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Pricing general insurance with constraints

Paul Emms
Faculty of Actuarial Science and Statistics

Cass Business School
City University, London

March 28, 2006

Abstract

Deterministic control theory is used to find the optimal premium strategy for

an insurer in order to maximise a given objective. The optimal strategy can be

loss-leading depending on the model parameters, which may result in negative

premium values. In such circumstances, it is optimal to capture as much of the

market as possible before making a profit towards the end of the time horizon.

In reality, the amount by which an insurer can lower premiums is constrained by

borrowing restrictions and the risk inherent in building up a large exposure. Con-

sequently, the effect of constraining the pricing problem is analysed with two forms

of constraint: a bounded premium and a solvency requirement. If a lower bound

is placed on the premium then an analytical solution can be found, which is not

necessarily a smooth function of time. The optimal premium strategy is described

in qualitative terms, without recourse to specifying particular parameter values,

by considering the value of the terminal optimal premium. Solvency constraints

lead to an optimisation problem which is coupled to the state equations and so

there is no analytical solution. Numerical results are presented for a subset of

the parameter space using control parameterisation, which turns the optimisation

problem into a nonlinear programming problem.

1 Introduction

Taylor (1986) found the premium strategy for an insurer in a competitive market which
maximised its terminal wealth. He found that, dependent on the model parameters, the
optimal strategy could be loss-leading. Since this is not a desirable strategy for many
insurers, Taylor modified the demand function of the model specifically to prohibit this
phenomenon. Although there are many possible forms for the demand function in the
literature (Lilien & Kotler 1983) this leads to a somewhat arbitrary parameterisation.
It is also unsatisfactory in that the demand for insurance based on relative price should
not depend on the preferences of the insurer. When an insurer has a management policy
not to loss-lead, it is constraining the set of feasible premium strategies.
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If one allows loss-leading strategies, then Emms (2006) found optimal strategies
that lead to negative premiums for certain parameter sets. This is the ultimate loss-
leader and reflects the idea that the optimal strategy is to generate as much demand as
possible initially in order to subsequently raise prices to generate a large profit. In this
work, we study the optimisation problem of insurance pricing with constraints, which
are introduced to ensure positive premiums and satisfy company policy. Taylor (1986)
used a discrete insurance model which yielded a recursive expression for the pricing
strategy. Emms & Haberman (2005) formulated an accrued premium model, which
although tractable did not yield an analytical expression for the optimal control. We
use the model introduced in Emms (2006) because that model is easier to analyse with
contraints.

The model in the body of Emms (2006) used the ratio of the breakeven premium
to the market average premium to model claims and was unconstrained. Thus, the
outstanding claims made by policyholders were not modelled directly. If we wish to
constrain the model then it is more appropriate to consider a model for which one can
explicitly calculate the liabilities of the insurer. Therefore, we adopt the model described
in the Appendix of Emms (2006), which uses a mean claim size rate to model claims. In
this model the objective of the insurer is to maximise its net wealth, that is the wealth
accumulated by selling insurance and settling claims including those claims, arising from
in-force policies, that have yet to be settled. The primary effect of this model formulation
is to change the boundary conditions at the termination of the planning horizon.

In Section 2, we describe the model. Without constraints the optimal premium
strategy is stochastic, and can be determined by solving the Bellman equation for the
value function in a similar manner to Emms (2006). However, this is a difficult problem
if there are constraints since the value function must be calculated in a state space of at
least three dimensions and it is not smooth. Consequently, we consider a deterministic
relative premium strategy. This reduces the problem to a deterministic optimal control
problem if one considers the mean of the state variables. In the accrued premium model
of Emms and Haberman (2005) it was found that the deterministic control problem
yielded the optimal control for the stochastic problem if the market average premium
was lognormally distributed and so the problem is relevant.

In Section 3, we find an analytical solution for the optimal relative premium strategy
in the case that the demand function is linear in the relative premium, and the control
is bounded from below. Even though an analytical solution exists a variety of possible
optimal controls are possible depending on the specified parameter set. We classify the
types of solution according to the equilibrium point of the control and the bounds on the
premium. This analytical solution gives a good qualitative indication of the strategy,
which the insurer should adopt for the more general problem. It also provides a good
check on the numerical results.

Control parameterisation is used in Section 4 to calculate numerically the optimal
relative premium strategy. For simplicity, the control is parameterised as a step function
and this reduces the optimal control problem to a nonlinear programming problem. Two
solvency constraints are considered in Section 5 and the optimal control is compared to
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the analytical solution. The numerical method is used to explore the sensitivity of the
optimal control to the model parameters and variations in the objective of the insurer.
Conclusions are contained in Section 6.

2 Model

Let us suppose the insurer sets a premium (per unit exposure) of pt for insurance cover
of fixed duration τ , whilst the market average premium (per unit exposure) is p̄t. Define
the relative (to market) premium as

kt =
pt

p̄t
.

Further, suppose both the insurer and the market receive claims on their policies with
mean claim size rate ut (per unit exposure). For simplicity we suppose the mean claim
size rate ut is lognormally distributed with constant drift µ and volatility σ:

dut = ut(µ dt+ σ dWt), (1)

where Wt is a standard Brownian motion.
If the rest of the insurance market uses an expected value principle (Rolski et al.

