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BALANCED SEMISIMPLE FILTRATIONS FOR TILTING
MODULES

AMIT HAZI

ABSTRACT. Let U; be a quantum group at an Ilth root of unity, obtained via
Lusztig’s divided powers construction. Many indecomposable tilting modules
for U; have been shown to have what we call a balanced semisimple filtra-
tion, or a Loewy series whose semisimple layers are symmetric about some
middle layer. The existence of such filtrations suggests a remarkably straight-
forward algorithm for calculating these characters if the irreducible characters
are already known. We first show that the results of this algorithm agree with
Soergel’s character formula for the regular indecomposable tilting modules.
We then show that these balanced semisimple filtrations really do exist for
these tilting modules.

INTRODUCTION

Let U; be the Lusztig form of a quantized universal enveloping algebra at an [th
root of unity, corresponding to some complex semisimple Lie algebra (as described in
e.g. [10, Appendix H]). A U;-module is called a tilting module if it has a filtration
by Weyl modules and a filtration by dual Weyl modules. The indecomposable
tilting modules T;(\) of U; are classified according to their highest weight A\. We
are interested in calculating their Loewy series and determining their structure in
general.

Andersen and Kaneda showed that T;()\) is rigid (i.e. has identical radical and so-
cle series) for A sufficiently high [3]. In particular, because of self-duality this implies
that if the Loewy length of T;(\) is 2N + 1, we have rad; y T;(A) = rad;—n T;(N)
for any 7. In other words, the Loewy series is symmetric about the middle layer
containing L;(A). We call such Loewy series balanced. Additionally the examples
in [3] and in previous work by Bowman-Doty-Martin [6, 7] and the author [9] show
that the unique Loewy series is compatible with a certain Loewy series of the Weyl
module called the dual parity filtration in [3]. This filtration has Loewy layers
whose composition factor multiplicities are coefficients of Kazhdan-Lusztig poly-
nomials. We note that if the quantum analogue of Jantzen’s conjecture (written
as (F,w,s)™ in [10, I1.C.9]) holds then this filtration coincides with the Jantzen
filtration described in [4].

This suggests the following algorithm for calculating the character of Tj() given
the characters of the Weyl modules of weight up to A.

Algorithm.
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FIGURE 1. Some alcoves for the quantum group corresponding to
the root system Bs. The numbering is taken from [3, Section 5.3].

(1) Write the dual parity filtration of the Weyl module A;(X). We view this as
the bottom layers of a partial Loewy series for T;(A). We will reflect Loewy
layers about the “middle” Loewy layer in which L;(\) appears.

(2) Find the highest “unbalanced” weight; that is, the largest p < A such that
L;(p) appears in the series below L;(A) but there is no corresponding factor
L;(p) in the reflected layer above L;()).

(3) Add the dual parity filtration of A;(u) to the partial Loewy series so that
the head of A;(u) is in the reflected Loewy layer above L;(\).

(4) Repeat from Step 2 until the Loewy series is balanced.

As an example, we will apply the algorithm to calculate the character of an
indecomposable tilting module for the quantum group corresponding to the root
system By. We label the first few By alcoves following [3, Section 5.3] (see Figure
1).

The translation principle implies that the structure of T;(\;) for some regular
weight A; in alcove i does not depend on the choice of A\;. Thus we may unam-
biguously refer to T;(i) instead of T;(\;) (and similarly L;(¢) instead of L;()\;)).
Applying the algorithm to 7;(9) yields the partial Loewy series in Figure 2. Note
that in these pictures we simply write ¢ to mean L;(3).

Another way of looking at this algorithm is through the lens of hidden grad-
ings on various module categories. Under this philosophy, whenever there is a
“Kazhdan-Lusztig-like” character formula expressing a character by evaluating cer-
tain polynomials at 1, there should be a similar graded category for which whose
graded characters are given by the polynomials themselves. There have been many
investigations of this behavior with respect to tilting modules, see for example
[21, 5, 20].

In this paper we first prove that this naive algorithm in fact works for all regular
indecomposable tilting modules (not just rigid ones) at the level of characters. The
key ingredients in this proof are Lusztig’s character formula, which is true when
[ > h (where h is the Coxeter number) in the case of quantum groups [14, 15, 16, 19]
and Soergel’s tilting character formula [21, 22]. In the final section we prove that
the balanced semisimple filtrations alluded to above really do exist for all regular
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FIGURE 2. The partial Loewy series obtained by applying the al-
gorithm to 73(9).

indecomposable tilting modules. In the future we hope to use similar methods
to find a general character formula for the indecomposable tilting modules in the
modular case.

