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Abstract 

The goal of this work is to develop a new numerical framework to simulate supercritical, 

transcritical and subcritical injections at Diesel engine relevant conditions using a compressible 

density-based solver of the Navier-Stokes equations, along with the conservative formulation of 

the energy equation. This new algorithm allows one to perform practical CFD simulations using  

complex EoS at affordable CPU times, and smooths-out the previously observed spurious 

pressure oscillations associated with fully conservative schemes when used along with real-fluid 

EoS. For the first time, the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) 

equation of state (EoS) has been coupled with the Navier-Stokes equations, energy conservation 

equation and vapor liquid equilibrium (VLE) calculations in a numerical algorithm. This molecular 

based EoS is an alternative to cubic EoS, which show low accuracy when computing the 

thermodynamic properties of hydrocarbons at temperatures that are typical for today’s high-

pressure fuel injection systems. It only requires three empirically determined but well-known 

parameters (when the association term is neglected) to model the properties of a specific 

component without the need for extensive model calibration, as is typically the case when the 

NIST (REFPROP) library is utilised. Moreover, PC-SAFT can flexibly handle the thermodynamic 

properties of multi-component mixtures for which the NIST (REFPROP) library supports only 

limited component combinations. One-dimensional simulations (shock tube problems and 

advection test cases) were performed to validate the numerical framework against analytical 

/exact solutions. Nitrogen, n-dodecane and Diesel were used as working fluids. The properties 

of Diesel fuel have been modelled as: multicomponent surrogates comprising of four, five, eight 

and nine components divided into accuracy types, depending on how closely they match the 

composition of real Diesel; or as a pseudo-component obtained by applying a purely predictive 

method based on the PC-SAFT model. Published molecular dynamic simulations have been 

employed to demonstrate that the algorithm properly captures the multicomponent VLE 

interface at high-pressure conditions. Additionally, planar two-dimensional simulations of jets 

of nitrogen, n-dodecane, a four component Diesel surrogate and a Diesel pseudo-component 

are included to demonstrate the multidimensional, multispecies and multiphase capability of 

the developed numerical framework. 
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Present contribution 

The novelty of the thesis can be summarised in the following points: 

 

• Numerical novelty 

A new numerical framework has been developed to simulate supercritical, transcritical 

and subcritical injections at Diesel engine relevant conditions, using a compressible 

density-based solver of the Navier-Stokes equations along with the conservative 

formulation of the energy equation. The proposed numerical approach improves the 

overall computational time of codes employing complex EoS and overcomes the 

previously observed spurious pressure oscillations associated with the utilisation of 

conservative schemes along with real-fluid EoS. 

 

• Complex thermodynamics coupling with N-S 

The PC-SAFT model has been coupled with the Navier-Stokes equations, energy 

conservation equation and VLE calculations in the developed numerical framework. No 

SAFT variant has been previously implemented in a CFD code. This molecular-based EoS 

presents multiple advantages for simulations that require accurate thermodynamic 

calculations over a wide range of conditions (e.g., Diesel injections).  

Moreover, a purely predictive method that employs the PC-SAFT EoS for developing 

pseudo-components, which are defined to replicate the properties of complex 

hydrocarbon mixtures (e.g., diesel fuels), has been validated and completed to be used 

in CFD simulations. This methodology makes the simulation time independent of the 

number of compounds present in the fuel and thus, allowing the real composition of a 

specific fuel to be utilised in practical CFD simulations. 

 

• Cases simulated 

One-dimensional simulations (shock tube problems and advection test cases) were 

performed to validate the numerical framework against analytical/exact solutions. 

Additionally, planar two-dimensional simulations of supercritical, transcritical and 

subcritical injections were performed to demonstrate the multidimensional, 

multispecies and multiphase capability of the developed code. Nitrogen, n-dodecane 

and Diesel were used as working fluids. The properties of Diesel fuel were modelled as: 

multicomponent surrogates of four, five, eight and nine components divided into 
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accuracy types, depending on how closely they match the composition of real Diesel; or 

as a pseudo-component that replicates the properties of a specific multicomponent 

surrogate. To the best of the author’s knowledge, this is the first time that real Diesel 

composition is considered in CFD simulations using a molecular based model. Moreover, 

published molecular dynamic simulations have been employed to demonstrate that the 

numerical framework properly captures the multicomponent VLE interface of subcritical 

injections at high-pressure conditions. 

 

• Major findings 

The results obtained by the PC-SAFT EoS to model Diesel shows the highest degree of 

agreement with experimental values in comparison with the results obtained applying 

the method developed at NIST. All the multi-component Diesel surrogates tested show 

different properties to n-dodecane, a working fluid commonly used in CFD simulations 

to model Diesel fuel. Simulations of supercritical and transcritical Diesel injections 

where the fuel is modelled as a multicomponent surrogate can be performed at 

affordable CPU times by computing the pressure and sonic fluid velocity in the cell 

centres and performing a reconstruction of these variables at each cell face to solve the 

Riemann problem. This technique has been found to smooth-out the spurious pressure 

oscillations associated with conservative schemes when used along with real-fluid EoS. 

In subcritical injections, due to computational requirements of calculating the VLE state 

of multiple components, it is necessary to model the Diesel surrogates as single pseudo-

components to perform simulations at affordable CPU times. The pseudo-components 

developed correctly capture the evaporation process of the multicomponent Diesel 

surrogates in the VLE interface.   
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1. Introduction  

1.1 Background and Motivation  

Small soot particles or particulate matter (PM) inhaled in traffic and city centres [1] are 

related to adverse health effects like premature death, heart attacks, and strokes, as well as 

acute bronchitis and aggravated asthma among children. Moreover, the presence of soot in the 

atmosphere has been linked to regional as well as global climate change [2]. Passenger cars 

produce most of the emissions, but electrification can solve this issue. However, electric trucks 

cannot be directly used to replace the current fleet fueled practically by Diesel [3]. Road freight 

generates approximately 16% of the CO2 emissions worldwide [3] and its demand is expected to 

grow +160% in tonne-kilometre by 2050 [4]. The study performed by [3], which explored the 

technical limits of electrification  in the transportation sector using real data from the Swiss truck 

fleet, points out how its full electrification is particularly difficult to be carried out. Even when 

considerably improving the gravimetric energy density of the battery cells, three additional 

conditions must be met to have a high electrification potential: (1) a change in the maximum 

permissible weight; (2) to have access to a high-capacity grid for charging and (3) backing an 

intra-day energy infrastructure (such as swapping stations). Therefore, there is still a real need 

to improve our understanding of Diesel engines to continue reducing emissions until gradual 

replacement with electrification becomes effective in most sectors. The reseach presented in 

this document is part of the IPPAD project, which is focused on developing a systematic 

understanding of three emission reduction strategies: increasing pressure, use of additives and 

supercritical injection. In particular, this thesis explains how to couple the Perturbed-Chain 

Statistical Associating Fluid Theory (PC-SAFT) with the Navier-Stokes equations to simulate 

supercritical, transcritical and subcritical real-fluid mixing at high-pressure conditions with a 

special emphasis on Diesel injections.  

 

1.2 Real-fluid mixing at high-pressure conditions 

To correctly model the combustion in Diesel engines one needs to characterise the 

atomisation and mixing of sprays at high-pressure conditions. Even nowadays these processes 

are not completely understood. 

 According to the experiments performed by several authors [5]–[9], supercritical mixing 

exists at pressures near or slightly higher than the critical pressure of the liquid fuel. In [5], 

flashlight photography and high-speed cinematography were used to visualise cryogenic fluids 
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injected into several gases. It was observed that there was a notable difference between 

subcritical and supercritical injections. By increasing the ambient pressure, fluids reach a 

transcritical regime where surface tension does not play a role in the breakup and mixing 

pehomena. The behaviour is similar to viscous miscible fluids. The authors explained how the 

transition from subcritical to supercritical depends on the ambient composition and initial 

conditions and it is not determined by the critical pressure of the pure species. At low pressures, 

a LOX (Liquid Oxygen) jet showed a smooth interface, breaking up into non-spherical droplets. 

However, it presented stringy-like fluid structures that quickly dissolved at transcritical 

conditions. 

[6] investigated the injection of cryogenic liquids at subcritical and supercritical pressures, 

relevant to liquid rocket engines. Shadowgraphy and spontaneous Raman scattering were 

employed to measure turbulent length scales, growth rates, core lengths, fractal dimensions and 

jet breakup regimes. In [6], it is explained that single round jets of cryogenic nitrogen injected 

into room temperature gaseous nitrogen at subcritical conditions show conventional spray 

features. However, they present a gas-like appearance at supercritical conditions.  

[7] studied experimentally and analytically liquid jet injections into a quiescent gaseous 

environment from subcritical to supercritical conditions. At subcritical conditions, the process is 

controlled by the surrounding gas inertia and surface tension forces. It was observed material 

broke off from ligament formation and drops. At transcritical conditions, the formation of 

ligaments decreased with sporadic drop formation. At supercritical conditions, ligament 

formation was not detected demonstrating that surface tension does not play a role. 

 [8] investigated the behaviour of swirling supercritical hydrocarbon fuel (SCF) jets 

injected into nitrogen environments at temperatures and pressures that exceed the fuel critical 

values. The authors report that Gaussian mass concentration profiles and jet boundaries that 

scale with swirl number are similar to those of gas jets.  

[9] presented a summary of experimental achievements relevant to liquid rockets, paying 

special attention to the injection of nonreacting cryogenic liquids into a high-pressure 

environment which exceeds the critical pressure of at least one of the propellants. The author 

stated that as the ambient pressure gets close to the injectant critical pressure and surpasses it, 

the influence of the surface tension decreases leading to the suppression of drop/ligament 

formation and liquid breakup. Instead, the jet describes a gas-like jet behaviour. 

 [10], [11] derived a mathematical model combining real-fluid thermodynamics and Linear 

Gradient Theory to specify under what conditions a classical non-continuum “jump” exists 

between the phases, or a continuous gas-liquid interfacial diffusion layer. According to the 
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results, high-temperature interfaces present a significantly reduced surface tension and a wider 

interface when compared to low-temperature interfaces. There is a reduction in the mean free 

molecular path and a broadening of the interfaces, which places the interface in the continuum 

length scale regime. Then, surface tension forces create a discontinuous interface that leads to 

the formation of primary atomization and secondary breakup (classic spray) at low ambient 

temperatures, supercritical fuel pressures, and constant chamber density. Ligaments and drops 

are present in the spray. However, a diffusive mixture process takes place at Diesel engine high-

temperature conditions where there is a continuous phase transition from compressed liquid to 

supercritical mixture states. The lack of surface tension avoids the formation of drops and 

promotes a diffusion dominated mixing process. The jets evolve in the presence of large and 

continuous thermophysical gradients. The authors presented experimental images obtained at 

constant ambient density and at supercritical pressures with respect to the fuel where drop 

breakup processes appear at low ambient temperatures, but not at high ambient temperature 

conditions.  

 More recently, [12] investigated the atomization and mixing processes of sprays injected 

into progressively higher pressure and temperature ambient conditions. The Engine Combustion 

Network [13] Spray A single-hole injector was employed to inject n-dodecane into a combustion 

chamber that is optically accessible. Long-distance microscopy and diffused back-illumination 

were utilised to perform high-speed imaging to resolve ligament structures and droplets close 

to the nozzle. It was determined that the surface tension remains in effect at the gas–liquid 

interfaces in ambient conditions slightly above the critical point of the fuel. However, at higher 

pressure and temperature conditions the surface tension diminishes, as expected for 

supercritical fuel–air mixtures. Diesel engine operation conditions are in the diffused controlled 

mixing regime.  

However, [14] carried out systematic measurements using high-speed long-distance 

microscopy  for three single-component fuels (n-heptane, n-dodecane, n-hexadecane) injected 

into gas (89.71% N2, 6.52% CO2 and 3.77% H2O) at elevated temperatures (700–1200 K) and 

pressures (2–11 MPa). The research is focused on understanding the transition from classical 

evaporation to supercritical fluid mixing. By increasing the ambient pressure and temperature, 

it was observed that classical atomization and vaporization change to another process where 

the surface tension forces are weaker. But there is not an immediate transition to diffusive 

mixing. In the near-nozzle region, subcritical liquid structures showed surface tension. After 

some time, the fuel experienced a transition to a dense miscible fluid. For n-dodecane and n-

hexadecane, there was evidence of surface tension at all the conditions while n-heptane showed 
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supercritical fluid appearance from the nozzle outlet at the highest temperature and pressure 

conditions tested (1200 K, 10 MPa). 

  In [15] the evaporation of n-alkane fuels into nitrogen was investigated at different 

pressure and temperature conditions carrying out molecular dynamic simulations. The aim of 

this work was to understand how the transition from classical two-phase evaporation to one- 

phase diffusion-controlled mixing takes place. Two regimes are identified: (1) subcritical 

evaporation where a distinctive interface exists separating the liquid core and the ambient 

gases; and (2) supercritical evaporation where initially the liquid has a surface tension that 

decreases rapidly and vanishes. During the subcritical stage, the evaporation rate increases and 

reaches a maximum after which there is a transition to the supercritical stage. The results 

obtained have a high degree of agreement against the experimental results obtained by [14].  

Numerous simulations of Diesel sprays in the literature exist, which employ Lagrangian 

methods considering a sharp gas-liquid interface which evolve according to primary and 

secondary breakup models and evaporation. [16] performed LES (Large Eddy Simulations) of 

Diesel spray in a constant volume vessel and in an internal combustion engine. A Eulerian-

Lagrangian approach was employed including primary and secondary break-up, spray-induced 

turbulence (SIT) and the stochastic turbulence dispersion (STD) of parcels. 

 [17] simulated the Spray A benchmark case of the Engine Combustion Network. This is a 

n-dodecane spray into nitrogen at temperature and pressure conditions characteristic of Diesel 

engines. The jet was modelled using the transported probability density function (TPDF) method 

coupled with a time-dependent Reynolds-averaged k— ε turbulence model. A Lagrangian 

discrete phase model is utilised for the liquid spray.  

[18] carried out LES of the Spray A as well. The liquid spray was modelled using a 

traditional Lagrangian method. The gas-phase reaction was modelled using a 𝛿 function 

combustion model.  

[19] presented an implicit LES of the Spray A. A Lagrangian particle tracking approach was 

employed for the liquid phase. Mesh resolution effects were investigated as well as how the 

local and global flow characteristics are influenced by the droplet breakup model.  

[20] utilised a Lagrangian-Eulerian framework to study the Subgrid-scale (SGS) model 

performance and grid resolution effects on fuel spray simulations. However, all these 

configurations present some limitations to accurately capture dense flow regimes near the 

nozzle where the liquid fuels disintegrate into ligaments that then form droplets. Additionally, 

Lagrangian methods are sensitive to calibration parameters and, there is no quantitative 

experimental droplet size measurements at Diesel engine conditions [21].  
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In [22], [23], a Eulerian density-based methodology was used to model the primary 

atomisation of the injected liquid accounting for compressibility effects associated with the high-

pressure and injection velocity. 

 According to the work of [10]–[12], [24],  when ambient pressure surpasses the fuel 

critical pressure, interfacial diffusion layers appear due to the reduction of the mean free 

molecular, reduction of surface tension forces, and thickening of the gas-liquid interfaces. The 

interfaces enter the continuum length scale and disappear when the mixture temperature is 

higher than its critical temperature value. Due to these reasons, a single-phase dense-gas 

approach (using the Peng-Robinson (PR) EoS) was employed in these publications. The 

simulation presents large and continuous thermodynamics (totally different from classical 

assumptions). It should be noted that phase separation was not included. However, n-

dodecane/nitrogen mixtures are TYPE IV , which means that the critical temperature of the 

mixture is higher than the lower critical temperature of the components and lower than then 

the higher critical temperature of the compounds. On the other hand, the critical pressure is 

higher than the critical pressure of the components [25] . Considering that the pressures that 

can be found in the combustion chamber of Diesel engines are lower than the critical pressure 

of some nitrogen/fuel mixtures, the VLE state must be included in the simulation.  

[26] used a compressible Eulerian numerical model to perform LES of internal nozzle flow 

and downstream gas phase mixing in a single domain. The authors utilised a simplified approach 

for describing saturation lines in a pressure-volume diagram. The PR EoS was employed in these 

simulations.  

In [21], [27] a multi-species two-phase model was developed using LES for accounting the 

turbulent mixing under high pressures. They implemented a thermodynamic solver which can 

compute the properties of a homogenous mixture in supercritical or subcritical states. The LES 

including VLE thermodynamics of the so-called Spray A shows a high degree of agreement 

against the available experimental data. Although according to [14], [15] the Spray A ambient 

conditions (900K, 6MPa) fall in the classic evaporation regime, the authors justified the use of a 

diffuse interface due to the high Weber number and low Stokes number (small droplet 

diameters and low surface tension).  
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1.3 Supercritical and transcritical injections  

A single-species fluid or a mixture reaches a supercritical state when the pressure and 

temperature surpass its critical properties. In the critical region, repulsive interactions overcome 

the surface tension resulting in the existence of a single-phase that exhibits properties of both 

gases and liquids (e.g., gas-like diffusivity and liquid-like density). The injection of the Diesel in a 

compressed liquid state in the combustion chamber provokes the formation of droplets that are 

not completely evaporated and combust. By injecting the fuel in a supercritical state or with a 

temperature slightly lower than critical, the evaporation step can be avoided. The fuel-air mixing 

is improved as the diffusivity is much higher than that of molecules in a liquid phase, thus 

reducing the emissions of particulate matter and nitrogen oxides[28]–[30]. The reason why the 

fuel has to be injected at a high temperature is that Diesel/nitrogen mixtures are a TYPE IV 

mixture [25]. The critical temperature of the mixture is higher than the lower critical 

temperature of the components and lower than then the higher critical temperature of the 

compounds. Starting at the critical point of n-dodecane (considering n-dodecane as a Diesel 

surrogate), the critical pressure of a N2 + n-dodecane mixture grows by increasing the nitrogen 

concentration [31] and reaches higher pressures than the ones observed in Diesel engine 

combustion chambers, see Figure 1.1. Thus, to avoid the VLE state the fuel must be injected at 

a temperature higher than its critical value (supercritical) or slightly lower (transcritical) [32].   

To simulate such cases, commonly diffuse interface methods are employed [21], [33], 

[34]. Three main difficulties are associated with these numerical simulations: (i)  the treatment 

of large density gradients, (ii) the need to use a real-fluid EoS and (iii) the elimination of spurious 

pressure oscillations, typically occurring in simulations when fully conservative (FC) schemes are 

employed along with real-fluid EoS [35]. With regards to large density gradients, high order 

reconstruction methods can be used to describe sharp changes. In [36] the authors performed 

a two-dimensional large-eddy simulation (LES) of supercritical mixing and combustion 

employing a fourth-order flux-differencing scheme and a total-variation-diminishing (TVD) 

scheme in the spatial discretization. Similarly, in [37] a fourth-order central differencing scheme 

was applied together with a fourth-order scalar dissipation; this was found to stabilize the 

simulation of a cryogenic fluid injection and mixing under supercritical conditions. Moreover, in 

the work of [38] an eighth-order finite differencing scheme was employed to simulate 

homogeneous isotropic turbulence under supercritical pressure conditions. Furthermore, in [39] 

a density-based sensor was employed, which switches between a second-order ENO (Essentially 

non- oscillatory) and first-order scheme to suppress the oscillations.  
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Moving to the second issue, typically cubic EoS models like the PR [40] and Soave-Redlich-

Kwong (SRK) [41] are used in supercritical and transcritical simulations. For example, in [34], 

[42]–[44] the SRK EoS was employed to close the Navier-Stokes equations and compute the fluid 

properties under supercritical and transcritical conditions. Similarly, in [33], [35], [39], [45] the 

non-ideal fluid behavior was modelled by applying the PR EoS. Nevertheless, cubic models 

commonly present low accuracy for computing the thermodynamic properties of hydrocarbons 

at high density ranges and temperatures that are typical for today’s high pressure fuel injection 

systems [21].  

[21] pointed out the issues of employing cubic EoS like PR and SRK modelling hydrocarbons at 

temperatures found in injection system [32], [46], [47]. Due to the 8.6% error (when compared 

to NIST) in the density prediction of n-dodecane at 363K (using PR) it was necessary to increase 

the injection velocity to match the mass-flow measurement leading to error in the velocity 

prediction of 50 m/s. The authors highlighted the possibility of using the developed numerical 

framework to simulate internal nozzle flow and jet breakup at the same time. However, the large 

error that cubic EoS present at high density ranges (especially in the sonic fluid velocity [46]) can 

be an important issue. These problems could be overcome by applying the PC-SAFT EoS [32], 

[46], [48]. This molecular-based EoS only requires three empirically determined parameters 

(when the association term is neglected) to model the properties of a specific component 

without the need for extensive model calibration, as is typically the case when the NIST library 

is used. In addition, PC-SAFT presents high accuracy when modelling the thermodynamic 

properties of multi-component mixtures while the NIST library presents limited component 

combinations. 

Referring to the third issue, different QC (quasi-conservative) formulations were 

developed to avoid spurious pressure oscillations. However, the error in the conservation of the 

energy that these formulations present can be an issue for Diesel injection simulations where 

the temperature plays a significant role on determining the ignition time (see Section 1.5). 

 

1.4 Subcritical injections (VLE interface)  

If the fuel is not injected in a supercritical state or with a temperature slightly lower than 

its critical value (transcritical) the evaporation step cannot be avoided as the critical pressure of 

fuel/nitrogen mixtures is significantly higher than the pressures that can be found in a Diesel 

engine, see Figure 1.1 (considering n-dodecane as a Diesel surrogate). In [15], molecular 

simulations of three n-alkane fuels into nitrogen under various temperatures and pressures have 

been performed in order to study the injection, evaporation and mixing processes of 
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hydrocarbon fuels into a supercritical environment. The study was focused on understanding 

the transition from classical two-phase evaporation to one- phase diffusion-controlled mixing. 

Using as a dimensionless transition time (the time needed to transit from subcritical to 

supercritical respect to the liquid lifetime) of 0.35 as a threshold, the authors identified two 

regions on the P-T diagram, see Figure 4.5. Supercritical dominated: Due to the high critical 

pressures of TYPE IV mixtures, a VLE state is present at the beginning of the evaporation process. 

The temperature of the liquid core goes up until the VLE state disappears and only a diffusion-

controlled mixing process exists. Subcritical dominated:  A clear interface exists between the 

liquid core and the ambient gases. Nitrogen is not able to diffuse into the liquid core (constant 

fuel mass fraction close to 1 during evaporation, see Figure 4.7). There is a gradual decrease of 

the density of the liquid core as the fuel is heated up. The evaporation reaches a constant state 

with a constant liquid core. According to the classification presented by [15], the combustion 

chamber of a Diesel engine working at medium-high load operation conditions is in the 

supercritical dominated regime after the compression cycle, see Figure 4.5. At these ambient 

conditions, the nitrogen is able to rapidly diffuse into the liquid core (Figure 4.6) indicating that 

the interface has a Knudsen-number low enough to fall within the fluid mechanic continuum 

domain [11]. The results obtained have a high degree of agreement against the experimental 

results obtained by [14]. 