1999) to price policies then the market average premium is

p̄t = (1 + θ)πt, (2)

where the breakeven premium πt (per unit exposure) is related to the mean claim size
rate ut by

πt = E

[∫ t+τ

t

us ds|Ft

]

. (3)

Here θ is the market loading and Ft is the filtration derived from the Brownian motion
Wt. Evaluating the conditional expectation gives the market loss rate as

γ :=
ut

p̄t
=

µ

(1 + θ)(eµτ − 1)
> 0, (4)

which has dimension per unit time. If there is no drift in the claim size rate, µ = 0,
then this loss rate is just 1/(τ(1 + θ)).

The remaining components of the general insurance model are similar to Emms
(2006) and consist of stochastic differential equations for the insurer’s exposure qt and
wealth process wt:

dqt = qtG(kt, t) dt− qt−τG(kt−τ , t− τ) dt, (5)

dwt = −αwt dt+ qt(G(kt)pt − ut) dt. (6)

In (5), the rate of increase in exposure caused by new business and renewals is qtG(kt, t)
where G(kt, t) is the demand for insurance of relative price kt at time t. The rate

3



of decrease in exposure at time t is modelled as qt−τG(kt−τ , t − τ) since it is those
policyholders gained at time t − τ who make the decision to renew their insurance at
time t. The assumption we make here is that every policy expires after τ years, and
renewals are just treated as new policies. This means that the loss of exposure at time
t does not depend on those policyholders who initiated policies at t− 2τ , t− 3τ . . . etc.
We parameterise the delay in the exposure equation by setting the loss exposure due to
non-renewals as

qt−τG(kt−τ , t− τ) ≈ −κqt, (7)

where κ = τ−1, so that the exposure decays exponentially in τ years if no more insurance
is sold. This is the parameterisation adopted in Emms & Haberman (2005) and turns
the stochastic differential delay equations into straightforward SDEs. In the second
equation (6), α is the rate of loss of wealth from dividend payments to shareholders in
the insurance company.

The demand function G(k, t) is a non-negative function of the relative premium and
time. A linear demand function takes the form

G(k) = a(b− k)+, (8)

where a > κ > 0 so that there are positive relative premiums which generate exposure
and we ignore any explicit time dependence. In addition, a has dimension per unit time
and b ≥ 1 is dimensionless and chosen so that there is demand for insurance set below
the market price. This is the simplest positive function which models the change in
demand with relative premium.

For this model the wealth process wt does not account for the liabilities of the insurer.
If the insurer were to suspend the sale of insurance at time t then according to the state
equation (5) and using (7) we have for s > t

qs = qte
−κ(s−t).

Therefore, though the insurer has no income, the expected loss in wealth due to the
outstanding liabilities is

E

[∫ ∞

t

qsus ds|Ft

]

=
qtut
κ− µ

,

where κ > µ in order that the expectation is finite.
The optimal relative premium can be determined by specifying an objective in terms

of the state variables, and then finding the relative premium which maximises this
objective. The stochastic optimisation problem can then be solved by forming a value
function and then integrating the corresponding HJB equation (Fleming & Rishel 1975).
However, if the optimisation problem has constraints on the control and/or the state
variables, then the control is unlikely to be smooth. Rather than try and find weak
solutions of the HJB equation (Fleming & Soner 1993), we restrict the form of feasible
control, which yields a deterministic optimisation problem similar to that in Emms &
Haberman (2005).

4



2.1 Deterministic relative premium

Suppose the insurer adopts the deterministic open loop strategy

kt = k(t). (9)

Although the relative premium is deterministic the insurer’s premium is stochastic be-
cause the market average premium is a random process. Write

mu(t) = E[ut|F0], etc.

We apply this conditional expectation to the state equations (5), (6) leading to

dq = q(G(k) − κ) dt, (10)

dmw = −αmw dt+ q(G(k(t))k(t)mp̄ −mu) dt. (11)

The exposure q is a deterministic state variable, whereas mu(t) = γmp̄(t) is a given
function of time. For the lognormal process in (1)

mu(t) = u0 exp(µt).

The optimisation problem is now deterministic and can be written in canonical form.
Define the state vector by

x =

(

q
mw

)

,

so that the state equation is
ẋ = f(x, t), (12)

where f = (q(G(k) − κ),−αmw + q(G(k)kmp̄ −mu))
T . The objective function can be

written generally as

J0(x, T ) = φ0(x(T ), T ) +

∫ T

0

L0(x(t), t) dt. (13)

We want to find k(t) to maximise the value of the objective J0 subject to a number of
constraints. For example, if the insurer wishes to maximise its expected terminal net
wealth then L0 = 0 and

φ0(x(T ), T ) = x2(T ) −
x1(T )mu(T )

κ− µ
. (14)

To maximise the total utility of net wealth with utility function U , set the salvage
function φ0 = 0 and

L0(x(t), t) = U

(

x2(t) −
x1(t)mu(t)

κ− µ

)

. (15)

If the constraints are a function of the control, k, then there is an analytical solution
for the deterministic optimisation problem.
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3 Analytical solution

Let us suppose that the premium is bounded from below so that k(t) ≥ k0 where k0 is a
constant. We must have 0 < k0 < b for a positive premium that generates demand for
insurance. This form of constraint can be used to prevent loss-leading premiums. The
breakeven premium is according to (3)