1. QUANTUM GROUPS AT ROOTS OF UNITY

Let R be a root system for a Euclidean space E of dimension n, and let Ag be
the Cartan matrix associated to this root system. Let ¢ be an indeterminate in the
ring A = Z[q*']. Write U4 for the Lusztig integral form quantum group associated
to the Cartan matrix Ag, as described in [10, H.5]. This quantum group is a Hopf
algebra over A with algebra generators Ei(r),Fi(T)7 K{—H ranging over i = 1,...,n
and r e N.

Now let I € N be an odd positive integer (with [ coprime to 3 if R has a Ga-
component). Set ¢ = €2>™/! € C, a primitive Ith root of unity. We can make A
into a commutative C-algebra by specializing ¢ to (. This leads to a specialization
U = C®4 Uy of our quantum group at (.

We will restrict ourselves to the study of finite-dimensional U;-modules of type 1
(see [10, H.10] for a precise definition). When [ is prime, the representation theory
of Uj;-modules is analogous to the representation theory of an algebraic group G
with root system R over a field of characteristic I. In particular, if R* denotes the
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set of positive roots, and we define

X={ NeE:(\a¥)eZforalae R},
Xt={M eE:{\a")yeZsoforallae R}

to be the sets of integral and dominant integral weights respectively, then for each
A € X we have Uj-modules V;(A) and A;(A), called the dual Weyl module and
Weyl module respectively, defined in a similar way to the eponymous constructions
for G (in [10, H.11-H.12], these are referred to as H)(A) and H"(wo-\) respectively).
The module L;(A\) = soc V;(A) = Aj(N)/rad A;()) is simple, and all simple modules
are of this form. Moreover, familiar results from the theory of algebraic groups
(including Kempt’s vanishing theorem) carry over for these Uj-modules. This means
that we can define the indecomposable tilting module T;(A) (in a manner completely
analogous to the G-modules case) as the unique indecomposable module with a
A-filtration and a V-filtration with highest weight A. If V' is a Uj-module, then
we can define the contravariant dual module 7V analogously to the modular case
(see [10, I1.2.12]). The modules L;(A) and T;()\) are self-dual as expected, and
A(N) =TV(N).

The affine Weyl group W is defined to be IZR x W, i.e. the group of Euclidean
isometries of E generated by translations by the scaled root lattice IZR and the
Weyl group W of R. It acts on weights via the dot action, which shifts the origin
to —p:

w-A=wA+p)—p.

An alcove in the Euclidean space F is a connected component in the complement
of the union of the reflection hyperplanes for all reflections in WW. When R is
irreducible the closure of an alcove is a simplex of dimension n; in general the
closure of an alcove is a product of simplices. The affine Weyl group W acts simply
transitively on the set of all alcoves. The fundamental alcove Ag is defined to be
the sets of weights

Ag={DeE:0<A+p,a”)y<lforalaeR"}.

The other alcoves can be obtained by taking the image of Ay under some isometry
from the affine Weyl group W. The dominant alcoves are those which intersect the
dominant region Xt non-trivially.

The affine Weyl group W can be viewed as a Coxeter group, with (n+1) genera-
tors S corresponding to reflections in the walls of Ay (the closure of the fundamen-
tal alcove Ag). It comes equipped with the Bruhat order and the length function
£:W — Zg. Let S denote the n generators in S corresponding to reflections con-
tained in the Weyl group W. By simple transitivity, any alcove A can be written
as - Ag for some x € W. As x acts on E by a Euclidean isometry, = also provides
a bijection between the walls of A and the walls of Ay, which are labelled by S.

From now on, all weights will be dominant integral weights unless otherwise
stated. The linkage principle states that if L;(\) and L;(\') are in the same block,
then X € W- X [10, I1.6.17]. We write By for the full subcategory of modules whose
composition factors have highest weights lying in W- A, and pr, : U;—mod — B, for
the projection functor onto this subcategory. For a dominant alcove A and A\, u e A
the translation functor is defined by

(1) T3 (V) = pr, (pra(V) ® Li(w(p —A))),
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where w € W is chosen so that w(u — X\) € X*. Note that T} is always exact
because it is the composition of several exact functors. The translation principle
states that T7, T:‘ : By < B, are adjoint and mutually inverse if A and ; belong to
the same set of alcoves.

