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Abstract

A model for general insurance pricing is developed which represents a stochas-
tic generalisation of the discrete model proposed by Taylor (1986). This model
determines the insurance premium based both on the breakeven premium and the
competing premiums offered by the rest of the insurance market. The optimal
premium is determined using stochastic optimal control theory for two objective
functions in order to examine how the optimal premium strategy changes with
the insurer’s objective. Each of these problems can be formulated in terms of a
multi-dimensional Bellman equation.

In the first problem the optimal insurance premium is calculated when the
insurer maximises its expected terminal wealth. In the second, the premium is
found if the insurer maximises the expected total discounted utility of wealth where
the utility function is nonlinear in the wealth. The solution to both these problems
is built-up from simpler optimisation problems. For the terminal wealth problem
with constant loss-ratio the optimal premium strategy can be found analytically.
For the total wealth problem the optimal relative premium is found to increase
with the insurer’s risk aversion which leads to reduced market exposure and lower
overall wealth generation.

1 Introduction

Dynamic programming has found widespread application in both finance and insur-
ance originating with the optimal asset allocation problem (Samuelson 1969, Merton
1971;1990). Merton found the optimal allocation of resources in a portfolio consisting
of a risky asset and a risk-free asset in order to maximise some measure of wealth.
Part of the attraction of the theory is that the optimal strategy can be determined in
closed-form under certain assumptions concerning the form of the process describing the
risky asset and the objective of the portfolio manager. The strategy is dynamic since
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it uses information as it arises: the optimal strategy can be determined as long as we
specify the distributions of the underlying processes and the current values of the state
variables. There are many generalisations of the problem in the literature including, for
example, an N dimensional state space, non-Markov underlying processes, and random
time horizons. Reviews of the literature are contained in Karatzas & Shreve (1998) and
Campbell & Viceira (2001).

In actuarial science there are a number of established problems which have been tack-
led using dynamic programming. The optimal asset allocation problem for an insurer
was investigated by Browne (1995). The problem is more complex for an insurance com-
pany because it invests in risky assets in order to maintain a reserve to pay out incoming
claims. There are then at least two, possibly correlated, random processes required for
the model: the invested asset and the claims process. Browne used a normal random
process to model the cash flow and found it is optimal to invest a fixed amount of the
reserve if the objective is to maximise the expected utility of wealth for an exponential
utility function. He also found that this strategy corresponds to minimising the proba-
bility of ruin when the risk-free interest rate is zero. Hipp & Plum (2000) considered the
problem with a compound Poisson process for the claims process: the optimal strategy
now depends on the current value of the insurer’s reserve. Other insurance problems
which use dynamic programming include optimal proportional reinsurance (Højgaard
& Taksar 1997), optimal new business generation (Hipp & Taksar 2000) and optimal
dividend payout for an insurer (Asmussen & Taksar 1997). A comprehensive review of
optimal control theory applied to insurance can be found in Hipp (2004).

In this paper we determine the optimal premium strategy for an insurer which max-
imises a particular objective over a fixed planning horizon. Actuaries traditionally price
insurance through a premium principle, which relates the charge for cover to the mo-
ments of the claims distribution. In this work we determine the premium by using a
competitive demand model (following Taylor 1986) as well as the expected claim size.
Consequently, we suppose that the premium is determined in part by the price relative
to the rest of the insurance market. It is not enough that an insurer set a price to cover
claims if the rest of the market undercuts that price since then the insurer will gain
insufficient income to remain viable.

The demand law specifies how the insurer’s income and exposure change with the
relative to market premium: a low relative premium generates exposure but leads to
reduced premium income. The approach builds on the work in Emms, Haberman &
Savoulli (2004) and Emms & Haberman (2005), but develops a more sophisticated and
realistic model, so that the dependence of the optimal strategy on the current state is
stochastic. Emms, Haberman & Savoulli (2004) developed a continuous time version of
Taylor’s model (Taylor 1986) because continuous time control systems are often easier to
analyse than discrete problems. However, the continuous time version of Taylor’s model
leads to a bang-bang optimal premium strategy which is not realistic. Consequently,
Emms & Haberman (2005) developed an accrued premium pricing model by supposing
that the continuously varying premium is paid at a rate fixed at the start of the policy.
Here, we also suppose that the premium is a continuous process; however, policyholders
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are assumed to pay a fixed amount at the start of the policy in return for a constant
period of cover. A renewal of insurance is treated as if the policyholder were buying
a new period of cover. This assumption reduces the state space of the optimisation
problem and so makes the analysis easier. Emms & Haberman (2005) determined the
optimal premium strategy which maximised the expected terminal wealth of the insurer.
We examine a terminal wealth and a total wealth objective and assess the qualitative
impact of this change on the optimal premium strategy.

In Section 2 we propose a two factor model of the general insurance market: one
factor models the randomness of the claim size and intensity, whilst the other models
the market average premium. This model is used to determine the premium which max-
imises a number of possible objective functions of the insurer. Section 3 describes the
derivation of the Bellman equation which gives the optimal dynamic premium strategy
to maximise the expected terminal wealth of the insurer. The problem reduces to the
solution of a reaction-diffusion equation, which is straightforward to solve numerically.
Next in Section 4 we consider the objective of maximising the expected total discounted
utility of wealth with a utility function linear in the wealth. This is probably a more
realistic objective for an insurer given the regulatory constraints imposed over the course
of the planning horizon. The resulting reaction-diffusion equation is slightly more com-
plex but it is again straightforward to solve numerically. We consider a nonlinear utility
function by constructing a perturbation expansion in the risk aversion of the insurer.
This leads to a pair of coupled reaction-diffusion equations and a numerical solution
gives the optimal premium strategy. Finally in Section 5 we compare the strategies and
suggest further work.

2 Markov Model

Emms, Haberman & Savouilli (2004) extended Taylor’s model to the case that the
market average premium is stochastic and the breakeven premium is constant. Here
we generalise further by adopting stochastic processes with given distributions for the
market average premium p̄t (per unit exposure) and the loss-ratio γt. Since the market
average premium is positive we suppose that it is lognormally distributed:

dp̄t = p̄t(µdt + σ1dW1t), (1)

where the drift µ and the coefficient of volatility σ1 are constants and W1t is a Brownian
motion. Note that all premiums are specified as per unit of exposure so that each
policyholder pays the same premium irrespective of the exposure that is being insured.
Hereafter we shall omit this qualification.

