
              

City, University of London Institutional Repository

Citation: Mayhew, L. & Smith, D. (2006). Using queuing theory to analyse completion 

times in accident and emergency departments in the light of the government 4-hour target 
(Actuarial Research Paper No. 177). London, UK: Faculty of Actuarial Science & Insurance, 
City University London. 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/2309/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 

  
  Faculty of Actuarial  
  Science and Insurance 

 
 

Using Queuing Theory to 
Analyse Completion Times in 
Accident and Emergency 
Departments in the Light of the 
Government 4-hour Target 
 
 
Les Mayhew and David Smith 

  

 
Actuarial Research Paper 

No. 177 
 
 

          December 2006 
 
  ISBN  978-1-905752-06-5 
 

 
  Cass Business School 
  106 Bunhill Row 
  London EC1Y 8TZ 
  T +44 (0)20 7040 8470 
  www.cass.city.ac.uk 
 
 
 

Cass means business
 



 
 
 
 
 
 
 
 
“Any opinions expressed in this paper are my/our own and not 
necessarily those of my/our employer or anyone else I/we have 
discussed them with.  You must not copy this paper or quote it without 
my/our permission”. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using queuing theory to analyse completion times in 
accident and emergency departments in the light of 

the Government 4-hour target  
 
 

L Mayhew and D Smith  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Les Mayhew Cass Business School, Faculty of Actuarial Science and Insurance 
David Smith Cass Business School, Faculty of Actuarial Science and Insurance 
Lesmayhew@blueyonder.co.uk 
d.a.smith@city.ac.uk 
Cass Business School 
106 Bunhill Row 
London EC1Y 8TZ 
UK 
December  2006 



 2

Using queuing theory to analyse completion times in accident and 
emergency departments in the light of the Government 4-hour target  
 
Abstract 
 
This paper uses a queuing model to evaluate completion times in accident and emergency (A&E) 
departments in the light of the Government target of completing and discharging 98% of patients inside 
4 hours. It illustrates how flows though an A&E can be very accurately represented as a queuing 
process, how the outputs of a queuing model can be used to visualise and interpret the 4-hour hours 
Government target in a simple way and how queuing models can be used to assess the practical 
achievability of A&E targets in the future. The paper finds that A&E targets have resulted in significant 
improvements in completion times and thus deal with a major source of complaint by users of the 
National Health Service. It finds that whilst some of this improvement is attributable to better 
management, some is also due to the way some patients in A&E are designated and therefore counted. 
It finds for example that the current target would not have been possible without some form of patient 
re-designation or re-labelling taking place. Further it finds that the current target is so demanding that 
the integrity of reported performance is open to question and that a different approach is needed. 
Related incentives and demand management issues resulting from this Government target are also 
briefly discussed.  
 
Les Mayhew Cass Business School, Faculty of Actuarial Science and Insurance 
David Smith Cass Business School, Faculty of Actuarial Science and Insurance 
 
Introduction and background 
 
Accident and Emergency (A&E) services are the main way patients in the UK access 
urgently needed medical care. However, long waiting times have resulted in 
widespread criticism over a period of years and were repeatedly the most important 
complaint in patient satisfaction surveys.  
 
In the NHS plan published in 2000 the Government committed to a range of 
improvements in the delivery of health care services. In terms of A&E services, the 
NHS Plan said: 
 
“By 2004 no-one should be waiting more than four hours in accident and emergency 
from arrival to admission, transfer or discharge. Average waiting times in accident 
and emergency will fall as a result to 75 minutes. …………….. if they (patients) need 
a hospital bed they should be admitted to one without undue delay”1. 
 
This policy was spelt out in a subsequent publication, “Reforming Emergency Care”2, 
which set the target into a context of wider reforms aimed at improving services. As a 
step towards this, it was decided that all A&E departments should achieve a 
somewhat reduced standard of 90% of completions within four hours and that hospital 
trusts should be measured on this basis during the last week of March in 2003.  
 
Following discussions with the medical profession, it was accepted that the eventual 
target aim should be less than the original 100% on the grounds that there will always 
be a minority of patients that fall outside the range due to their condition or special 
circumstances and it would not be practical or desirable to force the system to deliver 
something outside its control.  

                                                           
1 Para 12.10 NHS plan 2000, CM 4818-I, Department of Health 
2 Reforming Emergency care, 2001, Department of Health 
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This was accepted by the Government with the result that 98% of completions within 
four hours is now the standard. As an indication of the impact of this policy, the 
Health Care Commission records that in the last quarter of 2005, 97 trusts achieved 
the required target of 98% in 4 hours; 54 under achieved the target (i.e. their 
performance was greater than or equal to 95% but less than 98%) and 8 ‘significantly’ 
underachieved the target (i.e. they achieved less than 95%) 
 
The achievement of the 98% target by so many trusts appears, at first sight, to be  a 
massive step forward. The NAO for example records that in 2003, 23% of patients 
spent over 4 hours in A&E3 as compared with 2% enshrined in the target. Based on 
the work reported in this paper, it implies that most patients are now being discharged 
in an average of one hour instead of three or more hours that was the norm just a few 
years ago.  
 
The reasons for the improvement include better management, more resources, 
changes to work flow, faster admissions to beds on wards and a stronger commitment 
to removing bottlenecks (e.g. in reception, triage, and undertaking diagnostic tests). 
However, not all the gains can be attributed either to increased efficiency or more 
resources.  
 
Improvements in completion times have also resulted from, in many cases, a re-
designation of patients with the effect that they are discharged from A&E earlier than 
they would have been discharged under old arrangements. The use of ‘medical 
assessment units’ into which some patients are transferred is a good example of this; 
but whether patients will notice the difference is open to question if it represents  
simply a re-labelling.  
 