Suppose A, X € Xt are in the same orbit of W and belong to adjacent alcoves
A, A" with A < X (i.e. N — X e R"). Suppose the wall between them is labelled by
s € S, and let u be a weight on this wall. The wall-crossing functor is defined to
be 05 = T;i‘/ o T¥', which is self-adjoint and exact. It is well-known that O;A(X) =
0sA(XN), and we have an exact sequence

(2) 0 — AJ(X) = B, A,(A) — Ay(A) — 0.

2. KAZHDAN-LUSZTIG COMBINATORICS

Notation. We use notation from [21] and [10, C.1] for various Kazhdan-Lusztig
polynomials, which we will summarize.

We write £ = Z[v+!] for the ring of Laurent polynomials in v. Let H = H(W, S)
be the Hecke algebra associated to the Coxeter system (W,S), an associative £-
algebra with generators {H,}scs and relations

(3) H?=1+(@w'—-v)H, foralseS,
7 terms T terms
(4) HHH;---=HHH;- o for all s,t € S, where r is the order of st.

For any reduced word x = stu--- € W, the element H, = H;H;H,, --- is well de-
fined, and the set {H,}.ew forms an L-basis for H. Each generator H, is invertible,
with H;' = Hy +v —v™!, so each basis element H, is also invertible. Define the
ring homomorphism

d:H—H
(5) V—> v
Hy— (Hw—1>_1
which extends an obvious involution on £. We call this involution dualization, and
we write H for d(H). For s € S we define H,=Hs;+vand H, = H, — v~ L Notice
that H, = H, tu— v~! so both H, and H, are self-dual, i.e. fixed by d. The sets
{H,}ses and {H  }ses each generate H as an L-algebra.

Now let Hy = H(W,S) < H be the Hecke algebra obtained from the finite Weyl
group W < W. Since (Hs — v~ 1)(Hs + v) = 0 for each generator s € S, for each
u € {—v,v~!} there is a homomorphism of L-algebras ¢, : Hy — L, defined by
mapping Hg — u. This turns £ into a right Hy-module which we call £(u). These

modules are analogues of the sign/trivial representations for W. Now define two
right H-modules

1

M=Lv" Qu, H,
N = L(—v) @, H.

We can obtain an L-basis for M via a set of representatives for the right cosets
WAW. A natural choice for such representatives comes from the dominant alcoves,
namely, the set WT = {x e W : (x- Ag) n Xt # &}, or in other words the affine
Weyl group elements which map Ay to another dominant alcove. The elements in
W are in fact precisely the minimal length representatives for the cosets W\W.
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Defining M, to be 1 ® H, in M, we get the L-basis {M;},ey+ (and similarly for
N). The action of H, on these bases is
M,s +vM, if zs € W* and zs > z,
(6) M,H, =< My, +v M, ifzseW? and zs < z,
(w+v HM, ifxzs¢ WT,
Ngs + VN, if zs € WT and zs > «z,
(7) N,H,=1<{ N, +v° !N, if zse W™ and zs < z,
0 if zs ¢ WT.
The dualization map d : H — H extends to a dualization map of M by mapping
a®H — a® H. To see this, note that for all s€ S
{v +o7 b ifu =07t

0 if u =—w,

¢u (ﬂs) =

S0 ¢ (H,) is self-dual. This means that for s € S,
da® (H,H)) =a® H.H
=a®HH
=gy (H,)® H
= a¢,(H,) ® H
= d(agu(H,) ® H).
As {H,}ses generates Hyy this shows that the map above is well-defined.
The following theorem describes Soergel’s version of the parabolic Kazhdan-

Lusztig basis for the modules M and N. We reproduce the proof here as an aid to
the reader and for later use of the notation therein.

Theorem 2.1 ([21, Theorem 3.1]). There is a unique set of polynomials {my .}, yeyw+
in Z[v] such that
(1) if my o # 0, then eithery =x and my, =1 ory <z and my , € vVZ[v];
(ii) the element M, =%, my M, is self-dual.
There are also analogous polynomials {ny .}, yew+ for N.
Proof. We prove the result for M as the proof for N is identical. Induct on the

length of z. Suppose for some z € WT we have already defined M, and all M,
with ¢(u) < ¢(z). Suppose s € S such that xs € W and zs > z. Write

(8) M, H, = My + Y, mj M,
y<xs

From the action of H, on the basis above we have (for z,y € W)

Mys,z + UMy ¢ if ys > y and ys e W+,
(9) My, = Myso +0 'y, ifys <yand yse WH,

(v 4+ v )my . if ys ¢ WT.
Clearly M, H. is self-dual, so the element

Mws = Ma:ﬂs - Z my (O)My = M,s + Z my,msMya

Y,z
y<zxs y<xs
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whose coefficients we have labelled m, ., is also self-dual with the property that
My s has zero constant coefficient. O

The following theorem provides a similar basis when the coefficients are restricted
to being Laurent polynomials in negative degree instead of positive degree.