We introduce the relative loss ratio which we define as the ratio between the breakeven
premium πt of the insurer and the market average premium1:

γt =
πt

p̄t

. (2)

1In the actuarial literature the loss ratio is usually defined as the claims divided by the premiums
received by a company over a year (Daykin et al. 1994)
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The breakeven premium is the random amount a policy of length τ costs the insurance
company. This is the actuarial premium without any profit margin and can be deduced
from the insurer’s previous claims data and a loading factor to account for expenses and
interest rates (Daykin & Hey 1990). Rather than complicating the model with a precise
formulation for this factor we suppose that the breakeven premium is a stochastic process
(Pentikäinen 1986). The advantage of this formulation is that there are no outstanding
liabilities at the end of the planning horizon T because as soon as policies of total
exposure δqt are bought, the insurer sets aside πtδqt to cover the resulting claims.
Appendix A describes the modifications to the theory if we adopt a stochastic process
for the mean claim size rate.

We expect a direct correlation between the premium that the market charges and the
breakeven premium of the insurer. If we suppose that claims are identically distributed
for the market and the individual insurer then the discrepancy between these quanti-
ties represents the different loadings that insurance companies apply to their policies.
Consequently we suppose that the log of the loss-ratio is a Vasicek process (γt must be
positive) and that the mean of log γt reverts to zero:

d log γt = −ρ log γt dt + σ2 dW2t,

where ρ is the rate of reversion, σ2 is the coefficient of volatility and W2t is a Brownian
motion independent of W1t. Ito’s Lemma gives the SDE for γt as

dγt = γt

[

1
2
σ2

2 − ρ log γt

]

dt + σ2γt dW2t. (3)

This definition forces the market average premium towards the breakeven premium:
E[γt] = eσ2

2
/4ρ as t → ∞. Market data often show the market average premium drifting

above and below the breakeven premium so this would seem to be a reasonable model
(Daykin et al. 1994).

Suppose a policyholder pays a premium p(t) to the insurer at the start of the policy
for a fixed term of insurance cover τ . We suppose that at the end of the cover the
policyholder can renew by paying p(t+ τ), that is the same premium as that charged to
new business. We suppose the insurer writes a number of these policies in a time interval
δt generating total exposure δqt and receives the premium income ptδqt in return. Thus
pt is the premium charged to new policyholders and existing policyholders who want to
renew their policies.

The model is completed by evolution equations for the insurer’s exposure qt and
wealth wt. We suppose that the rate of generation of new and renewed exposure bt is
parameterised as

bt = qtG(kt), (4)

where G is a demand function which represents the fractional increase in exposure per
unit time arising from the relative premium charged, kt, defined by

kt = pt/p̄t.

Consequently the wealth generated by premium income over time δt due to a fractional
increase in exposure is ptδqt = ptbt δt.
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This notation leads to the following SDEs:

dqt = (bt − κqt) dt, (5)

dwt = −αwt dt + (pt − πt)bt dt, (6)

where κ > 0 is a constant representing the fractional loss of exposure due to non-renewed
business and α > 0 represents the loss of wealth due to returns paid to shareholders.
In reality, this loss of exposure is related to the number of policies initiated at times
t− τ , t− 2τ ,. . . since it is only these policyholders who make a renewal decision at time
t. Models incorporating this feature lead to either high dimensional state spaces or
non-Markov processes both of which considerably complicate the optimisation theory
and are not considered here (see Kolmanovskĭı & Shăıkhet 1996). In practice κ must be
determined by data on policy renewals: for simplicity we set κ = τ−1.

The main difference between this model and that presented in Emms & Haberman
(2005) is the interpretation of the “new business” parameterisation. This means that
the term ptbt dt appears in the wealth equation (6) reflecting the idea that it is only
new business and renewed business who pay a premium not the entire customer base.
The simplification arises because we set a premium at the start of the policy rather
than a premium rate which varies over the course of the policy. The claims arising from
insurance taken out at time t are accounted for by the term πtbt in (6): claims on
existing exposure were accounted for when these policies were initiated.

3 Terminal Wealth

The premium strategy is determined by maximising the objective function of the insurer.
Due to the parameterisation of the demand law it is simpler if we use the relative
premium kt as the control in the dynamic optimisation problem. Thus, first we aim to
find the optimal relative premium k∗ which maximises the insurer’s wealth at the end
of the planning horizon T . We define the value function

V (x, t) = sup
k

E[wT |Xt = x], (7)

where the state of the system is Xt = (p̄t,qt,wt,γt), the current state is x = (p̄, q, w, γ),
and for the moment T = T . If the value function is sufficiently smooth then it satisfies
the Bellman equation

Vt + µp̄ Vp̄ + 1
2
σ2

1 p̄
2 Vp̄p̄ + γ(1

2
σ2

2 − ρ log γ) Vγ + 1
2
σ2

2γ
2 Vγγ − κq Vq − αw Vw+

q sup
k
{G(k)(Vq + p̄(k − γ) Vw)} = 0, (8)

with boundary condition
V (x, T ) = w.

The first-order condition for a maximum of k is

k +
G(k)

G′(k)
= γ −

Vq

p̄Vw

,

5



where ′ denotes differentiation wrt. k. The control determined by this first order con-
dition is called interior and is denoted with a superscript i. The control which satisfies
the maximisation operation of the Bellman equation is denoted by k∗, and may not
equal the interior control ki. For simplicity, we adopt a linear demand function (Lilien
& Kotler 1983):

G(k) =

{

a(b − k) if k ≤ b,
0 if k > b,

(9)

where a > 0 has dimension of per unit time and b ≥ 1 is dimensionless. Notice that
there is no lower bound on the control. The interior relative premium is now given by

ki =
1

2

(

b + γ −
Vq

p̄Vw

)

, (10)

providing that γ ≤ b + Vq/p̄Vw.
Since Vq = 0 and Vw = 1 at t = T , the terminal interior relative premium is

ki
T =

1

2
(b + γ) if γ ≤ b. (11)

The terminal interior premium is at least the breakeven premium pi
T ≥ π since ki

T ≥ γ.
If γ > b, that is π > bp̄, then the interior premium is undefined. In this case, the
insurer can set any relative premium k > b since no-one will buy insurance at this price
according to the demand law (9). In such circumstances we set k∗ = b for continuity of
the control.