πt =

(

eµτ − 1

µ

)

ut,

and the market average premium p̄t = (1 + θ)πt. Consequently, the condition for no
loss-leading (pt > πt) is

k ≥
1

1 + θ
= k0,

where θ is the insurance loading.
Suppose the insurer aims to maximise its expected terminal net wealth so that the

objective is given by (14) and we adopt the linear demand function (8). The Hamiltonian
is defined by

H(x, k,λ, t) = λ1x1(G(k) − κ) + λ2(−αx2 + x1(G(k)kmp̄ −mu)), (16)

where λ = (λ1, λ2)
T is the adjoint vector. The Hamiltonian is linear in the state vari-

ables which means that the necessary conditions for an optimal control (The Maximum
Principle) are also sufficient (Sethi & Thompson 2000). Pontryagin’s maximum principle
requires that the optimal control k∗ maximises the Hamiltonian:

H(x∗(t), k∗(t),λ(t), t) = max
k≥k0

H(x∗(t), k,λ(t), t), (17)

for t ∈ [0, T ]. If this maximum is given by the first order condition then we say the
control is interior and is given by

ki :=
1

2

(

b−
λ1

mp̄λ2

)

. (18)

Notice that the Hamiltonian is quadratic in the control k when k < b, and that the
coefficient of the k2 term is negative if λ2 > 0 as is shown shortly. Thus, the first order
condition does yield the maximum of the Hamiltonian if k0 < ki < b. If ki ≥ b then
G(ki) = 0 and the Hamiltonian H is independent of k. Therefore the maximum of H
is undefined because no insurance is sold. For continuity, we set the optimal relative
premium to be k∗ = b in the case that ki ≥ b. If ki ≤ k0 then the constraint gives the
optimal control. Consequently, the optimal control is given by

k∗(t) = max{min{ki(t), b}, k0}.

The adjoint equations are

dλ1

dt
= −Hx1

= −λ1(G(k) − κ) − λ2(kG(k)mp̄ −mu), (19)

dλ2

dt
= −Hx2

= αλ2, (20)
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with transversality conditions

λ1(T ) = J0x1
= −

mu(T )

κ− µ
,

λ2(T ) = J0x2
= 1.

Equation (20) can be integrated immediately to give

λ2 = eα(t−T ) > 0.

Both adjoint variables and the interior control are independent of the current state,
which means that the problem uncouples and we need only integrate backwards from
t = T in order to find the optimal control.

The equation for λ1 takes on three different forms depending on the value of the
control:

dλ1

dt
=











−λ1(a(b− k0) − κ) − eα(t−T )(ak0(b− k0)mp̄ −mu) if k∗ = k0,

−
a

4mp̄eα(t−T )
λ2

1 + (κ− 1
2
ab)λ1 + eα(t−T )mp̄(γ − 1

4
ab2) if k0 < k∗ = ki < b,

mue
α(t−T ) + κλ1 if k∗ = b.

We write ω = λ1e
α(T−t)/mp̄ so that the interior relative premium is just

ki = 1
2
(b− ω), (21)

and the adjoint equation becomes

dω

dt
=







ω(κ− α− µ− a(b− k0)) − ak0(b− k0) + γ if k∗ = k0,
−Aω2 −Bω − C if k0 < k∗ < b,
ω(κ− µ− α) + γ if k∗ = b,

(22)

with boundary condition

ω(T ) = −
γ

κ− µ
, (23)

and where we have defined

A = 1
4
a, B = 1

2
ab+ α+ µ− κ, C = 1

4
ab2 − γ,

and used the fact that the mean claim size rate drifts at constant rate µ so that

dmp̄ = µmp̄ dt.

The first and third cases of (22) are easily integrated to give

ω1(t) = K1e
(κ−α−µ−a(b−k0))t +

γ − ak0(b− k0)

a(b− k0) + α+ µ− κ
, (24)

ω3(t) = K3e
(κ−µ−α)t +

γ

µ+ α− κ
. (25)
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The second equation can also be integrated explicitly and the form of the solution
depends on the discriminant ∆ = B2 − 4AC of the quadratic on the RHS of (22). It is
convenient to introduce the notation

D2
± = ±∆ = ±(ab(α+ µ− κ) + (α+ µ− κ)2 + aγ).

The explicit solution can then be written

ω2(t) =































tan(1
2
(K2 − t)D−))

2A
if ∆ < 0,

B −D+ − (D+ +B)e(K2−t)D+

2A(e(K2−t)D+ − 1)
if ∆ > 0,

1

A

(

1

K2 − t
− 1

2
B

)

if ∆ = 0.

(26)

Notice that the discriminant ∆ is independent of the time horizon T , so that as we vary
this parameter we do not change the qualitative form of the optimal control.

We can use these expressions to piece together the optimal control. At termination

ki(T ) =
1

2

(

b+
γ

κ− µ

)

.

Depending on the values of b, γ, κ, and µ the optimal control at termination is either
k0, k

i(T ) or b. We consider each of these cases in turn.

3.1 Case k0 < k∗(T ) < b

If the optimal control is interior at termination then we can use the boundary condition
(23) to calculate

K2 =























































T −
2

D−

tan−1

(

2γA

D−(κ− µ)
−

B

D−

)

if ∆ < 0,

T +
1

D+

log









B −D+ −
2γA

κ− µ

B +D+ −
2γA

κ− µ









if ∆ > 0,

T +
1

1
2
B −

γA

κ− µ

if ∆ = 0.

(27)

Here, we allow for a complex value of K2 if ∆ > 0, which then leads to a real value of
ω2 when substituted into (26) since we require eK2D+ .