A second concern is that introduction into the NHS of ‘payment by results’ may have 
encouraged some trusts to push patients through A&E even more quickly so 
benefiting from the higher inpatient ‘tariffs’ as compared with A&E tariffs. The 
possibility of perverse incentives such as these was not in the original aim behind the 
introduction of A&E targets which were primarily a response to patients’ concerns 
and may have encouraged the manipulation of data.  
 
More fundamentally, as A&E completion times have improved so demand has 
increased. Some of this additional demand will be ‘genuine’ but some will be demand 
diverted from other medical centres (e.g. GPs) and some will have been supply-
induced as a result of service improvements.  Government policy encourages the 
creation of ‘urgent care’ and ‘walk-in’ centres that deal with more routine cases at 
lower unit cost. The re-routing of demand in this way may therefore have further 
ramifications for the achievement of A&E targets in the future. 
  
The way in which targets have been achieved, the prospects for further improvements 
and the sustainability of current performance is therefore clearly more than just about 
good management. For example, the achievement of the A&E target is a cornerstone 
of the star rating system for assessing the performance of acute trusts by the Health 
Care Commission. It is not an exaggeration to suggest that the stakes for not meeting 

                                                           
3 Improving emergency care in England, 2004, NAO HC1075 Session 2003-2004.  
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the A&E target are very high and if missed can significantly affect the reputation and 
resources available to an acute trust in the future.  
 
As services develop local NHS providers need to strike a balance across a range of 
needs and so the question of appropriate demand management via all the various 
patient channels that are available in the field of urgent care becomes an issue as well. 
Consideration of these issues is outside the scope of this paper, although the analysis 
it contains will be relevant in any discussion to the future development of A&E 
services and targets. 
  
Queuing theory 
 
To measure A&E performance involves a significant investment and overheads in 
terms of data collection and analysis. Patients have to be clocked in and out and a 
running tally of patients approaching the four-hour wait needs to be maintained. A&E 
departments with good management information are better able to manage work flow 
as a result but only if the data can be turned round quickly and analysed in real time.   
 
A queuing model can save valuable time by providing analytical short cuts thereby 
improving the timeliness of management interventions and be helpful in the process 
of external scrutiny (e.g. via the Health Care Commission). In practice it may only be 
possible to do some of these things because of data and other limitations. 
 
In this paper we consider how: 
 
• flows though an A&E can be very accurately represented as a queuing process 
• the outputs of a queuing model can be used to visualise and interpret the 4-hour 

hours Government target in a simple way 
• queuing models can be used to assess the practical achievability of even tighter 

A&E targets in the future  
• queuing models can be used to understand how completion times can be altered 

through re-designation of stages in the A&E process 
• given the proper interpretation of data, underpinning information systems can 

improve performance over time 
• queuing models can be used as a starting point for checking the credibility of 

reported performance 
 
Representing A&E workflow as a queuing process 
 
In mathematical terms, A&E workflow in an A&E department is a classic example of 
a queuing process - patients arrive, are treated and then leave. In theory, a queuing 
model can help illuminate the relationship between resources and waiting times, 
provide a method for understanding and monitoring performance, identify 
bottlenecks, and be used a general planning tool for estimating floor space and other 
requirements.  
 
To calibrate such a model requires a considerable amount of data covering many 
patients over an extended period in a department exhibiting a wide variation in 
monthly performance. With recent improvements in completion times and a 
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convergence in performance among A&E departments this ideal is arguably becoming 
harder to achieve.  
 
A project funded by the Department of Health called the NU-Care project involved a 
detailed examination of patient flows, the use of waiting areas, staff resources and 
completion times (Mayhew and Carney-Jones, 2003). This study has the practical 
advantage that it spanned the period when completion times made rapid 
improvements towards the eventual tighter targets and so the data were particularly 
suitable for calibrating a model of this kind.  
 
We build on the data from that study to calibrate a queuing model that gives an almost 
perfect fit to the data and enables us to accurately relate achieved average completion 
to the national target. This may be compared with alternative approaches for 
modelling such processes but in far more detail using simulation models (e.g. 
Brailsford et al, 2004). 
 
Queuing models range in complexity according to the arrival pattern, the order in 
which patients are treated, the existence of parallel or sub queues e.g. for X-rays or 
blood tests and so forth. We develop a tool that can be used by non-mathematicians in 
a range of A&E departments for monitoring and managing performance. 
  
One of the features of queues that often surprises is the speed with which they can get 
out of control because there are too few resources to deal with them or they are being 
managed badly. Queuing theory shows there is a narrow margin between queues that 
are under control and those that are not. The lesson from the NU-Care project is that 
queues can be brought under control and waiting times reduced with appropriate 
organisational and management strategies. 
 
The first simplification is to imagine the workflow as a series of stages. These stages 
could include initial clinical assessment, diagnostic tests including treatment and then 
eventual discharge. In practice, we know that some patients experience only one stage 
and others more than one. What constitutes a ‘stage’ however is not always clear, 
since each can often be broken down into several sub-stages so that where each one 
begins and ends is blurred. 
  
We found that there is a key difference between patients who are discharged home 
and those that are admitted as an inpatient or referred. This leads to an initial 
mathematical model with two queues or streams arranged in parallel. One stream, 
those discharged home, has one ‘stage’ and those admitted or referred, two ‘stages’.    
 
We found that splitting the queues in to further streams with different numbers of 
stages improved the goodness of fit only slightly when using a basic model. A feature 
of this approach therefore is that we infer the number of stages and the workflow 
characteristics through consideration of the aggregate distribution properties of the 
data. For later models we have introduced stages through inference about the 
workings of the department but as explained it is impossible to have a direct link with 
the actual stages that a patient will go through. 
 