3.1 Constant loss ratio

We need the results from this section to determine the appropriate boundary condition
for (8) when γ is stochastic. Suppose the loss ratio γ is constant corresponding to setting
ρ = σ2 = 0. Let us look for a value function of the form

V (x, t) = eα(t−T )(w + qp̄ f0(t)). (12)

Substituting this expression into the Bellman equation (8) yields

df0

dt
+ (µ + α − κ)f0 + sup

k
{G(k)(f0 + k − γ)} = 0, (13)

with boundary condition f0(T ) = 0. The interior control is given by

ki
0(t) = 1

2
(b + γ − f0(t)) . (14)

At termination ki
0(T ) = 1

2
(b + γ). If γ > b then k∗(T ) = b and G∗ = 0. Conse-

quently, the Bellman equation integrates immediately to give f0 ≡ 0 and so k∗(t) ≡ b
for t ∈ [0, T ]. This means the optimal strategy is to set a price so that no insurance
is ever sold. It is easy to see why this is optimal: the insurer only generates wealth
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from insurance if k > γ > b from the wealth equation. But at this relative premium no
exposure is generated, so the insurer can never make a profit from selling insurance.

If γ ≤ b then at termination k∗(T ) = ki
0(T ). Substituting the interior control into

the Bellman equation (13) yields

df0

dt
+ 1

4
af 2

0 + Af0 + B = 0, (15)

where

A(γ) = 1
2
a(b − γ) + φ,

B(γ) = 1
4
a(b − γ)2,

φ = µ + α − κ. (16)

Note that γ is constant and so therefore A(γ) and B(γ) are also constants. On integrat-
ing (15) and applying the boundary condition we obtain

f0(t; γ) =































2

a

(

D+ tan

(

T − t

2
D+ + tan−1

(

A

D+

))

− A

)

if aB > A2,

2

a

(

E(t)(D− + A) + D− − A

1 − E(t)

)

if aB < A2,

2A2(T − t)

a(2 − A(T − t))
if aB = A2

(17)

where

E(t) =

(

A − D−

A + D−

)

exp ((T − t)D−) , (18)

and
D2

±
= ±aB ∓ A2 = ∓φ(a(b − γ) + φ). (19)

At termination f0(T ) = 0 and from (15), df0/dt ≤ 0 so that as we integrate from
t = T towards t = 0, f0 increases and it is positive. Further, if f0 is continuous then it
must remain positive because if at any point f0 = 0 then df0/dt ≤ 0 and f0 increases.
Consequently, k∗(t) = ki

0(t) ≤ ki
0(T ) = 1

2
(b+ γ) providing that f0(t) remains continuous

in [0, T ].
The value function V , given by (12), is twice continuously differentiable in the state

variables and once continuously differentiable in time (under parametric restrictions).
Moreover k∗(t), by definition, does satisfy the maximisation operator of the Bellman
equation, and it is admissible because the state equations are linear in the state variables.
Consequently, k∗(t) is the optimal relative premium strategy by Verification Theorem 4.1
of Fleming & Rishel (1975) as long as f0 ∈ C1[0, T ]. This premium strategy corresponds
to that found in Emms & Haberman (2005), although here we are able to give an
analytical expression for the strategy because of the simplification of the model. It is
only the first case in (17) that leads to discontinuities, which corresponds to the blow-up
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in the Ricatti equation of the accrued premium model. Specifically, there is blow-up at
tb if

tb = T −
2

D+

(

π

2
− tan−1

(

A

D+

))

∈ [0, T ]. (20)

If this is the case then f0(tb) = ∞ and the optimal control is not smooth.

3.2 Stochastic loss ratio

When the loss ratio is stochastic we are unable to solve the Bellman equation analytically.
Motivated by the previous section we introduce the stopping time

τ = inf{t > 0 : γt = b}

and set
T = τ ∧ T.

Consequently, we bound the sample paths so that the loss ratio does not become too
large. We have chosen to bound the loss ratio by b because if γt > b then there is
no relative premium which generates immediate wealth for the insurer. Essentially,
we restrict sample paths to those for which the insurer actively sells insurance: the
insurer cannot leave the market and then return should conditions become favourable.
The Bellman equation for this value function is identical to (8) providing that it is
sufficiently smooth (see Fleming & Rishel (1975) p154). However, now the state space
is restricted to 0 ≤ γ ≤ b and on the boundary γ = b we have V = w.

If the optimal control is given by the first order condition then substituting (10) into
the Bellman equation (8) we find

Vt + µp̄ Vp̄ + 1
2
σ2

1 p̄
2 Vp̄p̄ + γ(1

2
σ2

2 − ρ log γ) Vγ + 1
2
σ2

2γ
2 Vγγ+

q
(

1
2
a(b − γ) − κ

)

Vq + (−αw + 1
4
ap̄q(b − γ)2) Vw +

aqV 2
q

4p̄Vw

= 0, (21)

where we have used

Gi =
a

2

(

b − γ +
Vq

p̄Vw

)

.

The Bellman equation (21) determines the evolution of the value function when the
optimal control is interior, that is, it is given by (10).

Assuming that the solution to the interior equation is sufficiently smooth, a Taylor
series expansion yields at t = T − δt

VT−δt = w + (−αw + 1
4
ap̄q(b − γ)2)δt (22)

so that Vq = 1
4
ap̄(b−γ)2δt and Vw = 1−αδt. Consequently, the interior relative premium

at t = T − δt is
ki

T−δt = 1
2

(

b + γ − 1
4
a(b − γ)2δt

)

, (23)
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neglecting terms of O(δt2). This gives the premium strategy close to the end of the
planning horizon. It gives us confidence that the premium is well-defined locally using
an explicit finite difference scheme and it is not determined by external constraints.

The local expansion (22) suggests that the value function takes the form

V (x, t) = eα(t−T )(w + qp̄ f(γ, t)). (24)

If this is the case, the optimal strategy is independent of the coefficient of volatility for
the market average premium σ1. Substituting this expression into the Bellman equation
(8) yields a nonlinear PDE for f :

ft + γ(1
2
σ2

2 − ρ log γ)fγ + 1
2
σ2

2γ
2fγγ + φf + sup

k
M(k, γ, t) = 0, (25)

where the function M(k, γ, t) is defined by

M(k, γ, t) =

{

a(b − k)(f(γ, t) + k − γ) if k ≤ b,
0 if k > b.