We classify the control as Type 1 or 2 depending on the form that the interior control
takes from (26) and its behaviour as t→ −∞. The two principal cases are given by the
first two forms of (26) and they are illustrated in Figure 1. If ∆ < 0 then as t → −∞,
ω2 → ∞ and ki → −∞. We call this a Type 1 control if the optimal control exists. There
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is no optimal control if ω2 = ∞ for t ∈ [0, T ]. If ∆ > 0 then ω2 → (−B −D+)/2A; the
stable equilibrium point. We call this a Type 2 control. Figure 2 shows the qualitative
form of the Type 1 and Type 2 controls.

If the interior control does not hit the boundaries ki = k0 or ki = b then the
optimal state trajectory x∗ can be calculated directly from the state equations for certain
cases. However, the expressions rapidly become unwieldy. For example, if ∆ > 0 then
substituting (27) into (26) yields

ω2(t) =
B −D+ − (D+ +B)ρe(T−t)D+

2A (ρe(T−t)D+ − 1)
,

where we have written

ρ =

B −D+ −
2γA

κ− µ

B +D+ −
2γA

κ− µ

.

The first state equation can be rewritten as

d log x∗1
dt

= 1
2
a(b+ ω2(t)) − κ,

and substituting the expression for ω2(t) yields

x∗1(t) = x∗1(0)

(

ρeD+(T−t) − 1

ρeD+T − 1

)2

exp [(D+ − α− µ) t] (28)

after some simplification.
A Type 1 control is a wealth generating strategy and can be loss-leading or lead

to negative premiums if the optimisation problem is unconstrained. By setting a low
initial premium the insurer builds up exposure, and as the premium is increased over the
planning horizon, wealth is generated from the existing customer base. A Type 2 control
is often associated with the insurer withdrawing from the market. This is the optimal
way to exploit the insurer’s existing customers in order to maximise its objective.

If the interior control hits the upper control boundary at k = b then we call the
control a Type 3 control, while if the interior control hits the lower boundary at k = k0

then we classify the control as Type 4. Once the control hits a boundary then the
optimal control is governed by (24) or (25). Therefore, it seems likely that the control
can enter and then leave the region k0 ≤ k ≤ b. We shall ignore these possibilities in our
classification of the controls. Typical Type 3 and Type 4 controls are drawn in Figure 2.
It is clear that the control even for this simple model can be non-smooth and have a
complex structure. Rather than give an exhaustive description of every possibility, we
highlight the major cases and confirm the structure with numerical solutions.

3.2 Case k∗(T ) = k0

The constraint gives the optimal control at termination if

ki(T ) =
1

2

(

b+
γ

κ− µ

)

≤ k0,
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Since κ > µ and γ > 0, this forces k0 ≥ 1
2
b. We can use the termination condition to

calculate K1 from (23) and (24):

K1 =

(

ak0(b− k0) − γ

a(b− k0) + α+ µ− κ
−

γ

κ− µ

)

e(a(b−k0)+α+µ−κ)T .

Substituting into (24) and using (21) gives the interior premium as

ki(t) =
1

2

(

b+

(

γ

κ− µ
+

γ − ak0(b− k0)

a(b− k0) + α+ µ− κ

)

e(κ−α−µ−a(b−k0))(t−T )+

ak0(b− k0) − γ

a(b− k0) + α+ µ− κ

)

.

The optimal control remains k0 as long as ki(t) ≤ k0 and that depends on the behaviour
of the exponential as t is decreased from the termination time T . We can rewrite the
second term in the above as

a(b− k0)(γ − k0(κ− µ)) + αγ

(κ− µ)ψ
eψ(T−t), (29)

where
ψ = a(b− k0) + α+ µ− κ.

If ψ 6= 0 then eψ(T−t)/ψ ≥ 1/ψ irrespective of the sign of ψ. Consequently the
interior control varies according to the sign of the numerator in (29). If a(b − k0)(γ −
k0(κ− µ)) + αγ < 0 then

ki(t) ≤ k0,

for t ∈ [0, T ] so the optimal control is degenerate and is the constrained premium over
the entire time horizon: k∗(t) ≡ k0. If a(b−k0)(γ−k0(κ−µ))+αγ > 0 then the interior
relative premium can increase as t decreases from T and may rise above the constraint
in [0, T ]. We call this a Type 5 control as illustrated in Figure 2. If ψ = 0 then the
behaviour of the optimal control is similar.

3.3 Case k∗(T ) = b

In this case it is optimal not to sell insurance at termination:

ki(T ) =
1

2

(

b+
γ

κ− µ

)

=
1

2

(

b+
µ

(1 + θ)(eµτ − 1)(κ− µ)

)

≥ b,

using (4). If we suppose µτ is small and expand the exponential we require

κ

κ− µ
≥

κ

(1 + θ)(κ− µ)
≥ b ≥ 1.

Consequently, this case only applies if these is a positive drift in the claims rate over
the course of the planning horizon.
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Assuming the parameters do lead to k∗(T ) = b then the interior premium is given
by

ki(t) =
1

2

(

b−
γ

φ
+
αγeφ(T−t)

φ(κ− µ)

)

,

where we have set
φ = α+ µ− κ.

