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ABSTRACT

Accurate segmentation of heart structures imaged by cardiac
MR is key for the quantitative analysis of pathology. High-
resolution 3D MR sequences enable whole-heart structural
imaging but are time-consuming, expensive to acquire and
they often require long breath holds that are not suitable
for patients. Consequently, multiplanar breath-hold 2D cines
sequences are standard practice but are disadvantaged by
lack of whole-heart coverage and low through-plane resolu-
tion. To address this, we propose a conditional variational
autoencoder architecture able to learn a generative model
of 3D high-resolution left ventricular (LV) segmentations
which is conditioned on three 2D LV segmentations of one
short-axis and two long-axis images. By only employing
these three 2D segmentations, our model can efficiently
reconstruct the 3D high-resolution LV segmentation of a
subject. When evaluated on 400 unseen healthy volunteers,
our model yielded an average Dice score of 87.92+0.15 and
outperformed competing architectures (TL-net, Dice score =
82.60 +0.23, p = 2.2 - 10716),

Index Terms— Cardiac MR, Variational Autoencoder, 3D
Segmentation Reconstruction, Deep Learning.

I. INTRODUCTION

Cardiac magnetic resonance (CMR) is the gold-standard
technique for assessment of cardiac morphology. Conven-
tional practice is to acquire a stack of breath-hold 2D image
sequence in the left ventricular (LV) short axis supple-
mented by long axis image sequence in prescribed planes
to enable reproducible volumetric analysis and diagnostic
assessment [1]. Disadvantages of this approach for whole-
heart segmentation are low through-plane resolution, mis-
alignment between breath-holds and lack of whole-heart
coverage. High-resolution 3D image sequences address some
of these issues, but also have disadvantages in terms of
long acquisition times, relatively low in-plane resolution and
lack of clinical availability. However, high-resolution 3D
segmentations proved to be crucial for the construction of
integrative statistical models of cardiac anatomy and physi-
ology and disease characterization [2]], [3]]. For these reasons,

a method to reconstruct a 3D high-resolution segmentation
from routinely-acquired 2D cines could be highly beneficial
- offering high resolution phenotyping robust to artefact in
large clinical populations with conventional imaging.

The reconstruction of 3D anatomical structures from a
limited number of 2D views has been previously studied
via deformable statistical shape models [4]. However, these
methods require complex reconstruction procedures and are
very computationally-intensive. In recent years, with the
advent of learning-based approaches, and in particular of
deep learning, a number of alternative strategies have been
proposed. The TL-embedding network (TL-net) consists of
a 3D convolutional autoencoder (AE) which learns a vector
representation of the 3D geometries, whereas a second
convolutional neural network attached to the latent space
of the AE maps 2D views of the same object to the same
vector representation [5]. More recently, [6] proposed a
convolutional conditional variational autoencoder (CVAE)
architecture for the 3D reconstruction of the fetal skull
from 2D ultrasound standard planes of the head. Finally, [7]]
showed how a convolutional variational autoencoder (VAE)
can learn a shape segmentation model of left ventricular
(LV) segmentations and how the learned latent space can
be exploited to accurately identify healthy and pathological
cases and generate realistic segmentations unseen during
training.

In this work, we present a CVAE architecture that re-
constructs a high-resolution 3D segmentation of the LV
myocardium from three segmentations of 2D standard car-
diac views (one short-axis and two long-axis). Moreover we
show how the proposed model naturally produces confidence
maps associated to each reconstruction, unlike deterministic
models, thanks to its generative properties.

II. MATERIALS AND METHODS
II-A. 3D Cardiac Image Acquisition and Segmentation

A high-spatial resolution 3D balanced steady-state free
precession cine MR image sequence was acquired from
1,912 healthy volunteers of the UK Digital Heart Project
at Imperial College London using a 1.5-T Philips Achieva
system (Best, the Netherlands) [3]. Left and right ventricles
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Fig. 1. The proposed conditional variational autoencoder (CVAE) architecture.

were imaged in their entirety in a single breath-hold (60
sections, repetition time 3.0 ms, echo time 1.5 ms, flip angle
50°, field of view 320 x 320 x 112 mm, matrix 160 x 95,
reconstructed voxel size 1.2 x 1.2 x 2 mm, 20 cardiac
phases, temporal resolution 100 ms, typical breath-hold 20
s). For each subject, a 3D high-resolution segmentation
of the LV was automatically obtained using a previously
reported technique employing a set of manually annotated
atlases [3]. In this work, only the end-diastolic (ED) frame
was considered.

II-B. Conditional Variational Autoencoder Architecture

The outline of the CVAE architecture we propose is shown
in Fig. 1. We aim at reconstructing a 3D high-resolution LV
segmentation Y from ¢ segmentations obtained in as many
2D views X = {X; | i = 1,2,3}. We aim to learn from
the training data a conditional generative model P(Y|X)
by means of a d-dimensional latent distribution z and a low-
dimensional representation x of the views X. In this work
we use a single 2D convolutional neural network (CNN) to
encode the 2D views X in a low-dimensional representation
x. An alternative encoding strategy was proposed in [6],
using a separate branch for each conditional input of the
model. However, whilst this latter approach proved efficient
when the views suffer from large inconsistencies or vari-
ability (e.g., free-hand ultrasound scans), we can notably
reduce the model complexity by combining the views X as a
unique three-channel input as these are consistently acquired
in clinical routine.