(26)

We require three boundary conditions in order to solve this problem numerically. The
first condition arises from the definition of the value function (7): V = w at t = T giving
f(γ, T ) = 0. If γ = 0 then from the SDE (3) the loss ratio γs ≡ 0 for s ∈ [t, T ]. Thus the
loss ratio is constant and the optimal premium strategy is that derived in Section 3.1.
Consequently the appropriate boundary condition on γ = 0 is f(0, t) = f0(t; 0) where
f0 is given by (17). The third condition is determined from the stopping time of sample
paths: V = w at t = τ giving f(b, t) = 0. Figure 1 shows how M varies as we vary the
relative premium k for a number of values of the loss-ratio γ and at a fixed time t. The
function M is quadratic in k and has an interior maximum as long as γ ≤ b + f(γ, t).
If f(γ, t) is non-negative then the interior control yields the supremum of (25) in the
domain [0, b] × [0, T ].

If f is non-negative the Bellman equation (25) becomes

ft + γ(1
2
σ2

2 − ρ log γ)fγ + 1
2
σ2

2γ
2fγγ + 1

4
af 2 + A(γ)f + B(γ) = 0, (27)

where A(γ) and B(γ) are given by (16). The boundary conditions for (27) are

f(γ, T ) = 0, f(0, t) = f0(t; 0), f(b, t) = 0. (28)

Given the solution to equation (27) and its associated boundary conditions (28) the
interior relative premium is given by

ki = 1
2
(b + γ − f(γ, t)) . (29)

The complexity of the boundary conditions and the nonlinearity of (27) suggests that
the problem must be solved numerically. Indeed, the equation is similar to the Fisher
equation in Mathematical Biology (Britton 1986, Murray 2002), which is the canonical
reaction-diffusion equation. In contrast, (27) has an additional advective term fγ, the
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diffusion coefficient is not constant, and the equation is inhomogeneous. One usually
looks for travelling wave solutions of the Fisher equation, which reduces the problem to
an ODE, but here the spatial domain is restricted so this is not appropriate.

Equation (27) is a semi-linear PDE and it is in the form of an initial-boundary value
problem. Friedman (1964) gives existence and uniqueness results for this class of prob-
lem. Specifically, if there is a solution of the equation then it is unique by Theorem 8
on p.41, which follows from the weak Maximum Principle for Parabolic PDEs. Fried-
man (1964) proves a global existence theorem for semi-linear PDEs providing a linear
growth condition is satisfied. The quadratic term f 2 in (27) prevents the application of
this result. A general global existence result is clearly not available since we know the
boundary condition can blow-up at time tb dependent on the model parameters. Con-
sequently, we must be content with the local existence result of Theorem 10 on p.206,
which means the equation has a solution providing the time horizon T is sufficiently
small.

If the numerical solution is robust with respect to grid spacing then it seems rea-
sonable to assume that the numerical solution does converge to the exact solution of
(27). If f is sufficiently smooth, non-negative and bounded on [0, b] × [0, T ] then the
verification theorem in Fleming & Rishel (1975) can be applied so that ki is the optimal
control. The qualitative behaviour of the optimal control for the general problem is de-
termined in large part by the variation of f0 with the model parameters since this is the
only forcing function in the problem. We know that if tb ∈ [0, T ] then f0 is unbounded,
and so therefore f is unbounded. Consequently, there are parameter sets for which (29)
does not yield the optimal control. Next we shall describe the form of f0 in terms of a
reduced set of non-dimensional parameters.

3.3 Numerical Solution

We solve the nondimensionalised problem numerically. There are many possible time
scales based on the drift and volatilities of the stochastic processes: we choose the
planning horizon T and introduce the non-dimensional time to termination, s, given by

t = T (1 − s).

This scale leads to the following nondimensional parameter set:

ρ̂ = ρT σ̂2
2 = σ2

2T, φ̂ = φT,

â = aT, Â = AT, B̂ = BT,
(30)

which has the advantage of reducing the number of free parameters by one. Hence-
forth we shall drop the hats on the nondimensional parameters for the numerical work
in order to simplify the notation. Numerical results are presented solely in terms of
nondimensional parameters and variables.

The free parameters are now ρ, σ2, a, b, φ and in terms of these parameters (27)
becomes

fs = γ(1
2
σ2

2 − ρ log γ)fγ + 1
2
σ2

2γ
2fγγ + 1

4
af 2 + A(γ)f + B(γ), (31)
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with boundary conditions

f(0, s) − f0(s; 0) = f(∞, s) = f(γ, 0) = 0. (32)

In the first case of (17), the governing inequality is φ(ab+φ) < 0 and since ab is positive
then this condition becomes ab > −φ > 0. Therefore (17) becomes

f0(s; 0) =



























2

a

(

D0+ tan(1
2
sD0+ + tan−1( A0

D0+
)) − A0

)

if ab > −φ > 0,

2

a

(

E(s)(D0− + A0) + D0− − A0

1 − E0(s)

)

if φ(ab + φ) > 0,

2A2
0s

a(2 − A0s)
if φ = 0 or ab = −φ.

(33)

The remaining notation is from (18) and (19) and we have used the subscript zero to
denote that the quantity must be evaluated at γ = 0. We find that for the numerical
values quoted in Table 1, ab > −φ > 0 so that the expression for f0 is given by the first
of these cases.

It is clear from (29) that we must have f0(s; 0) < b for a positive interior premium.
If we suppose that f0 is given by the first alternative in (33) then this condition is at
s = 1 (corresponding to t = 0)

F (ab, φ) := tan−1

( 1
2
ab + φ

D0+

)

− tan−1

(

ab + φ

D0+

)

− 1
2
D0+ > 0, (34)

Figure 2 shows a plot of the contour F = 0 for a range of values of ab and φ. Only the
parameter set containing the cross in the figure lead to a positive optimal premium at
t = 0.

Table 1 gives a sample data set to solve the problem numerically. The planning
horizon T is taken to be only two years because the optimal strategy is often loss-
leading. In the unconstrained model that we consider here, this can lead to an initially
negative premium as T is increased. The remaining parameters are fairly arbitrary, but
they are chosen so that the initial premium is positive. Graphs of f0 and the associated
interior premium ki

0 for γ = 0 are shown in Figure 3. These results demonstrate that
the interior premium strategy is optimal for this particular choice of parameters. For
the parameters given in Table 1 the first of the alternatives for f0 is applicable. From
(20) there is blowup if

sb =
π − 2 tan−1(A0/D0+)

D0+

∈ [0, 1],

and then f0(sb) = ∞. For these parameter sets the value function is infinite and it is
possible to generate infinite wealth.