Theorem 2.2 ([8]). There is a unique set of polynomials {1y 2}y yew+ in Z[v™']
such that
(i) if My, # 0, then either y = = and Mgy, = 1 or y < x and My, €
’Uflz[vil],‘
(ii) the element M, — 2y My, My is self-dual.
Moreover, we have 1y, , = (—1)! @+ W7 —

Proof. The proof of existence and uniqueness is entirely analogous to the previous
case, using H _ instead of H . For the final result, see e.g. [21, Theorem 3.5]. O

We can now define the inverse polynomials {m¥*} for y,x € Wt and y > z such
that the following formula holds:

(10) Z(*l)z(z)w(z)mz’mmz,y = 0ay-

These polynomials arise as the coefficients of some element of a module related to
M with respect to a certain basis [21, Theorem 3.6]. However, this will not matter
for the sequel.

Character formulae. Let A be a dominant alcove. The structure of the module
A(X) for any A contained in A only depends on A and not on the exact weight A
by the translation principle. So we may abuse notation and write A;(A) instead of
A;(X). We can even reconstruct character formulae written in this way using the
linkage principle. We will also freely use the bijection between dominant alcoves
and elements of W™ for the indices of the various Kazhdan-Lusztig polynomials.
Finally, if A = x- Ag and s € S is a simple reflection we write As for xs - Ay.
With this notation, Lusztig’s character formula can be written as follows.

Theorem 2.3 (Lusztig’s character formula, [17]). Suppose | > h, where h denotes
the Cozeter number of the root system R. Let A be a dominant alcove. Then the
following character formula

(11) [A(A)] = Y m™*P()[Li(B)]

holds, where the sum is over all dominant alcoves B.

This result is analogous to Lusztig’s conjecture on the irreducible characters of
reductive algebraic group in positive characteristic [18]. Lusztig’s character formula
for quantum groups was first proved in a series of papers by Kazhdan and Lusztig
[14, 15, 15, 16, 19] and Kashiwara and Tanisaki [11, 12]. For the rest of this paper
we will assume that [ > h so that Lusztig’s character formula holds. An important
corollary (which is in fact equivalent) is the Vogan conjecture.

Corollary 2.4 (Vogan conjecture, [1]). Let A be a dominant alcove, and s € S a
sitmple reflection such that s-A > A. Then 05(L;(A)) has socle and head isomorphic
to Li(A), and the module

(12) Bs(Li(A)) = rad 05(L;(A))/socOs(L;(A))
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is semisimple.

If the corollary holds one can show that [Ss(Li(A)) : Li(B)] = m$ 5(0). In
addition it follows that for any module M, if M has Loewy length m then 65(M)
has Loewy length at most m + 2 (for a proof see [10, D.2]).

For indecomposable tilting modules, Soergel proved the following character for-
mula [21, 22].

Theorem 2.5 (Soergel’s tilting character formula). Let A be a dominant alcove.
Then the following character formula

(13) [T1(A)] =D np.a(1)[A(B)]
B

holds, where the sum is over all dominant alcoves B.

The following combinatorial property of Kazhdan-Lusztig polynomials is the
basis for the balancing property of filtrations in the next section.

Lemma 2.6. The Laurent polynomzial

(14) tp,a = Z?’LC’AmC’B
c

is self-dual.

Proof. Let Ta = Y 5 mAvB&B. Unlike &m T4 is not self-dual. Now define T4 as
follows:

Ty = Z ne,alc.
C
We claim that this sum is self-dual. In fact, it is equal to N 4:
Ty = Z ne, amCBN g
B,C

Z (*1)2(3)+Z(D)”C,Amc’BimD,BND
B,C,D

Z (—1)H D Pne 46¢,pNp
D

= Y ne.aNc
c

=N,.

