matching task
if it exists. The formal notion of coverage is given in Definitions 1 and 2.

1 We refer to (OWL 2) classes, data and object properties and named individuals as entities.
2 We assume ontologies are expressed in OWL 2.



Definition 1 (Coverage of a matching task). Let MT = 〈O1,O2〉 be a matching
task and M an alignment. We say that a mapping m = 〈e1, e2〉 ∈ M is covered by
the matching task if e1 ∈ Sig(O1) and e2 ∈ Sig(O2). The coverage of MT w.r.t.
M (denoted as Coverage(MT ,M)) represents the set of mappings M′ ⊆ M cov-
ered byMT .

Definition 2 (Coverage of the matching task division). Let the result of dividing a
matching taskMT be Dn

MT = {MT1, . . . ,MTn} andM an alignment. We say that
a mapping m ∈ M is covered by DMT if m is at least covered by one of the matching
subtaskMTi (with i=1,. . . ,n) as in Definition 1. The coverage of DMT w.r.t.M (de-
noted as Coverage(DMT ,M)) represents the set of mappings M′ ⊆ M covered by
DMT . The coverage is often given as a ratio with respect to the (covered) alignment:

CoverageRatio(Dn
MT ,M) =

|Coverage(DMT ,M)|
|M|

(4)

2.3 Locality-based modules in ontology alignment
Logic-based module extraction techniques compute ontology fragments that capture the
meaning of an input signature with respect to a given ontology. In this paper we rely on
bottom-locality modules [10], which will be referred to as locality-modules or simply
as modules. Locality modules play an important role in ontology alignment tasks. For
example, they provide the context, i.e., sets of semantically related entities [10], for the
entities in a given mapping or set of mappings as formally presented in Definition 3.

Definition 3 (Context of a mapping and an alignment). Let m = 〈e1, e2〉 be a
mapping between two ontologies O1 and O2. We define the context of m (denoted
as Context(m,O1,O2)) as a pair of modules O′

1 ⊆ O1 and O′
2 ⊆ O2, where O′

1

and O′
2 include the semantically related entities to e1 and e2, respectively [10]. Simi-

larly, the context for an alignment M between two ontologies O1 and O2 is denoted
as Context(M,O1,O2) = 〈O′

1,O′
2〉, where O′

1 and O′
2 are modules including the se-

mantically related entities for the entities e1 ∈ Sig(O1) and e2 ∈ Sig(O2) in each
mapping m = 〈e1, e2〉 ∈ M.

2.4 Context as matching task
The context of an alignment between two ontologies represents the (explicit) overlap-
ping of these ontologies with respect to the aforesaid alignment. Intuitively, the ontolo-
gies in the context of an alignment cover all the mappings in that alignment. Definition 4
formally presents the context of an alignment as the overlapping matching task to dis-
cover that alignment.

Definition 4 (Overlapping matching task). LetM be an alignment between O1 and
O2, and Context(M,O1,O2) = 〈O′

1,O′
2〉 the context ofM. We defineMTM

O1-O2
=

〈O′
1,O′

2〉 as the overlapping matching task forM. A matching taskMT = 〈O1,O2〉
can be reduced to the taskMTM

O1-O2
= 〈O′

1,O′
2〉 without information loss in terms of

findingM.

A matching system should aim at computing M with both the original matching
task MT and the reduced task MTM

O1-O2
. For example, in the small OAEI largebio

tasks [2] systems are given, instead of the original matching task (e.g., whole FMA
and NCI ontologies), the context of the reference alignment as a (reduced) overlapping
matching task (e.g.,MT RA

fma-nci = Context(MRA
fma-nci, OFMA,ONCI) = 〈O′

FMA,O′
NCI〉).



Table 1: Inverted lexical index LexI (left) and entity index (right). For readability, stem-
ming techniques have not been applied and index values have been split into elements
of O1 and O2. ‘-’ indicates that the ontology does not contain entities for that entry.

Index key Index value
Entities O1 Entities O2

{ acinus } 7661,8171 118081
{ mesothelial, pleural } 19987 117237

{ hamate, lunate } 55518 -
{ feed, breast } - 113578,111023

ID URI
7661 O1:Serous acinus
8171 O1:Hepatic acinus
19987 O1:Mesothelial cell of pleura
55518 O1:Lunate facet of hamate
118081 O2:Liver acinus
117237 O2:Pleural Mesothelial Cell
113578 O2:Breast Feeding
111023 O2:Inability To Breast Feed

3 Methods
The approach presented in this paper relies on an ‘inverted’ lexical index (we will refer
to this index as LexI), commonly used in information retrieval applications, and also
used in ontology alignment systems like LogMap [8].