 

 

Figure 1.1: Experimental [49]  and calculated pressure-composition phase diagram for the N2 (1) + 

C12H26 (2) system. Solid lines: PC-SAFT EoS with kij = 0.144 [46] 
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1.5 Conservative and quasi-conservative 

formulations  

If a FC formulation is employed along with a real-fluid EoS, spurious pressure oscillations 

may appear; the work of [34] has related this problem to computational stability issues, 

turbulence, and acoustics accuracy loss. The same authors of [34] developed a QC scheme 

solving a pressure evolution equation instead of the energy conservation equation, while [50] 

developed a QC framework where the artificial dissipation terms in the mass, momentum and 

energy equations are related and the pressure differential is considered to be zero. In [51] the 

double flux model was developed to avoid spurious pressure oscillations in simulations of 

compressible multicomponent flows that employ a perfect gas EoS; [52] extended it to reactive 

flows; and finally, [33], [35], [53] extended the double flux model to real-fluids and transcritical 

conditions. The use of the double-flux model of  [33], [35], [53] can significantly reduce the 

required computational time if a complex EoS is employed as it is employed only once in the 

hyperbolic operator of the numerical model per time step [46]. However, recently it has been 

reported that the large energy conservation error in QC schemes produces an unphysical quick 

heat-up of the jet [21] and thus, making these schemes inadequate for Diesel injection 

simulations where the temperature plays a significant role on determining the ignition time. [32] 

proposes a modification to the calculation of the pressure and sonic fluid velocity at the cell 

faces in FC formulations; this is found to smooth-out the spurious pressure oscillations observed 

with previous methods. Additionally, it reduces the overall computational time allowing 

simulations of multicomponent Diesel surrogate fuels to be performed using complex EoS. 

 

1.6 Perturbed Chain-Statistical Associating Fluid 

Theory 

To simulate Diesel engine injections, the thermodynamic properties of the working fluids 

must be modelled with high accuracy over a wide range of conditions. Moreover, the EoS should 

be able to characterize the compounds using a small number of easily available parameters. 

Perturbation theories from statistical mechanics supposed an important advancement towards 

this kind of models [54]. In these theories, the thermodynamic properties of a system are mostly 

determined by the repulsive interactions of the molecules. A hard spheres system (which 

present only repulsive interactions) is commonly used as a reference. The deviations of the real 

system from the reference system (e.g., van der Waals attractive interactions, association 

interactions, polar or quadrupolar interactions or the non-spherical shape of the molecules) are 



 
10 

 

modelled as perturbations of the repulsive reference system. Numerous models of this type are 

based on SAFT. In this theory, each molecule is represented as a chain of tangent spherical 

segments. Different perturbation contributions are added to the Helmholtz energy of the hard-

sphere reference system (𝐴ℎ𝑠): the hard-sphere chain formation of m segments to consider the 

non- spherical shape of molecules (𝐴𝑐ℎ𝑎𝑖𝑛); non-specific attractive interactions of the m (non-

bonded) spherical segments (𝐴𝑑𝑖𝑠𝑝); and very short-range, strong attractive interactions like 

association (𝐴𝑎𝑠𝑠𝑜𝑐). The total Helmholtz energy  can be written as: 

𝐴𝑟𝑒𝑠 = 𝑚𝐴ℎ𝑠 + 𝑚𝐴𝑑𝑖𝑠𝑝 + 𝐴ℎ𝑠 + 𝐴𝑎𝑠𝑠𝑜𝑐   (1) 

 

The SAFT variant employed in this research is the PC-SAFT [55], [56]. In this model, the 

dispersion term is obtained applying a perturbation theory of second order to a reference 

system of hard chains instead of hard spheres to consider the influence on the number of 

intermolecular interactions of the molecule non-spherical shape. The hard-chain and association 

contributions are the same ones as the SAFT model. Then, the total Helmholtz energy is 

expressed as: 

𝐴𝑟𝑒𝑠 = 𝐴ℎ𝑐 + 𝐴𝑑𝑖𝑠𝑝(𝑚) + 𝐴𝑎𝑠𝑠𝑜𝑐     (2) 

 

Brief explanation of each contribution (PC-SAFT) [54]: 

1) Hard-Chain Contribution (𝐴ℎ𝑐) 

The hard-chain reference fluid is formed of spherical segments without attractive interactions. 

The expression developed by [57] is used to describe the Helmholtz energy of this reference 

system. It is based on Wertheim's first-order thermodynamic perturbation theory [58]–[60]. It 

is modelled using two parameters, the number of segments (𝑚) and the diameter of segments 

(𝜎). 

 

2) Dispersion Contribution  (𝐴𝑑𝑖𝑠𝑝) 

The dispersion contribution in PC-SAFT is computed by applying the perturbation theory of [61], 

[62] to the hard-chain reference system. Then, the non-spherical shape of molecules is 

considered on the attractive dispersion interactions. An additional parameter, the dispersion 

energy parameter (𝜀/𝑘), is considered for describing the segment-segment interaction. 

 

3) Association Contribution (𝐴𝑎𝑠𝑠𝑜𝑐) 
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The association model developed in  [57], [63] is employed to calculate the contribution due to 

short-range association interactions (hydrogen bonding). It is considered that each molecule has 

one or more association sites, which can form hydrogen bonds. Two additional parameters are 

used to describe the association between two association sites: the association energy 

(𝜀𝐴𝑖,𝐵𝑖/𝑘), and the effective volume of an association interaction (𝑘𝐴𝑖,𝐵𝑖). Five pure-component 

parameters are needed to characterize an associating compound. 

 

Figure 1.2 shows a schematic representation of the attractive and repulsive contributions of the SAFT 

EoS and the PC-SAFT EoS. 

 

 

 

Figure 1.2: Schematic representation of the attractive and repulsive contributions of the SAFT EoS and 
the PC-SAFT EoS [64] 

 

Several publications have highlighted the advantages of the SAFT models with respect to 

cubic EoS. [65] shows how the PC-SAFT model presents better results than cubic EoS predicting 

gas phase compressibility factors and oil phase compressibility. For example, AAD (Average 

Absolute Deviation) of the gas compressibility factors in the range P=0-1000 bar and T= 0-250 °C 

for nC6 are 0.0144 for PC-SAFT, 0.0479 for SRK (applying the Peneloux volume correction) and 

0.0425 for PR (applying the Peneloux volume correction). For nC5, they are 0.0127, 0.0529 and 

0.0296 respectively. [66] indicated that the PC-SAFT EoS shows a superior performance to the 

Cubic Plus Association (CPA) EoS in correlating second order derivative properties, such as speed 

of sound, dP/dV and dP/dT derivatives, heat capacities and the Joule–Thomson coefficient in 

the alkanes investigated. The CPA model presents a diverging behaviour in the speed attributed 

to the wrong description of the dP/dV derivative. AADs for speed of sound employing n-

dodecane as working fluid at Tr=0.5 and p =73MPa are 26% and 14%, utilising the CPA and PC-

SAFT EoS respectively. Similarly, [67] points out the superiority of the SAFT-BACK (Boublik-Alder-

Chen-Kreglewshi) model over the PR EOS. The SAFT-BACK EoS shows reasonable results for the 
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speed of sound in the vapor and liquid phases (AAD% = 2.3%, 2.1%, and 1.8% for methane, 

ethane, and propane, respectively). However, the results obtained by PR EOS are only similar to 

measured data at low pressure conditions. The predicted values by PR EOS at high density ranges 

present an AADs for methane, ethane, and propane of 28.6%, 14.7%, and 61.2%, respectively. 

Moreover, in [68] it was shown how cubic EoS predict a linear increase of the Z factor 

(compressibility factor) with pressure, while the PC-SAFT EoS presents a pressure dependence. 

The main issues with using a complex EoS are the difficult implementation and the high 

computational cost [33]. Some tabulation methods have been developed for single-species 

cases [69] but these approaches cannot be utilised with mixtures of more than two components. 

Some of the surrogates employed in this research have four, five, eight and nine components so 

employing tables is not an option. The use of the double-flux model of  [33], [35], [53] can 

significantly reduce the required computational time as the complex EoS is employed only once 

in the hyperbolic operator of the numerical model per time step [46]. However, the large energy 

conservation error in QC schemes is an important issue. The FC formulation proposed in [32] 

reduces the number of times the EoS is employed, making it possible to use complex EoS in 

affordable CPU time. 

 

1.7 Diesel modelling 

We have considered the 𝐴ℎ𝑐 and 𝐴𝑑𝑖𝑠𝑝 contributions.  Intermolecular interaction terms 

accounting for segment self- or cross-associations (𝐴𝑎𝑠𝑠𝑜𝑐) are not added due to the molecular 

structure of the surrogate Diesel compounds utilised. Then, three pure component parameters 

are enough to model the Diesel (𝑚, 𝜎 𝑎𝑛𝑑 𝜀/𝑘). 

𝐴𝑟𝑒𝑠 = 𝐴ℎ𝑐 + 𝐴𝑑𝑖𝑠𝑝(𝑚)   (3) 

 

Two approximations have been considered to model the properties of the fuel working fluids: 

Multicomponent Diesel surrogates 

[70] proposed four Diesel surrogates divided into two accuracy types depending on how 

close their composition is to real Diesel. V0a and V0b are two low-accuracy surrogates and V1 

and V2 are the two high-accuracy surrogates. As pointed out in [71], the PC-SAFT EoS shows the 

highest degree of agreement with the experimental values in comparison with the results 

obtained [70] using the model developed at NIST for the employed Diesel surrogates. [32] shows 

a comparison of the thermodynamic properties of n-dodecane and the Diesel surrogates V0a, 

V0b, V1 and V2 at 6MPa, as calculated using the PC-SAFT EoS. The main differences between n-
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dodecane and the Diesels can be found in the temperature and sonic fluid velocity at high 

densities. The temperature is an important thermodynamic property in transcritical simulations 

because it determines the transition to a supercritical state. The sonic fluid velocity plays a key 

role in the computation of the hyperbolic fluxes and in the time step calculation. The effects that 

these variables have in the CFD results can be seen in [32]. 

 

Pseudo-component method 

[72] developed a technique that defines a single pseudo-component to represent the 

compounds found in a hydrocarbon mixture. It only requires two mixture properties as inputs, 

the number averaged molecular weight and the hydrogen-to-carbon ratio. The computational 

requirements are considerably reduced by decreasing the number of components solved in the 

PC-SAFT model. 

 

1.8 Objectives  

The objectives of this thesis can be summarized as follows: 

• To develop a CFD code capable of simulating supercritical, transcritical and subcritical 

 injections at Diesel engine relevant conditions. 

• To couple the PC-SAFT model with the N-S and total energy conservation equations in a 

 density-based numerical framework. 

• To include VLE calculations in the developed model, which allows us to simulate 

 injections where the fuel enters the combustion chamber at temperatures that are 

 typical for Diesel injection systems. 

• To consider real-fuel composition when modelling Diesel in the CFD simulations 

 performed. 

• To improve the overall computational time of codes employing complex EoS. 

 

1.9 Thesis outline  

The main body of this thesis has been divided into three chapters:  

Simulation of transcritical and supercritical fluid jets using the PC-SAFT EoS 

This chapter describes a numerical framework to simulate transcritical and supercritical 

flows utilising the compressible form of the Navier-Stokes equations coupled with the PC-SAFT 

EoS; both conservative and quasi-conservative formulations have been tested. Advection test 

cases and shock tube problems are included to show the overall performance of the developed 
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framework employing both formulations. Additionally, two-dimensional simulations of nitrogen 

and n-dodecane jets are presented to demonstrate the multidimensional capability of the 

developed model. 

 

Simulation of supercritical and transcritical Diesel jets using the PC-SAFT EoS 

The properties of Diesel fuel are modelled as surrogates comprising four, five, eight and 

nine components. The proposed FC numerical approach improves the overall computational 

time and overcomes the previously observed spurious pressure oscillations associated with the 

utilisation of conservative schemes. In the absence of experimental data, advection test cases 

and shock tube problems are included to validate the developed framework. Finally, two-

dimensional simulations of planar jets of n-dodecane and a four component Diesel surrogate 

are included to demonstrate the capability of the developed methodology to predict 

supercritical and transcritical Diesel fuel mixing into air. 

 

Simulation of subcritical Diesel jets at high-pressure conditions using the PC-SAFT EoS 

This section presents a numerical framework that combines PC-SAFT and VLE calculations 

in a density-based solver of the Navier-Stokes equations to perform multicomponent two-phase 

simulations of Diesel injections at subcritical high-pressure conditions. Published molecular 

dynamic simulations have been employed to demonstrate that the algorithm properly captures 

the multicomponent VLE interface. A purely predictive method that employs the PC-SAFT EoS 

for developing pseudo-components, which are defined to replicate the properties of complex 

hydrocarbon mixtures (e.g., diesel fuels), has been tested. The computational requirements are 

considerably reduced by decreasing the number of components solved in the molecular-based 

model. Advection test cases and shock tube problems were performed to validate the numerical 

framework. Two-dimensional simulations of planar Diesel jets are performed to demonstrate 

the capability of the developed methodology to model subcritical mixing at high pressure Diesel 

engine conditions. 
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2. Simulation of transcritical fluid jets 

using the PC-SAFT EoS 

The present chapter describes a numerical framework to simulate transcritical and 

supercritical flows utilising the compressible form of the Navier-Stokes equations coupled with 

the PC-SAFT EoS; both conservative and quasi-conservative formulations have been tested [46]. 

This molecular model is an alternative to cubic EoS which show low accuracy computing the 

thermodynamic properties of hydrocarbons at temperatures typical for high pressure injection 

systems. Liquid density, compressibility, speed of sound, vapor pressures and density derivatives 

are calculated with more precision when compared to cubic EoS. Advection test cases and shock 

tube problems are included to show the overall performance of the developed framework 

employing both formulations. Additionally, two-dimensional simulations of nitrogen and n-

dodecane jets are presented to demonstrate the multidimensional capability of the developed 

model. 

 

2.1 Numerical method 

The Navier-Stokes equations for a non-reacting multi-component mixture containing N species 

in a x-y 2D Cartesian system are given by: 

𝜕𝑼

𝜕𝑡
+

𝜕𝑭

𝜕𝑥
+

𝜕𝑮

𝜕𝑦
=

𝜕𝑭𝑣

𝜕𝑥
+

𝜕𝑮𝑣

𝜕𝑦
    (4) 

 

The vectors of eq. 5 are: 
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where ρ is the fluid density, u and v are the velocity components, p is the pressure, E is the total 

energy, Ji is the mass diffusion flux of species i, σ is the deviatoric stress tensor and q is the 

diffusion heat flux vector.  

The finite volume method has been applied in this work for obtaining a numerical solution 

to the above equations. The PC-SAFT EoS is implemented to simulate supercritical and 

transcritical states. The developed numerical framework considers a condition of 

thermodynamic equilibrium in each cell. Phase separations or metastable thermodynamic states 

are beyond the scope of this chapter and are not considered. 

 

2.1.1 Formulations  

Since PC-SAFT EoS is rarely used in CFD simulations, two codes have been developed employing 

different formulations (conservative and quasi-conservative) to determine which one is more 

appropriate for the simulation of transcritical and supercritical fluid jets.  

 

Conservative formulation  

Operator splitting [73] is adopted to divide the physical processes into hyperbolic and parabolic 

sub-steps. The global time step is computed using the CFL (Courant–Friedrichs–Lewy) criterion 

of the hyperbolic operator.  

• Hyperbolic sub-step 

Approximate Riemann Solver  

The HLLC (Harten-Lax-van Leer-Contact) solver is used to solve the Riemann problem 

[74]. For a one-dimensional and single-component case, the HLLC flux are given by: 

 

L L

*L L L *L L L *HLLC

*R R R *R R * *R

R *R

0 S ,if

S ( ) S 0 S ,if

S ( ) S 0 S ,if

0 S ,if




= + −  
= 

= + −  
 

F

F F U U
F

F F U U

F

                      (6) 

 The left and right wave speeds (SL and SR) are computed as: 
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           𝑆𝐿 = 𝑚𝑖𝑛( 𝑢𝐿 − 𝑐𝐿 , 𝑢𝑅 − 𝑐𝑅),  

           𝑆𝑅 = 𝑚𝑎𝑥( 𝑢𝐿 + 𝑐𝐿 , 𝑢𝑅 + 𝑐𝑅) 

       (7) 

where 𝑐 is the sound speed. 

 

               The star states are computed as: 

            𝑼∗𝐾 = 𝜌𝐾 (
𝑆𝐾−𝑢𝐾

𝑆𝐾−𝑆∗
) [

1
𝑆∗

𝐸𝐾

𝜌𝐾
+ (𝑆∗ − 𝑢𝐾) (𝑆∗ +

𝑝𝐾

𝜌𝐾(𝑆𝐾−𝑢𝐾)
)

]  

(8) 

                where K = R,L 

 

                The speed in the middle wave is computed as: 

           𝑆∗ =
𝑝𝑅−𝑝𝐿+𝜌𝐿𝑢𝐿(𝑆𝐿−𝑢𝐿)−𝜌𝑅𝑢𝑅(𝑆𝑅−𝑢𝑅)

𝜌𝐿(𝑆𝐿−𝑢𝐿)−𝜌𝑅(𝑆𝑅−𝑢𝑅)
         

       (9) 

 

 Spatial reconstruction 

 Fifth-order WENO scheme 

 The conservative variables may be interpolated onto the cell faces using a fifth-order 

 WENO  scheme [75] due to its high order accuracy and non-oscillatory behavior. The 

 interpolation of the variable Q to the cell edge i + 1/2 from the left is: 

𝑄
𝑖+

1

2

= ∑ 𝜔𝑘
𝑟𝑟

𝑘=0 𝑄𝑘,𝑖+2
1

𝑟                 (10) 

 where r is the number of points used in each stencil, k is the individual stencil number 

 and  𝜔𝑘
𝑟  is the weighting factor of the kth stencil. The interpolation on each candidate 

 stencil is: 

𝑄𝑘 ; 𝑖+2
1

𝑟 = ∑ 𝑎𝑘𝑗
𝑟𝑟−1

𝑗=0 𝑄𝑖−𝑟+𝑘+𝑗+1                (11) 

 The candidate stencil weights are calculated as: 

𝜔𝑘
𝑟 =

𝛼𝑘
𝑟

∑ 𝛼𝑗
𝑟𝑟−1

𝑗=0

                (12) 

 where: 

𝛼𝑘
𝑟 =

𝐶𝑘
𝑟

(𝐼𝑆𝑘+𝜀)𝑝                (13) 

 𝜀 is a parameter used to avoid division by 0. 
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 The smoothness coefficients are given by: 

 𝐼𝑆𝑘 = ∑ ∑ 𝑑𝑘𝑙𝑗
𝑟𝑟−1

𝑗=0
𝑟−1
𝑙=0 𝑄𝑖−𝑟+𝑘+𝑙+1𝑄𝑖−𝑟+𝑘+𝑗+1                (14) 

 The coefficients 𝑎𝑘𝑗
𝑟 , 𝐶𝑘

𝑟, 𝑑𝑘𝑙𝑗
𝑟  can be obtained from [75]. 

 

 Following the work of [73], the limiter developed by [76] is employed. Defining the slope 

 limited interpolation as: 

 𝑄
𝑖+

1

2

= 𝑄𝑖 + 0.5(𝑄𝑖 − 𝑄𝑖−1)𝜙𝑇𝑉𝐷                (15) 

 where 𝜙 is the TVD slope limiter: 

  𝜙𝑇𝑉𝐷 = 𝑚𝑎𝑥 [0, 𝑚𝑖𝑛 (𝛼, 𝛼
𝑄𝑖+1−𝑄𝑖

𝑄𝑖−𝑄𝑖−1
, 2

�̂�𝑖+1/2−𝑄𝑖

𝑄𝑖−𝑄𝑖−1
)]        

       (16) 

being �̂�𝑖+1/2 the interpolated variable using the WENO scheme and 𝛼 a constant set to 

two [73]. 

 

 Second-order spatial reconstruction 

 The MUSCL-Hancock scheme [74] is applied. Data cell averages of the conservative 

 variables are replaced by piece-wise linear functions in each cell:  

 𝑼𝑖(𝑥) = 𝑼𝑖
𝑛 +

(𝑥−𝑥𝑖)

𝛥𝑥
𝜟𝑖

𝐶 , 𝑥 ∈ [0, 𝛥𝑥]  𝐼𝑖 = [𝑥1−1/2, 𝑥1+1/2] (17) 

 where 𝜟𝑖
𝐶  is the slope vector of the conservative variables. The Minmod slope limiter is 

 applied: 

 𝜟𝑖
𝐶 = 𝑚𝑖𝑛𝑚𝑜𝑑(𝑞𝑖 − 𝑞𝑖−1, 𝑞𝑖+1 − 𝑞𝑖)  

a a b & ab 0

min mod(a,b) b if a b & ab 0

0 ab 0

   
 

=   
  

 

(18) 

 The boundary extrapolated values of the conservative variables in global coordinates 

 are computed using: 

𝑼𝑖
𝐿(𝑥) = 𝑼𝑖

𝑛 +
1

2
𝜟𝑖

𝐶  

𝑼𝑖
𝑅(𝑥) = 𝑼𝑖

𝑛 −
1

2
𝜟𝑖

𝐶  

(19) 
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Time integration 

The temporal integration is performed either using a second-order Runge–Kutta (RK2): 

          
𝜕𝑼

𝜕𝑡
= −

𝜕𝑭

𝜕𝑥
−

𝜕𝑮

𝜕𝑦
= 𝐻𝑥𝑦                 (20) 

             𝑼(1) = 𝑼𝑛 + 𝛥𝑡𝐻𝑥𝑦(𝑼𝑛), 

             𝑼𝑛+1 =
1

2
𝑼𝑛 +

1

2
[𝑼(1) + 𝛥𝑡𝐻𝑥𝑦(𝑼(1))]                                                          (21) 

 

              or a third order strong-stability-preserving Runge–Kutta  (SSP-RK3) [77]: 

             𝑼(1) = 𝑼𝑛 + 𝛥𝑡𝐻𝑥𝑦(𝑼𝑛),  

             𝑼(2) =
3

4
𝑼𝑛 +

1

4
[𝑼(1) + 𝛥𝑡𝐻𝑥𝑦(𝑼(1))],  

             𝑼𝑛+1 =
1

3
𝑼𝑛 +

2

3
[𝑼(2) + 𝛥𝑡𝐻𝑥𝑦(𝑼(2))]               (22) 

 

 Figure 2.1 shows a representation of how the convective fluxes are computed 

using the fully conservative formulation. 

 

              

 Figure 2.1: Schematic representation of hyperbolic sub-step employing a fully conservative 
formulation [74] 

 

• Parabolic sub-step.  

The method developed in [78] is applied to calculate the values of the dynamic viscosity 

and thermal conductivity of the mixture. The model of [79] is implemented to compute 

the diffusion coefficient. A RK2 (second-order Runge–Kutta) scheme is employed to 

perform the time integration of this sub-step. Linear interpolation is performed for 

computing the conservative variables, enthalpy and temperature on faces from cell 

centres.  
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Quasi-conservative formulation 

The physical processes are divided into hyperbolic and parabolic sub-steps using operator 

splitting as well [73]. The CFL criterion of the hyperbolic operator is used to compute the global 

time step. 

• Hyperbolic sub-step. 

 The double flux model of [33], [35], [53] has been implemented. The HLLC solver is used 

to solve the Riemann problem. In the one-dimensional cases presented, the primitive 

variables are interpolated onto the cell faces using a fifth-order WENO scheme [75]. In 

the two-dimensional cases, a sensor that compares the value of the density in the faces 

and the centre of the cells is employed to determine in which regions a more dissipative 

scheme must be applied [33] . If the sensor is activated,  TVD limiters [73] are employed. 

The solution is then blended with a first-order scheme (90% WENO). Time integration is 

performed using a SSP-RK3 method [77].  

 

The following steps were followed to implement the double flux model: 

1) In each cell the values of 𝛾∗ and  𝑒0
∗ are stored.  