As the coefficient of &B inT, is tp,a and ﬂB is self-dual, this shows what we
want. U

From the proof, we see that there is an abelian group isomorphism from the
Grothendieck group of the principal block By of U;—mod to ,—1 N (the module
N with v specialized to 1, sometimes called the antispherical module) mapping
v=1N 4 — [T1(A)]. Tt also maps ,—1 N4 — [A;(A)] and vzlﬁA — [L;(A)]. Since
the action of ,—1H_ on the basis {,—1 N4} matches the action of the wall-crossing
functor 6, on the Weyl modules on the level of characters, we have that this holds
for any A-filtered module, so we can evaluate the character 0,([7;(A)]) in this way.
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In fact if we wait until the very end of the calculation before specializing, we obtain
extra combinatorial information about the character:

NuH, = > noam@BNgH,

B,C

= Z neamCBNp(H, +v+vt)
B,C

= Z no,am©B <(v + v YN+ Ny, + Z me’B(O)ND> )
B.,C D<Bs

It is clear that the unspecialized version of 64([T;(A)]) above respects the filtration
described by Vogan’s conjecture. For later use we define the following polynomials,
which are {5 4-analogues of mp 4:

(15) tha=(v+ v_l)ZnQAvaB + Z nc,am®Pmy (0).
C C.D

3. BALANCED SEMISIMPLE FILTRATIONS

Isotropic filtrations. Let V' be a self-dual Uj-module. Fix an isomorphism ¢ :
V — 7V. This isomorphism is equivalent to a non-degenerate bilinear form (—, —)
on V, with the property that (zv,v’) = (v, 7(x)v’) for all z € U; and v, v’ € V. Forms
obeying this property are called contravariant [10, I11.8.17]. For any contravariant
form on V, we have (V,V,) = 0 unless A = p, where V and V,, are the X\ and
1 weight subspaces of V. For convenience we will further assume that the form
arising from ¢ is symmetric.

For a subspace U of V, recall that the orthogonal subspace is defined to be
Ut ={veV:(uv)=0forall ueU}. Ifthe form is symmetric, U < U**, and
by non-degeneracy the dimensions must match, so U = U+, If U is a submodule
of V then U* is also a submodule of V.

Definition 3.1. Suppose U is a submodule of V. Then U is called totally isotropic
(with respect to (—, —)) if U < U+. Dually U is called totally coisotropic if U+ < U.

It is immediately clear that U is totally isotropic if and only if U* is totally
coisotropic.

The translation functors T} are exact, so the homomorphism T4'¢ : T{'(V) —
T{'("V) is also an isomorphism. Additionally one can check that T4 ("V) = T4 (V),
so T} ¢ defines a non-degenerate contravariant form on T4 (V).

Lemma 3.2. Let A be a dominant alcove, and suppose A\, € A. If U is a totally
isotropic submodule of V', then T (U) is a totally isotropic submodule of T{ (V).

Proof. Total isotropy of U can be rephrased in terms of homomorphisms: U is
totally isotropic if and only if the inclusion U — V factors through the inclusion

AN

vt ——=v.
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Applying T} to the above triangle gives

()

|\

(UH) —=TL(V).

Since Ut =~ 7(V/U), we have T{(Ut) =~ (T{U)*. This implies that T{'(U) is a
totally isotropic submodule of T%'(V'). d

Definition 3.3. A filtration {V;} of V is called isotropic (with respect to (—,—))
if it can be written in the form

0=Vy <<V <<V, =V,

for some m > 0. In this situation we typically reindex so that V_; = V- for i > 0.
We call V_; and V; the lower half and upper half of {V;} respectively, denoted
lower{V;} and upper{V;}. We call {V;} maximal isotropic if lower{V;} is maximal,
i.e. if there is no other isotropic filtration {V}/} such that lower{V}} > lower{V;}.
The subquotient upper{V;}/lower{V;} is called the middle and is denoted mid{V;}.

We denote the layers of an isotropic filtration by

Vier/Vi ifi>0,
Vi=<{V,/Viy ifi<0,
Vi/Voy ifi=0.

If {V;} is a maximal isotropic filtration, then mid{V;} must be semisimple. To
see this, suppose otherwise. We have (soc mid{V;})* = rad mid{V;}. For any non-
semisimple indecomposable summand U of mid{V;} we have radU = socU. From
this summand we could construct a larger isotropic filtration, which is a contradic-
tion.

From [3] and [2], it follows that the dual Weyl modules have parity filtra-
tions determined by the Kazhdan-Lusztig polynomials mZ4. In other words,
there exists a filtration V;(A); of V;(A) such that the successive subquotients
Vi(A) = V(A)i11/Vi(A); are all semisimple, with character

(16) [Vi(4)] = Y (m™*P)ilLi(B)],

B

where (m™#); denotes the coefficient of v* in the polynomial m* 5.