If φ = 0 then dω/dt = γ from (22) so ω is always increasing with t, which means that
ki is always decreasing towards its terminal value. Therefore

ki(t) = k∗(T ) = b,

for t ∈ [0, T ]. Consequently it is optimal for the insurer to withdraw from the insurance
market. If φ 6= 0 then

eφ(T−t)

φ
≥

1

φ
.

Therefore

ki(t) ≥
1

2

(

b−
γ

φ
+

αγ

φ(κ− µ)

)

= k∗(T ) = b,

since κ > µ. So again, it is optimal for the insurer to withdraw from the insurance
market.

3.4 Alternative objective functions

The preceding analytical solution applies to the case that the insurer maximises its ex-
pected net terminal wealth given by (14). If the insurer wishes to maximise its expected
utility of net wealth using a given utility function U then φ0 = U(wnet(T )) where the
net wealth is

wnet(t) = x2(t) −
x1(t)mu(t)

κ− µ
.

The form of the interior control (18) and the adjoint equations (19),(20) is identical
for this problem, whereas the transversality conditions become

λ1(T ) = J0x1
= −U ′(wnet(T ))

mu(T )

κ− µ
,

λ2(T ) = J0x2
= U ′(wnet(T )).

If we rescale λ1 and λ2 by U ′(wnet(T )) 6= 0 then the adjoint equations are unchanged
since they are homogeneous and linear in the adjoint variables. Moreover, the interior
control (18) is also unchanged since it is a function of λ1/λ2. Consequently, the optimal
control k∗ is independent of the utility function irrespective of the constraints, providing
that U ′(wnet(T )) 6= 0. If the insurer has a power utility function of the first kind
(Gerber & Pafumi 1998) and the net wealth is greater than the level of saturation then
U ′(wnet(T )) = 0 and the utility function does affect the optimal strategy, which may
not be unique.
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Suppose the insurer wishes to maximise its total expected utility of net wealth given
in (15). For this case, the Hamiltonian is modified by incorporating the utility function:

H(x, k,λ, t) = U(wnet) + λ1x1(G(k) − κ) + λ2(−αx2 + x1(G(k)kmp̄ −mu)),

and the first order condition for a maximum is given by (18). The adjoint equations are

dλ1

dt
= −Hx1

=
U ′(wnet)mu(t)

κ− µ
− λ1(G(k) − κ) − λ2(kG(k)mp̄ −mu), (30)

dλ2

dt
= −Hx2

= −U ′(wnet) + αλ2, (31)

and the transversality conditions are λ1(T ) = λ2(T ) = 0.
Consider the case that the utility function is linear in the net wealth so that U ′(wnet) =

1. The adjoint equation (30) is not homogeneous in the adjoint variable and cannot be
integrated analytically except for special cases (see Emms (2006) for a similar problem).
Consequently, the optimal control cannot be determined analytically and differs from
that in Section 3. We expect a more conservative premium strategy with diminished
loss-leading because the wealth over the entire time horizon affects the objective includ-
ing any initial loss-leading. Notice that we cannot rescale the adjoint variables λ1 and λ2

and retrieve the adjoint equations for the net wealth problem because U ′(wnet) depends
on the current state.

4 Numerical solution

Here we outline the numerical technique of control parameterisation as applied to this
problem. Full details can be found in Teo, Goh & Wong (1991). For simplicity we split
the time domain [0, T ] up into n equal intervals of size ∆t. Let us denote each interval
by Ii = [i∆t, (i + 1)∆t] for i = 0, 1, . . . , n − 1. The control k is approximated by the
step function

k(t) =
n−1
∑

i=0

ciχIi ,

where the n constants ci are the unknowns over which we wish to maximise the objective
J0 given by (13).

The objective can be approximated using this step function so that the objective is
approximately

J0(c) = φ0(x(T |c)) +

∫ T

0

L̃0(t,x(t|c), c) dt, (32)

where the notation x(t, c) indicates a forward integration of the state equations (12) us-
ing the step function approximation as the control and L̃0 is the approximate functional.
Control constraints can be naturally expressed in terms of the vector c. Consequently
(32) is a nonlinear optimisation problem and the control constraints are either equality
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or inequality constraints on the vector of unknowns. When constraints involve the state
variables the problem is more complicated.

Suppose there are ne equality constraints involving the state variables and nin in-
equality constraints. These constraints can be written in canonical form in a similar
manner to the objective function. For the equality constraints

Ji(c) = φi(x(T |c)) +

∫ T

0

L̃i(t,x(t|c), c) dt = 0,

for i = 1, . . . , ne and for the inequality constraints

Ji(c) = φi(x(T |c)) +

∫ T

0

L̃i(t,x(t|c), c) dt ≥ 0,

for i = ne+1, . . . , ne+nin+1. The pure state constraints considered here can be written
in a particularly economical form using a constraint transcription. Suppose the pure
state constraint is

h(x, t) ≥ 0,

then set φ1 = 0 and
L1 min(h, 0) = 0.

This converts the n inequality constraints applied at each grid point to one equality
constraint. However, the transcription can lead to numerical oscillations. These can be
removed by smoothing the jump in the gradient of the function min(h, 0) at h = 0.

We adopt the simplest numerical procedure to solve this optimisation problem with-
out loss of generality. Given a function for the control, the state equations are integrated
forwards in time using Euler’s Method. This allows the integral in Ji(c) to be calculated
using a simple step function integration. The objective is maximised using quadratic
programming and so derivatives of the objective and the constraints are also required.
Usually this requires the calculation of an adjoint variable corresponding to each un-
known.