Directly inferring P(Y|X) is impractical as it would
require sampling a large number of z values. However,
variational inference allows us to approximate P(Y|X) by
introducing a high-capacity function Q(z|Y, X) which gives
us a distribution over z values that are likely to produce Y.

Hence we can learn P(Y|X) by minimizing the following
objective:

log(P(Y|X)) = DxL[Q(z]Y, X)|[P(z| Y, X)] =
EqqllogP(Y|z,X)] — Dk1[Q(z] Y, X)|[P(z | X)] (1)

where Dy represents the Kullback-Leibler (KL) diver-
gence of two distributions (full mathematical derivation of
the equation can be found in [8]]). The encoding function
Q(z|Y,X) can be modelled as a Gaussian distribution
parametrized by p,y x and o,y x vectors. These two
vectors can be learned by encoding the input 3D segmen-
tation Y we want to reconstruct via a 3D CNN to a set
of features y, which are then concatenated together with
the lower dimensional representation x of the views X. By
concatenating [x, y| with a fully connected neural network
to /15y, x and o,y x we can thus learn Q(z|Y, X).

If Q(z|Y,X) is modelled by a sufficiently expressive
function, then this function will match the real P(z|Y, X)
and the Dg[Q(z|Y,X)||P(z | Y,X)] term in (1) will
be zero. Therefore optimizing the right side of (1) will
correspond to optimizing P(Y|X). In this work, the first
term of the right side of (1) is computed as the Dice
score (DSC) between Y and its reconstruction Y, which
is the output of the generative model. The second term in
(1) can be computed in a closed form if we assume its
prior distribution to be N(0,1), a d-dimensional normal
distribution with zero mean and unit-standard deviation,
and where d is the number of dimensions of the latent
space. Therefore the loss function we optimize becomes
L = DSC(Y,Y)+ a Dk [z||N(0,1)].

II-C. Experimental Setup and Network Training

In this work, we mimicked the two long-axis and the one
short-axis views acquired in a routine acquisition with the



following steps: (1) we rigidly aligned all the ground truth
3D high-resolution segmentations by performing landmark-
based and subsequent intensity-based rigid registration; (2)
we kept only the LV myocardium label and we cropped
and padded the segmentations to [x = 80, y = 80, z =
80, t = 1] dimension using a bounding box centered at
the centre of mass of the LV myocardium; (3) we sampled
three orthogonal views passing through the centre of each
segmentation (an example is shown in Fig. 1). Thanks
to this process we extracted three 2D views showing the
same three LV sections consistently for all subjects. In the
following experiments, the ground truth 3D high-resolution
segmentations and their corresponding 2D views were kept
all in the same reference space. Inter-subject pose variability
will be addressed in future work, potentially with a simple
data augmentation strategy.

The dimension d of the latent space was fixed to 125
as values smaller than 100 provided less accurate results,
while above 125 no further improvements were observed.
The dimensionality of the low dimensional representation x
was kept equal to the dimensionality of z to guarantee a
balanced contribution to the generative model. Simulations
for different values of the parameter « in the loss function
were performed: low values of o (o < 0.5) provided better
reconstruction results on the training data at the expenses
of a strong deviation from normality of the latent space
distribution (KL term not converging) causing overfitting.
Higher values of o (v > 2) penalized the reconstruction term
in favour of a strictly normal latent space, hence providing
poorer reconstruction accuracy. In this work we set « = 1 as
this provided good reconstruction accuracy and convergence
of the KL term.

Experiments were performed with different numbers of
views X; as conditions for the proposed model. In particular,
referring to the first long-axis view as 1, the second long-axis
view as 2 and the short-axis view as 3, we performed the
training using either only one view (which we will indicate
as CVAE_1), or a combination or two views (CVAE_12,
CVAE_23, CVAE_13), or all the three views (CVAE_123).
We have also studied the feasibility of training a 2D AE
to reconstruct the 3 views and used its encoder as a pre-
trained conditional encoder (pCVAE_123). Moreover, the
reconstruction capability of the proposed architecture was
compared with the one of the TL-net [5]. Finally, we
compared the reconstruction obtained by a VAE with z=0
(VAE_O) to all our test segmentations, as this represents the
best segmentation that the generative model can reconstruct
when no information is provided to it. Results obtained
with an autoencoder (AE) are also reported since this model
yielded better results than different VAEs with distinct «
values as it only optimizes the reconstruction accuracy.
All the models share the same 3D encoder and decoder
architectures.