This method was, for example, successfully employed in an application to social 
security queues (Mayhew, 1987) – the main difference is that social security deals 
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with benefits and an A&E department with patients. A queuing model was also used 
to represent bed occupancy in hospitals, which bears some resemblance to the present 
approach (Gorunescu et al, 2002). Note that it is possible that two different queuing 
models making slightly different assumptions could provide equally good ‘fits’ to the 
data. We make no claims that this is the most accurate and most general model that 
exists, or that it correctly represents every aspect of the queuing process.   
 
In summary, we have argued that trying to model each potential stage accurately will 
lead to a model that is very complex and unstable. By focusing on results in a macro 
way rather than micromanaging the queues we found that it produces practical and 
generalisable results. In the following sections, we explain how the model was 
designed and calibrated. 
 
The original model 
 
We consider a queuing model of the type in which there is one or more stages through 
which patients pass before they are discharged from A&E (see Figure 1).  
 
 
 
 
 
 
 
 
Figure 1: Depiction of a queuing system with different sub-queues and stages 
 
Patients arrive and are initially sorted into queues depending on the severity of their 
condition. The number of stages that patients pass through will depend not only on 
severity but also standard clinical protocols depending on the presenting symptoms. 
Some patients, called ‘absconders’, leave before being seen or treated. 
 
Over a period of time, workflows tend to follow a pattern and are quite stable features 
of the system. For example the proportion of patients discharged home is in the order 
of 60% and those admitted or referred around 40%. A small percentage (<1%) are 
dead on arrival or die in the department.  
 
Consider the total time spent in the department by a patient and make two further 
simplifying assumptions: (i) that the average time spent in each stage is the same; (ii) 
arrivals are random with inter-arrival times specified by a Poisson process. The 
probability of the total time spent in A&E equalling z may be considered to be the 
sum of s random variables as follows: 
 

sz ττττ +++= ......321  
 
where iτ is the time spent in stage i. 
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Assume that the system is characterized by an exponentially distributed arrival rate 
with parameter λ and exponentially distributed service times at each stage with 
parameter µ then the probability density function of z can be shown to be: 
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i.e. the distribution is a gamma distribution 
 
This is when the queue has reached a stable state, but if µλ > , the queue is unstable 
and grows indefinitely. Since our main interest is average completion times and the 
distribution around the average for stable queues, we may write this equation more 
conveniently in terms of t, the average completion time t.   
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This p.d.f. has the cumulative distribution function: 
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Figure 2 shows the probability of different completion times based on models with 
sequential numbers of stages (1, 2, 3…7) and completion time averages (1, 2, 3, …7 
hours). For example, the curve furthest to the left is a one-stage model with a 
completion average of 1 hour, and the curve furthest to the right is a 7-stage model 
with a completion average of 7 hours. As is seen, the model can deal with a 
widespread range of possible queuing behaviour. The empirical question is to 
determine the appropriate number of stages by fitting the theoretical distribution to 
actual distributions of completion times and known averages. Before we do that, 
however, we need to consider how the information produced by the model will be 
used. 
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Figure 2: Distributions of completion times based on different completion averages 
and numbers of stages. 
 
Ready-reckoners 
 
It has become custom and practice to express completion time targets, not as averages 
but as the percentage of patients to be dealt with in a given time. For example the 
national standard in emergency care in March 2003 was 90% in 4 hours; today it is 
98% in 4 hours. This type of specification has the obvious attraction over averages 
because averages are sensitive to extremely long waits or completion times.  
 
We therefore need a convenient method of moving between averages and 
distributions. An example would be one that links the target of x% clearance in y 
hours to an average t, or which relates the average t to the work still outstanding after 
a given time z in the system.  
 
Consider a simple case in which there is only 1 stage (s = 1), it can be shown that the 
average completion time is related to the cumulative distribution around the average 
by: 
 

))(1ln( zP
zt

−
−

=  

 
 
We may plot this equation for different values of t and z to obtain the result in Figure 
3, which we call a ready-reckoner. By reading off the average (follow direction of 
arrows), we can determine the time taken to clear a given percentage of cases. In this 
example, a 4 hour average completion time would equate to 70% of completions in 
just less than 5 hours. 
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Figure 3: A ready-reckoner for a queuing system with one stage (s=1) 
 
Whilst this ready-reckoner achieves its purpose, it is inaccurate to the extent that it 
represents only one of several possible sub-queues with different numbers of stages. 
In a typical day, only the number of patients is counted and not the numbers of stages 
they pass through. Therefore when we observe the completion time distribution for all 
patients we are really observing the aggregate effects of several queues conflated 
within one completion time distribution.  
 
Thus, we need a model of a form that is a weighted probability distribution in which 
the weights represent the proportion of patients in each queue. If there are two parallel 
queues, one with one stage and the other with two, the composite or hybrid 
probability distribution will be as follows: 
 
 

)()1()( 21 zPpzpPPc −+=  
 
This model is represented diagrammatically in Figure 4. 
 