             𝛾∗ =
𝜌𝑐2

𝑝
 

(23) 

              𝑒0
∗ = 𝑒 −

𝑝𝑣

𝛾∗−1
  (24) 

where 𝑝 is the pressure, 𝑐 is the sound speed, 𝑒 is the internal energy and 𝑣 is the 

specific volume. 

 

2) Runge-Kutta scheme 

a)  The fluxes at the faces are computed using the primitive variables. The total 

energy in the left (L) and right (R) states are computed using eq.25.    

               (𝜌𝐸)𝐿,𝑅
𝑛 =

𝑝𝐿,𝑅
𝑛

𝛾𝑗
∗,𝑛−1

+ 𝜌𝐿,𝑅
𝑛 𝑒0,𝑗

∗,𝑛 +
1

2
𝜌𝐿,𝑅

𝑛 𝐮𝐿,𝑅
𝑛 ⋅ 𝐮𝐿,𝑅

𝑛   
    

(25) 

b)   Update conservative variables using the RK scheme 

c) Update primitive variables (using the double flux model to compute the 

pressure). 
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3) Update total energy: The total energy is updated from primitive variables based on 

the EoS (eq.26). Only at this point the PC-SAFT EoS is used to compute the internal 

energy, sound speed, temperature and enthalpy.  

𝜌𝐸 = 𝜌𝑒 +
1

2
𝜌𝒖 ⋅ 𝒖  (26) 

Figure 2.2 presents a visual representation of how the convective fluxes are calculated 

employing the double flux model.  

 

 Figure 2.2: Schematic representation of hyperbolic sub-step employing the double flux model 
[33] 

• Parabolic sub-step 

The diffusion fluxes are calculated conservatively in the same way that is explained in 

the conservative formulation. 

 

2.1.2 PC-SAFT EoS subroutine 

A different subroutine has been developed for each formulation because of the different inputs 

of the EoS subroutine. 

 

Conservative formulation  

The thermodynamic variables computed in the CFD code by the PC-SAFT EoS are the 

temperature, pressure, sound speed and enthalpy. The algorithm inputs are the density, internal 

energy, molar fractions and three pure component parameters per component (number of 

segments per chain, energy parameter of each component and segment diameter), see Table 
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2.1.  The density and the internal energy are obtained from the conservative variables of the 

CFD code. The molar fractions are computed using the mass fractions employed in the continuity 

equations and the molar weights of the components. The pure component parameters are 

specified in the initialization of the simulation. A Newton method is employed to compute the 

temperature that is needed to calculate the value of all other thermodynamic variables. The 

temperature dependent function used in the iterative method is the internal energy (Appendix: 

Algorithm A). 

 

Quasi-conservative formulation 

The thermodynamic variables computed in the CFD code by the PC-SAFT EoS are the 

temperature, internal energy, sound speed and enthalpy. The algorithm inputs are the density, 

pressure, molar fractions and three pure component parameters per component. The density 

and mass fractions (used to compute the molar fractions) are obtained from the conservative 

variables. The pressure is obtained employing the double flux model. The temperature is 

iterated until the difference between the pressure computed with the PC-SAFT model and the 

value obtained from the double flux model is lower than 0.001Pa (Appendix: Algorithm A(p)). 

 

2.1.3 Peng-Robinson EoS and PC-SAFT EoS comparison 

The most attractive feature of the PC-SAFT EoS is the better prediction of derivative 

properties such as compressibility and speed of sound. [67] shows the inaccuracy of cubic 

models to predict second derivative properties such as isobaric heat capacity and sound velocity 

in hydrocarbons at high density ranges. In the case of the sonic fluid velocity, the AAD% (Average 

Absolute Deviation) by PR EoS for methane, ethane, and propane are 28.6%, 14.7%, and 61.2%, 

respectively. 

Figure 2.3 presents a comparison of the thermodynamic properties of n-dodecane at 

6MPa computed using the PC-SAFT EoS and the Peng-Robinson EoS. NIST (REFPROP) library [80] 

has been used as reference due to its extensive validation with experimental data. While the 

results of both EoS are quite similar at density values lower than 550 Kg/m3, there is a significant 

difference at higher densities, especially in the sound speed. Cubic models commonly present 

low accuracy computing the thermodynamic properties of hydrocarbons at temperatures typical 

of injection systems [21]. However, the PC-SAFT EoS shows an accuracy similar to NIST without 

the need of an extensive model calibration as only three parameters are needed to model a 

specific component. Another advantage is the possibility of computing the thermodynamic 

properties of mixtures; NIST has limited mixture combinations. 
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2.2 Results 

Initially, advection test cases and shock tube problems are solved to validate the 

hyperbolic part of the numerical framework employing the conservative and quasi-conservative 

formulations, while the parabolic part is omitted. Following, two-dimensional simulations of 

transcritical and supercritical nitrogen and n-dodecane jets are presented, including the 

parabolic part, to prove the multi-dimensional capability of the code. 

  

 

Figure 2.3: Comparison of thermodynamic properties of n-dodecane at 6MPa computed using the PC-

SAFT EoS and the Peng-Robinson EoS: (a) density, (b) sound speed, (c) internal energy 

 

2.2.1 One-dimensional cases 

Advection test cases 

Conservative formulation  

Figure 2.4 shows the results of the supercritical Advection Test Case 1, see Table 2.2. 

Nitrogen is used as working fluid (The critical properties of nitrogen are pc,N2 = 3.4 MPa and Tc,N2 

= 126.2 K). The computational domain is x ϵ [0, 1] m; the initial conditions in 0.25m < x < 0.75m  

are ρ=250 kg/m3, p=5 MPa, and T=139.4 K; in the rest of the domain are ρ= 45.5 kg/m3, p=5 MPa, 

and T=367.4 K. The advection velocity applied is 50m/s; periodic boundary conditions are 

utilized; a uniform grid spacing of 0.01m is employed; the simulated time is t=0.02s; and the CFL 

(a) (b) 

(c) 
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is set to be 0.5. Four spatial discretization schemes are compared: fifth-order WENO, second-

order (based on the Minmod limiter), first order and a blend of the fifth-order WENO and the 

first-order schemes (95% WENO and rest 1st order). 

The oscillations are more severe when high-order reconstruction schemes are applied. By 

blending a high-order scheme and a low-order model, dissipation can be used to smooth the 

numerical solution. If the advection test case is initialized using a smooth profile no spurious 

pressure oscillation appear in the solution as the sharp jumps in the thermodynamic properties 

between cells are avoided, see Figure 2.5. The smooth initial interface was generated as 

described in [42] using eq.27. 

𝑞 = 𝑞𝐿(1 − 𝑓𝑠𝑚) + 𝑞𝑅𝑓𝑠𝑚    (27) 

𝑓𝑠𝑚 =
(1+𝑒𝑟𝑓[𝛥𝑅/𝜀])

2
     (28) 

Where L and R refers to the left and right states respectively and Δ𝑅 is the distance from the 

initial interface. 𝜀 = 𝐶𝜀Δ𝑥, where Δ𝑥 is the grid spacing and 𝐶𝜀 is a free parameter to determine 

the interface smoothness set to be 8. 

  

  

Figure 2.4: Advection Test Case 1 (N2), FC formulation, CFL = 0.5, u = 50 m/s, 100 cells, 
t=0.02 s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) x-velocity 

between the analytical and the numerical solution. 

 

 

 

(a) (b) 

(c) (d) 
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Quasi-conservative formulation 

Figure 2.6 presents the results of the transcritical Advection Test Case 1 solved using the 

QC formulation. The advection velocity applied is 50m/s; periodic boundary conditions are 

applied; a uniform grid spacing of 0.01m is used; the simulated time is t=0.02s; and the CFL is 

set to be 1. Unlike the fully conservative scheme, spurious pressure oscillations are not present 

in the solution.  

Figure 2.7 presents the results of the transcritical Advection Test Case 2 where nitrogen 

is used as working fluid, see Table 2.2. The computational domain is x ϵ [0, 1] m; the initial 

conditions in 0.25 m < x < 0.75 m are ρ=804.0 kg/m3, p=4 MPa, and T=84.41 K; in the rest of the 

domain the initial conditions are ρ=45.5 kg/m3, p=4 MPa, and T=299.0 K. The advection velocity 

utilized is 100 m/s; periodic boundary conditions are used; the computational domain is x ϵ [0, 

1] m; 150 cells are employed; the simulated time is t=0.01 s; a fifth-order WENO discretization 

scheme is used; and the CFL is set to be 1.0. It can be observed how large density gradients are 

solved without spurious pressure oscillations applying the double flux model.  

 

  

  

Figure 2.5: Advection Test Case 1 (N2), FC formulation, CFL = 0.5, u = 50 m/s, 300 cells, t=0.01 

s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) x-velocity between the 

analytical and the numerical solution. 

 

Figure 2.8 shows the results of the transcritical advection of n-dodecane at supercritical 

pressure and subcritical temperature (pc,n-dodecane =1.817 MPa, Tc,n-dodecane =658.1 K) in 

supercritical nitrogen, Advection Test Case 3 (Table 2.2). The computational domain is x ϵ [0,1] 

m; the initial conditions in 0.25m < x < 0.75m  are ρn-dodecane =700.0 kg/m3, pn-dodecane = 6MPa, and 

(a) (b) 

(c) (d) 



 
26 

 

Tn-dodecane =360.1 K; in the rest of the domain ρN2 =20.0 kg/m3, pN2 =6 MPa, and TN2 =965.7 K. The 

advection velocity utilized is 100 m/s; periodic boundary conditions are used; 150 cells are 

employed; the simulated time is t=0.01 s; a fifth-order WENO discretization scheme is used; and 

the CFL is set to be 1.0. Unlike conservative codes, velocity and pressure equilibriums are 

preserved in multicomponent cases if the double flux model is applied.  

Table 2.1: PC-SAFT pure component parameters [55] 

 𝑚 𝜎[Å] 𝜀/𝑘[𝐾] 

nitrogen  1.2053 3.3130 90.96 

n-dodecane 5.3060 3.8959 249.21 

 

  

  

Figure 2.6: Advection Test Case 1 (N2), FC and QC formulations, CFL(FC) = 0.5, CFL(QC)=1.0, u = 

50 m/s, 100 cells, t=0.02 s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) 

x-velocity between the analytical and the numerical solution. 

Table 2.2: 1D Test Cases 

ADVECTION TEST CASES 

CASE 1  Pressure [MPa] Density [kg/m3] Temperature [K] 

0.25 m < x < 0.75 m N2, 5 N2, 250 N2, 139.4 

0.25 m > x or x > 0.75 m   N2, 5 N2, 45.5 N2, 367.4 

CASE 2     

0.25 m < x < 0.75 m N2, 4 N2, 804 N2, 84.4 

0.25 m > x or x > 0.75 m   N2, 4 N2, 45.5 N2, 299.0 

CASE 3     

0.25 m < x < 0.75 m n-dodecane, 6.0 n-dodecane, 700.0 n-dodecane, 360.1 

0.25 m > x or x > 0.75 m   N2, 6.0 N2, 20.0 N2, 965.7 

SHOCK TUBE PROBLEM 

PROBLEM  Pressure [MPa] Density [kg/m3] Temperature [K] 

x < 0.5 m   n-dodecane, 13.0 n-dodecane, 700.0 n-dodecane, 372.8 

x > 0.5 m   n-dodecane, 6.0 n-dodecane, 150.0 n-dodecane, 944.4 

(a) (b) 

(c) (d) 
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Table 2.3: 2D Test Cases 

CASE A  Pressure [MPa] Density [kg/m3] Temperature [K] 

JET   N2, 4.0 N2, 804.0 N2, 84.4 

CHAMBER N2, 4.0 N2, 45.5 N2, 299.5 

CASE B     

JET   N2, 4.0 N2, 440.0 N2, 127.0 

CHAMBER N2, 4.0 N2, 44.5 N2, 305.0 

CASE C     

JET   n-dodecane, 11.1 n-dodecane, 450.0 n-dodecane, 687.2 

CHAMBER N2, 11.1 N2, 37.0 N2, 972.9 

 

  

  
Figure 2.7: Advection Test Case 2 (N2), QC formulations, CFL = 1.0, u = 150 m/s, 100 cells, 
t=0.01s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) x-velocity 

between the analytical and the numerical solution. 

 

Energy conservation error in the quasi-conservative formulation 

The evolution of the energy conservation error of the Advection Test Case 2 is presented in   

Figure 2.9 . The error has been evaluated employing eq.29 [33]. 

𝜀 = |
∫ [(𝜌𝐸)(𝑡)−(𝜌𝐸)(0)]𝑑𝑥

𝛺

∫ (𝜌𝐸)(0)𝑑𝑥
𝛺

|    
(29) 

where 𝜀 is the relative error of the total energy with respect to initial conditions and 𝛺 is the 

computational domain. 

 

(a) (b) 

(c) (d) 
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The energy conservation error is higher using the PC-SAFT EoS than Peng-Robinson EoS. This is 

related to the fact that the profiles of 𝛾∗ and 𝑒0
∗ are smoother employing the cubic model.  There 

are sharper jumps in internal energy and speed of sound employing the PC-SAFT EoS, see Figure 

2.11. The error in the conservation of the energy depends on the jumps in the variables 

1/(𝛾∗ − 1)and 𝑒∗[33]. A convergence of the error to 0 exists increasing the refinement. 

 

  

  
Figure 2.8: Advection Test Case 3 (N2 - Dodecane), QC formulations, CFL = 1.0, u = 100 m/s, 
150 cells, t=0.01 s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) x-

velocity between the analytical and the numerical solution. 

 

Figure 2.9: Relative energy conservation error of the QC formulation for the Advection Test Case 2 
(Transcritical nitrogen) using the Peng-Robinson EoS (PR) and the PC-SAFT EoS. N is the number of 

cells employed. 

(c) (d) 

(a) (b) 
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Figure 2.10 presents the evolution of the energy conservation error of the Advection Test Case 

3. Because of the different thermodynamic properties of the components, a higher energy 

conservation error than in the single-species cases appears. Although, a convergence to 0 is 

observed in one-dimensional cases increasing the refinement like in the single-species cases.  

 

Figure 2.10: Relative energy conservation error of QC formulation for the Advection Test Case 3 using 
the PC-SAFT EoS. N is the number of cells employed. 

 

  

  
Figure 2.11: Advection Test Case 2 (N2), QC formulation, CFL = 1.0, u = 150 m/s, 100 cells, 

t=0.01s. Comparison of γ* and e0* computed using the Peng Robinson EoS (PR EoS) and the PC-

SAFT in the Advection Test Case 2. 

 

(b) (a) 

(c) (d) 
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Shock tube problems 

The Euler equations are solved in this validation so a direct comparison with the exact solver can 

be done. The exact solution has been computed using the methodology described in [81].  

 

Quasi-conservative formulation 

The domain is x ϵ [0, 1] m. The working fluid employed is n-dodecane. A fifth-order WENO 

scheme is employed to interpolate the primitive variables onto the cell faces. 800 equally spaced 

cells were used. Wave transmissive boundary conditions are implemented in the left and right 

sides. The double flux model is applied. The pressure exceeds the critical value in all the domain 

while there is a transition in the temperature from subcritical to supercritical from left to right. 

The initial conditions in the left state are ρL=700 kg/m3, pL=13 MPa, uL=0 m/s; and in the right 

state are ρR=150 kg/m3, pR=6 MPa, uR=0 m/s. The simulated time is t=0.2 ms. 

Figure 2.12 displays the results obtained for density, temperature, pressure and velocity. 

Despite being a quasi-conservative scheme, the double flux model [33], [35], [53] can solve 

strong shock waves in transcritical cases with a high degree of accuracy without generating 

spurious pressure oscillations. 

  

  

Figure 2.12: Shock Tube Problem 1 (Dodecane), QC formulation, CFL = 1.0, 800 cells, t=0.2 ms. 
Comparisons of (a) density, (b) temperature, (c) velocity and (d) pressure profiles: exact 

solution and numerical solution. 

(a) (b) 

(c) (d) 
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Conservative formulation 

The same shock tube problem described before is solved. A fifth-order WENO scheme is 

employed to interpolate the conservative variables onto the cell faces. Large spurious pressure 

oscillations appear in the solution because of the sharp jumps in the thermodynamic properties 

between cells, see Figure 2.13. 

 

Comparison with the Peng-Robinson EoS (Quasi-conservative formulation) 

Figure 2.14 shows the density, temperature, pressure, velocity, sound speed and internal 

energy of the same shock tube problem solved in a larger domain x ϵ [0, 2] m using the PC-SAFT 

and the Peng-Robinson EoS. The simulated time is t=0.3 ms. The quasi-conservative formulation 

has been employed. 800 equally spaced cells were used. A significant difference can be observed 

in the results between the two EoS. Due to the high deviation in the sound speed computed by 

the Peng-Robinson EoS in the high-density region, the expansion wave travels much faster using 

the cubic model. Moreover, the calculated temperatures are much lower using the Peng-

Robinson EoS in the high-density region.  

  

  

Figure 2.13: Shock Tube Problem 1 (Dodecane), FC formulation, CFL = 0.5, 4000 cells, t=0.2 
ms. Comparisons of (a) density, (b) temperature, (c) velocity and (d) pressure profiles: exact 

solution and numerical solution. 

 

(a) (b) 

(c) (d) 
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2.2.2 Two-dimensional cases 

Planar two-dimensional simulations of transcritical and supercritical jets are presented in 

this section. The initial conditions are summarized in Table 2.3. The parabolic sub-step is 

included into these simulations, without sub-grid scale modelling for turbulence or heat/species 

diffusion. 

  

  

  

Figure 2.14: Shock Tube Problem 2 (Dodecane), QC formulation, CFL = 1.0, 800 cells, t=0.3 ms. 
Comparison of the (a) density, (b) temperature, (c) pressure, (d) x-velocity, (e) sound speed, 
(f) internal energy between the numerical solutions obtained using the Peng-Robinson EoS 

and the PC-SAFT EoS. 

 

Transcritical nitrogen injection (Quasi-Conservative formulation, Case A) 

A structured mesh is applied with a uniform cell distribution. The cell size is 0.043 mm × 

0.043 mm. The domain used is 30mm × 15mm. Transmissive boundary conditions are applied at 

(a) (b) 

(c) (d) 

(e) (f) 
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the top, bottom and right boundaries while a wall condition is employed at the left boundary. A 

flat velocity profile is imposed at the inlet. The case is initialized using a pressure in the chamber 

of 4 MPa, the density of the nitrogen in the chamber is 45.5 kg/m3 and the temperature is 299.5 

K. The temperature of the jet is 84.4 K and the density is 804.0 kg/m.  The velocity of the jet is 

100 m/s and the diameter of the exit nozzle is 1.0 mm.  

When the jet enters the elevated temperature environment of the chamber, the velocity 

gradients at the jet surface generate a vortex rollup that finally breakup into ligament-shaped 

structures, see Figure 2.15. The Kelvin Helmholtz instability can be observed in the shear layer, 

which is similar to a gas/gas turbulent mixing case. No droplets are formed at these conditions. 

The jet is quickly heated to a gas-like supercritical state after the injection takes place. It must 

be highlighted that the mesh resolution is not enough to resolve all the scales (the aim of these 

simulations is to test the developed numerical framework). Moreover, 2D simulation cannot 

resolve turbulence. Figure 2.18 shows the density, temperature, pressure and sound speed 

results at 4 x 10-4 s. 

Figure 2.16 shows a scatter plot of pressure as a function of density for the planar 

cryogenic nitrogen jet. The simulated case remains in the hyperbolic region of the governing 

equations with a real-valued speed of sound. The mixing trajectory passes close to the critical 

point with a few individual points inside the saturation curve, which means that phase 

separation does not occur [31]. The larger fluctuations caused by the confined domain or the 

two-dimensionality of the case could be the reason why a small number of cells are in the 

unstable region [33]. 

Although one of reasons of the prevailing usage of cubic EoS is their efficiency, practical 

simulations can be performed using the PC-SAFT EoS. The quasi-conservative formulation is 

computationally less expensive than the conservative scheme because the PC-SAFT EoS has to 

be used only once in the hyperbolic operator in each time step. The computational time is 65-

70% higher using the PC-SAFT EoS than utilizing the PR EoS. Figure 2.17 shows the time taken by 

the code to solve the transcritical nitrogen injection case depending on the number of cells used 

(only one core is used to perform the simulation). Figure 2.18 shows the density, temperature, 

pressure and sound speed results of the simulation at t = 4 x 10-4. 

The PC-SAFT EoS is implemented using loops that depend on the number of components 

solved, which means that it takes more time to compute the properties of mixtures. However, 

knowing the mass fractions it is possible to determine how many components are present in a 

cell a priori. The PC-SAFT is then only solved for that specific number of components. Most cells 
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along the simulation in the combustion chamber contain only nitrogen. For this reason, a 

significant increment on time has not been observed performing two-component simulations.    

 

  

  

Figure 2.15: 2D Test Case A, CFL = 1.0, 245000 cells, QC formulation. Density results of the simulation 
of the planar cryogenic nitrogen jet at various times. 

 

 

Figure 2.16: Scatter plot of pressure as a function of density for the transcritical nitrogen jet (Case A). 
The vapor dome, non-convex region and the region with complex speed of sound (SOS) are included. 

 

Supercritical nitrogen injection (Conservative formulation, Case B) 

The case is initialized using a pressure in the chamber of 4 MPa, the density of the nitrogen 

in the chamber is 45.5 kg/m3 and the density of the jet is 440.0 kg/m3 (Table 2.3). The velocity 
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of the jet is 50 m/s. The spatial reconstruction is carried out using a blending of the fifth-order 

WENO and the first-order schemes (95% fifth-order WENO).  

 

 

Figure 2.17: Computational time employed to compute the solution of the transcritical nitrogen jet 
(Case A) at t = 4 x 10-4 employing a variable number of cells. 

 

The CFL number is set at 0.4. Transmissive boundary conditions are applied at the top, 

bottom and right boundaries while a wall condition is employed at the left boundary. A flat 

velocity profile is imposed at the inlet. 

If sharp interface methods (i.e. front tracking method)  are not applied, the interfaces are 

not sharp one-point jumps but smooth as they are resolved [82]. This is the reason why the 

wiggles that appear in this 2D simulation are not as severe as in the 1D cases, see Figure 2.19. 

The study of [82] shows how smooth interfaces can reduce the spurious pressure oscillations.  

The minimum pressure encountered along the simulation is higher than the nitrogen 

critical pressure so there are no cells in the vapor-liquid equilibrium region. The heat-up of the 

jet follows the same density-temperature trajectory employing a FC or a QC formulation in 

single-species cases, see Figure 2.20. In the works of [21], [83] a different behaviour in 

multicomponent cases can be observed, where QC formulations follow an isobaric-isochoric 

mixing model for binary mixtures while conservative schemes follow an isobaric-adiabatic 

mixing model. 
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Figure 2.18: 2D Test Case A, CFL = 1.0, 245000 cells, QC formulation.  Results of the simulation of the 
planar cryogenic nitrogen jet at t = 4 x 10-4 s using the quasi-conservative formulation: (a) density, (b) 

temperature, (c) pressure, (d) sound speed. 

(a) 

(b) 

(d) 

(c) 
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Figure 2.19: 2D Test Case B, CFL = 0.4, 180000 cells, FC formulation. Results of the simulation of the 
supercritical nitrogen jet at t = 7.84 x 10-4 s: (a) density, (b) pressure. 

 

 

Figure 2.20: 2D Test Case B solved using the FC and QC formulations. Scattered data of density and 
temperature. The nitrogen vapor dome is included. 