We adopt a simple explicit finite difference scheme to solve (31) with a first order time
difference and second order spatial differences (Smith 1985). Consequently, there is a
restriction on how large the time step can be in order to maintain numerical stability. In

11



the computations, the nondimensional time step was taken as ∆s = 10−3 and the spatial
step was taken as ∆γ = 10−2 unless stated otherwise. The results for the parameters
in Table 1 are shown in Figure 4. Figure 4(a) shows the variation of the value function
V through (24) with the current state γt = γ. The largest value function occurs when
s = 0 and the loss ratio is γ = 0 corresponding to, say, an infinite market average
premium. From (29) and the boundary conditions (32) the interior relative premium is
linear in γ at termination s = 0 and on γ = b = 1, ki = b = 1 for this particular data
set (see Figure 4(b)).

Suppose the finite difference grid is indexed by the points {(i, j)|i = 0, 1, . . . , Ns; j =
0, 1, . . . , Nγ} where Ns, Nγ are the number of time and spatial steps respectively. We
adopt a fixed time step ∆s = 1/Ns and a fixed spatial step ∆γ = b/Nγ and on the
grid we write fij = f(i∆s, j∆γ). We can assess the convergence of the finite difference
scheme by defining

||f || =
1

(Ns + 1)(Nγ + 1)

∑

i,j

|fij|,

which measures the size of f over the domain and

dg = (∆s2 + ∆γ2)1/2,

which measures the resolution of the grid. In Figure 6 we plot ||f || against dg using
the grid refinement Ns = 10k, Nγ = 2000k with k = 1, 2, . . . , 50 and the parameters
in Table 1. It is clear that the scheme is converging to ||f || ≈ 0.104 as dg → 0 with a
linear convergence rate as one might expect given that we adopt a first order difference
for the time step.

The optimal relative premium in Figure 4(b) gradually increases over the planning
horizon and this increase is greatest when the loss ratio γ = 0. As γ = π/p̄ decreases
so the breakeven premium becomes much less than the market average premium p̄.
This means the insurance market is overpricing insurance and so there is greater scope
to undercut the market price and still generate demand. This strategy leads to large
market exposure through the demand law and large profits as can be seen in Figure 4(a)
since as f increases so does the value function V . The form of the premium strategy is
strongly influenced by the qualitative features of the boundary condition on γ = 0 given
by (33). As the point of blow-up sb nears the domain [0, 1] so the values of f0 become
very large, which leads to negative values of k0. If k < γ then this is a loss-leading
strategy so one can identify the first form of (33) as of loss-leading type providing the
time horizon is sufficiently large.

We study the sensitivity of the model by varying the parameters ρ, σ2, a, b, and φ
in turn in Figures 5(a)-(e). The plots show the optimal relative premium k∗ at t = 0
given the current state variable γ. The optimal strategy is fairly insensitive to the mean
reversion, ρ, and the volatility of the loss ratio, σ2. The expected value of the loss-
ratio tends to one as ρ gets large so that there are few opportunities for loss-leading
and it is optimal to set a higher premium as shown in Figure 5(a). If the volatility is
large and the current loss-ratio γ is small then the loss ratio may substantially increase
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over the time horizon, so that it is optimal to set a higher premium and diminish loss-
leading. Conversely, if the volatility and the current loss-ratio γ are large then there is
the possibility that the loss-ratio will substantially decrease over the planning horizon
and loss-leading opportunities will become available. This lowers the optimal premium
as seen in Figure 5(b).

The optimal strategy is strongly dependent on the form of the demand function
(parameters a and b) and the parameter φ as shown in Figures 5(c)–(e). As a or b is
increased the demand for insurance is larger for a fixed relative premium. This favours
a loss-leading strategy because lowering the premium generates considerable exposure.
Ultimately this leads to negative initial premium values as shown in Figure 5(c),(d)
because there is no borrowing constraint in the model. The parameter φ encompasses
the drift in the market average premium and the policy length: large growth and long
policies tend to increase φ, which increases the magnitude of loss-leading and leads to
negative initial premium values. If the market average premium grows rapidly whilst
the breakeven premium is fixed this again favours loss-leading.

4 Total Discounted Utility of Wealth

It is not clear that the objective of maximising the expected terminal wealth is the most
appropriate goal for an insurer. Insurance companies must have sufficient funds to cover
legal requirements and satisfy the demands of their shareholders. If an insurer adopts a
strategy which leads to large losses in the expectation of significant income in the future
then this generates substantial risk. An alternative objective often used in financial
applications of stochastic control theory is to maximise the expected total discounted
utility of wealth:

sup
k

E

{
∫

T

0

e−βtU(wt) dt

}

,

where U = U(wt) is the utility function and T = τ ∧ T . From such an objective one
might expect a more conservative optimal strategy k∗ because initial loss-leading does
affect the objective. For simplicity, we consider the exponential utility function

U(w) =
1

c
(1 − e−cw) and c > 0.

This function has constant (absolute) risk aversion c and is a member of the Hyperbolic
Absolute Risk Aversion (HARA) family (Pratt 1964; Gerber & Pafumi 1998). Browne
(1995) used this utility function to calculate the optimal investment strategy for an
insurer. We adopt a utility function of this form since as c → 0, U → w so that the
objective is linear in the wealth and it is easier to find the solution to the Bellman
equation.

The appropriate definition for the value function is

V (x, t) = sup
k

E

[
∫

T

t

e−βsU(ws) ds|Xt = x

]

, (35)
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and the corresponding Bellman equation is

Vt + µp̄ Vp̄ + 1
2
σ2

1 p̄
2 Vp̄p̄ + γ(1

2
σ2

2 − ρ log γ) Vγ + 1
2
σ2

2γ
2 Vγγ − κq Vq − αw Vw+

q sup
k
{G(k)(Vq + p̄(k − γ) Vw)} +

e−βt

c
(1 − e−cw) = 0, (36)

with boundary conditions

V (γ = b, t) = 0, V (x, T ) = 0.

The interior premium is given by (10), as before, since the control does not enter the
objective function in (35). Substituting the interior premium into the above equation
yields

Vt + µp̄ Vp̄ + 1
2
σ2

1 p̄
2 Vp̄p̄ + γ(1

2
σ2

2 − ρ log γ) Vγ + 1
2
σ2

2γ
2 Vγγ+

q(1
2
a(b − γ) − κ) Vq +

(

−αw + 1
4
ap̄q(b − γ)2

)

Vw +
aqV 2

q

4p̄Vw

+
e−βt

c
(1 − e−cw) = 0. (37)

Again, we suppose that the first order condition does fulfill the maximisation operation
in the Bellman equation and that the value function is sufficiently smooth that Ito’s
lemma can be applied in deriving (36).