In the diagram λ represents the arrival rate of people into A&E and p represents the 
split between those patients that are subsequently discharged and those that are 
admitted as an inpatient or are referred.  The process rate for those who are discharged 
is given the value µ1 and the process rate for both stages of those who become 
inpatients or ‘referreds’ is µ2.  It should be noted that we are interested in the queue 
once it has reached a steady state hence the arrival rates for both stage 1 and stage 2 of 
the patients who are referred or become inpatients must be the same.  It should also be 
noted that for the model we are more interested in the time taken to go through the 
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λµ αα

α
α p

s
t

−
=  rather than the values of λ, µ1 and µ2 i.e. after 

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time taken to clear a given pecentage (hours)

av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

(h
ou

rs
)

10% 30% 50% 70% 

90% 

95% 



 10

selecting a value for λ we can adjust the values of µ1 and µ2 to get suitable values for 
t1 and t2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Diagram of the original model 
 
In order to characterise and identify the correct distribution, we need to determine 
firstly how many processing stages are implicit in an observed distribution of 
completion times, and secondly the value of the weights (in this case p and 1-p). We 
adopted the following simple procedure. Using the observed cumulative distribution 
of completion times and actual average completion time, we compared the predicted 
distribution based by systematically varying the set of weights for a 1,2 and 3 stage 
model. We then plotted the observed and predicted values to see how closely they 
matched over the z-range. A sample of the results is shown in Figure 5. 

 
Figure 5: Comparison of the quality of fit generated by a 1 stage, 2-stage and hybrid 
model. The best ‘fit’ is the hybrid model with 60% of flows through a 1-stage queue 
and 40% with a 2-stage queuing model. Perfect agreement would be on the diagonal 
line. 
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By experimentation we found that the best results from this model are obtained using 
two queues in parallel with 60% of flows through a 1-stage queue and 40% through a 
2-stage queue. It turns out that these weights are almost identical to actual percentage 
flows of patients categorised into those discharged home and those admitted or 
referred. This model is labelled ‘hybrid’ in Figure 5 and the closeness of the fit to the 
diagonal line is an indication of how well the model fits the data. 
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Figure 6: Comparison of observed and predicted completions times based on hybrid 
model and May- July 2002 data. 
 
If we plot the actual data and the predicted completion times according to their 
relative frequency we obtain the results shown in Figure 6 which is taken from 
completion times of over 19,000 A&E patients in May - July 2002. The results 
indicate a reasonably good fit over the range, although the quality of fit is poorer in 
the 1-2 hour range. This difference, an over-estimate of up to 1-hour and an under- 
estimate between 1 and 2 hours can be traced to the ‘triage’ bottleneck, which patients 
must pass through following registration.  
 
Accepting that this was likely to be the best possible representation using this first 
model, we recalculated the ready-reckoner accordingly using the hybrid model 
deriving two variants, which represent two sets of solutions to the equation. 
 

)()1()( 21 zPpzpPPc −+=  
 
The first variant shown in Figure 7 establishes, for a given average completion time, 
the time taken to complete a given percentage of patients. The second variant shown 
in Figure 8 establishes, for a given average completion time, the percentage of 
patients outstanding after a given time in the A&E Department.   
 
To give an example, suppose the average completion time is 4 hours. The dotted line 
in Figure 7 indicates , in this case, 70% of patients would be cleared in 5 hours. The 
comparable result in Figure 8, also based on a 4-hour average, shows that 30% of 
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patient would still be outstanding after 5 hours and so the two ready-reckoners are 
complementary. 
 
Compared with Figure 3, the 1-stage model, the time to clear the same percentage 
based on the hybrid model is therefore similar. However, larger differences can occur 
depending on the choice of average completion time and percentile.  
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Figure 7:  The time take to clear a given percentage of patients based on the hybrid 
model. 
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Figure 8: The percentage of cases still outstanding after the given number of hours in 
A&E, for a given average completion time. 
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Alternative model 
 
As can be seen above, the original model offers a reasonable amount of accuracy over 
the data range. However, the simplistic nature of the structure of the model means that 
no extra accuracy can be achieved.  It was decided that improvements could be made 
if the model structure could become more flexible with one obvious area of constraint 
being that both stages in the two-stage model have to be of the same length.  This 
constraint means that the distribution is a simple gamma distribution but obviously 
not all stages in the process will take the same amount of time.  For example, the 
length of time waiting for X-rays to be taken does not have to equal the length of time 
waiting for these X-rays to be analysed and treatment prescribed.  The model was thus 
changed so that the process time of the two processes could be different.  The model 
can be shown diagrammatically as in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Diagram of alternative model 1 
 
It can be seen that there is very little change to the model, the only difference being 
that µ2 has been replaced by the process rates µα and µβ.  It should be noted that, once 
again, because the model is in steady state the arrival rate and exit rate must be the 
same for all processes. 
 
One problem with allowing the rates to vary in the second path is that the distribution 
is no longer gamma but is now a hypo-exponential distribution.  These distributions 
are not used as frequently in queuing theory as the distribution function is not as 
simple as that of the gamma distribution.  However, for only two stages the 
distribution is still relatively straight forward.   
 
As proved in Ross (1997), pp245-247: 
 
Z = total time in for patients who become inpatients or ‘referreds’ = T1 + T2 
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On first appearances this function appears to remove all references to expected total 
time taken in the system and the arrival rate of patients into the system.  These in fact 
are included as they provide constraints on the values of µ1 and µ2. 
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The easiest parameters to measure and hold constant are the arrival rate and the total 
time in the system.  When this is the case we can calculate µβ in terms of µα.  If we let 
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Fitting the model to the data 
 
The new model was fitted to the original data.  This was done by starting with the 
parameters from the original model and then changing the parameters relating to the 
processes for the referred patient path to get a better fit.  This was achieved partly by 
sight and partly by iterative means to get a fit.   
 
Below is the diagram of the fit with the original model as well. 
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Figure 10: Comparison of the quality of fit generated by the original and alternative 
model. Perfect agreement would be on the diagonal line. 
 
As can be seen the added flexibility of the new model has allowed us to ‘stretch’ the 
shape of the curve so that it now fits better for the range of patients between 35% and 
80%.  However, this has been at the expense of accuracy early on in the distribution 
(between 10% and 30%) as the fit moves away from the observed data at this point.   
 