3.1 The lexical index LexI

LexI encodes the labels of all entities of the input ontologies O1 and O2, including
their lexical variations (e.g., preferred labels, synonyms), in the form of pairs key-value
where the key is a set of words and the value is a set of entity identifiers3 such that
the set of words of the key appears in (one of) the entity labels. Table 1 shows a few
example entries of LexI for two input ontologies.

LexI is created as follows. (i) Each label associated to an ontology entity is split
into a set of words; for example, the label “Lunate facet of hamate” is split into the
set {“lunate”, “facet”, “of”, “hamate”}. (ii) Stop-words are removed, for example,“of”
is removed from the set of words (i.e., {“lunate”, “facet”, “hamate”}). (iii) Stemming
techniques are applied to each word (i.e., {“lunat”, “facet”, “hamat”}). (iv) Combi-
nations of (sub)set of words serve as keys in LexI; for example, {“lunat”, “facet”},
{“hamat”, “lunat”} and so on.4 (v) Entities leading to the same (sub)set of words are
associated to the same key in LexI, for example, the entityO1:Lunate facet of hamate
with numerical identifier 55518 is associated to the LexI key {“hamat”, “lunat”} (see
Table 1). Finally, (vi) entries in LexI pointing to entities of only one ontology are not
considered (see last two rows of LexI in Table 1). Note that a single entity label may
lead to several entries in LexI, and each entry in LexI points to one or many entities.

Each entry in LexI, after discarding entries pointing to only one ontology, is a
source of candidate mappings. For instance the example in Table 1 suggests that there
is a (potential) mapping m = 〈O1:Serous acinus,O2:Liver acinus,≡, c〉 since the en-
tities O1:Serous acinus and O2:Liver acinus are associated to the same entry in LexI
{acinus}. These mappings are not necessarily correct but link lexically-related enti-
ties, that is, those entities sharing at least one word among their labels (e.g., “acinus”).
Given a subset of entries of LexI (i.e., l ⊆ LexI), the function Mappings(l) = Ml

provides the set of mappings derived from l. We refer to the set of all (potential) map-
pings suggested by LexI (i.e., Mappings(LexI)) asMLexI. Note thatMLexI represents a
manageable subset of the Cartesian product between the entities of the input ontologies.

3 The indexation module associates unique numerical identifiers to entity URIs.
4 In order to avoid a combinatorial blow-up, the number of computed subsets of words is limited.



Fig. 1: Pipeline to extract matching subtasks from LexI.

Most of the state-of-the-art ontology matching systems rely, in one way or another,
on lexical similarity measures to either discover or validate candidate mappings [11].
Thus, mappings outsideMLexI will rarely be discovered by standard matching systems.

3.2 Creation of matching subtasks from LexI
Considering all entries in LexI (i.e., one cluster) may lead to a very large number of can-
didate mappingsMLexI. The context ofMLexI leads to (two) large overlapping modules
OLexI

1 and OLexI
2 that, although smaller than the input ontologies O1 and O2, may still

be challenging for many ontology matching systems. A solution is to divide the entries
in LexI in more than one cluster.

Definition 5 (Matching subtasks from LexI). Let MT = 〈O1,O2〉 be a matching
task, LexI the lexical index of the ontologies O1 and O2, and {c1, . . . , cn} n clus-
ters of entries in LexI. We denote the set of matching subtasks from LexI as Dn

MT =
{MT LexI

1 , . . . ,MT LexI
n }where each cluster ci leads to the matching subtaskMT LexI

i =
〈Oi

1,Oi
2〉, such that Mappings(ci) =MLexI

i is the set of mappings suggested by the LexI
entries in ci and Oi

1 and Oi
2 represent the context ofMLexI

i w.r.t. O1 and O2.

Figure 1 shows an overview of the pipeline where LexI is split into n clusters and
these clusters lead to n matching subtasks Dn

MT = {MT LexI
1 , . . . ,MT LexI

n }.5

Hypothesis 1 IfMT = 〈O1,O2〉 is a matching task andMS the mappings computed
forMT by a lexical-based matching system, then, with independence of the clustering
strategy of LexI and the number of subtasks n, Dn

MT = {MT LexI
1 , . . . ,MT LexI

n } will
cover (almost) all the mappings inMS (i.e., CoverageRatio(Dn

MT ,MS) ≈ 1.0).