At termination t = T the optimal premium is undefined because the value function
is identically zero. This should be contrasted with the well-defined terminal optimal
premium given by (11) for the terminal wealth case. However, near the end of the time
horizon at t = T − δt where δt is a small time increment we find by differencing the
Bellman equation

VT−δt =
δt e−βT

c
(1 − e−cw).

Therefore, Vq = 0 and the terminal optimal premium is identical to (11) as δt → 0
providing that the differencing is consistent with the spatial boundary conditions.

We nondimensionalise the Bellman equation by using the scales in (30) supplemented
by

p̄ = [p̄] ˆ̄p, q = [q]q̂, w = [p̄][q]ŵ, V = [p̄][q]T, β̂ = βT.

where [p̄] and [q] are scales derived from the value of the market average premium and
the exposure at t = 0. Let us introduce the parameter

ǫ = c[p̄][q].

as a dimensionless measure of the risk aversion of the insurer. Henceforth we shall drop
the hats on the nondimensional variables. The nondimensional Bellman equation is
therefore

Vs = µp̄ Vp̄ + 1
2
σ2

1 p̄
2 Vp̄p̄ + γ(1

2
σ2

2 − ρ log γ) Vγ + 1
2
σ2

2γ
2 Vγγ − κq Vq − αw Vw+

q sup
k
{G(k)(Vq + p̄(k − γ) Vw)} +

e−β(1−s)

ǫ
(1 − e−ǫw). (38)

We aim to solve this equation approximately using a perturbation expansion for ǫ ≪ 1.
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4.1 No Risk Aversion

If the insurer has no risk aversion then ǫ = 0 (corresponding to c → 0) and the utility
function is linear in the wealth process. We look for a solution of the form

V (x, s) = e−β(1−s)(g(s)w + q p̄ h(γ, s)). (39)

Substituting into (38) we obtain two equations for g and h:

g′ + (α + β)g − 1 = 0, (40)

hs = γ(1
2
σ2

2 − ρ log γ)hγ + 1
2
σ2

2γ
2hγγ + sup

k
{G(k)(h + (k − γ)g)}, (41)

where the boundary conditions are derived in a similar way to the terminal wealth case
and are

g(0) = 0, h(0, s) − h0(s) = h(b, s) = h(γ, 0) = 0. (42)

In terms of these functions the interior relative premium is

ki =
1

2

(

b + γ −
h(γ, s)

g(s)

)

(43)

and when the control is interior the equation for h becomes

hs = γ(1
2
σ2

2 − ρ log γ)hγ + 1
2
σ2

2γ
2hγγ + C(s)h2 + D(γ)h + E(γ, s), (44)

where

C(s) =
a

4g(s)
,

D(γ) = 1
2
a(b − γ) + µ − β − κ,

E(γ, s) = 1
4
a(b − γ)2g(s).

The equation for g can be integrated immediately to give

g(s) =
1

α + β

(

1 − e−(α+β)s
)

, (45)

and, as before, the function h0 is given by the solution to the problem independent of
γ:

dh0

ds
= C(s)h2

0 + D(0)h0 + E(0, s),

with terminal condition h0(0) = 0. This is a Riccati equation for which there is no
general technique for obtaining a solution. Moreover, these equations can exhibit spon-
taneous singularities for finite s: this phenomenon restricts the parameter range over
which the control will be smooth in a similar way to (17).

In order to determine how the relative premium differs from Section 3 we set

F(γ, s) =
h(γ, s)

g(s)
,
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so that (29) and (43) have the same form. After some manipulation (44) becomes

Fs = γ(1
2
σ2

2 − ρ log γ)Fγ + 1
2
σ2

2γ
2Fγγ + 1

4
aF2 +

(

A(γ) −
1

g(s)

)

F + B(γ). (46)

Notice there is an extra term −F/g on the RHS of this equation compared with (27).
Since g(s) is a non-negative function and we expect F is positive as before, the gradi-
ent Fs is reduced and so −F is increased as the time to termination, s, is increased.
Therefore, in comparison with the terminal wealth case, the optimal relative premium
is larger and the strategy is more conservative. If the discount rate β is made larger
then g decreases and so F is made smaller. This in turn makes −F larger and therefore
increases the interior premium ki.

We can reduce the free parameter set by writing

ζ = α + β. (47)

Thus the nondimensional free parameters are ρ, σ2, a, b, φ, ζ: these parameters and
the current state, x, determine the optimal relative premium. We have an additional
free parameter over the terminal wealth case because we have introduced the discount
factor β.

Again, an explicit finite difference scheme is used to solve equation (41) with the
boundary conditions in (42) using the grid ∆s = 10−4, ∆γ = 10−2. Figure 7 shows
plots of h(γ, s) and k∗(γ, s) for the sample data set in Table 1. The optimal strategy is
qualitatively similar to the terminal wealth case although the optimal relative premium
is larger. The optimal premium strategy is more conservative here because loss-leading
affects the total utility of wealth of the insurer. The robustness of the control with
respect to the objective gives us confidence that the analytical control in (14) is an
appropriate strategy to consider for an insurer. The sensitivity of the optimal control
to the model parameters is similar to the terminal wealth case and so this is not shown.

4.2 Weakly Nonlinear Utility Function

We consider a nonlinear objective by including the next term in an asymptotic expansion
for the utility function

U(w) ∼ w −
1

2
ǫw2, (48)

where we assume w ∼ O(1) by the choice of scaling.
We use a perturbation expansion for V in terms of ǫ ≪ 1 to yield a succession of

linear systems. Thus we write

V ∼ V0 + ǫV1 + . . .

k∗ ∼ k∗

0 + ǫk∗

1 + . . .
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Substituting into (38) and assuming an interior control, V0 is given by (39) while at O(ǫ)
we find

V1s = µp̄ V1p̄ + 1
2
σ2

1 p̄
2 V1p̄p̄ + γ(1

2
σ2

2 − ρ log γ) V1γ + 1
2
σ2

2γ
2 V1γγ+

q
(

1
2
a (b − γ) − κ

)

V1q +
(

−αw + 1
4
ap̄q(b − γ)2

)

V1w+

aqh(γ, t)

4g(t)

(

2V1q − p̄h
V1w

g(t)

)

− 1
2
e−β(1−s)w2, (49)

and
V1(γ = b, s) = 0, V1(x, 0) = 0.