While the fit is better there are two main problems: 
 

1. The fit has now deteriorated at earlier durations. 
2. Although the fit overall is better it can be argued that the extra complexity is 

not worth it, especially given point 1. 
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As a result we have not produced the same graphs as for the original model but 
instead tried to improve the fit at early durations with a new model. 
 
Alternative model 2 
 
The problem with the early durations (i.e. those patients processed within 2 hours) is 
that the shape of the curve is wrong.  Too many patients were expected to be 
processed in under 1 hour and not enough patients were expected to be processed 
between one and two hours.  By looking at the shapes of curves in Figure 2 it can be 
seen that the problem lies with using a one stage model for the patients who are 
discharged.  This shape would imply that more patients are processed in the first hour 
than the second, which is not what is observed.  Our new model therefore changes the 
path for discharged patients from a one stage to a two stage process. 
 
Once again this makes sense when applied to the way that patients will be processed.  
Any tests will mean that patients will first wait for the tests and then wait for the test 
results and any actions that need to be taken.  A two stage process should therefore be 
a more suitable model. 
 
The time taken to process a patient will be short, with a total mean time of less than 
3.5 hours.  It was therefore decided that the process rate for the two stages for 
discharged patients should be equal allowing the mathematics to be kept simple.  The 
new model is shown in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Diagram of alternative model 2 
 
The mathematics of this model are very similar to the one above but with a gamma 
distribution replacing the exponential distribution.   
 
Hence the time spent in the system for discharged patients is 
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where  
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The new model was plotted against the observed rates with the results shown in 
Figure 12. 
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Figure 12: Comparison of the quality of fit generated by alternative model 1 and 
alternative model 2. Perfect agreement would be on the diagonal line. 
 
The effect of this change in the model is far greater than the first alternative model.  
Patients who are processed quickly are far more accurately modelled as the two stage 
model is more suitably shaped than the original one stage.  However, this is not true 
for patients who are processed very quickly (the first 5% of patients). This problem 
addressed below. 
 
It should also be noted that the model is more accurate for the end of the distribution 
as well i.e. after 85%.  However, this accuracy was reached by decreasing the mean 
time for the discharged patient path compared to the previous models and increasing 
the mean time for the inpatient and referred path.  There is a problem though in the 
fact that these new expected times are quite different to the average times for 
discharged and inpatients.  We therefore need to revaluate the purpose of the model.   
 
Definition of treatment 
 
It was stated at the beginning of the paper that our objective was to model results 
rather than the micro stages that the patients passed through as this created too much 
complexity and also created a very unstable model.  It is possible therefore to change 
the paths from the original titles to ones of ‘small treatment’ and ‘large treatment’.  
Note that these words do not actually indicate the severity of the patient’s condition.  
This is because it is possible for two patients to have the same level of treatment but 
for one to be discharged afterwards whereas the other is referred (based on age, 
general health, etc).   
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It is also possible that a patient with acute problems will be processed very quickly as 
a priority, whereas another patient with non-severe symptoms will need to wait far 
longer for treatment.  It is further possible that a patient will be quickly ‘patched up’ 
and then referred for more extensive treatment.  For clarity, the two paths will 
therefore be referred to for the rest of the paper as ‘small treatment’ and ‘large 
treatment’. This definition conforms quite closely to the split between ‘minors’ and 
‘majors’ often used in A&E departments to distinguish severity and treatment areas, 
and so it is helpful to keep this terminology in mind in what follows. 
 
Alternative model 3 
 
As noted above alternative model 2 creates a new problem because we are using the 
gamma model for patients having small treatment. Those patients who are processed 
very quickly through this path are modelled incorrectly as it is impossible for the 
required number of patients to pass through the two stages quickly enough.  If we try 
to fit the model to these patients then the length of time in small treatment is too small 
on average and hence the model overstates the number of patients who will be 
processed in the first few hours.  To try and correct this problem alternative model 3 
was formulated. 
 
The raw data we have on times taken to process patients indicates that some patients 
are processed in under 10 minutes.  To model these patients it was decided that for 
‘short treatment’ there should be an initial stage where people are assessed.  If the 
assessment is that they can be dismissed as not needing the care provided only by a 
hospital then they exit the system whereas other patients move into the original ‘short 
treatment’ path.  This route can also be seen as patients who arrive with very minor 
needs at particularly quiet times and hence are processed quickly. 
 
The patients deemed as needing no or very little treatment in effect are processed 
through a very short one stage queue which fits the early data well as shown in Figure 
13. The actual paths of this model appear to be sensible and reflect the processes that 
patients find themselves going through in hospital.  We can imagine that a person 
arriving with obvious problems will not need to be assessed and can immediately go 
to the large treatment path.   
 
A patient who is not acute will be assessed first and then may either go home or will 
enter the short treatment path.  However, as discussed in the previous model, the data 
fit far better if we assume that large treatment does not necessarily mean acute and 
small treatment only minor ailments. In fact this fits reality rather better and allows 
for acute emergencies that are treated on arrival. This has the further advantage of 
keeping the model simpler than it would otherwise have been. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Diagram of alternative model 3 
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Expected time spent in the three paths 
 
No/Little Treatment Path 
 
The no/little treatment path is a simple exponential distribution.  The probability 
distribution function is therefore: 
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Short treatment path 
 
The short treatment path is now a three stage hypo-exponential distribution.  The 
probability distribution function is: 
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(This distribution is derived in the appendix.) 
 