Hypothesis 1 suggests that a matching system will unlikely discover mappings with
MT = 〈O1,O2〉 that cannot be discovered with Dn

MT = {MT LexI
1 , . . . ,MT LexI

n } .
This intuition is supported not only by the observation that most of the ontology match-
ing systems rely on lexical similarity, but also by the use of the notion of context (see
Definition 3 and Definition 4) in the creation of the matching subtasks.

Intuitively each cluster of LexI leads to a smaller set of mappings MLexI
i (with

respect toMLexI) and to a smaller matching taskMT LexI
i (with respect to bothMT LexI

and MT ) in terms of search space. Hence SizeRatio(MT LexI
i ,MT ) is expected to

be smaller than 1.0, as mentioned in Section 2.2. Reducing the search space in each
matching subtask MT LexI

i has the potential of enabling the use of systems that can
not cope with the original matching taskMT in a given time-frame or with (limited)
computational resources. The aggregation of ratios may be greater than 1.0 and will
depend on the clustering strategy.

5 The number of clusters n is a parameter given as input. See Section 6 for a discussion of
possibles ways of automatically obtaining n.



Hypothesis 2 Given a matching taskMT and an ontology matching system that fails
to completeMT under a set of given computational constraints, there exists a division
of the matching task Dn

MT = {MT LexI
1 , . . . ,MT LexI

n } for which that system is able to
compute an alignment of the individual matching subtasksMT LexI

1 , . . . ,MT LexI
n under

the same constraints.

3.3 Clustering strategies

We have implemented two clustering strategies which we refer to as: naive and neural
embedding. Both strategies receive as input the index LexI and the number of desired
clusters n, and provide as output a set of clusters {c1, . . . , cn} from LexI. As in Defini-
tion 5, these clusters lead to the matching subtasks inDn

MT = {MT LexI
1 , . . . ,MT LexI

n }.
The choice of strategy, according to Hypothesis 1, will not have an impact on the

coverage; but it may influence the size of the matching subtasks. Note that, neither of
the strategies aims at computing optimal clusters of the entries in LexI, but clusters that
can be efficiently computed.

Naive strategy. This strategy implements a very simple algorithm that randomly splits
the entries in LexI into a given number of clusters of the same size. The matching tasks
resulting from this strategy are expected to have a high overlapping as different entries
in LexI leading to similar set of mappings may fall into different clusters. Although the
overlapping of matching subtasks will impact the global search space, it is still expected
to be smaller than in the original matching task.

Neural embedding strategy. This strategy aims at identifying more accurate clusters,
leading to matching tasks with less overlapping, and thus, reducing the global size of
the computed division of the matching task Dn

MT . It relies on StarSpace toolkit6 and
its neural embedding model [9], which aims at learning entity embeddings. Each entity7

is described by a finite set of discrete features (bag-of-features). The model is trained
by assigning a d-dimensional vector to each of the discrete features in the set that we
want to embed directly. Applied to the lexical index LexI, the neural embedding model
would learn vector representations for the individual words in the index keys, and for the
individual entity identifiers in the index values. Since an index key is a set of words (see
Table 1), we use the mean vector representation of the vectors associated to each word.
Based on these aggregated neural embeddings we then perform standard clustering with
the K-means algorithm.

Hypothesis 3 There exists a number of clusters or matching subtasks ‘n’ for which
the clustering strategies can compute Dn

MT = {MT LexI
1 , . . . ,MT LexI

n } for a given
matching taskMT such that SizeRatio(Dn

MT ,MT ) < 1.0.

Hypothesis 3 suggests that there exists a division Dn
MT ofMT such that the size

(or search space) of Dn
MT is smaller than MT , and Dn

MT can be computed by the
proposed naive and neural embedding strategies.



Table 2: OAEI matching tasks. Phenotype ontologies downloaded from BioPortal.
OAEI track Source of MRA Task Ontology Version Size (classes)

Anatomy Manually created AMA-NCIA AMA v.2007 2,744
NCIA v.2007 3,304

Largebio UMLS-Metathesaurus
FMA-NCI FMA v.2.0 78,989

FMA-SNOMED NCI v.08.05d 66,724
SNOMED-NCI SNOMED v.2009 306,591

Phenotype Consensus alignment
(vote=2) [12]

HPO-MP HPO v.2016-BP 11,786
MP v.2016-BP 11,721

DOID-ORDO DOID v.2016-BP 9,248
ORDO v.2016-BP 12,936

4 Evaluation

In this section we support Hypothesis 1-3 (Section 3). We rely on the datasets of the On-
tology Alignment Evaluation Initiative (OAEI) [2], more specifically, on the matching
tasks provided in the anatomy, largebio and phenotype tracks (see Table 2).