This is a linear PDE with four space dimensions. The value function V1 is not linear in
each of the state variables because of the last term in the equation.

We aim to reduce the dimension of the problem by looking for a solution of the form

V1(x, s) = e−β(1−s)
(

m(γ, s)p̄2q2 + n(γ, s)p̄qw + r(s)w2
)

. (50)

Substituting (50) into (49) and collecting together the O(1), O(w) and O(w2) terms
yields three equations for m, n and r:

ms = γ(1
2
σ2

2 − ρ log γ)mγ + 1
2
σ2

2γ
2mγγ+

+

(

a(b − γ) + 2φ − α − ζ + σ2
1 +

ah

g

)

m +
a

4

(

(b − γ)2 −
h2

g2

)

n,

ns = γ(1
2
σ2

2 − ρ log γ)nγ + 1
2
σ2

2γ
2nγγ+

+

(

1
2
a(b − γ) + φ − α − ζ +

ah

2g

)

n +
a

2

(

(b − γ)2 −
h2

g2

)

r,

dr

ds
= −(2α + β)r −

1

2
, (51)

with boundary conditions

m(0, s) − m0(s) = m(b, s) = m(γ, 0) = 0,

n(0, s) − n0(s) = n(b, s) = n(γ, 0) = 0,

r(0) = 0,

and where g = g(s) and h = h(γ, s) are given by (41) and (45). The boundary functions
m0(s) and n0(s) satisfy the coupled ODEs:

dm0

ds
=

(

ab + 2φ − α − ζ + σ2
1 +

ah0

g

)

m0 +
a

4

(

b2 −
h2

0

g2

)

n0,

dn0

ds
=

(

1
2
ab + φ − α − ζ +

ah0

2g

)

n0 +
a

2

(

b2 −
h2

0

g2

)

r,
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with initial conditions m0(0) = n0(0) = 0. On integrating (51) and applying the bound-
ary condition we obtain

r(s) =
e−(2α+β)s − 1

2(2α + β)
.

From (10) the leading-order interior relative premium is given by (43) whilst the
second-order term is

k∗

1 =
V0q

2p̄V0w

(

V1w

V0w

−
V1q

V0q

)

=
1

2g(s)

(

h(γ, s)

g(s)
(p̄qn(γ, s) + 2r(s)w) − 2qp̄m(γ, s) − wn(γ, s)

)

.

For a nonlinear objective function the optimal relative premium is a function of all four
state variables. This complicates the comparison of how the premium strategy changes
if the insurer changes its objective. Also note that m(γ, s) depends on the coefficient
of volatility of the market average premium, σ1, and consequently so does the relative
optimal premium.

Figure 8(a) and (b) show the solutions for m and n computed using an explicit
finite difference scheme and the parameters in Table 1. All of the functions m, n and
r are negative over the domain of integration indicating that risk aversion decreases
the value function V . The greatest decrease in V is at t = γ = 0 since that is where
most wealth is generated. Figure 8(c) shows the perturbation to the optimal relative
premium if we set the current state variables p̄ ≡ q ≡ w ≡ 1. Notice that k∗

1 is positive
for these processes, so that increasing the risk aversion increases the optimal relative
premium. This increase is greatest if the current loss ratio is small. Figure 9 shows
the qualitative effect of increasing the insurer’s risk aversion ǫ. Risk aversion leads to
a more conservative interior premium strategy — this generates less exposure over the
planning horizon, which decreases the total claims and maintains premium income.

5 Conclusions

We have found the optimal premium strategy for an insurer in a competitive market us-
ing optimal control theory. In general, the Bellman equation arising from control theory
contains a degenerate diffusion operator. For the current model we have shown how this
degeneracy can be removed by a change of variables, which makes the resulting prob-
lems easy to solve numerically. The choice of a linear demand function (in the relative
premium) leads to a single nonlinear term in the Bellman equation which considerably
simplifies the analysis. Our ability to find the optimal premium strategy is limited by
the values given to the model parameters. We have found the conditions that lead to a
positive initial premium for the terminal wealth case. In general, if the optimal control
is smooth then the optimal premium gradually increases over the term of the planning
horizon for the parameter sets considered here. We find that as risk aversion is increased
so does the optimal relative premium strategy. This generates lower exposure and so
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ultimately lower overall wealth. The numerical value of the terminal relative premium
is identical for all the objectives studied here.

One significant assumption is that we can treat the market distinctly from the in-
surer so that whatever the insurer’s premium, the market does not react with a com-
petitive price. Currently we are investigating how one might relax this assumption by
incorporating an adjustment term in the process followed by the market average pre-
mium. Another modelling simplification is the specification of a stochastic process for
the breakeven premium. This premium represents the cost of insurance for the insurer
and assessment of this quantity requires a good model for the claims process and an
accurate definition of the loading factor. The benefit of using this process to define a
loss-ratio is that the wealth process wt directly reflects the current wealth of the insurer
including its liabilities.

Sample paths have been restricted to prevent the insurer leaving and the re-entering
the insurance market. If one relaxes this assumption then one must cope with the non-
differentiability of the demand function (9) at k = b and the determination of when
the insurer should stop selling insurance. We have introduced this non-differentiability
in order that the feedback control is tractable. However, it is not clear that there is
a classical solution to the Bellman equation for the more general problem and so one
cannot apply a verification theorem to ensure optimality of the feedback control. The
problem is reminiscent of the American option pricing problem posed as an optimal
control problem from which one obtains a semi-linear Black-Scholes equation with a
discontinuous cash flow. Benth, Karlson & Reikvam (2003) have determined simple
numerical schemes using viscosity solutions of the Black-Scholes equation (Fleming &
Soner 1993). For these schemes it is not required to track the free boundary representing
when it is optimal to exercise the option: its position is given implicitly from the nu-
merical solution. It is tempting to suggest that a similar construction might be applied
to the competitive pricing problem when the insurer is permitted to have periods of no
sales.

The difficulty with using dynamic programming to calculate an optimal premium
strategy lies with the balance between posing a realistic model and the ability to solve
and interpret the resulting high-dimensional Bellman equation. We have found an ana-
lytical solution for a restricted case, and shown that the numerical solution of the more
general problem is feasible, even for a quite sophisticated objective function. Often
the premium that the insurer can set is constrained by both legislation and the desire
to minimise the risk of loss-leading. The incorporation of constraints into the optimal
control problem is another area of ongoing research.
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A Mean Claim Size Rate Process

If we drop the assumption that the evolution of the breakeven premium can be deduced
from policy data then we must deal directly with the mean claim size rate (and related
claims expenses) ut. This is, for example, the average size of claims received in one day
per unit of exposure. It must be measured per unit time because it incorporates the
intensity of claims as well as their magnitude. An appropriate wealth process is now
given by

dwt = −αwt dt + ptbt dt − utqt dt.