 

(a) 
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Supercritical n-dodecane injection (Conservative formulation, Case C) 

Dodecane/nitrogen mixtures are Type IV as stated by [25], which means that the critical 

temperature of the mixture is an intermediate value of the critical temperature of both 

components and the mixture critical pressure is higher than the critical pressure of either 

component, see Figure 1.1. A simulation of a n-dodecane jet where VLE (Vapor-Liquid 

Equilibrium) conditions are avoided injecting the dodecane at a temperature higher than its 

critical value has been included to prove the multi-species capability of the code. To check that 

any cell is in a thermodynamic metastable state, the vapor-liquid saturation curves were 

computed (Section 2.2.4). 

A structured mesh is applied with a uniform cell distribution. The cell size is 8.3µm × 

8.3µm. The domain used is 5mm × 2.5mm. Transmissive boundary conditions are applied at the 

top, bottom and right boundaries while a wall condition is employed at the left boundary. A flat 

velocity profile is imposed at the inlet. The case is initialized using a pressure in the chamber of 

11.1 MPa, the density and the temperature of the nitrogen in the chamber are 37.0 kg/m3 and 

973 K (high-load Diesel operation conditions [22]) respectively. The density and temperature of 

the jet are 450.0 kg/m3 and 687 K (Table 2.3).  The velocity of the jet is 200 m/s and the diameter 

of the exit nozzle is 0.1 mm.  

As in the transcritical nitrogen case ligament-shaped structures appear and the Kelvin 

Helmholtz instability can be observed in the shear layer, see Figure 2.21. The jet is quickly 

heated-up from a liquid-like supercritical state to a gas-like supercritical state. Some spurious 

oscillations appear in the pressure field because of the high non-linearity of the EoS. The quasi-

conservative formulation was not employed because of the incorrect prediction of the jet heat-

up that appear in multi-component cases [21], [83].  

A comparison of averaged scattered data of composition and temperature and an 

isobaric-adiabatic mixing process can be seen in Figure 2.22. As [83] stated, fully conservative 

schemes describe an isobaric-adiabatic mixing process. The isobaric-adiabatic line in the Figure 

2.22 was computed using eq.30-31 and the initial conditions of this case. 

 

�̇�3 = �̇�1 + �̇�2  (30) 

�̇�3ℎ3 = �̇�1ℎ1 + �̇�2ℎ2  (31) 
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Figure 2.21: 2D Test Case C, CFL = 0.5, 180000 cells, FC formulation. Results of the simulation of the 
supercritical dodecane jet at t = 2.5 x 10-5 s: (a) density, (b) temperature, (c) pressure, (d) sound speed. 

(a) 

(b) 

(d) 

(c) 
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Figure 2.22: Scattered data of composition and temperature of the planar dodecane jet Case C. Solid 
lines are dodecane-nitrogen phase boundaries from VLE at 4.5 MPa and 6 MPa. 

 

 

2.2.3 Hyperbolicity of Euler system with PC-SAFT EoS 

The hyperbolicity of the Euler system relies on a real speed of sound [33]. Using the PC-

SAFT, the speed of sound is always real outside of the vapor-liquid equilibrium state. Inside the 

vapor-liquid equilibrium region, the spinodal curves (determined by (𝜕𝑝/𝜕𝑣)𝑇 = 0) enclose the 

unstable / non-convex region where a complex speed of sound could be found, see Figure 2.23. 

 

 
Figure 2.23: The vapor dome, non-convex region and the region with complex speed of sound of 

dodecane computed using the PC-SAFT EoS.  
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2.2.4 Pressure-composition phase diagram for the N2+C12H26  

system 

The calculation of the number of phases present in a mixture in a certain condition is a 

recognized problem in the utilization of any EoS. In some cases, the number of phases is assumed 

a priori and then the composition in every phase is calculated by imposing equilibrium 

conditions. However, this technique often leads to divergence in the iterative methods used to 

achieve these. In our case, this is solved by an isothermal flash calculation after a stability 

analysis using the Tangent Plane Criterion Method proposed by [84] and applied to the PC-SAFT 

EoS by [85], see Figure 1.1. 

 

2.2.5  Conclusions 

The PC-SAFT was utilized to close the Navier-Stokes equations using both  a conservative 

and a quasi-conservative formulation, where the double flux model of  [33], [35], [53] is applied. 

The PC-SAFT EoS presents a precision similar to NIST without the need of an extensive calibration 

as only three parameters are needed to model a specific component. It is presented as an 

alternative to the commonly used cubic EoS that present a low accuracy for computing the 

thermodynamic properties of hydrocarbons at temperatures typical for high pressure injection 

systems. Advection test cases and shock tube problems have been used to validate the 

hyperbolic operator of the developed numerical framework. The conservative formulation 

generates spurious pressure oscillations, like it has been reported with other diffuse interface 

density-based codes employing a real-fluid EoS. Due to fact that the interfaces are not sharp 

one-point jumps but smooth, as they are resolved in 2D simulations, the wiggles generated do 

not compromise the stability of the simulation. The quasi-conservative scheme can model 

transcritical single- and multicomponent cases without spurious pressure oscillations. Errors in 

the energy conservation that appear employing this formulation may produce an unphysical 

quick heat-up of the injected jet in multicomponent cases. Two-dimensional simulations of 

nitrogen and n-dodecane jets have been presented to demonstrate the multidimensional and 

multicomponent capability of the numerical framework. 
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3. Simulation of supercritical Diesel 

jets using the PC-SAFT EoS 

In this chapter, supercritical Diesel injections are performed employing a FC formulation 

of the Navier-Stokes equations along with the conservation of the energy equation [32]. Multi- 

component fuel-air mixing is simulated by considering a diffused interface approximation. The 

thermodynamic properties are predicted using the PC-SAFT EoS. PC-SAFT can handle flexibly the 

thermodynamic properties of multi-component mixtures, which is an advantage compared to 

the NIST library, where only limited component combinations are supported. This has allowed 

for the properties of Diesel fuel to be modelled as surrogates comprising four, five, eight and 

nine components. The numerical approach proposed in this chapter improves the overall 

computational time and overcomes the previously observed spurious pressure oscillations 

associated with the utilization of conservative schemes. In the absence of experimental data, 

advection test cases and shock tube problems are included to validate the developed 

framework. Finally, two-dimensional simulations of planar jets of n-dodecane and a four 

component Diesel surrogate are included to demonstrate the capability of the developed 

methodology to predict supercritical Diesel fuel mixing into air. 

 

3.1 Numerical method 

The way the PC-SAFT EoS has been coupled with the Navier-Stokes equations is described 

in Chapter 2 for FC formulations (Appendix: Algorithm A). Phase separations or metastable 

thermodynamic states are beyond the scope of this chapter and are not considered. The HLLC 

solver is applied to solve the Riemann problem. In density-based codes, once the spatial 

reconstruction scheme has been used to compute the left and right states of the Riemann 

problem, the EoS is applied to compute the pressure and sonic fluid velocity at both sides 

(considering that the conservative variables have been reconstructed). Eq.32 shows the pressure 

expressed in a form equivalent to a general EoS [34]:  

𝑝(𝜌, 𝑒, 𝑌𝑖) = 𝐹(𝜌, 𝑌𝑖)𝜌𝑒 + 𝐺(𝜌, 𝑌𝑖)  
(32) 

However, the computed pressure may present a large error if the functions F or G depend 

on the interpolated conservative variables. Even in single-species cases, if these functions are 

density-dependent and consist of high-order density terms, a small change in the interpolated 

density can produce large variations in the calculated pressure. The incorrect pressure 
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introduces an error in the computation of the fluxes, which finally generate spurious oscillations 

during the numerical solution. In the present study, this is avoided by reconstructing the 

primitive variables (or only the pressure) and the conservative variables at the cell faces at the 

same time. This simple modification has been found to smooth-out the spurious pressure 

oscillations generated by the high-nonlinearity of the EoS. 

By reconstructing the pressure, the only variable left to compute the fluxes at the cell 

faces is the speed of sound. Instead of using the EoS to calculate this variable, the sonic fluid 

velocity is interpolated using cell centre values as well. Therefore, the PC-SAFT EoS is used only 

once per cell in each RK sub-time step, thus reducing significantly the computational time. 

 

3.1.1 Spatial reconstruction methods and Riemann solver 

Second-order spatial reconstruction and Riemann solver  

A variation of the MUSCL-Hancock scheme [74] is applied. The fluxes are computed in the 

following way: 

 

Step 1: Data reconstruction. 

Once the conservative variables are updated after each Runge-Kutta sub-time step, the primitive 

variables and the sonic fluid velocity are computed and stored at the cell centres. The one-

dimensional vector of primitive variables (considering a single-species case) stored in each cell 

centre is: 

𝑾𝑖 = (𝜌, 𝑢, 𝑝)  

Data cell averages of the primitive variables are replaced by piece-wise linear functions in each 

cell:  

𝑾𝑖(𝑥) = 𝑾𝑖
𝑛 +

(𝑥−𝑥𝑖)

𝛥𝑥
𝜟𝑖

𝑃, 𝑥 ∈ [0, 𝛥𝑥] 𝐼𝑖 = [𝑥1−1/2, 𝑥1+1/2]        (33) 

where 𝜟𝑖
𝑃 is the slope vector of the primitive variables; the Minmod slope limiter is employed 

again. 

The boundary extrapolated values of the primitive variables in global coordinates are computed 

as: 

𝑾𝑖
𝐿(𝑥) = 𝑾𝑖

𝑛 +
1

2
𝜟𝑖

𝑃  

𝑾𝑖
𝑅(𝑥) = 𝑾𝑖

𝑛 −
1

2
𝜟𝑖

𝑃         

(34) 

The boundary extrapolated values of the sonic fluid velocity are computed as well: 
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𝑐𝑖
𝐿(𝑥) = 𝑐𝑖

𝑛 +
1

2
𝛥𝑖

𝑠  

𝑐𝑖
𝑅(𝑥) = 𝑐𝑖

𝑛 −
1

2
𝛥𝑖

𝑠         

(35) 

where 𝛥𝑖
𝑠 is the slope scalar of the speed of sound. The Minmod slope limiter is applied as well. 

 

Step 2: Evolution.  

The boundary extrapolated values of the primitive variables are evolved by a time 1/2𝛥𝑡 using 

eq.36 [74]: 

𝑾𝑖

𝐿,𝑅
= 𝑾𝑖

𝐿,𝑅 +
1

2

𝛥𝑡

𝛥𝑥
𝑨(𝑾𝑖

𝑛)[𝑾𝑖
𝐿 − 𝑾𝑖

𝑅]          
(36) 

where 𝐴 is computed using the data cell average 𝑾𝑖
𝑛. 
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The boundary extrapolated values of the conservative variables are evolved by a time 1/2𝛥𝑡  

using eq.37: 

𝑼𝑖

𝐿
= 𝑼𝑖

𝐿 +
1

2

𝛥𝑡

𝛥𝑥
[𝑭(𝑼𝑖

𝐿) − 𝑭(𝑼𝑖
𝑅)]  

𝑼𝑖

𝑅
= 𝑼𝑖

𝑅 +
1

2

𝛥𝑡

𝛥𝑥
[𝑭(𝑼𝑖

𝐿) − 𝑭(𝑼𝑖
𝑅)]         

(37) 

 

The fluxes 𝑭(𝑼𝑖
𝐿,𝑅) are computed as: 

𝐹 = (

𝜌𝑢

𝜌𝑢2 + 𝑝
(𝜌𝐸 + 𝑝)𝑢

)  

were 𝜌, 𝑢 and 𝐸 are obtained from the evolved conservative variables (𝑼𝑖) and 𝑝 is obtained 

from the evolved primitive variables (𝑾𝑖).  

 

Step 3: The Riemann Problem. 

The Riemann problem is solved to compute the intercell flux using the evolved conservative 

variables, the evolved primitive variables and the interpolated speed of sound. 
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𝑼𝐿 ≡ 𝑼𝑖

𝑅
; 𝑼𝑅 ≡ 𝑼𝑖+1

𝐿
  

𝑾𝐿 ≡ 𝑾𝑖

𝑅
; 𝑾𝑅 ≡ 𝑾𝑖+1

𝐿
  

𝑐𝐿 , 𝑐𝑅  

 

Within the variables needed to solve the Riemann problem, 𝜌, 𝑢 , 𝐸 are obtained from the 

reconstructed conservative variables,𝑝 is obtained from the evolved primitive variables and c is 

the interpolated speed of sound. There is no need of using the EoS at the cell faces as the speed 

of sound and the pressure are already known from the previous operation. The HLLC solver is 

employed to solve the Riemann problem.  

 

Fifth-order WENO spatial reconstruction and Riemann solver 

The conservative variables, primitive variables and speed of sound are reconstructed at the cell 

faces using a fifth-order WENO scheme [75].  

 

Figure 3.1 presents a visual representation of how the convective fluxes have been computed.  

 

 

 Figure 3.1: Schematic representation of hyperbolic sub-step  

 

Temporal integration 

In many cells the sum of the fluxes is practically 0. Applying a SSP-RK3 scheme, this means that 

in these cells: 

 𝑼𝑖
(1) = 𝑼𝑖

𝑛,𝑼𝑖
(2) = 𝑼𝑖

(1)or 𝑼𝑖
(𝑛+1) = 𝑼𝑖

(2)  

which can be translated into: 

𝑾𝑖
(1) = 𝑾𝑖

𝑛,𝑾𝑖
(2) = 𝑾𝑖

(1) or 𝑾𝑖
(𝑛+1) = 𝑾𝑖

(2)  
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and 

𝑐𝑖
(1) = 𝑐𝑖

𝑛 , 𝑐𝑖
(2) = 𝑐𝑖

(1)or 𝑐𝑖
(2) = 𝑐𝑖

(1).  

Therefore, there is no need to employ the EoS is all these cases to update the pressure, speed 

of sound, temperature and enthalpy, which are all stored at the cell centres.  

 

3.1.2 Diesel surrogates 

Table 3.1 shows a comparison between the experimentally measured surrogate densities 

computed at 293.15K and 0.1MPa with the densities calculated employing the EoS-based 

method developed at NIST [80] and the PC-SAFT EoS. The composition of the Diesel surrogates 

was proposed by [70]. They are divided into two accuracy types depending on how closely they 

match the composition of real Diesel. More specifically, V0a and V0b are two low-accuracy 

surrogates and V1 and V2 are the two high-accuracy surrogates. Their molar composition is 

summarized in Table 3.2 . The results obtained by the PC-SAFT EoS shows the highest degree of 

agreement with the experimental values [71] in comparison with the results obtained by [70] 

applying the method developed at NIST, see Table 3.1. Table 3.3 presents the PC-SAFT pure 

component parameters employed. 

 

Table 3.1: Comparison between experimentally measured surrogate densities (kg/m3) at 293.15 K and 

0.1MPa with the NIST and PC-SAFT predictions [71]. 

Surrogate Experiment NIST PC-SAFT 

V0a 818 809.1 814.9 

V0b 837.5 821.6 833.2 

V1 828.4 814.1 825.2 

V2 853 839.9 861.8 

 

 

Table 3.2: Molar composition for the four Diesel fuel surrogates (V0a, V0b, V1, V2) [70] 

Compound V0a V0b V1 V2 

n-hexadecane   27.8  - 2.70 - 
n-octadecane - 23.5 20.2 10.8 
n-eicosane - - - 0.80 
heptamethylnonane 36.3 27.0 29.2 - 
2-methylheptadecane - - - 7.3 
n-butylcyclohexane - - 5.10 19.1 
triisopropylcyclohexane - - - 11.0 
trans-decalin 14.8 - 5.50 - 
perhydrophenanthrene - - - 6.00 
1,2,4-trimethylbenzene - 12.5 7.5 - 
1,3,5-
triisopropylbenzene 

- - - 14.7 

tetralin - 20.9 15.4 16.4 
1-methylnaphthalene 21.1 16.1 14.4 13.9 
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Table 3.3: PC-SAFT pure component parameters [71], [86] 

Compound 𝑚 𝜎 (Å) 𝜀
𝑘⁄ (K) 

n-hexadecane   6.669 3.944 253.59 

n-octadecane 7.438 3.948 254.90 
n-eicosane 8.207 3.952 255.96 
heptamethylnonane 5.603 4.164 266.46 
2-methylheptadecane 7.374 3.959 254.83 
n-butylcyclohexane 3.682 4.036 282.41 
1,3,5-triisopropylcyclohexane 4.959 4.177 297.48 
trans-decalin 3.291 4.067 307.98 
perhydrophenanthrene 4.211 3.851 337.52 
1,2,4-trimethylbenzene 3.610 3.749 284.25 
1,3,5-triisopropylbenzene 5.178 4.029 296.68 
tetralin 3.088 3.996 337.46 
1-methylnaphthalene 3.422 3.901 337.14 
    

 

3.1.3 Phase diagrams 

The number of phases is solved by an isothermal flash calculation after a stability analysis 

using the Tangent Plane Criterion Method proposed by [84] and applied to the PC-SAFT EoS by 

[85] using the code developed by [71] like in Chapter 2. This methodology has not been 

implemented in the CFD code. It is used to obtain the phase diagrams employed to check that 

the VLE state is not present in the solution of the performed simulations. 

 

3.2 Results 
Firstly, a comparison of the temperature, sonic fluid velocity and internal energy of n-

dodecane, V0a, V0b, V1 and V2 Diesel surrogates is presented to point out the importance of an 

accurate fuel properties modelling. Then, several advection test cases and shock tube problems 

are solved to validate the hyperbolic part of the numerical framework and show how the 

reconstruction technique explained in Section 3.1 smooths-out the spurious pressure 

oscillations. Finally, two-dimensional simulations at high-load Diesel operation conditions of 

supercritical n-dodecane and Diesel surrogate V0a are presented to demonstrate the 

multicomponent and multidimensional capability of the developed numerical solver. 

 

3.2.1 N-dodecane and Diesel comparison 

Figure 3.2 shows a comparison of the thermodynamic properties of n-dodecane and the 

Diesel surrogates V0a, V0b, V1 and V2 at 6MPa, as calculated using the PC-SAFT EoS. The main 

differences between n-dodecane and the Diesels can be found in the temperature and sonic 
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fluid velocity at high densities. The temperature is an important thermodynamic property in 

transcritical simulations because it determines the transition to a supercritical state. The sonic 

fluid velocity plays a key role in the computation of the hyperbolic fluxes and in the time step 

calculation. The effects that these variables have in the CFD results can be seen in Figure 3.12.  

 

 

  

 
Figure 3.2: Comparison of thermodynamic properties of n-dodecane and Diesel surrogates at 6MPa: 

(a) density, (b) sonic fluid velocity, (c) internal energy 
 

 

3.2.2 Advection test cases 

Single-species advection test case 

Table 3.4 summarises the advection test cases simulated. Figure 3.3 shows the results of 

the Advection Test Case 1, where nitrogen is used. The initial conditions are the same as the 

ones used by [42] in the interface advection problem. The computational domain is x ϵ [0, 1] m. 

In 0.0< x < 0.3m, the initial conditions are ρ=450kg/m3, p=4MPa, and u=10.0m/s; in the rest of 

the domain they are ρ=45.0kg/m3, p=4MPa, and u=10.0m/s.  A uniform grid spacing of 0.01m is 

employed; the simulated time is t=0.04s; the CFL is set to be 0.5. Wave transmissive boundary 

conditions are implemented in the left and right sides of the computational domain. The spatial 

reconstruction has been performed in two different ways. In the first one, the PC-SAFT EoS is 

used to compute the sonic fluid velocity and the pressure using the reconstructed conservative 

(a) 
(b) 

(c) 



 
50 

 

variables. In the second one, the pressure and sonic fluid velocity are interpolated onto the cell 

faces, as described in Section 3.1.  

Large wiggles appear in the velocity and pressure fields at 0.04s using the classic spatial 

reconstruction method, as can be seen in Figure 3.3. The start-up error is present for a long 

period of time in the simulation and contaminates the solution. This can be observed in the 

Figure 3.4-3.5, both reveal the maximum wiggles amplitude (calculated as the maximum 

difference between the analytical solution and the computed profile [42]) along time in the 

pressure and velocity fields. More specifically, Figure 3.4 presents the results obtained using the 

second-order MUSCL-Hancock scheme, while Figure 3.5 shows the results calculated utilizing 

the fifth-order WENO scheme. By applying the schemes proposed in Section 3.1, once the 

oscillations generated by the start-up error have travelled upstream and downstream with their 

characteristic speeds and reach the boundaries of the computational domain, the solution 

shows no wiggles. A smooth initial interface can be used for avoiding the initial start-up error 

[82]. By employing a diffuse interface method, the interfaces are not sharp one-point jumps but 

smooth as they are resolved. Then, a smooth initial profile is a realistic initial condition. To 

initialize the simulation using a smooth interface the primitive variables are calculated 

employing eq.27. 

 Employing this formula, the number of grid points used in the initial interface does not 

depend on the grid resolution. The interface will be sharpened in space if the number of cells 

utilized is increased but the number of points across of the interface does not change. Figure 

3.4-3.5 shows that for the spatial reconstruction methods proposed the start-up error is not 

present in the obtained solution for values of 𝐶𝜀 bigger than 2.  

 

Table 3.4: ADVECTION TEST CASES 

ADVECTION TEST CASES 

CASE 1  Pressure [MPa] Density [kg/m3] Temperature [K] 

0.25 m < x  N2, 4.0 N2, 450.0 N2, 126.6 
0.25 m > x N2, 4.0 N2, 45.0 N2, 302.0 

CASE 2     

0.25 m < x  Diesel V0a, 11.1 Diesel V0a, 450.0 Diesel V0a, 782.2 
0.25 m > x N2, 11.1 N2, 37.0 N2, 972.9 
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Figure 3.3: Advection Test Case 1 (N2), CFL = 0.5, u = 10 m/s, 100 cells, t=0.04 s. Comparison of 

the (a-b) density, (c-d) pressure and (e-f) x-velocity between the analytical and the numerical 

solutions. Numerical solution 1: Pressure and sonic fluid velocity computed at the faces using 

the EoS. Numerical solution 2: Pressure and sonic fluid velocity interpolated at the faces. 

 

Multi-component advection test case 

Figure 3.7 shows the results of the advection of the Diesel surrogate V0a in nitrogen (Table 3.4). 

The computational domain is x ϵ [0, 1]m; the initial conditions in 0.25m < x < 0.75m  are ρV0A 

=450.0 kg/m3, pV0A = 11.1 MPa, and TV0A = 782.2K; in the rest of the domain ρN2 =37.0kg/m3, pN2 

=11.1 MPa, and TN2 = 972.9K. The advection velocity utilized is 10 m/s; periodic boundary 

conditions are used; 500 cells are employed; the simulated time is t=0.1 s; the fifth-order WENO 

discretization scheme presented is used; and the CFL is set to be 0.5. A smooth interface is 

applied (𝐶𝜀 = 2).The oscillations in the velocity and pressure field are lower than 1.0% and 0.3% 

respectively of the initial values. The VLE state is not present in the solution, as can be seen in 

Figure 3.6 where the maximum temperature encountered by the Diesel surrogate V0a - nitrogen 

phase boundary at 7 MPa is 705K (this value is lower at higher pressures). The minimum 

temperature reached in the simulation is 782k. 

(a) (b) 

(e) (f) 

(c) (d) 
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Figure 3.4: Advection Test Case 1 (N2), CFL = 0.5, u = 10 m/s, 100 cells. Maximum wiggles amplitude in 

the velocity and pressure fields. Analysis of smooth and sharp initial interfaces using the second-order 

MUSCL-Hancock scheme. Numerical solution 1: Pressure and sonic fluid velocity computed at the 

faces using the EoS. Numerical solution 2: Pressure and sonic fluid velocity interpolated at the faces. 