Long treatment path 
 
The long treatment path remains a two stage hypo-exponential distribution with a 
probability distribution function: 
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Fitting the model to the data 
 
The best fit for the data was found (again using sight and iterative means) and the plot 
is shown in Figure 14. As can be seen, the new model improves on the previous one 
for the first 10% of patients processed.  However, the first few percent of patients to 
be processed is still poorly replicated but as these times tend to be very volatile on a 
monthly basis this is not a major concern. The improvement in the model can be seen 
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by recalculating Figure 6 using the new model. Figure 15 highlights the improvement 
achieved in the modelling of patients with completion times of less than 4 hours. 
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Figure 14: Comparison of the quality of fit generated by alternative model 2 and 
alternative model 3. Perfect agreement would be on the diagonal line. 
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Figure 15: Comparison of observed and predicted completions times based 
alternative model 3 and May - July 2002 data. 
 
Ready reckoner: alternative model 3 
 
For this final model we recalculated the ready reckoners for the first model (originally 
shown in Figures 7 and 8).  These graphs are given below in Figures 16 and 17. 
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Figure 16:  The time take to clear a given percentage of patients based on the 
alternative model 3. 
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Figure 17: The percentage of cases still outstanding after the given number of hours 
in A&E, for a given average completion time. 
 
We can see that the time taken to clear the 70% of cases for a four hour average 
completion time has fallen from five hours to four and a half hours.  A similar change 
is also seen in the second graph, which shows that less than 30% of cases are 
outstanding after five hours. 
 
It can be noted in passing that although the model has become more complex the 
ready-reckoner still has straight lines for all percentiles.  This is as a result of the 
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model being built on modified exponential and gamma models where the standard 
deviations are a constant ratio of the mean and hence increase proportionally as the 
mean time is increased. 
 
Comparing models 
 
It is useful at this stage to see how the fitted data for the different models compare 
with each other.  As has been noted, as we have advanced through the various models 
there has been a change in fits such that the short treatment path has had a shorter 
average process time for alternative models 2 and 3, and the long treatment path has 
had a longer average process time for the same models. Table 1 gives the average 
waiting times for the various paths for the four models based on the data. 
 

  
Original 
Model 

Alternative 
Model 1 

Alternative 
Model 2 

Alternative 
Model 3 

Percentage of Patients 60 60 60 6 
Path 1 Average Time (hours) 3.5 3.5 2.2 0.4 

Percentage of Patients 40 40 40 54 
Path 2 Average Time (hours) 5.25 5.25 7.3 2.53 

Percentage of Patients 0 0 0 40 
Path 3 Average Time (hours) 0 0 0 7.3 
Total Average Time (hours) 4.2 4.2 4.24 4.31 

 
Table 1: A comparison of the implied average waiting times for patients in May – July 
2002 for the four fitted models 
 
As can be seen, the total average waiting time has increased for the models but not by 
a large amount.  However, there has been a noticeable change in the predicted process 
times for the various paths.  As has been discussed earlier, these changes can be 
attributed to the assumed changes in the processes we are modelling i.e. the change 
from defining small treatment to be the amount of time spent treating the patient 
rather than the severity of the ailment. 
 
Ready-reckoners: comparing original to alternative model 3 
 
The ready-reckoners from the original model and alternative model 3 can be brought 
into the same diagram to show the different results given for the selected percentiles 
as shown in Figure 18. For each of the selected percentiles the original model is 
shown with a black line whereas the new model is shown as a grey line.  For the 10th, 
25th and 90th, 95th, 98th percentile the original model has a smaller time taken to clear 
the given percentage than the new model.  This is reversed for the 40th, 60th and 75th 
percentiles where the new model gives the smaller time. Where the old model gives 
the quicker time the difference between the models is shaded a darker grey than when 
the new model gives the quicker time.  This switch between which model gives the 
quicker time is of course perfectly logical as the new model shows patients being 
processed at a slower rate for the first and last patients but at quicker rates over the 
middle range. 
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Figure 18:  A comparison of the time take to clear a given percentage of patients 
based on the original model and alternative model 3. 
 
However, some care must be taken when looking at these results as we have seen that 
the original model uses a slightly lower average completion time for the same set of 
data.  It is therefore not strictly correct to look horizontally along the data points but 
the difference is not material and it is more important to get a feel for how the new 
model changes the expected results at the different cumulative levels. 
 
We can also compare the other ready-reckoner where we are interested in the 
percentage of patients still outstanding after a particular period of time.  
 

 
Figure 19: The percentage of cases still outstanding after the given number of hours 
in A&E, for a given average completion time. 
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The graph plotting average completion times and percentage of cases outstanding was 
also calculated for the new model and is shown above with the original model. This is 
shown in Figure 19.  Once again the plots shown are sensible as they diverge between 
approximately the 15th and 75th percentile (which corresponds to 85% of patients 
processed and 25% of patients processed), which is where the major difference 
between the models occurs. 
 
Suitability of the model on a monthly basis 
 
So far we have concentrated on using all the data we have between the months of May 
and July (2002).  However, our objective is to fit a model that will allow us to predict 
how quickly patients will be processed in the future.  It is therefore necessary to check 
how well our model predicts the monthly processing of patients taking each month in 
turn.  Below are three graphs (Figures 20 to 22) showing the expected results 
according to the model compared with the observed results.  Note that for each month 
the same set of parameters has been used.  
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Figure 20: Comparison of the quality of fit generated by alternative model 3 using 
May 2002 data. Perfect agreement would be on the diagonal line. 
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Figure 21: Comparison of the quality of fit generated by alternative model 3 using 
June 2002 data. Perfect agreement would be on the diagonal line. 
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Figure 22: Comparison of the quality of fit generated by alternative model 3 using 
July 2002 data. Perfect agreement would be on the diagonal line. 
 