We have adopted the nonlinear optimiser written by Spellucci (1998a), which uses
a sequential equality constrained quadratic programming method. Further details can
be found in Spelluci (1998c), (1998b). This routine also allows numerical differentiation
of the objective and constraints and so the calculation of the adjoint variables can be
avoided at the expense of extra computation. This technique is analogous to replacing
Newton’s method by a secant rule. Control parameterisation allows us to solve this
problem, and other similar premium pricing problems, as long as we specify the premium
strategy (9) and the state equations, objective and constraints are linear in the state
variables.

4.1 Validation of the numerical solution

First, we reproduce the analytical results we found in Section 3 and verify the con-
vergence of the control parameterisation as the number of steps n is increased. The
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advantage of the analytical solution is that it conveys the sensitivity of the optimal
control to the parameters in the model. Using a numerical method we must solve the
optimisation problem for many parameter sets in order to determine the sensitivity of
the model.

Suppose first that we allow the control to be unconstrained. We adopt the following
values as a base parameter set:

µ = 0, a = 3, b = 1.5, κ = 1, α = 0.05, θ = 0.1, T = 3. (33)

This data set is comparable to that used in Emms & Haberman (2005). Using these
figures yields the discriminant ∆ = −0.65 which corresponds to the first case in (26),
whereas if we reset b = 1 then we obtain ∆ = 0.78 corresponding to the second case.
Figures 3(a) and (b) show the calculated step function which maximises the expected
terminal net wealth for these two parameter sets. The analytical expressions from (26)
are also superimposed on the graphs. The number of steps is quadrupled to n = 80
in the second set of graphs, which confirms that the numerical solution is converging
towards the analytical result. The evolution of the state equations is also shown where
the initial conditions are

x1(0) = x2(0) = 1.

It is clear that graph (a) shows a Type 1 control which generates wealth up until near
the end of the time horizon where the premium is well above market average. Graph
(b) shows a Type 2 control which loses wealth and leads to market withdrawal. Notice
the rapid decay in the insurer’s exposure in the second graph in (b).

In Figure 4 we show the optimal premium strategy for a parameter set which leads to
a singularity in the analytical expression (26) over [0, T ]. If the problem is unconstrained
then there is no optimal premium strategy because unbounded wealth can be generated.
If we attempt to obtain a numerical solution the nonlinear optimiser fails to converge.

Suppose we introduce the control constraint which prevents negative premiums

k ≥ k0 ≥ 0. (34)

Consider the parameter set which leads to Figure 4 if the control is unconstrained. If
we now impose the constraint with k0 = 0 an optimal numerical premium strategy
does exist which is shown by the thin line and is a Type 4 control. It is clear that
the constrained control is dependent on the unconstrained problem and so we expect
parameteric dependences to be similar. In Figure 4 the optimal control is tight (i.e.
it is given by the constraint) up until approximately the singularity of the analytical
expression (26). Considerable wealth is generated by this strategy since we allow the
insurer to give insurance away for nothing in order to build up a customer base.

Figure 5 shows a parameter set which leads to a Type 5 control when k0 = 0.96. Here
it is optimal to leave the insurance market and that involves gradually decreasing the
insurer’s premium. Towards the end of the planning horizon the relative premium hits
the imposed lower bound on the control. This example demonstrates that the optimal
control can be non-smooth even if the insurer leaves the insurance market: it is not
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just loss-leading strategies that lead to non-smooth controls. We now have confidence
that the numerical optimiser can calculate the optimal control for more general demand
functions, objectives and constraints.

5 Solvency constraints

A solvency constraint is expressed in terms of the current wealth of the insurer so that
this leads to a state constraint. Analytical results are not available in general because
the adjoint equations do not uncouple from the state equations. One is required to
integrate the state equations forward in time at the same time as integrating the adjoint
equations backwards from termination T in order to check that the constraint is satisfied
at time t. However, if the constraint is linear and homogeneous in the state variables
then the control can be determined when the constraint is tight. We develop the theory
for this special case first.

5.1 Maximum principle for a pure state constraint

Let us constrain the optimal control so that the insurer has sufficient funds to pay off
the expected outstanding claims should no more insurance be sold. We require

h(x, t) = x2 −
x1mu(t)

κ− µ
≥ 0. (35)

This is a first order constraint so we define

h1(x, t) =
dh

dt
= −αx2 + x1(kG(k)mp̄ −mu) −

x1

κ− µ
(m′

u +mu(G(k) − κ)),

using the state equations (12). Sethi & Thompson (2000) give the Maximum Principle
for constraints of this form.

Define the Lagrangian

L(x, k, λ, t) = H(x, k, λ, t) + ηh1(x, t),

where H is defined by (16) and η satisfies the complementary slackness conditions

η ≥ 0, ηh(x, t) = 0,
dη

dt
≤ 0.

The Hamiltonian maximising condition is that

H(x∗(t), k∗(t), λ(t), t) ≥ H(x∗(t), k, λ(t), t),

for all k satisfying

h1(x∗(t), k, t) ≥ 0 whenever h(x∗(t), t) = 0.
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The first order condition for a maximum of the Hamiltonian gives the interior relative
premium as before

ki =
1

2

(

b−
λ1

mp̄λ2

)

= 1
2
(b− Ω).

where we set

Ω =
λ1

mp̄λ2

.