Definition 3.4. Suppose T is a tilting module, and we fix an isomorphism ¢ : T' —
7T which induces a contravariant symmetric form (—, —). A semisimple isotropic
filtration (with respect to (—, —)) {T;} of T'is called a balanced semisimple filtration
if there is a A-filtration

0<Tony <Tonz < <Toum) SToony <o < T,

indexed over distinct weights and integers, such that the following conditions hold:

e A1, Ag,... are distinct weights labelled such that if \; < A then j < k;
® Nn1,MN9,... are positive integers;

e for each k and r, T(x, »)/T(n,,r—1) = A(Ak);
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e the following induced filtration on the above subquotient (cf. [9])
(T /Towr—1))i = Togr) 0 Ti+ T r—1)/Tiag r—1)

is a shifted version of the parity filtration, i.e.

(T /T r—1))i = Vi(AR)itm(g,r)

for some integer shift m (Mg, r) which weakly increases as r increases.

When using alcoves instead of weights as labels, we will use Weyl filtrations
labelled like {T(C'k,r)} instead of T\, ,y, where C} is the alcove containing \y.

Proof of the main theorem. Before we state and prove the main theorem, we will
need an auxiliary result regarding indecomposable tilting module endomorphisms.

Lemma 3.5. Let T be an indecomposable tilting module with highest weight vector
v. An endomorphism ¢ : T — T is an isomorphism if and only if ¢p(v) # 0.

Proof. From the classification of indecomposable tilting modules the highest weight
space of T is Cv. As T is indecomposable, End(T') is local. The subspace I of
endomorphisms mapping v to 0 is clearly an ideal, and the quotient End(7T)/I is
isomorphic to C, so [ is the unique maximal ideal of all non-isomorphisms of 7'. [

Next we develop some language for talking about subquotients of a module.
Suppose we have a flag of submodules W <V < U. We say that U/V lies above
V /W if the extension U/W doesn’t split. Otherwise there is a submodule M < U
with M +V =U and M n'V = W. Then we have U/V = (M +V)/V =~ M/W
and also M < U,soU/M = (M +V)/M = V/W, and we can switch the order of
the subquotients.

Finally we introduce some convenient notation for Laurent polynomials. Suppose
p=2; p;v! € Zsolv,v™!]. For i€ Z set

* (p)i =pi;

o (P)<i= ngipi;

{p}i = v’ if (p)<j—1 <1 < (p)<; and is zero otherwise;

{P}si = stz‘{P}j-

In other words, (—); and (—)g; take (sums of) coefficients of terms with degree
i or degree at most i respectively, while {—}; and {}<; take the ith monomial or
the first ¢ monomials respectively, where the monomials are ordered by degree. For
example,

(07! + 20 + 30%) ¢ = 1, {7+ 207 + 303} =07,

(07! + 207 + 3v*) <o = 3, (v 4+ 202 + 303} = v + 0,

(v +20% + 30%) <3 = 6, {v7! 4+ 20% + 303}z = v + 207,

(07! + 20% + 3v*) <y = 6, (v 4+ 202 + 303}y = vt 4 207 + 203,

Theorem 3.6. Let T = T;(A). There exists a balanced semisimple filtration {T;}
of T with Weyl filtration {T (¢, »y} such that

(17) [T" : Ly(B)] = (tp,a)i;
(18) [Tt/ Terr—1)" s LiB)] = ({nc, atrm© ).



12 AMIT HAZI

Proof. Write A = z - Ap and induct on ¢(z). The base case is when A = Ay
is the fundamental alcove and we have T;(Ag) =~ L;(Ap). Pick an isomorphism
¢ Li(Ag) = "Li(Ap), which gives a non-degenerate contravariant symmetric form
(—,—) [10, I1.8.17]. The isotropic filtration in this case is 0 = T < Ty = Tj(A),
which has the properties we want.

For the inductive step, suppose we have shown that the claim holds for all alcoves
ycot Ag where y < z in the Bruhat order, and that we have chosen isomorphisms
between these tilting modules and their duals which induce symmetric contravariant
forms. Pick a simple reflection s € S such that As > A in the dominance ordering.
Define Q = 04(T;(A)). Then @ decomposes as T;(As) ® Q' where Q' is a tilting
module with highest weights lower than As. Fix an isomorphism Q — T;(As)® Q'
once and for all. We will denote T;(A) by T and T;(As) by T" for simplicity.