Although the model does not quite reflect the observed rates each month, it can be 
seen that the actual shape of the expected curve compared to the observed curve is 
very similar.  Typically in A&E departments the achievement of a consistent service 
will depend on numerous factors, for example staff availability or the random 
occurrence of major incidents.  Despite random variations of this nature it is 
interesting to see that the model continues to provide reasonable predictions of 
monthly observations based on a single set of model parameters. 
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The average time that each patient spent in A&E was 4.62 hours in May, 3.98 hours in 
June and 4.2 hours in July.  The calibrated model using all the data has an expected 
mean time of 4.3 hours and so we would expect the model to predict patients will be 
processed faster in May than they were.  This can be seen to be the case by looking at 
Figure 20 which shows the alternative model line to be above the goal line. Similarly, 
we would expect the model to underestimate the time that patients were processed in 
June and once again this is what occurred, as Figure 21 shows the alternative model to 
be below the goal line.  As July also had a mean time of less than 4.3 hours we would 
expect the alternative line to be below the goal line but to a lesser extent than June.  
Again, Figure 22 shows this to be true. 
 
Re-designating patients: Alternative model 4 
 
Many of the reasons for looking at the process times of patients is for the hospital to 
meet stringent A&E targets.  One possible solution to this problem is by reconsidering 
the point at which a patient can be considered to have been discharged and therefore 
no longer classed as being part of A&E.  For example, it can be claimed that while 
discharged patients spend their whole time in A&E,  patients who are referred or 
become inpatients spend part of their treatment in a different classification i.e. the 
latter stages of their treatment in A&E are really the first stages of treatment in a 
different category.   
 
Examples of this are defined in this paper as ‘re-designation’. A good example of this 
are Medical Assessment Units in which patients arriving in A&E are kept under 
observation and assessment that may result in stays of longer than four hours. By 
considering this change we can alter our model to try and show the effect on times 
that patients spend in A&E with and without re-designation. The appropriate way to 
model this arrangement is to modify the ‘long treatment’ path.   
 
This is currently a two stage process and we can easily argue that these patients can 
spend stage one in A&E with the second stage being reclassified as part of their new 
reclassified treatment.  The model is therefore changed so that the ‘long treatment’ 
path becomes a one-process model where the time spent in the process is equal to half 
of that spent in the long treatment path of alternative model 3.  This gives us model 4 
which is represented in Figure 23. 
 
Issues arising in relation to the 4-hour national target 
 
By the end of 2003 A&E departments were expected to achieve a standard of 90% 
completion within 4 hours. Since then the standard has been further tightened to 98%, 
a difference of 8 percentage points. Figure 24 is a partial ready-reckoner, based on 
alternative model 3 that focuses on the two percentiles in question and shows the 
implications of this tightening of the target. Point A shows the average completion 
time required to meet the target of 90% in 4 hours.  This equates to an average 
completion time on the vertical axis of 1.75 hours (1:45 hour: minutes).  
 



 

Figure 23: Diagram of alternative model 4 
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Tightening the target to 98% completions within 4 hours implies that the average 
completion time must fall to point B which equates to an average of 0.99 hours or 
59.4 minutes. In other words, a change of 8% points in the target has caused the 
required average to reduce by 43% or just over 45 minutes. To achieve such a 
reduction clearly represents a massive challenge in A&E terms especially when it is 
borne in mind that average completion times of 4 or 5 hours were not uncommon just 
a few years ago.  
 

 
Figure 24: Alternative model 3showing how the average completion time changes 
when moving from the 90th to the 98th percentile represented by points A and B 
 

 
Figure 25:  A comparison of the time taken to complete the A&E treatment of 98% of 
patients based on alternative models 3 and 4 
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Let us now consider alternative model 4 in which the long treatment path has been 
truncated after stage 1 following re-designation. (Figures 13 and 23 refer). Figure 25, 
by comparing the 98th percentiles in alternative model 3 and model 4, shows the 
difference this makes to the achievement of the 4 hour target. Consider again point A. 
This corresponds to the average completion time required to complete the treatments 
of patients in A&E according to the original classification of processes in Figure 13 
i.e. 0.99 hours.  
 
As a result of re-designation, we find that the average can be allowed to increase to 
1.57 hours, whilst still achieving the target of 98% in 4 hours (point B, Figure 25). 
The time taken to treat 98% of patients under the original classification (alternative 
model 3) with this average completion time would be 6.31 hours (6:19 hours: 
minutes) which is, of course well, outside the target (point C, Figure 25). The 
difference between the models is thus noticeable and becomes even more noticeable 
the higher the percentage that needs to be cleared.  This is because the new model 
reduces the chance of a particularly long treatment as only one process has to be 
passed through now rather than two. 
 
Table 2 provides a comparison of both alternative model 3 and alternative model 4 for 
average completion times of 1 to 12 hours based on the 90th, 95th, 98th and 99th 
percentiles. As is seen the results for each model confirm the previous finding, namely 
that they diverge and gains become larger as the average or the percentiles increase. 
So for example, given an average completion time of 5 hours, 99% of patients would 
be completed in 15.65 hours (15:39 hours: minutes) with re-designation and 23.69 
hours (23:41 hours: minutes) without re-designation. 
 