 

  

  
Figure 3.5: Advection Test Case 1 (N2), CFL = 0.5, u = 10 m/s, 100 cells. Maximum wiggles amplitude in 

the velocity and pressure fields. Analysis of smooth and sharp initial interfaces using the fifth-order 

WENO scheme. Numerical solution 1: Pressure and sonic fluid velocity computed at the faces using 

the EoS. Numerical solution 2: Pressure and sonic fluid velocity interpolated at the faces. 

(a) (b) 

(c) (d) 

(a) (b) 

(d) (c) 
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Figure 3.6: Diesel surrogate V0a - nitrogen phase boundary from VLE at different pressures. 

 

 

  

  

Figure 3.7: Advection Test Case 2 (Diesel surrogate V0a – N2), CFL=0.5 u = 10 m/s, 500 cells, 

t=0.1s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) x-velocity between 

the analytical and the numerical solution. 

 

3.2.3 Shock tube problems 

The Euler equations are solved in this exercise, so direct comparison with the exact solver can 

be performed to validate the hyperbolic part of the developed numerical framework. The exact 

solution has been computed using the methodology described in [81].  

 

(a) (b) 

(c) (d) 
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Shock Tube Problem 1, 2, 3 

Figure 3.8-3.11 displays the results of three shock tube problems which employs n-

dodecane as working fluid. The domain is x ϵ [-0.5, 0.5] m; 1000 equally spaced cells were used. 

Wave transmissive boundary conditions are implemented in the left and right sides. The initial 

conditions are summarized in Table 3.5. The simulated time is 5 10-4s in the Shock Tube Problem 

1 and 2, and 2.5 10-4s in the Shock Tube Problem 3. The CFL is set to 0.3 to stabilize the cases 

with large spurious pressure oscillations. The reconstruction step has been performed in two 

different ways. In the first one, the PC-SAFT EoS is used to compute the sonic fluid velocity and 

the pressure using the reconstructed conservative variables. In the second one, the pressure 

and sonic fluid velocity are interpolated onto the cell faces. 

In the Shock Tube Problem 1 (Figure 3.8-3.9), the variation of the thermodynamic 

properties between the right and left states is not large enough to generate spurious pressure 

oscillations. However, spurious pressure oscillations appear in the Shock Tube Problem 2 (Figure 

3.10) because of the sharper jump in the thermodynamic conditions. Employing the modified 

reconstruction, the spurious oscillations are significantly reduced. In the Shock Tube Problem 3 

(Figure 3.11) the larger variation in the thermodynamic properties between the left and right 

states provoke the formation of large spurious pressure oscillations. Using the modified 

reconstruction, the oscillations can be significantly reduced (specially is the MUSCL- Hancock 

scheme is employed) like in the Shock Tube Problem 2. 

 

Table 3.5: SHOCK TUBE PROBLEMS 

CASE 1 Pressure [MPa] Density [kg/m3] Velocity [m/s] 

x < 0.5 m   30.0 438.0 0.0 

x > 0.5 m   10.0 100.0 0.0 

CASE 2    

x < 0.5 m   30.0 620.0  0.0 

x > 0.5 m   10.0 100.0  0.0 

CASE 3    

x < 0.5 m   30.0 710.0  0.0 

x > 0.5 m   10.0 100.0  0.0 

CASE 4    

x < 0.5 m   30.0 620.0  0.0 

x > 0.5 m   10.0 100.0  0.0 

 

Shock Tube Problem 4  

Figure 3.12 displays the density, temperature, pressure, velocity, sonic fluid velocity and 

internal energy results of a transcritical shock tube problem, which employs n-dodecane and the 

V0a, V0b, V1 and V2 Diesel surrogates as working fluids. The domain is x ϵ [0, 1]m. 800 equally 
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spaced cells were used. Wave transmissive boundary conditions are implemented in the left and 

right sides. The initial conditions in the left state are ρL=620kg/m3, pL= 30MPa, uL=0m/s; and in 

the right state are ρR=100kg/m3, pR=10MPa, uR=0m/s. The fifth-order WENO discretization 

scheme presented in Section 2.a. is used. The CFL is set to 0.8. The simulated time is 5 10-4s. 

The obtained results suggest that there is a significant difference between n-dodecane 

and the Diesel surrogates. The temperatures computed using Diesel surrogates are higher than 

those obtained for n-dodecane throughout the whole computational domain. The different 

sonic fluid velocities in the high-density region forces the expansion wave to move with different 

velocities. The larger variations in the Diesel internal energy may be related to the different 

velocity profiles computed. There is not a significant difference in the results obtained using the 

different Diesels.  

 

  

  
Figure 3.8: Shock Tube Problem 1 (MUSCL-Hancock scheme, Dodecane). CFL = 0.5, u = 10 m/s, 1000 
cells, t=5 10-4 s. Comparisons of (a) density, (b) temperature, (c) velocity and (d) pressure profiles: 

exact solution and numerical solutions. Numerical solution 1: Pressure and sonic fluid velocity 
computed at the faces using the EoS. Numerical solution 2: Pressure and sonic fluid velocity 

interpolated at the faces. 

 

(a) (b) 

(c) (d) 
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Figure 3.9: Shock Tube Problem 1 (Fifth-order WENO, Dodecane). CFL = 0.3, 1000 cells, t=5 10-4 s. 

Comparisons of (a) density, (b) temperature, (c) velocity and (d) pressure profiles: exact solution and 
numerical solutions. Numerical solution 1: Pressure and sonic fluid velocity computed at the faces 

using the EoS. Numerical solution 2: Pressure and sonic fluid velocity interpolated at the faces. 

 

 

 

  

Figure 3.10: Shock Tube Problem 2 (Dodecane). CFL = 0.3, 1000 cells, t=5 10-4 s. 
Comparison of pressure profiles: exact solution and numerical solutions.  Numerical solution 1: 

Pressure and sonic fluid velocity computed at the faces using the EoS. Numerical solution 2: Pressure 
and sonic fluid velocity interpolated at the faces. of (a) MUSCL- Hancock scheme, (b) Fifth-order 

WENO. 

 

 

(a) (b) 

(c) (d) 
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Figure 3.11: Shock Tube Problem 3 (Dodecane). CFL = 0.3, 1000 cells, t=2.5 10-4 s. 
Comparison of pressure profiles: exact solution and numerical solutions.  Numerical solution 1: 

Pressure and sonic fluid velocity computed at the faces using the EoS. Numerical solution 2: Pressure 
and sonic fluid velocity interpolated at the faces. of (a) MUSCL- Hancock scheme, (b) Fifth-order 

WENO. 

 

Table 3.6: 2D Test Cases 

CASE A  Pressure [MPa] Density [kg/m3] Temperature [K] 

JET (n-dodecane)  n-dodecane, 11.1 n-dodecane, 400.0 n-dodecane, 736.8 

CHAMBER (N2) N2, 11.1 N2, 37.0 N2, 972.9 

CASE B     

JET (V0a)  V0a, 11.1 V0a, 490.0 V0a, 742.2 

CHAMBER (N2) N2, 11.1 N2, 37.0 N2, 972.9 

 

The PC-SAFT EoS is implemented using loops that depend on the number of components 

solved, which means that it takes more time to compute the properties of mixtures.  This is the 

reason why the Diesel surrogate V0a will be used in the 2D simulation, as the results obtained 

using the two low accuracy surrogates (V0a and V0b) and the two high-accuracy surrogates (V1 

and V2) are practically the same. The Diesel surrogate V0a is the one with less compounds.  

 

3.2.4 Two-dimensional cases 

The results of planar two-dimensional injections are presented in this section. As 

mentioned earlier, the fuels employed are n-dodecane and the Diesel surrogate V0a. A 

structured mesh is applied with a uniform cell distribution. The cell size is 5.5µm × 5.5µm. The 

domain used is 5mm × 2.5mm. The parabolic sub-step is included into these simulations, without 

sub-grid scale modelling for turbulence or heat/species diffusion. The CFL number is set at 0.5. 

The fifth-order WENO discretization scheme presented in Section 3.1 is used. Transmissive 

boundary conditions are applied at the top, bottom and right boundaries while a wall condition 

is employed at the left boundary. A flat velocity profile is imposed at the inlet. The velocity of 

the jet is 200 m/s and the diameter of the exit nozzle is 0.1mm. 405,000 cells are employed. 
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Figure 3.12: Shock Tube Problem 4. CFL = 0.8, 800 cells, t=2.5 10-4 s. Comparison of the (a) density, (b) 

temperature, (c) pressure, (d) x-velocity, (e) sonic fluid velocity, (f) internal using as working fluids 
dodecane and the surrogate Diesels. 

 

N-dodecane jet 

A multicomponent simulation has been included to prove the multi-species capability of 

the developed framework. Starting at the critical point of n-dodecane, the critical pressure of a 

N2 + n-dodecane mixture grows by increasing the nitrogen concentration [31]. It reaches higher 

pressures than the ones observed in Diesel engine combustion chambers (Figure 1.2). Thus, to 

avoid the VLE state the n-dodecane is injected at a temperature higher than its critical value in 

the performed simulation. The case is initialized using a pressure in the chamber of 11.1 MPa; 

the density and the temperature of the nitrogen in the chamber are 37.0 kg/m3 and 973 K (high-

(a) (b) 

(c) 

(d) 

(e) (f) 
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load Diesel operation conditions [22]), respectively. The density and temperature of the jet are 

400.0 kg/m3 and 736.8 K, see Table 3.6.   

The Kelvin Helmholtz instability is developing in the shear layer, as it can be seen in Figure 

3.13. No pressure oscillations appear in the results. The jet is quickly heated-up from a liquid-

like supercritical state to a gas-like supercritical state. A comparison of averaged scattered data 

of composition and temperature and an isobaric-adiabatic mixing process can be seen in Figure 

3.14. As [83] stated, fully conservative schemes describe an isobaric-adiabatic mixing process.  

The number of times the PC-SAFT model is solved in the hyperbolic operator per time step 

is lower than 20% the times it is employed using a classic FC implementation. As already 

mentioned, by interpolating the pressure and sonic fluid velocity at the cell faces, the EoS is 

solved once per cell in each RK sub-time step instead of once per cell face in the hyperbolic 

operator. Additionally, in many cells the EoS is not used to update the temperature, pressure, 

sonic fluid velocity and enthalpy values as the sum of the fluxes is approximately 0 (Section 3.1). 

This can be clearly observed in Figure 3.16. The significant reduction on the number of times the 

PC-SAFT model has to be solved allows to carry out simulations at affordable CPU times using a 

FC formulation. In the cases presented here, the time taken to solve 3.5×10-5s were 93.8 hours 

on a single CPU. 

 

Diesel surrogate V0a jet 

This case is initialized using a pressure in the chamber of 11.1 MPa; the density and the 

temperature of the nitrogen in the chamber are 37.0 kg/m3 and 973 K (high-load Diesel 

operation conditions [22]), respectively. The density and temperature of the jet are 490.0 kg/m3 

and 742 K (Table 3.6). The temperatures encountered along the simulation are higher than the 

temperatures at which VLE exists, as can be seen in Figure 3.6. The binary interaction parameter 

used between the nitrogen and the Diesel compounds is the same one used in the nitrogen / n-

dodecane mixture (kij = 0.1446). 

Figure 3.17 shows the density, temperature and pressure at 3.4 × 10-5 s. For this multi-

component fuel simulations, the time taken to solve 3.5×10-5 s were 165 hours on the same CPU 

utilised for the n-dodecane simulation (~75% longer). By knowing the mass fractions in each cell, 

it is possible to determine how many components are present in a cell a priori. The PC-SAFT is 

then only solved for that specific number of components. Most cells along the simulation in the 

combustion chamber contain only nitrogen. For this reason, this strategy significantly reduces 

the computational time. Like in the n-dodecane injection case, no pressure oscillations appear 

in the solution.   
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Figure 3.13: CFL = 0.5, 405000 cells. Results of the simulation of the supercritical n-dodecane jet at t = 
3.4 x 10-5 s: (a) density, (b) temperature, (c) pressure. 

 

 
Figure 3.14: Scattered data of composition and temperature of the planar dodecane jet, dodecane-

nitrogen phase boundary from VLE at 4.5 MPa and isobaric-adiabatic mixing line. 

(a) 

(b) 

(c) 
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Figure 3.15: Percentage number of times the PC-SAFT model is solved in the hyperbolic operator 

respect a classic implementation of a FC formulation. 

 

 

 

 

  

  

  

Figure 3.16: Number of times the PC-SAFT is solved per cell in the first RK sub-time-step (RK1), the 
second RK sub-time-step (RK2), and the parabolic operator at 1.24×10-5s and 3.43×10-5s.  
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Figure 3.17: CFL = 0.5, 405000 cells. Results of the simulation of the supercritical Diesel surrogate V0a 
jet at t = 3.4 x 10-5 s: (a) density, (b) temperature, (c) pressure. 

 

 

3.3 Conclusions 

Four different Diesel surrogates have been tested and the thermodynamic properties 

have been modelled using the PC-SAFT EoS. This molecular-based EoS shows an accuracy similar 

to NIST, but without the need of an extensive model calibration; this is because only three 

parameters are needed to model a specific component. Moreover, it can easily compute the 

thermodynamic properties of multi-component mixtures, which is an additional advantage 

compared to NIST that supports only limited mixture combination. The Diesel surrogates utilised 

(a) 

(b) 

(c) 
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can be divided into two types, depending on how closely they match the composition of Diesel 

fuel. All the multi-component surrogates tested show different properties than n-dodecane. 

Simulations at affordable CPU times can be carried out by reducing the number of times the PC-

SAFT EoS is solved, by computing the pressure and sonic fluid velocity in the cell centres and 

performing a reconstruction of these variables at each cell face. This technique has been found 

to smooth-out the spurious pressure oscillations associated with conservative schemes when 

used along with real-fluid EoS. Additionally, if the updated conservative variables do not change 

with respect to the values obtained in the previous sub-time step, there is no need to use the 

EoS to update the values of the temperature, sonic fluid velocity, pressure and enthalpy stored 

at the cell centres. This strategy further reduces the overall simulation time. Advection test cases 

and shock tube problems have demonstrated the validity of the hyperbolic operator of the 

developed framework. Moreover, two-dimensional simulations of planar jets of n-dodecane and 

a four component Diesel surrogate (V0a) are included to demonstrate the capability of the 

scheme to predict supercritical Diesel fuel injection and mixing into air. 
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4. Simulation of subcritical Diesel jets 

at high-pressure conditions using the 

PC-SAFT EoS 

The PC-SAFT has been coupled with VLE calculations in a density-based solver of the 

Navier-Stokes equations to perform multicomponent two-phase simulations of Diesel injections 

at high-pressure conditions [87]. Complex hydrocarbon mixtures have been modelled as single 

pseudo-components knowing the number averaged molecular weight and hydrogen-to-carbon 

ratio of the mixture. Additionally, published molecular dynamic simulations have been utilised 

to demonstrate that the developed algorithm properly captures the VLE interface at high-

pressure conditions. Several advection test cases and sock tube problems were performed to 

validate the numerical framework using analytical and exact solutions. Moreover, two-

dimensional simulations of n-dodecane and Diesel injections at subcritical conditions into 

nitrogen are included to demonstrate the multidimensional, multispecies and multiphase 

capability of the numerical framework. 

 

4.1 Numerical method 

The Navier-Stokes equations have been solved employing a finite volume method on a 

Cartesian numerical grid. Operator splitting as described in [73] is utilised to separate the 

hyperbolic and parabolic operators. The global time step is computed using the CFL (Courant-

Friedrichs-Lewy) criterion of the hyperbolic part. A thermodynamic solver inspired by the work 

of [21] is employed to approximate the mixture thermophysical properties by performing PC-

SAFT and VLE calculations. 

 

4.1.1 CFD Code 

The multicomponent HLLC solver is applied to solve the Riemann problem [37].  The 

conservative variables, pressure and speed of sound values needed to solve the Riemann 

problem are interpolated at the cell faces from cell centres using the fifth-order reconstruction 

scheme described in Chapter 3 [32]. The temporal integration of the hyperbolic operator is 
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carried out using a second-order Runge–Kutta (RK2) scheme applying the filter presented in 

Chapter 3 [32].  

 

4.1.2 Diesel modelling 

Two approximations have been considered to model the properties of Diesel.  

 

 Multicomponent Diesel surrogates 

As explained in Chapter 3, four Diesel surrogates have been proposed in [70]. The V0a and 

V0b are two low-accuracy surrogates while V1 and V2 are the two higher-accuracy surrogates. 

Their molar composition is summarized in Table 3.2.  

 

Pseudo-component method 

In [72] was developed a technique that defines a single pseudo-component to represent 

the compounds found in a hydrocarbon mixture. It only requires two mixture properties as 

inputs, the number averaged molecular weight (MW) and hydrogen-to-carbon ratio (HN/CN). 

The group contribution (GC) parameters of [86] are used to develop the correlations shown in 

Table 4.1 for n-alkanes and poly-nuclear aromatics (PNAs) that numerically bound the pseudo-

component PC-SAFT parameter values. An averaging parameter, Z, is used to calculate the 

pseudo-component parameters using eq.38-41. Equations 42-44 show that Z is calculated using 

MW and HN/CN ratio, which can be directly calculated knowing the mixture components or can 

be obtained using elemental analysis for unknown mixtures. Considering that the PC-SAFT is 

implemented using loops that depend on the number of components solved, this method allows 

us to model complex hydrocarbon mixtures as one component, thus, reducing significantly the 

computational requirements of the simulation but with increasing its accuracy. 

𝑚pseudo − component = (1 − 𝑍)𝑚n − alkane + 𝑍𝑚PNA           (38) 

(𝑚𝜎)pseudo − component = (1 − 𝑍)(𝑚𝜎)n − alkane +

𝑍(𝑚𝜎)𝑃𝑁𝐴        

       (39) 

(𝜀
𝑘⁄ )

pseudo − component
= (1 − 𝑍)(𝜀

𝑘⁄ )
n − alkane

+

𝑍(𝜀
𝑘⁄ )

PNA
  

        (40) 
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𝑍 = {

DoUmixture
DoUPNA

,                  MWmixture < 178 g/mol

DoUmixture
10

,          MWmixture ≥ 178 g/mol
  

       (41) 

DoUPNA = 0.05993 × MW −  0.68158         (42) 

CNmixture =
MWmixture

12.01+1.01((HN CN⁄ )mixture)
           (43) 

DoUmixture =  
1

2
(2 × CNmixture + 2 − HNmixture)          (44) 

 

The methodology developed by [72] was validated for modelling density, isothermal 

compressibility and volumetric thermal expansion coefficient of hydrocarbon mixtures, jet and 

diesel fuels. However, the pseudo-component must correctly model the internal energy 

(employed in the conservation of the total energy equation) speed of sound (used to calculate 

the hyperbolic fluxes and time step), enthalpy (employed in the parabolic operator of the Navier-

Stokes equations) and fugacity coefficients (to perform VLE calculations). Using the PC-SAFT, the 

internal energy, enthalpy and heat capacities at constant pressure and volume (needed to 

compute the speed of sound) are computed as the sum of ideal and residual contributions. The 

PC-SAFT pure component parameters obtained employing the method of [72] are used to 

calculate the residual contributions. The ideal enthalpy of each component is calculated by 

integrating the ideal heat capacity at constant pressure with respect to temperature [88]. The 

molar composition of the mixture is used to calculate the ideal enthalpy of the mixture. The ideal 

internal energy of the mixture is computed employing the ideal enthalpy of the mixture.  The 

ideal heat capacities at constant pressure of each component are computed employing the 

correlations published in [88]; then, molar fractions are used to compute the ideal heap capacity 

at constant pressure of the mixture, which is employed to calculate the ideal heat capacity at 

constant volume.  

 

 

Table 4.1: PC-SAFT parameter correlations as a function of MW (g/mol) for n-alkanes and PNAs using 
the GC parameters of [86] 

 n-alkane PNA 

𝑚 0.0274MW + 0.4648 0.0163MW +  0.9256 

𝑚𝜎 (Å) 0.1092MW +  1.5677 0.0612MW +  3.5324 

𝜀
𝑘⁄ (K) exp(5.5811 − 10.2507/MW) exp(5.5657 − 8.6620/MW) 
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4.1.3 Thermodynamic solver (PC-SAFT + VLE) 

The thermodynamic solver is employed to compute temperature, pressure, sound speed 

and enthalpy once the conservative variables have been updated. The inputs are the density, 

internal energy and mass fraction of the components. Three pure component parameters per 

compound (number of segments per chain, energy parameter and segment diameter) are 

specified for initialisation. Only an overview of the method is included in this section. Figure 4.1 

shows a schematic representation of the CFD code. By interpolating the conservative variables, 

speed of sound and pressure at the cell faces in the hyperbolic operator, the thermodynamic 

solver can be directly applied to the updated conservative variables. Thus, it is not employed 

twice per cell face in each Runge-Kutta subtime-step [32]. In the parabolic operator, the 

conservative variables, temperature, and enthalpy are interpolated at the cell faces. Again, the 

thermodynamic solver is applied to the updated conservative variables.   
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Figure 4.1: Schematic representation of the CFD code 

 

Algorithm 
 

1. Filter. The first step is to determine if only one phase exists checking the molar fractions 

of the components, see the schematic representation of the thermodynamic solver in 

Figure 4.2. This step is employed to decrease the computational time by reducing VLE 

calculations. By checking the molar fractions of the components, it can be determined 

whether only one phase exists. Isobaric-adiabatic lines can be computed using the initial 

conditions of the case of interest (temperature in the chamber, temperature of the fuel 
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injected and pressure in the combustion chamber) to determine the molar fractions at 

which VLE is not expected. As we can see in Figure 4.3, by performing an injection of n-

dodecane at 363K in a combustion chamber at 900K and 11MPa, the nitrogen mole 

fraction at which the fuel starts vaporizing is close to 0.15. The VLE results were 

validated using the experimental results of [49], see Figure 4.4. 
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Figure 4.2: Schematic representation of the thermodynamic solver 

 

 
Figure 4.3: Isobaric-adiabatic mixing lines at different pressures in the combustion chamber 

 

2. One phase.  When knowing that the mixture is stable the molecular density of the 

mixture can be computed and used as an input to the PC-SAFT model. A Newton method 

is employed to compute the temperature that is needed to calculate the value of all 

other thermodynamic variables. The temperature dependent function used in the 

iterative method is the internal energy. The derivative of the internal energy with 

respect to the temperature at constant molecular density can be directly obtained as 
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these are the independent variables of the PC-SAFT model. This algorithm is explained 

in the Chapter 2.   

 

3. Two phases. If the state of the mixture is unknown the density cannot be used as an 

input. The pressure and the temperature are iterated employing a multidimensional 

Newton method until the density and the internal energy obtained using the PC-SAFT + 

VLE calculations are the ones obtained from the conservative variables. For each P-T 

calculation a stability analysis is performed to determine if the mixture is stable 

(Appendix: Algorithm 2). 

 

 
Figure 4.4: Experimental [49]  and calculated pressure-composition phase diagram for the N2 (1) + 

C12H26 (2) system. Solid lines: PC-SAFT EoS with kij = 0.144. It was computed using the 
thermodynamic algorithm described in the Appendix. 

 

a. Mixture stable: The PC-SAFT model is solved. The reduced density is iterated 

until the computed pressure is the input pressure (Appendix: Algorithm B). 