By induction there is a non-degenerate symmetric contravariant form on 7" and
a balanced semisimple filtration {T;} satisfying the claim. Applying the functor 6
to the form on T gives a form with the same properties on ). By Lemma 3.2,
{05(T;)} is an isotropic filtration of @, which we will label {Q;}.

Suppose the bottom layer of T is T}, = 0 for some m < 0. Consider the sub-
modules 0 = @, < Qi1 < Q2. These describe a filtration for a summand of
the module 05(T;,42). Clearly T, 42 has Loewy length at most 2, so by Vogan’s
conjecture O4(T;,+2) has a Loewy length of at most 2 + 2 = 4.

Now define Q;f, | and @, such that

QL+1/QW+1 = SOC(Qm+2/Qm+1)7
Qr_n.t,_l/Qm = rad(Qm-&-l/Qm)-

As Q;H/Qmﬂ is semisimple, any composition factor can be written as U/Qm+1,
and similarly any composition factor of Q,,41/Q,,,, can be written Q,41/W. If
there is a composition factor U/Q,,+1 which lies above Q,,,+1/W, then the Loewy
length of @,,+2 is at least 6, which is a contradiction. Thus all such composition
factors can be switched, so there exists a module Y which does this, i.e. Y + Q11 =
Qf 1 andY N Qi1 = @, (see Figure 3).

This leaves us with a semisimple filtration 0 = Q,, < Q;}, < @, <Y <
Q;H < Qrto < Qma2, where we have continued the notation suggested above
in the obvious manner. Yet Y/Q, ., = Q. /Qm+1 and Q,,.,/Q;, have the
same Kazhdan-Lusztig parity, so in fact Y /Q}}, is semisimple. Similarly @Q,,,,/Y
is semisimple. With this in mind, we redefine the filtration {Q;} so that its first
few lower layers are 0 < Q;}, <Y < Q.. < Qm+2. We continue in this manner
up through the lower half of @, re-indexing as we go along so that all indices are
integers. Obviously by taking orthogonal spaces this works for the upper half as
well.

By induction mid{T;} is semisimple. Thus mid{Q;} = 0s(mid{7;}), which is a
self-dual module of Loewy length 3 by Vogan’s conjecture. If we define V' such
that V/Q_; = rad(Q1/Q_1) then we have Q1/V = head(Q1/Q_1) so V+/Q_; =
soc(Q1/Q_1), and V > V+. Thus V* is a larger totally isotropic submodule of
@, so we can redefine Q; and Q_; to be V and V' respectively. The resulting
filtration after all these changes has layers given by (15), i.e. [Q% : L;(B)] = (tp.a)i
for any integer ¢ and any alcove B.

The module @ naturally has a Weyl filtration because T" does, which we label
Q(cy.,r)- Recall that if Ext'(A;(C), Ai(D)) # 0 then C < D. This means we can
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FIGURE 3. An illustration of a possible Loewy series for @, 12. As
in the example in the introduction, the numbers are composition
factors. The Kazhdan-Lusztig parity of a factor corresponds to the
parity of the number labeling it. The submodule @Q,,.1 is circled
with a solid line, while @,,,; and Q) 41 are circled with dashed
lines and the submodule Y is circled with a dotted line.

rearrange and relabel the Weyl factors (as described in the beginning of this section)
so that they have the same ordering properties as in Definition 3.4. We claim that
Q(cy,r) N Qi has the following character! based on a “partial” version of t3 ,:

(19) [Qucyry N Qi = Li(B)] =

=|(w+vh) Z {ncj,A}er + Z {ncj’A}STW@(O)
< i<k
j< JB

To see this, note that a similar result holds for the original filtration on @, since it
was a wall-crossed version of a balanced semisimple filtration on 7. The modifica-
tions made to this filtration don’t change the fact that composition factors in the
layers Q' can be identified as belonging to some Weyl subquotient.

We have implicitly assumed positivity of various Kazhdan-Lusztig polynomials. For Weyl
groups and affine Weyl groups this follows from geometric interpretations of these polynomials
first shown in [13].
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The induced filtration on Q(x, r)/Q(x,,r—1) has ith layer

(Qi " Qrgry T Qror—1))/Qrr—1)

(Qi—1 0 Qurry + Qagr—1))/Qrr—1) -
_ QinQu,n +Quyr—1
T Qic1 0 Q) + Q-1
N Qi N Qay,r)
T Qi n Qi) N (Qim1 N Quaery + Qirgr—1))
. Qi n Q()\k,r)
T Qi Qi) N Qinr—1) + Qict N Quagr)
B Qi N Qay,r)
Qi N Quaer—1) + Qi1 0 Q)