 
 

90% 95% 98% 99% Average 
Time Mod 3 Mod 4 Mod 3 Mod 4 Mod 3 Mod 4 Mod 3 Mod 4 

1 2.29 1.37 3.06 1.83 4.03 2.55 4.74 3.13 
2 4.58 2.73 6.12 3.67 8.05 5.10 9.47 6.25 
3 6.87 4.10 9.18 5.50 12.08 7.65 14.20 9.38 
4 9.16 5.47 12.23 7.33 16.10 10.20 18.93 12.51 
5 11.46 6.84 15.30 9.18 20.15 12.76 23.69 15.65 
6 13.74 8.21 18.36 11.01 24.18 15.31 28.42 18.78 
7 16.03 9.57 21.42 12.84 28.20 17.86 33.15 21.90 
8 18.32 10.94 24.48 14.67 32.23 20.41 37.89 25.03 
9 20.61 12.30 27.54 16.51 36.25 22.96 42.62 28.16 

10 22.90 13.67 30.59 18.34 40.28 25.51 47.35 31.28 
11 25.19 15.04 33.65 20.17 44.30 28.07 48+ 34.41 
12 27.48 16.40 36.71 22.01 48+ 30.61 48+ 37.54 

Table 2:  The time taken to clear a specified percentage of patients given the average 
time for alternative model 3 
 
Conclusions 
 
We have shown that work flows in A&E departments can be represented as a queuing 
process that can be modelled accurately on the basis of monthly work flow data and is 
quite general. The components or stages in the model replicate the situation on the 
ground quite accurately, although this was not the main purpose of the model which 
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as previously noted was to replicate the overall process by accurately predicting 
completion times.     
 
A key result is the ability to relate Government targets which are expressed as the 
percentage of cases completed in a given time from the time of arrival to discharge to 
the underlying average time in the system (or alternatively the percentage of cases 
outstanding in the system for any given average completion time). Furthermore 
different versions of the model showed that all were generally robust at high clearance 
percentiles giving fairly comparable results. 
 
The stated aim of the NHS Plan (2000) was to complete the treatment of 75% of 
patients in 1 hour with an eventual aim of clearing all patients (100%) inside 4 hours 
from the time of arrival to discharge.  Alternative model 3 in this paper shows that the 
original 75% standard would translate into an average completion time of 0.78 hours 
(or 47.0 minutes). By using alternative model 4, which re-designates some patients, 
this underlying average completion time is increased to 1.16 hours (or 69.8 minutes).  
(Note this is not the average time of alternative model 4, rather it is the average time 
for alternative model 3 before the long treatment is truncated).  
 
Today the target is to clear 98% of patients in 4 hours. Meeting this target using the 
re-classification of patients under model 4 is the equivalent of only 47.5% patient 
completion using alternative model 3. Thus the possibility of re-designating some 
patients is clearly a significant aid towards achieving the 98% target where re-
designation has occurred. Indeed it seems highly improbable that the original target 
could ever have been achieved without changing the basis for counting patients 
through the system. 
 
Based on our analysis we have shown that some improvements in completion times 
since the NHS plan can be attributed to genuine efficiency improvements but also to 
re-designation. This is not necessarily a criticism of re-designation if it results in 
patients being cared for in more appropriate surroundings rather than in the same 
setting but with a ‘different label’.  However, in comparing the ‘old’ with the ‘new’ is 
not comparing ‘like’ with ‘like’ and so true improvements are somewhat less than 
headline figures might suggest.  
 
In view of the large differences in average completion time that result from a small 
change in the definition of the target (e.g. from a 90% to a 98% completion rate), it 
seems doubtful to us that the impact of this change was ever properly evaluated before 
it was introduced. For one thing it raises concerns about the credibility of some 
reported performances. The original 75% in four hours equating to a completion 
average of 47 minutes seems wildly optimistic in retrospect (which may be why it was 
abandoned), whereas a 1-hour average borders on the impossible (alternative model 
3).  
 
Even with re-designation (alternative model 4) an average completion time of 1.5 
hours is extremely stretching. We conclude therefore that in any independent audit of 
A&E completion times it is important to look at the detail behind reported 
performance including the source data to check that it is genuine and not based on 
administrative convenience (for example, simply discharging people regardless after 4 



 34

hours in the system4).  We conclude that a target should not only be demanding but 
that it should also fit with the grain of the work on the ground and not lead to 
disruptive practices. One way to do this would be to vary the percentile in the target to 
suit different types of departments. So for example a department with a higher 
percentage of seriously ill cases, the target could be to discharge a lower percentage of 
patients in four hours (say 90%), but in a walk in or urgent care centre 95% or higher 
(but never more than 98%). 
  
In conclusion A&E completion time targets appear to have had a beneficial effect in 
terms of improving services to patients compared to a few years ago, but the 
application of the targets leaves a considerable margin for doubt as to their integrity 
and the perverse incentives they create within the system. On a cautionary note, the 
practicality of a single target fitting all A&E and related services will come under 
increasing strain, as services are re-focused and become more specialised in terms of 
complex and less complex caseloads and it may be necessary to revise targets in any 
case.  The opportunity should be taken to make these targets more credible in order to 
avoid the distorting effects of targets that border on the impossible. 
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Appendix 
 
Derivation of a Three Stage Hypo-Exponential Probability Distribution 
 
Assume we have three exponential distributions each with a different parameter. 
 

( ) ( ) ( )312111 exp~exp~exp~ λλλ XXX  
 
Then we are able to derive the probability function of X1 + X2 as shown in Ross (1997): 

                                                           
4 That this possibility occurs is easily detected because the completion time distribution would be 
truncated after 4 hours i.e. there would be a cliff-edge effect in a typical graph showing the distribution 
of completion times.  
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We are then able to repeat this process to find the combination of all three distributions. 
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Simple integration then allows us to derive the probability distribution function of the 
combined distribution. 
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For our small treatment path (see Figure 13) the following are the values of λi’s. 
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There are two things to note.  Firstly, as patients are assessed between those needing 
treatment and those who leave with little or no treatment we are assuming that this 
occurs constantly at the assumed proportion so that patients entering the small 
treatment path are entering at an exponential rate still.  Secondly, when it comes to 
selecting the process times there is no overall time constraint on the variables this 
time i.e. we do not select the required average waiting time and force the parameters 
to give us this value as we did with alternative model 2. 
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