The adjoint equations are

dλ1

dt
= −Lx1

= −λ1(G(k) − κ) − λ2(kG(k)mp̄ −mu) +
ηmu

κ− µ
,

dλ2

dt
= −Lx2

= αλ2 − η,

with transversality conditions

λ1(T−) = Jx1
(s∗(T ), T ) + ζhx1

(s∗(T ), T ) = −
mu(T )(1 + ζ)

κ− µ
,

λ2(T−) = Jx2
(s∗(T ), T ) + ζhx2

(s∗(T ), T ) = 1 + ζ,

where
ζ ≥ 0, ζh(x∗(T ), T ) = 0.

The second adjoint equation can be integrated immediately to give

λ2 =
η

α
+
(

1 + ζ −
η

α

)

eα(T−t).

Using the definition of Ω we can rewrite the remaining adjoint equation as

dΩ

dt
= Ω

(

η

λ2

− α− µ+ κ−G(k)

)

− kG(k) + γ +
ηγ

κ− µ
, (36)

which has terminal condition
Ω(T ) = −

γ

κ− µ
.

If η = 0, that is the constraint is not tight as Ω is integrated backwards from
t = T , then the optimal control follows the trajectory given by (26) providing the
demand function is given by (8). Unfortunately, the corresponding state trajectory is a
complicated analytical expression and the determination of those parameters which lead
to a constraint violation in [0, T ] is not particularly illuminating (see (28)). However, if
the constraint does become tight we know that

x2 =
x1mu(t)

κ− µ
,

and assuming the state trajectory is differentiable with respect to time we find

ẋ2 =
γmp̄(ẋ1 + µx1)

κ− µ
.
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Substituting the state equations (12) into this expression and simplifying then yields

G(k)

(

k −
γ

κ− µ

)

=
αγ

κ− µ
.

If the control is interior then G is linear in k and this expression yields a quadratic for
k. Therefore the control is constant and equal to

kc =
1

2

(

b+
γ

κ− µ

)

−
1

2

(

(

b+
γ

κ− µ

)2

−
4γ

κ− µ

(

b+
α

a

)

)1/2

. (37)

Notice that this argument applies irrespective of the form of the objective function.
The numerical solution of this constrained optimisation problem is shown Figure 6.

Here we have set the initial state as

x1(0) = 1, x2(0) =
mu(0)

κ− µ
.

so that the state constraint is satisfied at t = 0. It is clear that initially the constraint
is tight and the optimal control is the constant given by (37). The parameter set is
appropriate for a loss-leading Type 1 control: the unconstrained optimal control is
superimposed on the first graph in the figure.

We illustrate the sensitivity of the optimal control to the parameters which directly
affect the constraint in Figure 7. In the first graph we vary the drift in the mean claim
size rate µ. If the claims rate is expected to decrease over time then the optimal premium
is lowered because the constraint is less restrictive: the insurer expects fewer claims on
its current exposure and so needs to maintain less capital to pay off those claims. If
instead the claims rate is expected to increase the insurer must maintain sufficient wealth
to pay off these claims. The second graph in Figure 7 shows the variation of the control
with the length of policies. Longer policies (corresponding to smaller κ) lead to a longer
time over which the constraint is binding because the insurer must have sufficient wealth
to pay off the greater amount of claims over that period. Notice that kc is independent
of κ if the drift µ = 0 as has been assumed in the figure.

Figure 8 shows how the optimal strategy changes if we replace the objective of
maximising expected net terminal wealth by maximising expected total net wealth given
by (15). The first graph (a) uses a linear utility function U(wnet) = wnet. As predicted
this leads to a more conservative premium strategy if we compare the case a = 3 with
Figure 6. As a is increased the insurer can gain more exposure for fixed relative premium
and then the constraint again becomes tight in the interior of the planning region. The
second graph (b) uses an exponential utility function

U(wnet) =
1

c
(1 − exp(−cwnet)), (38)

with constant risk aversion c (Gerber & Pafumi 1998). It is clear that the utility parame-
terisation does change the optimal strategy. Loss-leading eventually generates increased
wealth for the insurer and as the demand parameter a is increased more loss-leading is
optimal. Greater wealth is not as desirable for the insurer using an exponential utility
function and so overall the optimal control is larger than for a linear utility function.
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5.2 Pure state constraint based on variation about the mean

The model has been developed with reference to just the mean claim size rate per unit
exposure, ut, experienced by the market and the insurer. There is no account of the
variation of claims about this mean rate and this is an important measure of the risk
which the insurer takes in selling insurance. Daykin et al. (1994) (Chapter 6) give
simple expressions for the capital at risk from selling insurance for a variety of claim
size distributions. They gave a general upper bound for the capital at risk as a function
of the premium income over one year, independent of the distribution of the claim size
distribution. In terms of our variables the constraint takes the form that the insurer’s
current wealth wt ≥ fB

1/2
t where the accrued premium is defined by

Bt =

∫ t

t−τ

G(k)psqs ds.

and f is a constant. EU directives have a similar solvency (margin) requirement with a
piecewise linear function replacing the parabola.

Again, this leads to a time delayed model, so we parameterise the delay as before.
If we introduce another state variable x3 = mB the state equations are

dx1 = x1(G(k) − κ) dt, (39)

dx2 = −αx2 dt+mp̄x1(G(k)k − γ) dt, (40)

dx3 = G(k)kmp̄x1 dt− κx3 dt. (41)

The objective is given in general by (13) and we take the constraint as

h(x, t) = x2 − fx
1/2
3 ≥ 0. (42)

In order that the constraint is satisfied initially we set the initial state as

x1(0) = 1, x2(0) = f, x3(0) = 1.