The methods have been implemented in Java8 and Python9 and were tested on a
Ubuntu Laptop with an Intel Core i7-4600U CPU@2.10GHz (4 cores). Up to 15 Gb of
RAM was allocated. The next sections present the performed experiments.10

4.1 Adequacy of the clustering strategies

We have evaluated the adequacy of the clustering strategies to compute divisions Dn
MT

= {MT LexI
1 , . . . ,MT LexI

n } for each of the matching tasks in Table 2 with respect to the
available reference alignments. We report results in terms of coverage (as in Equation 4)
and size (as in Equation 3) of the resulting division Dn

MT of the matching tasks.
We have compared the two strategies for different number of clusters or resulting

matching subtasks n ∈ {2, 5, 10, 20, 50, 100, 200}. For the naive strategy, as a random
split of LexI is performed, we run 10 experiments for each of the values of n to evalu-
ate the effect of different random selections. The variations in the size of the obtained
matching tasks was negligible. Results represent the average of the 10 experiments
Coverage ratio. Figure 2 shows the coverage of the different divisions Dn

MT of the
matching task for the naive (left) and neural embedding (right) strategies. The cover-
age ratio is very good, being 0.927 in the worst case (n = 200 in SNOMED-NCI)
and 0.99 in the best case (n = 2 in FMA-NCI). This means that, in the worst case,
almost 93% of the available reference mappings are covered by the matching subtasks
inDn

MT . The differences in terms of coverage between the naive and neural embedding
strategies are minimal, with the neural embedding strategy providing slightly better re-
sults on average. These results reinforce Hypothesis 1 as the coverage with respect to
system-generated mappings is expected to be even better.

6 StarSpace: https://github.com/facebookresearch/StarSpace
7 Note that in the context of neural embedding models the term entity refers to objects of differ-

ent kind, e.g., a word, a sentence, a document or even an ontology entity.
8 Java codes: https://github.com/ernestojimenezruiz/logmap-matcher
9 Python codes: https://github.com/plumdeq/neuro-onto-part

10 Extended evaluation material in [1] and https://doi.org/10.5281/zenodo.1214149
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Fig. 2: CoverageRatio of Dn

MT with respect to the number of matching subtasks n.

2 10 20 50 100 200
Subtasks

0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

1.2 1.2

Si
ze
 ra

tio

AMA-NCIA
FMA-NCI

FMA-SNOMED
SNOMED-NCI

HPO-MP
DOID-ORDO

(a) Naive strategy

2 10 20 50 100 200
Subtasks

0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

1.2 1.2

Si
ze
 ra

tio

AMA-NCIA
FMA-NCI

FMA-SNOMED
SNOMED-NCI

HPO-MP
DOID-ORDO

(b) Neural embedding strategy
Fig. 3: SizeRatio of Dn

MT with respect to the number of matching subtasks n.

Size ratio. The results in terms of the size (i.e., search space) of the selected divi-
sions Dn

MT are presented in Figure 3 for the naive (left) and neural embedding (right)
strategies. The results with the neural embedding strategy are extremely positive, while
the results of the naive strategy, although slightly worse as expected, are surprisingly
very competitive. Both strategies improve the search space with respect to the origi-
nalMT for all cases with the exception of the naive strategy in the AMA-NCIA case
with n < 50, and the SNOMED-NCI case with n > 20, which validates Hypothesis 3.
SNOMED-NCI confirms to be the hardest case in the largebio track. Here the size ratio
increases with the number of matching subtasks n and gets stable with n > 100.
Size of the source and target modules. The scatter plots in Figures 4 and 5 visu-
alize the size of the source modules against the size of the target modules for the
matching tasks in each division Dn

MT . For instance, the (orange) triangles represent
points

(
|Sig(Oi

1)|, |Sig(Oi
2)|
)

being Oi
1 and Oi

2 the source and target modules (with
i=1,. . . ,5) in the matching subtasks of D5

MT . Figure 4 shows the plots for the AMA-
NCIA case while Figure 5 for the FMA-NCI case, using the naive (left) and neural em-
bedding (right) strategies. The naive strategy leads to rather balanced an similar tasks
(note differentiated cloud of points) for each division Dn