Now we calculate the character of the denominator in the above quotient:

[Qi N Qrr—1) + Qi1 N Qrym] =
=[Qi N Qur—1)] + [Qi—1 0 Qr, )]
—[(Qi n Qurr—1) N (Qim1 0 Qaym)]
=[Qi n Qo r—1)] +[Qic1 N Qry] — [Qic1 N Qryr—1)]-

Using (19), the character of this ith layer is

20) | (w+vY) Yne, alem@ B + Y {ne, 4} <om®Pm 5(0)
j<k' j<k3
D <1

| w+oh) Z {ncij}éf'—lmcﬁB + Z {ncij}<7'—1ij’DmsB,D(0)
i<k i<k
J is »

— | (w+v~ Z{nc At<ymCiB 4 Z{nc At<rm J’DmBD(O)

J<k Jsk
D <i—1

+ | (v+ov~ 2 {nc, ater—1m©B + E{nc At<r—m©-Pm% (0)
i<k i<k
D <i—1

= ({n&,, a}rmB)i(1),

which is a shifted version of the dual parity filtration.

Now we will obtain analogous results for the direct summand 7" of ). First note
that the restriction of the bilinear form on @ to T" is non-degenerate if and only if
the map

T/—>TT,

Vi (”U,—)
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is an isomorphism. In the case of the above map, this is readily apparent: for v
a highest weight vector of 7" (and therefore of @) we have (vas, @x) = 0 for all A
below the highest weight, so (vas,v4s) # 0 as the form is non-degenerate on Q.
As T" A T+ = 0, this implies that @ is isomorphic to 7" @ T'* as a vector space.
But 7'+ is a submodule isomorphic to Q/T" =~ @’ so without loss of generality
Q' = T'* and the form is non-degenerate on @’ too. Let 77+, 7o/ be the projection
maps onto the two summands of Q. We say a subquotient U/V lies entirely in 7’
if WT/(U)/’/TT/(V) = U/V and ’R’QI(U) = WQ/(V).

We will modify each Weyl factor to lie entirely in either T” or Q’. Recall that
the filtration shift of the Weyl factor Q¢ r)/Q(cy,r—1) is the smallest i such that
Q(Cp,r) < Qi- From (20) this corresponds to the degree of some monomial term in
n%k 4- These terms can be divided into those which come from n¢, 45 and those
which don’t, corresponding to Weyl factors lying in 77 and Q' respectively.

Consider the first Weyl factor Q (¢, 1) It has to be isomorphic to the highest Weyl
factor A;(As). From highest weight theory Hom(A;(As), Q") = 0,50 g/ (Q(cy.,1)) =
0 and thus Q(¢, 1) < T'. The quotient Q/Q (¢, 1) still has a Weyl filtration, and
we induct on the number of Weyl factors. Suppose the quotient Q/Q ¢, »—1) has
bottom Weyl factor Q¢ r)/Q(cy,r—1)- In general if one of 7" or Q" doesn’t have
A;(C}) as a factor, then the same trick still works.

Otherwise, suppose this bottom Weyl factor has filtration shift ¢, and both T” and
@’ contain copies of A;(Cy) but only one of ng, 45 and N&,. A — NCy,As has a non-
zero coefficient of v*. Then the Weyl factor lies entirely in 7" or Q' respectively. To
see this, note that the top simple factor L;(C}) in this copy of A;(Cy) corresponds
to a summand in @Q°, and is dual to a summand in Q~¢. By induction and using
Lemma, 2.6 this summand in Q¢ lies entirely in only one of T'~% or Q'~%, so by
non-degeneracy the top summand of the Weyl factor lies entirely in either 7" or
Q'*, which implies that the whole Weyl factor does too.

Finally suppose both 7" and @ contain copies of A;(Cy) and both ng, as and
n¢,.A — Ney,As have non-zero coefficient of v'. Pick s > r maximal such that the
submodule Q¢ 5)/Q(c,,r) is isomorphic as a filtered module to a direct sum of
copies of A;(C%) all shifted by 4. Clearly all indecomposable direct summands are
filtration isomorphic, so one can choose a new direct sum decomposition of this
module so that each summand lies entirely in one of T or @’. The number of
summands lying in each also corresponds to the coefficient of v* in each of the
above polynomials, using a similar argument to the previous case. Thus 7" has a
balanced semisimple filtration whose filtration layers are given by (17). (I
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