The dataset was split into training, evaluation and testing

Model DSC Hausd. [mm] | MassDiff [%]
VAE_0 6548 £ 0.38 | 9.32 + 0.06 | 3537 &+ 0.70
CVAE_1 78.08 £ 0.33 | 5.29 + 0.04 3.94 4+ 0.38
CVAE_23 8290 + 0.21 | 4.43 + 0.04 393 + 0.19
CVAE_12 85.21 +£ 0.20 | 4.46 £ 0.04 3.73 £ 0.19
CVAE_13 83.18 £ 0.18 | 4.77 + 0.04 3.69 + 0.19
CVAE_123 | 87.92 £+ 0.15 | 3.99 + 0.03 2.70 + 0.14
pCVAE_123 | 87.63 + 0.16 | 4.04 £ 0.04 3.05 + 0.16
TL_net 82.60 + 0.23 | 4.66 £+ 0.04 3.85 + 0.19
AE 90.45 £ 0.12 | 3.46 + 0.03 1.50 £ 0.10

Table I. Reconstruction metrics together with their standard
error of the mean for all the studied models.

sets consisting of 1362, 150 and 400 subjects respectively.
Data augmentation included rotation around the three or-
thogonal axis with rotation angles randomly extracted from
a normal distribution AN(0,6°) and random closing and
opening morphological operations. All the networks were
implemented in Tensorflow and training was stopped after
300k iterations, when the total validation loss function had
stopped improving (approximately 42 hours per network
on an NVIDIA Tesla K80 GPU), using stochastic gradient
descent with momentum (Adam optimizer, learning rate =
10~*) and batch size of 8. During testing, the 3D encoder
branch was disabled and the reconstruction were obtained
by setting the latent variables z = 0.

III. RESULTS AND DISCUSSION
III-A. Accuracy of 3D Reconstruction

Table 1 shows the reconstruction accuracy in terms of
3D Dice score, 2D slice-by-slice Hausdorff distance and LV
mass difference between 3D high-resolution segmentations
(ground truth and reconstructed ones) for all the studied
architectures. LV mass is an important clinical biomarker,
therefore we have estimated for each reconstruction its
percentage difference in mass with the ground truth. The
results indicate that the reconstruction accuracy decreases
when views are removed. From the experiments with two
views we can also infer how different views have different
importance. In particular, the short-axis view seems to have
the smallest impact on the reconstruction accuracy. This
could be motivated by the fact that the long-axis views
contain more information about the regional changes in
curvature of the LV, which strongly influences the Dice
Score. The results reported in Table 1 also show how our
architecture significantly outperforms the TL-net by a large
amount (p = 2.2-10716), and how the pre-training of the 2D
CNN encoder network did not help to achieve better results.
Finally, we can observe that the mass difference is systemat-
ically overestimated by a small amount that decreases with
the number of views provided. We believe this a consequence
of using the Dice score in the loss function. On the other
hand, models trained using cross entropy in the loss function
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Fig. 2. First and third rows, reconstructed segmenta-
tion obtained with one and three views (in red, 1v
and 3v) overlaid onto the ground truth segmentation
(in black, GT) for one random subject. Second and
fourth rows, confidence maps for the reconstruction
with one and three views - P(1v) and P(3v). First
and second columns, long-axis views (LA1 and LA2).
Third column, short-axis (SA) view.

yielded a systematic underestimation of the mass, often with
reconstructions with missing LV apex, as this loss term tends
to favour the background instead of the myocardium.

III-B. Visualisation and Uncertainty Estimation

In the first and third rows of Fig[2] we report the recon-
structed segmentations obtained with one and three views (in
red) overlaid onto the ground truth segmentation (in black)
for one subject of the testing dataset (with DSC 0.80 and
0.89, respectively). In the second and fourth rows we instead
report the confidence maps obtained for the reconstruction
with one and three views - P(1v) and P(3v). These maps
have been obtained by sampling N times (N = 1,000)
z from A (0,1) to reconstruct N segmentations from the
same set of views X. Unlike deterministic architectures
(such as the TL-net), by averaging these maps we can
compute the probability of each voxel to be labelled as
LV myocardium, providing to clinicians a richer and more
intuitive interpretation of the reconstruction. It can be seen
in Fig. 2l how the confidence map obtained with only 1 view
has greater uncertainty than the one obtained with 3 views,

which instead shows lower variability. Moreover, the amount
of uncertainty in the P(1v) map for the long-axis view 1 is
less than for the other two views, as this view was the one
provided to the network as condition. Interestingly, in the
reconstruction with one view the areas with more uncertainty
correspond to the areas where there is less overlap with the
ground truth, i.e. the areas where the network is less accurate
in predicting the shape.

IV. CONCLUSIONS

In this paper we present the first deep conditional genera-
tive network for the reconstruction of 3D high-resolution LV
segmentations from three segmentations of 2D orthogonal
views. The reported results show the potential of this class
of models to provide better quantitative cardiac models from
sparse data. Future work will focus on using real standard
long-axis views (instead of the simulated ones in this work),
on reconstructing multiple structures and on extending the
proposed framework to pathological datasets, for which
acquiring breath-hold sequences is even more challenging.
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