Note that we have used the mean of the constraint so that for particular values of the
processes wt and Bt the constraint may not hold. This does not seem unreasonable
since the constraint is actually only applied on a discrete basis and not continuously.

A numerical example is shown in Figure 9 when the objective is to maximise the
expected terminal net wealth. The constraint is binding (h = 0 in Figure 9(b)) up until
about t ∼ 0.3. However, when the constraint is binding the optimal relative premium
is no longer constant. The sensitivity of the optimal control to µ and f is shown in
Figure 10. Again, higher expected claim rates lead to a more conservative premium
strategy. If f is increased then the constraint is more stringent and it becomes optimal
to withdraw from the market. The computation for f = 3 requires smoothing of the
constraint transcription and it is not easy to demonstrate convergence of the control as
we increase the number of steps n. According to the numerical results the constraint
is binding for the entire planning horizon, which suggests that even though the insurer
is leaving the market, it has insufficient wealth to pay off its outstanding claims as the
state evolves.
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6 Conclusions

We have calculated the premium strategy which maximises the objective of the insurer
subject to a constraint on the control or constraints on the reserve that the insurer
must hold. Since the model is very simple an analytical solution can be found if the
relative premium is bounded. Depending on the parameter values of the model this can
lead to a non-smooth control. Specifically, a Type 1 control represents a loss-leading
strategy, and the greater the loss-leading, the more likely the insurer exceeds its lower
bound on the relative premium. Following Emms & Haberman (2005) it is easy to
show that the premium strategy kt = k(t) is the optimal relative premium if the mean
claim rate process is lognormal. For other distributions of the mean claim rate process
the feedback control depends on the current value of the state variables and so it is a
stochastic process. If there are no constraints then the theory in Fleming & Rischel
(1975) for stochastic optimisation problems can be employed.

When the insurer constrains the premium strategy the optimal control can be non-
smooth. This makes it much more difficult to obtain stochastic optimal premium strate-
gies from the HJB equation because we expect that equation to have non-smooth solu-
tions. Consequently in this paper we have restricted the feasible controls to be determin-
istic, which turns the problem into a deterministic optimisation problem even though
the actual premium charged is stochastic. The resulting optimisation problem has been
demonstrated to be readily solved using control parameterisation. This is a general
technique and allows the insurer to calculate optimal strategies for any reasonable ob-
jective or demand functions. It also permits the imposition of an arbitrary number of
constraints without substantially increasing the computational time.

Premium restrictions lead to control constraints, while solvency requirements lead to
state constraints. A control constraint can be used to prevent negative optimal premium
values. The numerical problems show that the state constraints limit the amount of loss-
leading that the insurer may experience with an optimal premium strategy. Further
studies are concentrated on relaxing some of the assumptions of the model. Specifically,
we have parameterised the delay in the exposure equation. If one forgoes this assumption
then the state equations become a system of stochastic differential delay equations.
By assuming a deterministic control the optimisation problem can again be solved by
control parameterisation (Teo, Goh & Wong 1991, Chapter 12). However, now we need
to specify the initial curves for the state variables in order to accommodate the delay in
the state.
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Figure 1: Qualitative form of the adjoint variable ω2 if k∗(T ) = ki(T ) and (a) ∆ < 0 or
(b) ∆ > 0. If the control is interior over t ∈ [0, T ] then the diagrams indicate whether
the optimal control is Type 1 or Type 2 depending on the model parameters.
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Figure 3: Convergence of the control parameterisation to the optimal analytical control
for (a) ∆ < 0, n = 20 and (b) ∆ > 0, n = 80. Graph (a) shows a Type 1 control
whereas graph (b) shows a Type 2 control. The parameter set for each graph is given
in (33) with for (a) b = 1.5 and for (b) b = 1.
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Figure 4: An example illustrating the case when the unconstrained problem has no
smooth solution. If there is no lower bound on the control then the nonlinear optimiser
fails to converge as there are strategies which yield unbounded wealth. Numerical results
are shown when the optimal control is bounded below by k0 = 0. Even with this
restriction considerable wealth is generated from this strategy. The parameter set (33)
is modified by setting θ = 0.05, T = 5.
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Figure 5: An example of a Type 5 control where is base parameter set is modified by
b = 1.0, T = 1, k0 = 0.96.
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Figure 6: The optimal control with the pure state constraint (35) shown by the dashed
line. The solid line shows the corresponding unconstrained optimal control given by
(18). The parameter set is given by (33).
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Figure 7: Sensitivity of the optimal control to the model parameters. We use the pure
state constraint (35) and vary (a) the growth in the claims rate µ and (b) the duration
of the policies κ−1.
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Figure 8: Optimal control with the pure state constraint (35) but with the objective to
maximise the total expected utility of wealth. Graph (a) shows the optimal control with
a linear utility function while (b) shows the control with an exponential utility function
(38) with c = 1. The parameter set is (33) but we vary the demand parameter a.
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Figure 9: Optimal control with the pure state constraint (42). The base parameter set
is modified augmented by κ = 0.75, f = 1.
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Figure 10: Sensitivity of the optimal control with the pure state constraint (42). The
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