MT for both cases. The neural
embedding strategy has more variability in the size of the tasks within a given divi-
sionDn

MT . In the FMA-NCI case the tasks generated by the neural embedding strategy
are also less balanced and the target module tends to be larger than the source mod-
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Fig. 4: Source and target module sizes in the computed subtasks for AMA-NCIA.
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(b) Neural embedding strategy
Fig. 5: Source and target module sizes in the computed subtasks for FMA-NCI.

ule. Nonetheless, on average, the (aggregated) size of the matching tasks in the neural
embedding strategy are significantly reduced as shown in Figure 3.
Computation times. The time to compute the divisions of the matching task is tied to
the number of locality modules to extract, which can be computed in polynomial time
relative to the size of the input ontology [10]. The creation of LexI does not add an
important overhead, while the training of the neural embedding model in the advance
strategy ranges from 21s in AMA-NCI to 224s in SNOMED-NCI. Overall, for example,
the required time to compute the division with 50 matching subtasks ranges from 2s in
AMA-NCIA to 413s in SNOMED-NCI with the naive strategy, and from 24s (AMA-
NCIA) to 647s (SNOMED-NCI) with the neural embedding strategy.

4.2 Evaluation of OAEI systems

In this section we support Hypothesis 2 by showing that the division of the alignment
task enables systems that, given some computational constraints, were unable to com-
plete an OAEI task. We have selected the following five systems from the latest OAEI
campaigns: MAMBA [5], GMap [13], FCA-Map [6], KEPLER [14], and POMap [7].
MAMBA and GMap failed to complete the OAEI 2015 Anatomy track [2] with 8Gb
of allocated memory, while FCA-Map, KEPLER and POMap could not complete the
largest tasks in the largebio track within a 12 hours time-frame (with 16Gb of allocated



Table 3: Evaluation of systems that failed to complete OAEI tasks in the 2015-2017
campaigns. (*) GMap was tested allocating 8Gb of memory. Time reported in hours (h).

Tool Task Year Matching Naive strategy Neural embedding strategy
subtasks P R F t (h) P R F t (h)

GMap (*) Anatomy 2015 5 0.87 0.81 0.84 1.3 0.88 0.82 0.85 0.7
10 0.85 0.81 0.83 1.7 0.86 0.82 0.84 0.8

MAMBA Anatomy 2015 20 0.88 0.63 0.73 2.3 0.89 0.62 0.73 1.0
50 0.88 0.62 0.73 2.4 0.89 0.62 0.73 1.0

FCA-Map FMA-NCI 2016 20 0.56 0.90 0.72 4.4 0.62 0.90 0.73 3.1
50 0.58 0.90 0.70 4.1 0.60 0.90 0.72 3.0

KEPLER FMA-NCI 2017 20 0.45 0.82 0.58 8.9 0.48 0.80 0.60 4.3
50 0.42 0.83 0.56 6.9 0.46 0.80 0.59 3.8

POMap FMA-NCI 2017 20 0.54 0.83 0.66 11.9 0.56 0.79 0.66 5.7
50 0.55 0.83 0.66 8.8 0.57 0.79 0.66 4.1

memory) [2].11 Note that GMap and MAMBA were also tested in the OAEI 2015 with
14Gb of memory. This new setting allowed GMap to complete the task [2].

Table 3 shows the obtained results in terms of computation times, precision, recall
and f-measure over different divisions Dn

MT computed by the naive and neural embed-
ding strategies. For example, MAMBA was run over divisions with 20 and 50 matching
subtasks (i.e., n ∈ {20, 50}). Note that GMap was tested allocating only 8Gb of mem-
ory as with this constraint it could not complete the task in the OAEI 2015. The results
can be summarized as follows:

i) The computation times are encouraging since the (independent) matching tasks
have been run sequentially without any type of parallelization.

ii) Times also include loading the ontologies from disk for each matching task. This
step could be avoided if subtasks are directly provided by the presented framework.

iii) We did not perform an exhaustive analysis, but memory consumption was lower
than 8Gb in all tests; thus, systems like GMap could run under limited resources.

iv) The increase of matching subtasks is beneficial for FCA-Map, KEPLER and POMap
in terms of computation times. This is not the case for MAMBA and GMap.

v) The division generated by the neural embedding strategy leads to smaller compu-
tation times than the naive strategy counterparts, as expected from Figure 3.

vi) The f-measure is slightly reduced as the size of n increases.