 

b. Mixture unstable: The isothermal-isobaric flash problem (TPn flash) is solved 

and the properties of the fluid in a VLE state are computed (Appendix: TPn 

algorithm, VLE properties).  
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4.1.4 VLE interface 

In [15], molecular dynamic simulations of three n-alkane fuels into nitrogen under various 

temperatures and pressures were performed to study the injection, evaporation and mixing 

processes of hydrocarbon fuels into a supercritical environment. The study was focused on 

understanding the transition from classical two-phase evaporation to one-phase diffusion-

controlled mixing. Using as threshold a dimensionless transition time (the time needed to transit 

from subcritical to supercritical respect to the liquid lifetime) of 0.35, the authors identified two 

regions on the P-T diagram, see Figure 4.5. Supercritical dominated: Due to the high critical 

pressures of TYPE IV mixtures, a VLE state is present at the beginning of the evaporation process. 

The temperature of the liquid core goes up until the VLE state disappears and only a diffusion-

controlled mixing process exists. Subcritical dominated:  A clear interface exists between the 

liquid core and the ambient gases. Nitrogen is not able to diffuse into the liquid core (constant 

fuel mass fraction close to 1 during evaporation, see Figure 4.7). There is a gradual decrease of 

the density of the liquid core as the fuel is heated up. The evaporation reaches a constant state 

with a constant liquid core. 

According to the classification presented by [15], the combustion chamber of a Diesel 

engine working at medium-high load operation conditions is in the supercritical dominated 

regime after the compression cycle, see Figure 4.5. At these ambient conditions, the nitrogen is 

able to rapidly diffuse into the liquid core indicating that the interface has a Knudsen-number 

low enough to fall within the fluid mechanic continuum domain [11]. At 20MPa, the molar 

fraction of nitrogen in the liquid core (before the transition to a diffusion-controlled mixing 

process) at 0.5ns is almost 20%, see Figure 4.6. Therefore, the heat-up of the liquid core is 

dominated by diffusion phenomena. This can be proven by showing how isobaric-adiabatic 

mixing lines can replicate the heat-up profiles obtained in the molecular simulations of [15]. The 

isobaric-adiabatic lines where computed using eq.45. Figure 4.7 clearly shows how this 

hypothesis is not applicable in the subcritical dominated regime where after 5 ns the N2 molar 

fraction in the liquid core has a constant value of 2%. 

ℎ𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 𝑦𝐶12𝐻26
ℎ𝐶12𝐻26

+ 𝑦𝑁2
ℎ𝑁2

    (45) 

𝑝 = 20𝑀𝑃𝑎        

being y the mass fraction. 
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Figure 4.5: Diesel engine compression cycles [22] and contours of dimensionless transition time on 

pressure-temperature diagram of n-dodecane [15]  

 

 

 
Figure 4.6: Development of gas–liquid interface shown on VLE diagram at 20 MPa [15], VLE 

experimental data [49] and isobaric-adiabatic mixing lines. 

 

The hypothesis employed in this paper is that the vaporization process at high-pressure 

Diesel fuel injections is located at the subcritical vaporization stage of the supercritical 

vaporization regime described by [15] without a transition to the diffusion-controlled mixing 

process. Being the convective forces much more dominant than the diffusion phenomena, N2-

n-dodecane mixing takes place in a time several orders of magnitude lower than the one 

observed in Figure 4.6 where only diffusion is present. Thus, the heat-up of the jet describes a 

single isobaric-adiabatic mixing line instead of multiple adiabatic lines at different times. This 

can be corroborated observing the results obtained by [21], [22] where the heap-up of the heat 

follows an isobaric-adiabatic mixing line constant in time solving both, convection and diffusion 
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phenomena in their simulations. A diffuse interface method, which describe an adiabatic heat-

up of the jet, must be applied during Diesel engine injection simulations at high-pressure 

conditions (supercritical dominated regime) to properly characterize how the fuel vaporize.  

 
 

 
Figure 4.7: Development of gas–liquid interface shown on VLE diagram at 1  MPa [15], VLE 

experimental data [49] and isobaric-adiabatic mixing line. 

 

4.1.5 Results 

The working fluids employed are the following: (i) n-dodecane, (ii) a mixture of n-octane, 

n-dodecane and n-hexadecane; (iii) a pseudo-component that replicate the properties of the 

previous mixture; (iv) V0a Diesel, and (v) a pseudo-component that replicate the properties of 

the V0a Diesel.  

 

Shock Tube Problems 

Shock Tube Problem 1 (One phase, one component) 

A shock tube problem is used to validate the numerical solution of the hyperbolic 

operator. The results are compared with an exact solution computed using the methodology 

described in [81]. N-dodecane is utilized as working fluid; the domain is x ϵ [-0.5, 0.5] m; 300 

equally spaced cells were employed; wave transmissive boundary conditions are used in the left 

and right sides;  the simulated time is 5 10-4s; the initial conditions in the left state are 

ρL=438kg/m3, pL= 30MPa, uL=0m/s; and in the right state are ρR=100kg/m3, pR=10MPa, uR=0m/s. 

Figure 4.8 shows how the density, temperature, velocity and pressure results agree with the 

exact solution. 
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Shock Tube Problem 2 (One phase, multicomponent/pseudo-component) 

 The working fluids employed are a mixture of n-octane, n-dodecane and n-hexadecane 

(Table 4.2) and a pseudo-component that replicate the properties of the mixture (Table 4.3) 

[72]. Figure 4.9 shows a comparison of the results obtained employing the multicomponent 

mixture and the results obtained by [72]. This comparison was performed to validate the PC-

SAFT implementation in the code. 

 

  

  
Figure 4.8: Shock Tube Problem. CFL = 0.5, u = 0 m/s, 300 cells, t=5 10-4 s. Comparisons of (a) density, 

(b) temperature, (c) velocity and (d) pressure profiles: exact solution and numerical solutions.  

 

The domain is x ϵ [-0.5, 0.5] m; 800 equally spaced cells were employed; wave transmissive 

boundary conditions are used in the left and right sides;  the simulated time is 5 104s; the initial 

conditions in the left state are ρL=438 kg/m3, tL= 859.5 K, uL=0 m/s; and in the right state are 

ρR=100 kg/m3, tR=1744K, uR=0 m/s. Figure 4.10 presents the density, temperature, pressure, 

velocity, speed of sound and internal energy results. The pseudo-component results are the 

same as the multicomponent ones indicating that the methodology developed by [72] can be 

used to model complex hydrocarbon mixtures as a pseudo-component in CFD simulations that 

present one phase. 

 

(a) (b) 

(c) (d) 
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Figure 4.9: Density predictions for the hydrocarbon mixture presented in Table 4.2. 

 

Table 4.2: Molar composition of hydrocarbon mixture employed in Shock Tube Problem 2 [72] 

Compound 
Hydrocarbon mixture 
(Molar composition) 

n-hexadecane   0.232 

n-octane 0.460 
n-dodecane 0.232 

 

 

Table 4.3: PC-SAFT pure component parameters employed to model the pseudo-component 
employed in Shock Tube Problem 2 [72] 

Compound 𝑚 𝜎 (Å) 𝜀
𝑘⁄ (K) 

Pseudo-component 7.387 3.400 234.47 

 

Advection test cases 

 The computational domain is x ϵ [-10-5, 10-5] m; the simulated time is 10-6s; the left initial 

conditions are fuel at p=11MPa, u=10.0m/s and t=362K; the right initial conditions are nitrogen 

at p=11MPa, u=10.0m/s and t=972K; a uniform grid spacing (100 cells) is applied; CFL is set to 

be 0.5; wave transmissive boundary conditions are implemented in the left and right sides of the 

computational domain; and a smooth initial interface is applied to reduce the initial start-up error 

[82]. When a diffuse interface method is employed, the interfaces are not sharp one-point jumps 

but smooth as they are resolved [82]. Thus, a smooth initial profile is a realistic initial condition. 

The initial interface was computed employing eq.46 [21] .  

𝑌𝐹𝑈𝐸𝐿 = 0.5 − 0.5𝑒𝑟𝑓{(𝑥1 + 0.25𝑙𝑟𝑒𝑓)/(0.01𝑙𝑟𝑒𝑓)}  (46) 

The initialization of each cell located in the interface is performed knowing the pressure, enthalpy 

of the mixture (eq.46) and the molar fraction of the components.  
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Figure 4.10: Shock Tube Problem 2. CFL = 0.5, 800 cells, t=5 10-4 s. Comparison of the (a) density, (b) 
temperature, (c) pressure, (d) x-velocity, (e) sonic fluid velocity, (f) internal energy using as working 

fluids are a mixture of n-octane, n-dodecane and n-hexadecane (Table 4.2) and a pseudo-component 
that replicate the properties of the mixture (Table 4.3) [72]. 

 

Advection test case 1 (Two phases, n-dodecane/nitrogen) 

Figure 4.11 shows the results of this advection test case where n-dodecane is employed 

as fuel. The binary interaction parameter applied is kij = 0.1446. The numerical framework 

perfectly captures the large density and temperature gradients present in this multicomponent- 

multiphase one-dimensional test case. Small spurious pressure oscillations appear in the 

solution. This problem is well known in multicomponent density based codes employing highly 

non-linear EoS  ([21], [33], [46]). The combination of VLE + PC-SAFT calculations allows to 

properly model: (1) the properties of n-dodecane at high-density ranges where cubic models 

(a) (b) 

(c) 

(d) 

(e) (f) 
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show large deviations in the sonic fluid velocity (used in density based CFD codes to compute 

the hyperbolic fluxes and time step [46]), temperature and internal energy; (2) and a correct 

(adiabatic) subcritical evaporation process in the interface. 

  

  
Figure 4.11: Advection Test Case 1 (N2- C12H26), CFL = 0.5, u = 10 m/s, 100 cells. Results of (a) 

density, (b) temperature, (c) pressure and (d) VLE interface at 10-6s. 

 

Advection test case 2 (Two phases, V0a Diesel/ nitrogen, pseudo - V0a Diesel / nitrogen) 

Figure 4.12 shows the temperature, density, speed of sound and internal energy results 

of an advection test case that employs the multicomponent Diesel V0a and the pseudo-Diesel 

V0a (Table 4.4) as fuels.  The binary interaction parameter used between the nitrogen and the 

Diesel compounds or the pseudo-component is the same one used in the N2/n-dodecane 

mixtures (kij = 0.1446). The pseudo-component presents an error (using as reference the 

multicomponent Diesel results) of 1.6% in density, 3.7% in sonic fluid velocity and 5.5% in 

internal energy. However, the computational time required to solve the multicomponent V0a 

Diesel advection test case is 432% the time consumed by the pseudo-Diesel advection test case. 

The different computational requirements will be even bigger in multidimensional cases or 

simulations where the hydrocarbon mixture presents more components (e.g., V0b, V1 and V2 

Diesel surrogates). In the case of the Diesel surrogate V0a, the equilibrium state of five 

components must be computed in each cell of the interface, see Figure 4.13. Using the 

methodology of [72], the number of working fluids is limited to 2 (pseudo-Diesel + N2).  

(a) (b) 

(c) (d) 
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Figure 4.14 shows how the phase boundary from VLE at 11MPa is different if the 

multicomponent Diesel V0a or its pseudo-component are employed. The use of a pseudo-

component must not alter how the fuel is heat-up, especially in Diesel injection simulations 

where the temperature plays a significant role on determining the ignition time. However, 

Figure 4.15 presents how the results in the VLE interface are the same employing both working 

fluids (multicomponent mixture and pseudo-component. The mixture properties employing 

Diesel V0a or its pseudo-component are very similar along the isobaric-adiabatic mixing path 

found in the interface. 

  

  
Figure 4.12: Advection Test Case 2 (N2- V0a/ pseudo-Diesel V0a), CFL = 0.5, u = 10 m/s, 100 

cells. Results of (a) density, (b) temperature, (c) speed of sound and (d) internal energy results 

at 10-6 s. 

 

Two-dimensional cases 

Planar two-dimensional injections of n-dodecane and a Diesel pseudo-component are presented 

to demonstrate the multidimensional capability of the numerical framework.  

N-dodecane jet 

 A structured mesh is applied with a uniform cell distribution; the domain used is 12mm 

× 6mm; 1,216,800 cells are employed; the parabolic sub-step is included into these simulations 

without sub-grid scale modelling for turbulence or heat/species diffusion; the CFL number is set 

at 0.5; the fifth-order WENO discretization scheme presented in [32] is used; transmissive 

boundary conditions are applied at the top, bottom and right boundaries while a wall condition 

(a) (b) 

(c) (d) 
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Table 4.4: Pseudo-component PC-SAFT parameters employed to model the pseudo-Diesel V0a using 

the correlations developed by utilizing the GC parameters of Tihic et al. [86] 

Compound 𝑚 𝜎 (Å) 𝜀
𝑘⁄ (K) 

Pseudo-component 5.436 3.908 256.700 
 

 

 

 
Figure 4.13: VLE Interface, Advection Test Case 2 (N2- V0a/ pseudo-Diesel V0a), CFL= 0.5, u = 10 

m/s, 100 cells. Results of VLE interface at 10-6s. 

 

 

 
Figure 4.14: Advection Test Case 2 (N2- V0a/ pseudo-Diesel V0a). Results of VLE interface at 10-

6s and phase boundaries from VLE at 11MPa. 
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Figure 4.15: Advection Test Case 2 (N2- V0a/ pseudo-Diesel V0a), CFL = 0.5, u = 10 m/s, 100 

cells. Results of (a) density, (b) temperature, (c) speed of sound and (d) internal energy results 

at 10-6 s. 

 

is employed at the left boundary; a flat velocity profile is imposed at the inlet; the velocity of the 

jet is 600 m/s; the diameter of the exit nozzle is 0.1mm; the case is initialized using a pressure 

in the chamber of 11 MPa; the temperature of the nitrogen is 973 K; and the temperature of the 

injected fuel is 363K. The binary interaction parameter applied is kij = 0.1446. The loops where 

the hyperbolic fluxes, parabolic fluxes, update of conservative variables and thermodynamic 

solver are solved were paralleled employing OpenMP (24 physical cores where employed). Some 

instabilities were observed in the initialization as [21] reported. To solve this problem, a ramp is 

used to accelerate the fuel to 600m/s. The jet is quickly heated-up from a compressed liquid 

state to gas and finally, to a supercritical state describing an isobaric-adiabatic mixing line, see 

Figure 4.16.  Figure 4.17 shows how the Kelvin Helmholtz instability and ligament-shaped 

structures are developed in the shear layer.  

 

Diesel jet 

The initial conditions and set-up of the simulation is the same as the n-dodecane jet. The 

binary interaction parameter applied is kij = 0.1446. Figure 4.18 shows the density, temperature, 

pressure and overall vapor fraction on a molar basis at 3.04 ×10-5 s. The computational time 

required to solve at 3.3×10-5s was 91.7 hours. A lot of time is invested on solving the 

(a) (b) 

(c) (d) 
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multidimensional Newton method of the cells that are in a VLE state. At these conditions, the 

derivatives of the Jacobian matrix are calculated numerically; the developed methodology is fast 

enough to perform simulations at affordable time scales. It should also be considered that the 

results are equivalent to a multicomponent injection of a Diesel surrogate of 4 components that 

vaporize when mixed with hot nitrogen. If the multicomponent surrogate was modelled as a 

pseudo-component with a higher number of compounds (e.g., V0b, V1 and V2 Diesel 

surrogates), the simulation time would be practically the same. This methodology makes the 

simulation time independent of the number of compounds present in the fuel and thus, allowing 

the real composition of a specific fuel to be utilised in CFD simulations. 

 

  
Figure 4.16. Scattered data of composition and temperature of the planar n-dodecane jet, dodecane-

nitrogen phase boundary from VLE at 11MPa and isobaric-adiabatic mixing line. 

 

4.2 Conclusions 

This chapter presents a numerical framework that combines PC-SAFT and VLE calculations 

in a density-based, fully conservative solver of the Navier-Stokes and energy conservation 

equations to simulate fuel-air mixing at high-pressure conditions. By coupling VLE calculations 

with the PC-SAFT model, subcritical simulations can be carried out. A purely predictive method 

that employs the PC-SAFT EoS for developing pseudo-components, which are defined to 

replicate the properties of complex hydrocarbon mixtures (e.g., Diesel fuels), has been 

completed and validated to be used in CFD simulations. Then, complex hydrocarbon mixtures 

can be modelled as a single pseudo-component knowing their number averaged molecular 

weight and hydrogen-to-carbon ratio. The results obtained employing the multicomponent 

Diesel V0a and its pseudo-component in a fuel-N2 advection test case show minimum 
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differences in density (1.6%), sonic fluid velocity (3.7%) and internal energy (5.5%). However, 

using a multicomponent surrogate significantly increase the computational requirements. The 

time required to solve the multicomponent V0a Diesel advection test case was 432% the time 

consumed by the same case employing its pseudo-component as fuel. Greater differences are 

expected in multidimensional cases (more cells would be in a VLE state as the contact surface of 

the jet and the nitrogen increases) or simulations where the hydrocarbon mixture presents more 

components (e.g., V0b, V1 and V2 Diesel surrogates). Additionally, several advection test cases 

and sock tube problems were performed to validate the numerical framework using analytical 

and exact solutions. Two-dimensional simulations of n-dodecane and Diesel injections into 

nitrogen are included to demonstrate the multidimensional, multispecies and multiphase 

capability of the numerical framework. 

 

 

 
Figure 4.17: Density results of n-dodecane planar jet. 
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Figure 4.18: CFL = 0.5, 1,216,800 cells. Results of the simulation of the V0A Diesel pseudo-component 
jet at t = 3.04×10-5 s.: (a) density, (b) temperature, (c) pressure, and (d) overall vapor fraction on a 

molar basis. 

 

  

(a) 

(b) 

(c) 

(d) 
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5. Conclusions and future work 

5.1 Conclusions 

The conclusions of this thesis are the following: 

• A new numerical framework has been developed to simulate supercritical, transcritical and 

subcritical injections at Diesel engine relevant conditions using a compressible density-

based solver of the Navier-Stokes equations along with the conservative formulation of the 

energy equation. For the first time, the PC-SAFT has been used to close this system and 

compute properties of the working fluids.  

• Both conservative and a quasi-conservative formulation (double flux model of  [33], [35], 

[53] is applied) were tested. 

o  It was observed that the conservative formulation generates spurious pressure 

oscillations, as reported with other diffuse interface density-based codes employing 

a real-fluid EoS. In 2D simulations, since the interfaces are not sharp one-point 

jumps but smooth as they are resolved, the wiggles generated do not compromise 

the stability of the simulation.  

o The quasi-conservative scheme can model supercritical and transcritical single- and 

multicomponent cases without spurious pressure oscillations. However, errors in 

the energy conservation that appear employing this formulation may produce an 

unphysical quick heat-up of the jet in multicomponent cases making these schemes 

inadequate for Diesel injection simulations where the temperature plays a 

significant role in determining the ignition time. The energy conservation error was 

higher using the PC-SAFT model than PR EoS in the analysed cases.  

• A fully conservative formulation which employs a new spatial reconstruction technique was 

developed: first, the pressure and sonic fluid velocity are computed at the cell centres once 

the conservative variables have been updated in each Runge-Kutta sub-time step of the 

hyperbolic operator; then, these variables are reconstructed at the cell faces to solve the 

Riemann problem. This technique allows one to perform practical CFD simulations using 

complex EoS at affordable CPU times (the number of times the PC-SAFT model is solved in 

the hyperbolic operator per time step is lower than 20% the times it is employed using a 

classic FC implementation is the 2D simulations performed). Additionally, it smooths-out the 

previously observed spurious pressure oscillations. 
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• The results obtained by the PC-SAFT EoS to model Diesel shows the highest degree of 

agreement with experimental values in comparison with the results obtained when applying 

the method developed at NIST (AAD% for density (kg/m3) at 293.15K and 0.1MPa lower 

than 1.03% in the analysed Diesel surrogates). 

• A purely predictive method that employs the PC-SAFT EoS for developing pseudo-

components, which are defined to replicate the properties of complex hydrocarbon 

mixtures (e.g., Diesel fuels), was validated and completed to be used in CFD simulations. 

This methodology makes the simulation time independent of the number of compounds 

present in the fuel and thus, allowing the real composition of a specific fuel to be utilised in 

practical CFD simulations (the time required to solve a four-component Diesel advection test 

case was 432% the time consumed by the same case employing a pseudo-component). The 

pseudo-component developed correctly captures the evaporation process of the 

multicomponent Diesel surrogates in the VLE interface.  

•  The properties of Diesel fuel were modelled as: multicomponent surrogates of four, five, 

eight and nine components divided into accuracy types, depending on how closely they 

match the composition of real Diesel; or as a pseudo-component that replicates the 

properties of a specific multicomponent surrogate.  To the best of the author’s knowledge, 

this is the first time that real Diesel composition is considered in CFD simulations using a 

molecular based model. All the multi-component Diesel surrogates tested show different 

properties to n-dodecane, a working fluid commonly used in CFD simulations to model 

Diesel fuel. 

•  PC-SAFT is an alternative to cubic EoS, which show low accuracy when computing the 

thermodynamic properties of hydrocarbons at temperatures that are typical for today’s 

high-pressure fuel injection systems. 

• VLE calculations were included to simulate injections where the fuel enters the combustion 

chamber at low temperatures (subcritical injections). Due to the computational 

requirements of computing the VLE state of multiple components, it is necessary to model 

the Diesel surrogates as single pseudo-components to perform simulations at affordable 

CPU times.  

• One-dimensional simulations (shock tube problems and advection test cases) were 

performed to validate the numerical framework against analytical and exact solutions. 

• Planar two-dimensional simulations of supercritical, transcritical and subcritical injections 

were performed to demonstrate the multidimensional, multispecies and multiphase 
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capability of the developed code. Nitrogen, n-dodecane and Diesel were used as working 

fluids.  

• Published molecular dynamic simulations have been employed to demonstrate that the 

numerical framework properly captures the multicomponent VLE interface of subcritical 

injections at high-pressure conditions. 

• The framework was developed as a first complete step of a modelling approach, hence the 

physics of transcritical, supercritical and subcritical injection were not part of the objectives. 

It has been performed the validation of the thermodynamic algorithm employing 

experimental results; validation of the CFD code with exact and analytical solutions; and a 

validation of the pseudo-component method. Moreover, it is proven that no pressure 

oscillations are present in the solution, the jet is heated-up correctly; the algorithm is stable; 

and practical simulations can be performed. The next step is the implementation of this 

numerical algorithm in OpenFOAM and simulate Diesel jets for which we have experimental 

results. 
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5.2 Future work  

The coupling of a SAFT variant (the PC-SAFT), Navier-Stokes equations, energy conservation 

equation and VLE calculations in a same numerical framework, allows one to exploit the great 

capabilities of these molecular based models in CFD simulations. Taking this into account, my 

recommendations for future work are: 

 

Spray systems 

• To solve the in-nozzle flow and Diesel spray in a single domain. Cavitation can be 

captured in a numerical framework where the PC-SAFT EoS is used along with VLE 

calculations. [89] carried out an experimental and numerical study to analyse the 

influence of in-nozzle flow, cavitation and fuel properties on the Diesel spray. The 

authors showed how cavitation can spread throughout the nozzle hole, reach the exit 

and influence the evolution of the spray. They observed the collapse of cavitation 

structures in the spray jet and its asymmetric shape provoked by cavitation inception in 

the nozzle hole and collapse of cavitation structures. It would be interesting to capture 

in a single simulation all these phenomena and analyse how the different vaporization 

rates of the Diesel compounds affect the injection process. 

 

• To simulate a complete gasoline cycle, as proposed by [21]. Different multicomponent 

surrogates and pseudo-components could be developed to model the properties of 

gasoline.  

 

• To perform supercritical cryogenic jet simulations. In liquid rocket engines, cryogenic 

propellants are injected into combustion chambers at supercritical pressure conditions, 

then mixing and combustions takes place. The developed numerical framework can be 

used to capture the mixing process and easily model the properties of the different 

propellants.  