As before, the new and renewed business generates wealth ptbtδt in time δt while claims
are now accounted for as they arise so that the loss of wealth is utqtδt.

In order to calculate a simple expression for the liabilities, it is convenient to adopt
separate processes for the market average premium and the mean claim size rate. We
suppose that the market average premium reverts to current cost of insurance in the
long term and that the mean claim size rate is lognormally distributed:

dp̄t = λ(ηut − p̄t) dt + µ1p̄t dt + σ1p̄t dW1t, (52)

dut = ut(µ2 dt + σ2 dW2t), (53)

where the mean reversion rate is λ. The drifts µ1, µ2 and coefficients of volatility σ1, σ2

are taken as constants. The current cost of insurance per unit exposure for the whole
market is

E

[
∫ t+τ

t

us ds|Xt

]

= ηut,

where τ is the length of policies, the current state of the system is Xt = (p̄t,ut,qt,wt)
and

η =

(

eµ2τ − 1

µ2

)

.

If no more insurance is sold at time t then the outstanding claims generate a loss of
wealth for the insurer equal to

∫

∞

t

usqs ds

and the exposure decays exponentially according to (5):

qs = qte
−κ(s−t),

for s ≥ t. The expected liabilities of the insurer at the end of the time horizon is
therefore

E

[

qT eκT

∫

∞

T

use
−κs ds|XT

]

=
qT uT

κ − µ2

.

We must have κ > µ2 otherwise the outstanding liabilities are infinite.
If the insurer aims to maximise its net terminal wealth then the appropriate value

function is

V (x, t) = sup
p

E

[

wT −
qTuT

κ − µ2

|Xt = x

]

.
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Assuming the value function is sufficiently smooth the corresponding Bellman equation
is

Vt + (λ(ηu − p̄) + µp̄)Vp̄ +
1

2
σ2

1 p̄
2Vp̄p̄ + µ2uVu +

1

2
σ2

2u
2Vuu+

sup
p
{q(G − κ)Vq + (−αw + q(Gp − u))Vw} = 0, (54)

with boundary condition

V (t = T ) = w −
qu

κ − µ2

.

The first order condition for a maximum gives the interior relative premium as

ki =
1

2

(

b −
Vq

p̄Vw

)

,

where we have adopted the linear demand function (9). Consequently at termination of
the planning horizon this relative premium is

ki
T =

1

2

(

b +
u

p̄(κ − µ2)

)

.

If we write the loss ratio for this model using the conventional definition then γ = ηu/p̄.
The terminal relative premium then only differs from (11) by the term η(κ − µ2). For
policies of length one year τ = 1 yr and µ2 = 0.1 p.a. gives η(κ − µ2) ∼ 0.9 so that the
optimal strategies are similar near termination.

Let us suppose the value function is of the form

V (x, t) = eα(T−t)(w + qf(p̄, u, t)).

Substituting this function into (54) yields

ft + (λ(ηu − p̄) + µ1p̄)fp̄ +
1

2
σ2

1 p̄
2fp̄p̄ + µ2ufu +

1

2
σ2

2u
2fuu+

a

4p̄
f 2 + (

1

2
ab − κ − α)f +

1

4
ab2p̄ − u = 0,

with the interior relative premium given by

ki =
1

2

(

b −
f(p̄, u, t)

p̄

)

.

The function f is not linear in p̄ or u because of the quadratic term in f so it appears
as though we must solve this equation numerically. Consequently, rather than present
a premium strategy as a function of three independent variables (t, p̄ and u), we have
chosen in the main body of the paper to model the breakeven premium directly, which
yields a strategy which is simpler to interpret. However, the mean claim size rate model
does have the merit of explicitly accounting for the risk in holding an exposure qt, and
therefore may be a suitable model for studying the optimisation problem when there
are control and state constraints.

If we drop (52) and explicitly relate the market average premium p̄t to the mean
claim size rate ut then the model only contains a single factor W2t. In this case analytical
solutions similar to (17) can be found.
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Tables and Figures

Time horizon T 2 yr
Depreciation of wealth α 0.05 p.a.
Discount factor β 0.05 p.a.
Demand parameterisation a 1.5 p.a.
Demand parameterisation b 1
Length of policy τ = κ−1 1 yr
Market average premium growth µ 0.1 p.a.
Market average premium volatility σ1 0.1 p.a.
Loss ratio mean reversion ρ 0.1 p.a.
Loss ratio volatility σ2 0.1 p.a.

Table 1: Sample data set.
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(b + γ − f(γ, t))

Figure 1: Behaviour of the function M given in (26) as a function of the relative premium
k and the loss-ratio γ at a fixed time t. For k > b the value of M is zero corresponding
to a withdrawal from the insurance market.
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Figure 2: Parameteric conditions for a positive initial premium if f0 is given by the first
expression in (17), which requires φ > −ab. In the figure we show the contour F = 0
where F is given by (34) as a function of φ and ab. To the left of the contour the
parameters yield a positive value of f0(0; 0). The cross represents the parameters given
in Table 1.
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Figure 3: Optimal dynamic premium strategy for constant loss ratio γ = 0 as a function
of the time to termination s using the parameters in Table 1. The expression for f0 is
given by the first alternative in (33) and the approximate relative strategy is given by
(23).
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Figure 4: Optimal dynamic premium which maximises the expected terminal wealth
using the parameters given in Table 1. These parameters lead to a boundary condition
with f0 given by the first expression in (33). Graph (a) shows the evolution of the
function f(s, γ) and graph (b) shows the optimal relative premium k∗(s, γ).
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Figure 5: Sensitivity of the optimal initial relative premium k∗(γ, 1) to (a) the loss ratio
mean reversion ρ, (b) the loss ratio volatility σ2 (∆s = 10−5), (c) the demand parameter
a, (d) the demand parameter b, and (e) the parameter φ. The objective is to maximise
the expected terminal wealth and the remaining data is taken from Table 1.
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Figure 8: Optimal premium strategy when the insurer maximises its expected total
utility of wealth. The utility function is a quadratic function of the wealth w (48)
and represents the second order expansion of an exponential utility function when risk
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