Comparison with OAEI results. There are baseline results in the OAEI for the selected
systems [2], with the exception of MAMBA where the results are novel for the anatomy
track. GMap, if 14Gb were allocated, was able to complete the anatomy task and ob-
tained an f-measure of 0.861. KEPLER, POMap and FCA-Map completed the OAEI
task involving small fragments of FMA-NCI (i.e., the overlapping matching task as in
Definition 4) with an f-measure of 0.891, 0.861 and 0.935, respectively. The f-measure
using the divisions of the matching task is slightly lower for GMap. The results are
much lower for the cases of KEPLER, POMap and FCA-Map, but they cannot be fully
comparable as systems typically reduce their performance when dealing with the whole
largebio ontologies [2]. The authors of FCA-Map have also recently reported results
for an improved version of FCA-Map [15]. They completed the FMA-NCI task in near

11 In a preliminary evaluation round a 4 hours time-frame was given, which was later extended.



7 hours, with a precision of 0.41, a recall of 0.87 and a f-measure of 0.56. The results
obtained withD20

MT andD50
MT are thus very positive, since both strategies lead to much

better numbers in terms of computation times and f-measure.

5 Related work
Partitioning has been widely used to reduce the complexity of the ontology alignment
task. In the literature there are two major categories of partitioning techniques, namely:
independent and dependent. Independent techniques typically use only the structure of
the ontologies and are not concerned about the ontology alignment task when perform-
ing the partitioning. Whereas dependent partitioning methods rely on both the structure
of the ontology and the ontology alignment task at hand. Although our approach does
not compute (non-overlapping) partitions of the ontologies, it can be considered a de-
pendent technique.

Prominent examples of ontology alignment systems including partitioning tech-
niques are Falcon-AO [16], COMA++ [17] and TaxoMap [18]. COMA++ and Falcon-
AO perform independent partitioning where the clusters of the source and target ontolo-
gies are independently extracted. Then pairs of similar clusters (i.e., matching subtasks)
are aligned using standard techniques. TaxoMap [18] implements a dependent tech-
nique where the partitioning is combined with the matching process. TaxoMap proposes
two methods, namely: PAP (partition, anchor, partition) and APP (anchor, partition, par-
tition). The main difference of these methods is the order of extraction of (preliminary)
anchors to discover pairs of partitions to be matched (i.e., matching subtasks).

The above approaches, although they present interesting results, did not provide any
guarantees about the coverage (as in Definition 2) of the discovered partitions. In [19]
we performed a preliminary study with the PBM method of Falcon-OA, and the PAP
and APP methods of TaxoMap. The results in terms of coverage with the largebio tasks
were very low, which directly affected the results of the evaluated systems. These rather
negative results encouraged us to work on the approach presented in this paper.

Our dependent approach, unlike traditional partitioning methods, computes over-
lapping self-contained modules (i.e., locality modules). Locality modules guarantee the
extraction of all semantically related entities for a given signature, which enhances the
coverage results and enables the inclusion of the relevant information required by an
alignment system. It is worth mentioning that the need of self-contained and covering
modules was also highlighted in a preliminary work by Paulheim [20].

6 Conclusions and future work
We have developed a novel framework to split the ontology alignment task into several
matching subtasks based on a lexical index and locality modules. We have also pre-
sented two clustering strategies of the lexical index. One of them relies on a simple split-
ting method, while the other relies on a fast (log-linear) neural embedding model. We
have performed a comprehensive evaluation of both strategies. The achieved high cov-
erage (i.e., minimal information loss) in combination with the reduction of the search
space and the small computation times suggests that the computed divisions based on
LexI are suitable in practice. The division of the matching task allowed us to obtain
results for five systems which failed to complete these OAEI matching tasks in the past.

Both the naive and the neural embedding strategies require the size of the number
of matching subtasks or clusters as input. The (required) matching subtasks may be



known before hand if, for example, the matching tasks are to be run in parallel in a
number of available CPUs. For the cases where the resources are limited or where a
matching system is known to cope with small ontologies, we plan to design an algo-
rithm to estimate the number of clusters so that the size of the matching subtasks in the
computed divisions is appropriate to the system and resource constraints.

As immediate future we plan to extend the conducted evaluation to better understand
the impact of the division over different ontology alignment systems. We also aim at
studying different notions of context tailored to the ontology alignment task.
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