 

Natural gas 

• To model the different processes involved in the storage or transport of natural gas. 

Natural gas is a relatively clean source of energy (compared to other fossil fuels), whose 

use has increased significantly in recent years. In order to deliver it to the consumers it 

is subjected to several processes such as compression, liquefaction or pressure drop [5]. 
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PC-SAFT can accurately predict the thermodynamics properties of natural gas and 

similar mixtures in a wide range of temperature and pressure [5].  

 

Biological and chemical engineering 

• To couple the electrolyte Perturbed-Chain Statistical Association Theory (ePC-SAFT) 

variant developed by [90] with the Navier-Stokes equations and energy equation to 

model electrolyte solutions. These systems can be found in different applications like 

waste and drinking water treatment, fertilizer production, electrolysis, enhanced oil 

recovery or osmosis and reverse osmosis of aqueous solutions [91]. High accuracy 

thermodynamic can be very relevant in the CFD simulations employed to simulate these 

processes.  
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Appendix  

Figure A1 shows a schematic representation of the CFD code. By interpolating the conservative 

variables, speed of sound and pressure at the cell faces in the hyperbolic operator, the 

thermodynamic solver can be directly applied to the updated conservative variables. Thus, it is 

not employed twice per cell face in each Runge-Kutta subtime-step [32]. In the parabolic 

operator, the conservative variables, temperature, and enthalpy are interpolated at the cell 

faces. Again, the thermodynamic solver is applied to the updated conservative variables.   
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Figure A1: Schematic representation of the CFD code 

 

Thermodynamic solver 

The first step is to determine if only one phase exists checking the molar fractions of the 

components. This filter is employed to decrease the computational time reducing VLE 

calculations as the Algorithm 1 is quicker than the Algorithm 2. The limits A and B are case 

dependent. 
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Figure A2: Schematic representation of the thermodynamic solver 
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Algorithm 1 

The molecular density is computed using the density of the mixture. Once the molecular density 

is known a Newton method is employed to compute the temperature that is needed to calculate 

the value of all other thermodynamic variables. The temperature dependent function used in 

the iterative method is the internal energy. Initially a temperature value is assumed (for example 

the value of the temperature from the previous time RK sub-step or the previous time step) to 

initialize the iteration process. In most cells, this value is close to the solution. 
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Figure A3: Schematic representation of the Algorithm 1 
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Algorithm 2 

The pressure and the temperature are iterated employing a multidimensional Newton method 

until the density and the internal energy obtained in the PC-SAFT are the ones obtained from 

the conservative variables. The initial values of the pressure and the temperature are the ones 

already stored in the cell that is being solved. 
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Figure A4: Schematic representation of the Algorithm 2 
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Algorithm A 

Inputs: Temperature, density, molar composition.  

Output: Pressure, sonic fluid velocity, internal energy, enthalpy, partial derivative of the 

internal energy respects the temperature at constant density. 

 

     1) Compute molecular density (A.1) 

     2) Compute segment diameter of each component (A.2) 

     3) Compute mean segment number (A.3)  

     4) Compute radial distribution function of 

Algorithm A 

the hard sphere fluid (A.4)   

     5) Compute hard sphere fluid contribution to the compressibility factor (A.6)    

     6) Compute hard chain contribution to the compressibility factor (A.7)   

     7

s

) Compute dispersion contribution to the compressibility factor (A.9)  

     8) Compute total compressibility factor (A.20)  

     9) Compute pressure (A.

Compute the c

21

ontribu tion

 

 of    t

)

h0 e 1 )  ha d-sphere system to the residual  

    Helmholtz free energy temperature derivative 

Compute the hard-chain reference contribution to the residual  

    Helmholtz free energy temperature 

 

(A.22) 

    11)  

derivative 

Compute the dispersion contribution to the residual  

    Helmholtz free energy temperature derivative 

Compute the residual Helmholtz free energy temperature de

(A.25) 

    12) 

(A.27) 

    13) (A.31) 

14) Compute internal energy (A.33) 

    15) Compute enthalpy (A.35) 

    16) Compute heat capacities (A.36,A.37) 

    17) Compute sonic fluid velocity (A.40) 
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Figure A5: Schematic representation of the Algorithm A  

 

Steps  

1) Compute molecular density 

𝜌𝑚 = 𝜌(𝑘𝑔/𝑚3)*10-30*N𝐴/M𝑀*1000                                (A.1) 

where 𝑁𝐴 is the Avogadro number and 𝑀𝑀 is the molecular weight of the mixture. 

 

2) Compute temperature-dependent segment diameter d of component i [55] 

𝑑𝑖 = 𝜎𝑑𝑖 [1 − 0.12 𝑒𝑥𝑝 (−3
𝜀𝑖

𝑘𝑇
)]                    (A.2) 

where 𝑘 is the Boltzmann constant, 𝑇 is the temperature, 𝜀𝑖  is the depth of pair potential 

of the component and 𝜎𝑑𝑖 is the segment diameter. 
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3) Compute mean segment number [55] 

 �̄� = ∑ 𝑥𝑖
𝑛𝑐
𝑖 𝑚𝑖                        (A.3) 

where 𝑚𝑖 is the number of segments per chain of the component i and 𝑥𝑖 is the mole 

fraction of component i. 

 

4) Compute radial distribution function of the hard-sphere fluid [55] 

𝑔𝑖𝑗
ℎ𝑠 =

1

(1−𝜍3)
+ (

𝑑𝑖𝑑𝑗

𝑑𝑖+𝑑𝑗
)

3𝜍2

(1−𝜍3)2 + (
𝑑𝑖𝑑𝑗

𝑑𝑖+𝑑𝑗
)

2
3𝜍2

2

(1−𝜍3)3                             (A.4) 

where   

𝜍𝑛 =
𝜋

6
𝜌𝑚 ∑ 𝑥𝑖𝑖 𝑚𝑖𝑑𝑖

𝑛    𝑛 ∈ {0,1,2,3}                             (A.5) 

 

5) Compute contribution of the hard sphere to the compressibility factor [55] 

𝑍ℎ𝑠 =
𝜍3

(1−𝜍3)
+

3𝜍1𝜍2

𝜍0(1−𝜍3)2 +
3𝜍2

3−𝜍3𝜍2
3

𝜍0(1−𝜍3)3                               (A.6) 

 

6) Compute hard-chain contribution to the compressibility factor [55] 

𝑍ℎ𝑐 = �̄�𝑍ℎ𝑠 − ∑ 𝑥𝑖𝑖 (𝑚𝑖 − 1)(𝑔𝑖𝑖
ℎ𝑠)−1𝜌𝑚

𝜕𝑔𝑖𝑖
ℎ𝑠

𝜕𝜌𝑚
                                               (A.7)  
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2

(
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2
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(1−𝜁3)4)                                (A.8) 

 

7) Compute dispersion contribution to the compressibility factor [55] 

𝑍𝑑𝑖𝑠𝑝 = −2𝜋𝜌𝑚
𝜕(𝜂𝐼1)

𝜕𝜂
𝑚2𝜀𝜎𝑑

3 − 𝜋𝜌𝑚�̄� [𝐶1
𝜕(𝜂𝐼2)

𝜕𝜂
+ 𝐶2𝜂𝐼2] 𝑚2𝜀2𝜎𝑑

3                (A.9) 

𝐶1and  𝐶2 are defined as:  

𝐶1 = (1 + 𝑍ℎ𝑐 + 𝜌𝑚
𝜕𝑍ℎ𝑐

𝜕𝜌𝑚
)

−1

=  

(1 + 𝑚
8𝜂−8𝜂2

(1−𝜂)4 + (1 − 𝑚)
20𝜂−27𝜂2+12𝜂3−2𝜂4

[(1−𝜂)(2−𝜂)]2 )
−1

                         (A.10) 

𝐶2 =
𝜕𝐶1

𝜕𝜂
= −𝐶1

2 (𝑚
−4𝜂2+20𝜂+8

(1−𝜂)5 + (1 − 𝑚)
2𝜂3+12𝜂2−48𝜂+40

[(1−𝜂)(2−𝜂)]3 )                (A.11) 

The terms 𝑚2𝜀𝜎𝑑
3 and  𝑚2𝜀2𝜎𝑑

3 are defined as: 
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𝑚2𝜀𝜎𝑑
3 = ∑ ∑ 𝑥𝑖

𝑛𝑐
𝑗

𝑛𝑐
𝑖 𝑥𝑗𝑚𝑖𝑚𝑗 (

𝜀𝑖𝑗

𝑘𝑇
) 𝜎𝑑,𝑖𝑗

3                         (A.12) 

𝑚2𝜀2𝜎𝑑
3 = ∑ ∑ 𝑥𝑖

𝑛𝑐
𝑗

𝑛𝑐
𝑖 𝑥𝑗𝑚𝑖𝑚𝑗 (

𝜀𝑖𝑗

𝑘𝑇
)

2
𝜎𝑑,𝑖𝑗

3               (A.13) 

 

The mixture parameters 𝜎𝑖𝑗 and  𝜀𝑖𝑗  ,which are defined for every pair of unlike segments, 

are modelled using a Berthelot-Lorentz combining rule. 

𝜎𝑖𝑗 =
1

2
(𝜎𝑖 + 𝜎𝑗)                 (A.14)

 𝜀𝑖𝑗 = √𝜀𝑖𝜀𝑗(1 − 𝑘𝑖𝑗)                                         (A.15) 

𝜕(𝜂𝐼1)

𝜕𝜂
  and  

𝜕(𝜂𝐼2)

𝜕𝜂
 are expressed as: 

𝜕(𝜂𝐼1)

𝜕𝜂
= ∑ 𝑎𝑗

6
𝑗=0 (�̄�)(𝑗 + 1)𝜂𝑖                (A.16) 

𝜕(𝜂𝐼2)

𝜕𝜂
= ∑ 𝑏𝑗

6
𝑗=0 (�̄�)(𝑗 + 1)𝜂𝑖                (A.17)

    

The coefficients a and b depend on the chain length: 

𝑎𝑖(𝑚) = 𝑎0𝑖 +
𝑚−1

𝑚
𝑎1𝑖 +

𝑚−1

𝑚

𝑚−2

𝑚
𝑎2𝑖                           (A.18) 

𝑏𝑖(𝑚) = 𝑏0𝑖 +
𝑚−1

𝑚
𝑏1𝑖 +

𝑚−1

𝑚

𝑚−2

𝑚
𝑏2𝑖                        (A.19) 

𝑎0𝑖, 𝑎1𝑖, 𝑎2𝑖, 𝑏0𝑖 , 𝑏1𝑖, 𝑏2𝑖  are constants [55]. 

 

8) Compute compressibility factor [55] 

𝑍 = 1 + 𝑍ℎ𝑐 + 𝑍𝑑𝑖𝑠𝑝                 (A.20) 

 

9) Compute pressure [55] 

𝑃 = 𝑍𝑘𝐵𝑇𝜌𝑚(1010)3                 (A.21) 

 

10) Compute temperature derivative of the Helmholtz free energy residual contribution 

of the hard-sphere system [55] 

 (
𝜕�̃�ℎ𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

=
1

𝜍0
[

3(𝜍1,𝑇𝜍2+𝜍1𝜍2,𝑇)

(1−𝜍3)
+

3𝜍1𝜍2𝜍3,𝑇

(1−𝜍3)2 +
3𝜍2

2𝜍2,𝑇

𝜍3(1−𝜍3)2 +
𝜍2

3𝜍3,𝑇(3𝜍3−1)

𝜍3
2(1−𝜍3)3 +

(
3𝜍2

2𝜍2,𝑇𝜍3−2𝜍2
3𝜍3,𝑇

𝜍3
3 ) 𝑙𝑛(1 − 𝜍3) + (𝜍0 −

𝜍2
3

𝜍3
2)

𝜍3,𝑇

(1−𝜍3)

]  (A.22) 
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with abbreviations for two temperature derivatives: 

𝜍𝑛,𝑇 =
𝜕𝜍𝑛

𝜕𝑇
=

𝜋

6
𝜌𝑚 ∑ 𝑥𝑖𝑖 𝑚𝑖𝑛𝑑𝑖,𝑇(𝑑𝑖)𝑛−1  𝑛 ∈ {0,1,2,3}                            (A.23) 

𝑑𝑖,𝑇 =
𝜕𝑑𝑖

𝜕𝑇
= 𝜎𝑖 (3

𝜀𝑖

𝑘𝑇2) [−0.12 𝑒𝑥𝑝 (−3
𝜀𝑖

𝑘𝑇
)]                       (A.24) 

 

11)  Compute temperature derivative of the Helmholtz free energy hard-chain reference 

contribution [55] 

(
𝜕�̃�ℎ𝑐

𝜕𝑇
)

𝜌,𝑥𝑖

= �̄� (
𝜕�̃�ℎ𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

− ∑ 𝑥𝑖𝑖 (𝑚𝑖 − 1)(𝑔𝑖𝑖
ℎ𝑠)−1 (

𝜕𝑔𝑖𝑖
ℎ𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

                     (A.25) 

 

The temperature derivative of the radial pair distribution function is: 

𝜕𝑔𝑖𝑖
ℎ𝑠

𝜕𝑇
=

𝜍3,𝑇

(1−𝜍3)2 + (
1

2
𝑑𝑖,𝑇)

𝜍2

(1−𝜍3)2 + (
1

2
𝑑𝑖) (

3𝜍2,𝑇

(1−𝜍3)2 +
6𝜍2𝜍3,𝑇

(1−𝜍3)3) +  

(
1

2
𝑑𝑖𝑑𝑖,𝑇)

2𝜍2
2

(1−𝜍3)3 + (
1

2
𝑑𝑖)

2
(

4𝜍2𝜍2,𝑇

(1−𝜍3)3 +
6𝜍2

2𝜍3,𝑇

(1−𝜍3)4 )                   (A.26) 

 

12) Compute temperature derivative of the Helmholtz free energy dispersive attraction 

[55] 

(
𝜕�̃�𝑑𝑖𝑠𝑝

𝜕𝑇
)

𝜌,𝑥𝑖

= −2𝜋𝜌𝑚 (
𝜕𝐼1

𝜕𝑇
−

𝐼1

𝜕𝑇
) 𝑚2𝜀𝜎𝑑

3 − 𝜋𝜌𝑚𝑚  

[
𝜕𝐶1

𝜕𝑇
𝐼2 + 𝐶1

𝜕𝐼2

𝜕𝑇
− 2𝐶1

𝐼2

𝑇
] 𝑚2𝜀2𝜎𝑑

3                        (A.27) 

with 

𝜕𝐼1

𝜕𝑇
= ∑ 𝑎𝑖(𝑚6

𝑖=0 )𝑖𝜍3,𝑇𝜂𝑖−1                (A.28) 

𝜕𝐼2

𝜕𝑇
= ∑ 𝑏𝑖(𝑚6

𝑖=0 )𝑖𝜍3,𝑇𝜂𝑖−1                (A.29) 

𝜕𝐶1

𝜕𝑇
= 𝜍3,𝑇𝐶2                  (A.30) 

 

13) Compute temperature derivative of the Helmholtz free energy [55] 

(
𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

= (
𝜕�̃�ℎ𝑐

𝜕𝑇
)

𝜌,𝑥𝑖

+ (
𝜕�̃�𝑑𝑖𝑠𝑝

𝜕𝑇
)

𝜌,𝑥𝑖

                        (A.31) 

 

14) Compute the internal energy [92] 
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The internal energy is estimated as the sum of the ideal internal energy and the residual 

internal energy [92]. 

𝑒𝑟𝑒𝑠

𝑅𝑇
= −𝑇 (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

                          (A.32) 

𝑒 = 𝑒𝑟𝑒𝑠 + 𝑒𝑖𝑑                  (A.33) 

 

15) Compute enthalpy [55]: 

It is computed as the sum of the ideal contribution (obtained by integrating the ideal 

heat capacity at constant pressure with respect to the temperature) and the residual 

enthalpy [55]. 

ℎ𝑟𝑒𝑠

𝑅𝑇
= −𝑇 (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

+ (𝑍 − 1)                    (A.34) 

ℎ = ℎ𝑟𝑒𝑠 + ℎ𝑖𝑑                   (A.35) 

 

16) Heat capacities [93] 

Heat capacities are computed as the sum of the ideal contribution [94] and the 

correction terms calculated with the PC-SAFT EoS [92]. where 𝐶𝑝 and 𝐶𝑣 are the heat 

capacities at constant pressure and volume respectively. 

𝐶𝑣 = 𝐶𝑣,𝑖𝑑 + 𝐶𝑣,𝑟𝑒𝑠                 (A.36) 

𝐶𝑝 = 𝐶𝑝,𝑖𝑑 + 𝐶𝑝,𝑟𝑒𝑠                 (A.37) 

𝐶𝑣
𝑟𝑒𝑠 = −𝑅𝑇 [2 (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

+ 𝑇 (
𝜕2�̃�𝑟𝑒𝑠

𝜕𝑇2 )
𝜌,𝑥𝑖

]              (A.38) 

𝐶𝑝
𝑟𝑒𝑠 = 𝐶𝑣

𝑟𝑒𝑠 + 𝑅
[𝜌𝑚𝑇(

𝜕2�̃�𝑟𝑒𝑠

𝜕𝜌𝑚𝜕𝑇
)

𝑥𝑖

+𝜌𝑚(
𝜕�̃�𝑟𝑒𝑠

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

+1]

[𝜌𝑚
2(

𝜕2�̃�𝑟𝑒𝑠

𝜕𝜌𝑚
2 )

𝑇,𝑥𝑖

+2𝜌𝑚(
𝜕�̃�𝑟𝑒𝑠

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

+1]

2

            (A.39) 

 

17) Speed of sound [93] 

The speed of sound is computed as: 

𝑐 = √
𝐶𝑝

𝐶𝑣
(

𝜕𝑃

𝜕𝜌𝑚
)

𝑇

                  (A.40) 

 

The derivatives needed to compute the speed of sound are: 
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(
𝜕𝑃

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

= (
𝜕𝑃

𝜕𝜂
)

𝑇,𝑥𝑖

(
𝜕𝜂

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

                           (A.41) 

(
𝜕𝜂

𝜕𝜌𝑚
)

𝑇,𝑥𝑖

=
𝜋

6
(∑ 𝑥𝑖𝑚𝑖𝑑𝑖

3
𝑖 )                                  (A.42) 

(
𝜕𝑃

𝜕𝜂
)

𝑇,𝑥𝑖

= 𝑘𝐵𝑇(1010)3 [𝜌𝑚 (
𝜕𝑍

𝜕𝜂
)

𝑇,𝑥𝑖

+ 𝑍 (
𝜕𝜌𝑚

𝜕𝜂
)

𝑇,𝑥𝑖

]                  (A.43) 

(
𝜕𝜌𝑚

𝜕𝜂
)

𝑇,𝑥𝑖

=
6

𝜋
(∑ 𝑥𝑖𝑚𝑖𝑑𝑖

3
𝑖 )

−1
                               (A.44) 

(
𝜕𝑍

𝜕𝜂
)

𝑇,𝑥𝑖

can be found in [95].                     (A.45) 

 

18) Compute derivative internal energy with respect to temperature at constant density 

[93] 

(
𝜕𝑒𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

= −𝑅𝑇 [2 (
𝜕�̃�𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

+ (
𝜕2�̃�𝑟𝑒𝑠

𝜕𝑇2 )
𝜌,𝑥𝑖

∗ 𝑇]                           (A.46) 

𝑑𝑒𝑖𝑑

𝑑𝑇
= 𝐶𝑣

𝑖𝑑                       (A.47) 

(
𝜕𝑒

𝜕𝑇
)

𝜌,𝑥𝑖

= (
𝜕𝑒𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

+
𝑑𝑒𝑖𝑑

𝑑𝑇
                               (A.48) 

 

19) Compute the new temperature using the Newton method 
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Algorithm A(p) 

 

,

Temperature

a

 from the previous time

A

m

 step 

Fro  conservative variables: 

From double flux model: p
Inputs

T_input)

Specific values of each component: , / , ,

1) Compute mole fr

lgorithm A(p) 

(

i

ijk k m

Y















( )

ction of each parameter

 

if abs (p(double flux model)-p(PC-SAFT) 0.001  

     2) Compute segment diameter of each component (A.2) 

     3) Compute mean segment number (A.3)  

     4) Compute radi

DO

then   

al distribution function of the hard sphere fluid (A.4)   

     5) Compute hard sphere fluid contribution to the compressibility factor (A.6)    

     6) Compute hard chain contribution to the compressi

 

bility factor (A.7)   

     7) Compute dispersion contribution to the compressibility factor (A.9)  

     8) Compute total compressibility factor (A.20)  

     9) Compute pressure (A.21) 

    10) Compute the contribution of  the hasd-sphere system to the residual  

    Helmholtz free energy temperature derivative 

Compute the hard-chain reference contribution to the residual  

    Helmho

 

(A.22) 

    11)  

ltz free energy temperature derivative 

Compute the dispersion contribution to the residual  

    Helmholtz free energy temperature derivative 

Compute the residual Helmholt

(A.25) 

    12) 

(A.27) 

    13) (A.31) 

14) Compute internal energy (A.33) 

    15) Compute enthalpy (A.35) 

    16) Compute heat capacities (A.36,A.37) 

    17) Compute sonic fluid velocity (A

z free energy temperature derivative   

    

.40) 

    18) Compute the temperature derivative of the internal energy (A.48) 

    19) Compute the new temperature using the

   RETURN

E
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Figure A6: Schematic representation of the Algorithm A(p) 
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Algorithm B 

Inputs: Temperature, pressure, molar composition.  

Output: Density, speed of sound, internal energy, enthalpy, fugacities, partial derivative of the 

internal energy respect the temperature at constant pressure, partial derivative of the internal 

energy respect the pressure at constant temperature, partial derivative of the density respects 

the temperature at constant pressure and partial derivative of the density respect the 

temperature at constant pressure. 

 

This algorithm is applied when the pressure and the temperature are iterated employing a 

multidimensional Newton method until the density and the internal energy computed are the 

ones obtained from the conservative variables.  

[
𝑝
𝑡

]
𝑛+1

= [
𝑝
𝑡

]
𝑛

− [𝑱−𝟏(𝑝, 𝑡)𝑛] [
𝜌(𝑝, 𝑡)𝑛

𝑒(𝑝, 𝑡)𝑛
]                              (A.49) 

where 

𝑱 = [

(
𝜕𝜌

𝜕𝑝
)

𝑡
(

𝜕𝜌

𝜕𝑡
)

𝑝

(
𝜕𝑒

𝜕𝑝
)

𝑡
(

𝜕𝑒

𝜕𝑡
)

𝑝

]                           (A.50) 

The independent variables of the PC-SAFT are the temperature and the density. Thus, it is 

necessary to perform the following transformations to obtain the partial derivatives needed for 

the multidimensional Newton method.  

(
𝜕𝜌

𝜕𝑝
)

𝑇
= (

𝜕𝑝

𝜕𝜌
)

𝑇

−1
         Reciprocity                              (A.51) 

(
𝜕𝜌

𝜕𝑡
)

𝑝
= − (

𝜕𝑝

𝑡
)

𝜌
(

𝜕𝑝

𝜕𝜌
)

𝑇

−1
          Chain rule                                 (A.52) 

(
𝜕𝑒

𝜕𝑝
)

𝑇
= (

𝜕𝑒

𝜕𝜌
)

𝑇
(

𝜕𝑝

𝜕𝜌
)

𝑇

−1
          Chain rule                                     (A.53) 

(
𝜕𝑒

𝜕𝑡
)

𝑝
= (

𝜕𝑒

𝜕𝑡
)

𝜌
− (

𝜕𝑒

𝜕𝜌
)

𝑇
(

𝜕𝜌

𝜕𝑡
)

𝜌
(

𝜕𝑝

𝜕𝜌
)

𝑇

−1
           Triple product rule                                             (A.54) 

 

The partial derivatives needed then are: 

(
𝜕𝑝

𝜕𝑡
)

𝜌
, (

𝜕𝑝

𝜕𝜌
)

𝑇
, (

𝜕𝑒

𝜕𝜌
)

𝑇
, (

𝜕𝑒

𝜕𝑡
)

𝜌
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     1) Compute segment diameter of each component (A.2) 

     2) Compute mean segment number (A.3)  

     3) Compute radial distribution function of the hard sphere fluid (A.4)   

4) R
     

Algorithm B 

( )calc

= 0.45

DO

 If abs (p -p 0.001

     Compute hard sphere fluid contribution to the compressibility factor (A.6)    

     Compute hard chain contribution to t

educe density
 

iterative method

INIT

sys then



 
 

he compressibility factor (A.7)   

     Compute dispersion contribution to the compressibility factor (A.9)  

     Compute total compressibility factor (A.20)  

     Compute pressure (A.21)

     Derivativ

H

 

e

e

 of pressure respect resuce density

     Compute new pressure using Newton method   

END IF

END 
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O
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D

    5)  



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
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
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


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

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(A.22) 
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) Compute internal 
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    Helmholtz free energy temperature derivative 

Compute the residual Helmholtz free energy temperature derivative   

    9

n

energy (A.33) 

    10) Compute enthalpy (A.35) 
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    12) Com
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(
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Figure A7: Schematic representation of the Algorithm B 
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Steps 

1) Compute temperature-dependent segment diameter d of component i (A.2) 

2) Compute mean segment number (A.3) 

3) Compute radial distribution function of the hard-sphere fluid (A.4) 

4) Reduce density iterative method 

a. 𝜼𝑰𝑵𝑰𝑻= 0.45 

b. Compute contribution of the hard sphere to the compressibility factor (A.6) 

c. Compute hard-chain contribution to the compressibility factor (A.7) 

 

d. Compute dispersion contribution to the compressibility factor (A.9) 

e. Compute compressibility factor (A.20) 

f. Compute pressure (A.21) 

g. Derivative of pressure respect reduce density  

(
𝜕𝑃

𝜕𝜂
) = [𝜌𝑚 (

𝜕𝑍

𝜕𝜂
) + 𝑍 (

𝜕𝜌𝑚

𝜕𝜂
)] (1010)3𝑍𝑘𝐵𝑇                          (A.55) 

h. Compute the new pressure using the Newton method 

5) Compute temperature derivative of the Helmholtz free energy residual contribution 

of the hard-sphere system (A.22) 

6) Compute temperature derivative of the hard-chain reference contribution to the 

residual Helmholtz free energy (A.25) 

7) Compute temperature derivative of the dispersion contribution to the residual 

Helmholtz free energy (A.27) 

8) Compute temperature derivative of the Helmholtz free energy (A.31) 

9) Compute the internal energy (A.33) 

10) Compute enthalpy (A.35) 

11) Compute heat capacities (A.36,37) 

12) Compute speed of sound (A.40) 

13) Compute the derivatives of the Helmholtz free energy residual contribution of the 

hard-sphere system respect the molar fraction of the components (A.56) 

 

(
𝜕�̃�ℎ𝑠

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

= −
𝜁0,𝑥𝑘

𝜁0
�̃�ℎ𝑠 +

1

𝜁0
[

3(𝜁1,𝑥𝑘𝜁2+𝜁1𝜁2,𝑥𝑘)

(1−𝜁3)
+

3𝜁1𝜁2𝜁3,𝑥𝑘

(1−𝜁3)2 +
3𝜁2

2𝜁2,𝑥𝑘

𝜁3(1−𝜁3)2 +

𝜁2
3𝜁3,𝑥𝑘(3𝜁3−1)

𝜁3
2(1−𝜁3)3 + (

3𝜁2
2𝜁2,𝑥𝑘𝜁3−2𝜁2

3𝜁3,𝑥𝑘

𝜁3
3 − 𝜁0,𝑥𝑘) 𝑙𝑛( 1 − 𝜁3) + (𝜁0 −

𝜁2
3

𝜁3
2)

𝜁3,𝑥𝑘

(1−𝜁3)
]                 (A.56) 
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where 

𝜁𝑛,𝑥𝑘 = (
𝜕𝜁𝑛

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

=
𝜋

6
𝜌𝑚𝑚𝑘(𝑑𝑘)𝑛                              (A.57) 

 

14) Compute the derivative of the hard-chain reference contribution to the residual 

Helmholtz free energy respect the molar fraction of the components (A.58) 

 

      (
𝜕�̃�ℎ𝑐

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

= 𝑚𝑘�̃�ℎ𝑠 + �̄� (
𝜕�̃�ℎ𝑠

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

− ∑ 𝑥𝑖

𝑖

(𝑚𝑖 − 1)(𝑔𝑖𝑖
ℎ𝑠)−1 (

𝜕𝑔𝑖𝑖
ℎ𝑠

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

− (𝑚𝑘 − 1)ln (𝑔𝑘𝑘
ℎ𝑠) 

               (A.58) 

where 

(
𝜕𝑔𝑖𝑗

ℎ𝑠

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

=
𝜁3,𝑥𝑘

(1−𝜁3)2 + (
𝑑𝑖𝑑𝑗

𝑑𝑖+𝑑𝑗
) (

3𝜁2,𝑥𝑘

(1−𝜁3)2 +
6𝜁2𝜁3,𝑥𝑘

(1−𝜁3)3) +

(
𝑑𝑖𝑑𝑗

𝑑𝑖+𝑑𝑗
)

2

(
4𝜁2𝜁2,𝑥𝑘

(1−𝜁3)3 +
6𝜁2

2𝜁3,𝑥𝑘

(1−𝜁3)4 )                     (A.59) 

 

15) Compute derivative of the dispersion contribution to the residual Helmholtz free 

energy respect the molar fraction of the components (A.60) 

(
𝜕�̃�𝑑𝑖𝑠𝑝

𝜕𝑥𝑘
)

𝑇,𝜌,𝑥𝑗≠𝑘

= −2𝜋𝜌𝑚 [𝐼1,𝑥𝑘𝑚2𝜀𝜎3 + 𝐼1(𝑚2𝜀𝜎3)
𝑥𝑘] −  

𝜋𝜌 {[𝑚𝑘𝐶1𝐼2 + 𝑚𝐶1,𝑥𝑘𝐼2 + 𝑚𝐶1𝐼2,𝑥𝑘]𝑚2𝜀𝜎3 +  

𝑚𝐶1𝐼2(𝑚2𝜀𝜎3)
𝑥𝑘}                                (A.60) 

where 

  (𝑚2𝜀𝜎3)
𝑥𝑘

= 2𝑚𝑘 ∑ 𝑥𝑗𝑚𝑗 (
𝜀𝑘𝑗

𝑘𝑇
)𝑗 𝜎𝑘𝑗

3                     (A.61) 

(𝑚2𝜀2𝜎3)
𝑥𝑘

= 2𝑚𝑘 ∑ 𝑥𝑗𝑚𝑗 (
𝜀𝑘𝑗

𝑘𝑇
)𝑗

2
𝜎𝑘𝑗

3                     (A.62) 

𝐶1,𝑥𝑘 = 𝐶2𝜁3,𝑥𝑘 − 𝐶1
2 [𝑚𝑘

8𝜂−2𝜂2

(1−𝜂)4 − 𝑚𝑘
20𝜂−27𝜂2+12𝜂3−2𝜂4

[(1−𝜂)(2−𝜂)]2 ]                 (A.63) 

 

𝐼1,𝑥𝑘 = ∑ [𝑎𝑖(�̄�)𝑖𝜁3,𝑥𝑘
6
𝑖=0 𝜂𝑖−1 + 𝑎𝑖,𝑥𝑘𝜂𝑖]                    (A.64) 



 
105 

 

 

𝐼2,𝑥𝑘 = ∑ [𝑏𝑖(�̄�)𝑖𝜁3,𝑥𝑘
6
𝑖=0 𝜂𝑖−1 + 𝑏𝑖,𝑥𝑘𝜂𝑖]                           (A.65) 

 

𝑎𝑖,𝑥𝑘 =
𝑚𝑘

𝑚
2 𝑎1𝑖 +

𝑚𝑘

𝑚
2 (3 −

4

𝑚
) 𝑎2𝑖                      (A.66) 

 

𝑏𝑖,𝑥𝑘 =
𝑚𝑘

𝑚
2 𝑏1𝑖 +

𝑚𝑘

𝑚
2 (3 −

4

𝑚
) 𝑏2𝑖                    (A.67) 

 

16) Compute the chemical potential (A.68):  

𝜇𝑘
𝑟𝑒𝑠(𝑇,𝑣)

𝑘𝑇
= �̃�𝑟𝑒𝑠 + (𝑍 − 1) + (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑥𝑘
)

𝑇,𝑣,𝑥𝑖≠𝑗

− ∑ [𝑥𝑗 (
𝜕�̃�𝑟𝑒𝑠

𝜕𝑥𝑗
)

𝑇,𝑣,𝑥𝑖≠𝑗

]𝑁
𝑗=1                 (A.68) 

 

17) Compute the fugacity coefficient (A.69): 

𝑙𝑛𝜑𝑘 =
𝜇𝑘

𝑟𝑒𝑠(𝑇,𝑣)

𝑘𝑇
− 𝑙𝑛 𝑍                               (A.69) 

 

18)  Compute the partial derivative of the pressure with respect to the density at constant 

density. 

(
𝜕𝑃

𝜕𝜌𝑚
)

𝑇
= 𝑘𝐵𝑇(1010)3 [(

𝜕𝑍

𝜕𝜌𝑚
)

𝑡
𝜌𝑚 + 𝑍]                   (A.70) 

 

19) Compute the partial derivative of the pressure respect the temperature at constant 

density.  

(
𝜕𝑃

𝜕𝑇
)

𝜌
= 𝑘𝐵(1010)3𝜌𝑚 [(

𝜕𝑍

𝜕𝑇
)

𝜌
𝑇 + 𝑍]                            (A.71) 

 

20) Compute the partial derivative of the inernal energy respect the temperature at 

constant density. (A.48) 

21) Compute the partial derivative of the internal energy respect the density at constant 

temperature. 

(
𝜕𝑒𝑟𝑒𝑠

𝜕𝜌𝑚
)

𝑇
= −𝑅𝑇2 (

𝜕�̃�𝑟𝑒𝑠

𝜕𝑇𝜕𝜌𝑚
)

𝑇
                             (A.72) 

𝑑𝑒𝑖𝑑

𝑑𝜌𝑚
= 0.0                   (A.73) 
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(
𝜕𝑒

𝜕𝑇
)

𝜌,𝑥𝑖

= (
𝜕𝑒𝑟𝑒𝑠

𝜕𝑇
)

𝜌,𝑥𝑖

                                             (A.74) 

 

22) Compute the partial derivative of the density respect the pressure at constant 

tmeperature (A.51) 

23) Compute the partial derivative of the density respect the temperature at constant 

pressure (A.52) 

24) Compute the partial derivative of the internal energy respect the pressure at constant 

temperature (A.53) 

25) Compute the partial derivative of the internal energy respect the temperature at 

constant pressure (A.54) 
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Stability 

The Successive Substitution Iteration (SSI) algorithm  ([21], [96]) (without the Newton method) 

has been employed to determine if the mixture is stable. 

 

 N2 N2

1) IF (T > T  FUEL) THEN

           STABLE=1

           RETURN

    END IF

2) IF  (X  > C).AND.(X

v

 < D)  THEN

            STABLE=0

  

f

        T

3) Call Algorithm B  (obtain u i

  RE URN

 

g

   I

ac

END F

ty 

c

Stability

( )

( )

( )

alues)

        Inputs: Temperature, pressure, molar composition of the mixture

4) Calculate 

5) Wilson´s correlation is used to initialize the K-values  

6) Calculaten   

7) D

( ) A.75

A.76

Y_init A.77-A.78

id z

i

SSI

k=1,ntrial       ! SSI ALGORITHM

 Y  = Y_init(k,i)

=1,nmax

  IF ( dY >ε ) TH

 

EN

      

O 

 DO j

Call A

 

lgorit

 

hm B 

Inputs: Tempera

 

ture, pressure,
 

    y_trial = Y /sum(Y)

           

          

            

 

   

i i

 

i i

i

y_trial

ln )

            Yn(i) exp ( ) ln

            dY  = Yn  - Y

            Y  = Yn

  ELSE

            TPD*(k) = 1. - sum(Y)

            GO TO 1

  END IF

molar composition 

Obtain fugacity values ( i

i i

i

i

d z









= −

-8

  

END DO

1 CONTINUE

IF (min(TPD*(k))< -10

      STABLE = FALSE

ELSE

     STABLE =TRUE 

END

D

 

 IF

EN  DO
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Figure A8: Schematic representation of the stability algorithm  
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Steps 

1) The mixture is stable if the temperature is higher than Tc of the fuel (STABLE = 1) 

Any mixture with a temperature higher than the critical temperature of the fuel will be 

in a supercritical state (STABLE = 1). This kind of filters are applied to reduce the 

computational time. 

 

2) The mixture is unstable if the nitrogen molar fraction is bigger than C and lower than 

D (STABLE = 0) 

For example, by performing an injection of n-dodecane at 363K in a combustion 

chamber at 973K, the nitrogen mole fraction at which the fuel starts vaporizing depends 

on the pressure in the combustion chamber. Considering Diesel engine high-load 

operation conditions and an isobaric scenario it would be safe to consider that any 

mixture with a nitrogen molar fraction bigger than 0.35 and lower 0.7 will be in a VLE 

state.  

 

3) Call Algorithm B to obtain fugacity coefficients 𝒍𝒏𝝋𝒊( 𝒛𝒊) 

Inputs: Temperature, pressure, molar composition of the mixture 

 

4) Calculate 𝑑𝑖(𝑧) 

𝑑𝑖(𝑧) = 𝑙𝑛𝜑𝑖( 𝑧𝑖) + 𝑙𝑛𝑧𝑖                         (A.75)

      

5) The Wilson´s correlation is used to initialize the K-values  

𝐾𝑖 =
𝑝𝑐𝑖

𝑝
𝑒𝑥𝑝 [5.37(1.0 + 𝑤𝑖) (1.0 −

𝑇𝑐𝑖

𝑇
)]               (A.76) 

being 

𝐾𝑖 =
𝑥𝑖

𝑦𝑖
  

where 𝑝𝑐𝑖 is the critical pressure of the component i, 𝑇𝑐𝑖 is the critical temperature of 

the component i, 𝑤𝑖 is the acentric factor of the component i. 

 

6) Calculate trial phases Y  (two trials) 

 

For the trial 1: 
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𝑌(1, 𝑐𝑜𝑚𝑝) = {

𝑧𝑖

𝐾𝑖
 (Liquid phase)

𝑧𝑖𝐾𝐼 (Vapor phase)
                (A.77) 

For the trial 2: 

𝑌(2, 𝑐𝑜𝑚𝑝) = {

𝑧𝑖

𝐾𝑖3
    (Liquid phase)

𝑧𝑖𝐾𝐼

3
   (Vapor phase)

               (A.78) 

 

7) SSI-Algorithm (Figure A8) 
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TPn Algorithm 

A successive substitution method is employed to perform equilibrium calculations at specified 

temperature, pressure and overall composition. 

 

-

min ma

7

Wilson´s correlation is used to initialize the K-values (A.76)

WHILE eps TPN <10  THEN

    

1) 

2) ( ( )

i

)

     !Rachford-Rice

          a) If the condit ons A.79-A.80 are met:

         β     0    β = ,   

TPN

( )

x

i min m

-7

ax

min max

(A.81-A.82)

                  Calculate (A.83

T

1

                  If  K >1 change β  and  β  

 

 β  and  β  

              

 

)

                 Ch

W    ( (

ange A.84

HILE eps Rachford-Rice ) >)  10  

ini

=

( )

( )

min max

 

HEN

Calculate (A.85-A.86)

Chang

                               

e limits A.87n

g(β), '( )   

                                β  a d  β  

                    Newton-Raphs

 

          8 

 

on

 

 A.

       

8

     

g 

( )( )Calculate 

New overall fraction of vapor phase (A.90-A.91)

                    Calculate liquid and vapour mole fractions (A.92-A.93)

       

               /

                                

neweps abs   = −

       b) If the conditions A.79-A.80 are not met:

                     Calculate liquid and vapour mole fractions (A.94-A.95)

              c) Call Algorithm B to obtain fugacity coefficients of the liquid and vapor phase

              d)  Objective function (A.96)

              e)  Calculate eps TPN

              f)  Update K-factors from fugacity coeffcients (A.97)

END

                               

( )
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Figure A9: Schematic representation of the TPn algorithm  

 

1) The Wilson´s correlation is used to initialize the K-values  (A.76) 

2) WHILE (eps(TPn)<10-7) THEN  

Solve Rachford-Rice 

a. Check conditions A.79-A.80 to know if there is a solution in the interval 

𝜷[𝟎, 𝟏]. If the conditions are met 𝜷𝒎𝒊𝒏 = 𝟎, 𝜷𝒎𝒂𝒙 = 𝟏. If not, go to step 2.b. 

 ∑ 𝑧𝑖
𝐶
𝑖=1 𝐾𝑖 − 1 > 0                   (A.79) 

1 − ∑
𝑧𝑖

𝐾𝑖

𝐶
𝑖=1 < 0                (A.80)        

• If 𝑲𝒊 > 𝟏 then 

𝛽min = 𝑚𝑎𝑥𝑖 [0,
𝐾𝑖𝑧𝑖−1

𝐾𝑖−1
]                  (A.81) 
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𝛽max = 𝑚𝑖𝑛𝑖 [1,
1−𝑧𝑖

1−𝐾𝑖
]                                (A.82) 

• Calculate  𝛽𝑖𝑛𝑖 = 0.5(𝛽min + 𝛽max)                   (A.83) 

 

• Change limits  

𝑔(𝛽𝑖𝑛𝑖) > 0 → 𝛽min = 𝛽𝑖𝑛𝑖,  

𝑔(𝛽𝑖𝑛𝑖) < 0 → 𝛽max = 𝛽𝑖𝑛𝑖                    (A.84)  

 

• WHILE (eps( Rachford-Rice ) > 10-7) then  

 

o Calculate 𝒈(𝜷), 𝒈′(𝜷) 

𝑔(𝛽) = ∑ (𝑦𝑖
𝐶
𝑖=1 − 𝑥𝑖) = ∑

𝑧𝑖(𝐾𝑖−1)

1−𝛽+𝛽𝐾𝑖

𝐶
𝑖=1 = 0  (A.85) 

𝑔′(𝛽) = − ∑
𝑧𝑖(𝐾𝑖−1)2

(1−𝛽+𝛽𝐾𝑖)2
𝐶
𝑖=1 < 0              (A.86) 

 

o Change limits  

𝑔 > 0 → 𝛽min = 𝛽,  

𝑔 < 0 → 𝛽max = 𝛽                                    (A.87) 

o Newton-Raphson  

𝛥𝛽 = −
𝑔(𝛽)

𝑑𝑔/𝑑𝛽
  

𝛽𝑛𝑒𝑤 = 𝛽 + 𝛥𝛽               (A.88) 

 

o Calculate eps   

𝑒𝑝𝑠 = 𝑎𝑏𝑠((𝛽𝑛𝑒𝑤 − 𝛽)/𝛽)             (A.89) 

 

o New overall fraction of vapor phase:   

𝛽 = 𝛽𝑛𝑒𝑤  if  𝛽𝑛𝑒𝑤 is inside the interval [𝛽min, 𝛽max]                     (A.90) 

 

o If it is not, it is calculated as: 
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𝛽 = 0.5(𝛽min + 𝛽max),   𝛽min < 𝛽𝑛𝑒𝑤 < 𝛽max  (A.91) 

o Calculate liquid and vapour mole fractions 

𝑥𝑖 =
𝑧𝑖

1−𝛽+𝛽𝐾𝑖
           (A.92) 

𝑦𝑖 =
𝐾𝑖𝑧𝑖

1−𝛽+𝛽𝐾𝑖
                    (A.93) 

 

b.  If the conditions A.79-A.80 are not met [97]: 

If ∑ 𝒛𝒊 /𝑲𝒊 ≤ 𝟏 the liquid and vapour mole fractions are computed as: 

𝛽 = 1  

𝑥𝑖 = 𝑧𝑖/𝐾𝑖  

𝑦𝑖 = 𝑧𝑖                   (A.94) 

   Normalization of 𝒙𝒊 

 

If ∑ 𝒛𝒊 𝑲𝒊 ≤ 𝟏 the liquid and vapour mole fractions are computed as: 

𝛽 = 0  

𝑥𝑖 = 𝑧𝑖   

𝑦𝑖 = 𝑧𝑖 ∗ 𝐾𝑖                 (A.95) 

   Normalization of 𝒚𝒊 

 

c. Call Algorithm B to obtain fugacity coefficients of the liquid and vapor phase 

Inputs: Temperature, pressure, molar composition of the liquid or vapor 

 

d. Objective function  

𝐹𝑖 = 𝑙𝑛𝜑𝑣( 𝑇, 𝑝, 𝑦) − 𝑙𝑛𝜑𝑙( 𝑇, 𝑝, 𝑥) + 𝑙𝑛𝐾𝑖 = 0            (A.96) 

 

e. Calculate eps(TPN) 

 

f. Update K-factors from fugacity coeffcients 

𝐾𝑖 = 𝑒𝑥𝑝( 𝑙𝑛𝜑𝑙( 𝑇, 𝑝, 𝑥) − 𝑙𝑛𝜑𝑣( 𝑇, 𝑝, 𝑦))    (A.97) 

END 
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VLE properties 

The partial derivatives needed to perform the multidimensional Newton iteration in T and p are 

obtained numerically. 

 

The phase fraction on mass (𝜷𝒎) basis is computed as: 

𝛽𝑚 = 𝛽
𝑀𝑉(𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑖𝑛 𝑙𝑖𝑞𝑢𝑖𝑑 𝑝ℎ𝑎𝑠𝑒)

𝑀𝑇(𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠)
       (A.98) 

 

The equilibrium volume (𝒗𝑬𝑸) is computed as: 

𝑣𝐸𝑄 = 𝛽𝑚𝑣𝑣 + (1 − 𝛽𝑚)𝑣𝑙         (A.99) 

 

The equilibrium density is computed as:  

𝜌 =
1

𝑣𝐸𝑄
                      (A.100) 

 

The equilibrium internal energy is computed as:  

𝑒 = 𝛽𝑚𝑒𝑣 + (1 − 𝛽𝑚)𝑒𝑣                    (A.101) 

 

The equilibrium enthalpy is computed as:  

ℎ = 𝛽𝑚ℎ𝑣 + (1 − 𝛽𝑚)ℎ𝑙                    (A.102) 

 

The speed of sound in the VLE state was computed using Wallis formula:  

1

𝜌𝑐𝑤𝑎𝑙𝑙𝑖𝑠
2 =

𝜃

𝜌𝑣𝑐𝑣
2 +

1−𝜃

𝜌𝑙𝑐𝑙
2                      (A.103) 

   

where the vapour volume fraction (𝜃) is computed as: 

𝜃 =
𝜌−𝜌𝑣

𝜌𝑣−𝜌𝑙
                      (A.104) 
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