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Abstract

We investigate the relative information efficiency of financial markets by measuring the entropy
of the time series of high frequency data. Our tool to measure efficiency is the Shannon entropy,
applied to 2-symbol and 3-symbol discretisations of the data. Analysing 1-minute and 5-minute
price time series of 55 Exchange Traded Funds traded at the New York Stock Exchange, we develop
a methodology to isolate true inefficiencies from other sources of regularities, such as the intraday
pattern, the volatility clustering and the microstructure effects. The first two are modelled as
multiplicative factors, while the microstructure is modelled as an ARMA noise process. Following
an analytical and empirical combined approach, we find a strong relationship between low entropy
and high relative tick size and that volatility is responsible for the largest amount of regularity,
averaging 62% of the total regularity against 18% of the intraday pattern regularity and 20% of
the microstructure.
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1 Introduction

The process of incorporating the information into prices does not occur instantaneously in real
markets, giving rise to small inefficiencies, that are more present at the high frequency (intraday)
level than at the low frequency (at most daily) level. Since inefficiencies are always present, rather
than efficiency in absolute terms it is more interesting to study the notion of relative efficiency,
i.e., the degree of efficiency of a market measured against the benchmark of an idealised perfectly
efficient market.

In this paper we investigate to what extent assets depart from the idealised perfect efficiency,
ranking them according to relative efficiency, and to what degree the known sources of regularities
(the intraday pattern, the volatility and the microstructure) contribute to the creation of inefficien-
cies. As tool to measure the randomness of the time series, we employ the Shannon entropy. Since it
is defined for finite-alphabet symbolic sources, we work with 2-symbol and 3-symbol discretisations
of the data.

In the 2-symbol discretisation (one symbol for the positive returns, the other for the negative
returns) the intraday pattern and the volatility have no effect, since they are modelled as multiplica-
tive factors. Only the microstructure effects affect the symbolisation. Market microstructure gives
rise to linear autocorrelation that have been modelled in the literature as autoregressive moving
average (ARMA) processes. By means of an analytical study on the entropy of AR(1) and MA(1)
processes, and a more empirical study on ARMA residuals, we develop two methodologies to assess
the inefficiency beyond the microstructure effects. Relying on the ARMA modelling of asset re-
turns, we follow two ways. For the series that are best fitted with an AR(1), an MA(1) or a simple
white noise process, we define a measure of inefficiency as the (normalised) difference between the
Shannon entropy measured on the data and the theoretical value of the Shannon entropy of the
corresponding process. For the other series, which are best fitted with ARMA(p, q) models with
p+ q > 1, we define a measure of inefficiency as the (normalised) difference between 1 (the entropy
of a white noise process) and the Shannon entropy of the ARMA residuals.

In the 3-symbol discretisation, one symbol represents a stability basin, encoding all returns
in a neighbourhood of zero, while negative and positive returns lying outside of this basin are
encoded with the other two symbols. Previous works dealing with a 3-symbol discretisation of
data fix absolute thresholds to define this basin. We argue that there are numerous problems in
doing so and, as a major enhancement with respect to such literature, we propose a very flexible
approach to the 3-symbol discretisation, which is also rather general. We define the thresholds for
the symbolisation to be the two tertiles of the distribution of values taken by the time series. Such
a definition has many advantages, since, unlike a fixed-threshold symbolisation scheme, it adapts
to the distribution of the time series. This is important because different assets have different
distributions of returns and fixed thresholds could introduce discrepancies in treating the different
time series. Moreover, the distribution of returns also varies with the sampling frequency, so that
a fixed symbolisation scheme for different frequencies appears inappropriate. Finally, our flexible
tertile symbolisation can be applied not only to the raw return series, but also to series of processed
returns whose values range on different scales, such as the volatility-standardised returns and the
ARMA residuals. Using the tertile symbolisation, we investigate to what degree the intraday
pattern, the volatility and the microstructure contribute to create regularities in the return time
series. We follow a whitening procedure, starting from the price returns, removing the intraday
pattern, then standardising by the volatility, finally filtering the standardised returns for the ARMA
structure and getting the ARMA residuals. We symbolise all these series with the dynamic tertile
thresholds and estimate the Shannon entropy of the symbolis series to measure their degree of
randomness.
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In the literature only few papers have studied the relative efficiency of financial markets and
ranked assets according to the efficiency degree. In [1, 2, 3, 4, 5, 6] different tools were used to
measure it as distance to perfect randomness, such as the Hurst exponent, algorithmic complexity
theory, a variable order Markov model, Shannon entropy and Approximate Entropy. The great
majority of this literature analyses daily data (an exception is [4]), while our study is focused
on intraday high frequency data and their peculiarities. In [2, 3, 4] return data are symbolised
with a three-symbol discretisation with absolute thresholds, which in our opinion introduces some
redundancy due to the long-memory properties of the volatility. A ternary discretisation with fixed
thresholds incorporates some predictability in periods of high or low volatility, even under the null
assumption of no correlation among the returns. When we deal with ternary discretisations of high
frequency returns in Section 5, we will pay great attention to the removal of intraday patterns and
long-term volatility.

The paper is organised as follows. In Section 2 we introduce the Shannon entropy and present
the theoretical study on the entropy of the AR(1) and MA(1) processes, in Section 3 we present the
data, Section 4 presents the analyses performed with the binary symbolisation of the data, Section
5 reports on the analyses done with the ternary symbolisations and Section 6 concludes. Appendix
A details on the entropy estimator used, Appendix B contains further details on the theoretical
entropy of the AR(1) and MA(1) processes and the proofs of the propositions stated in Section 2.3
and Appendix C reports on the data cleaning procedures.

2 Shannon entropy of high frequency data

2.1 Shannon entropy

In information theory, a finite-alphabet stationary information source is a sequence of random
variables which take values in a finite set A (the alphabet of the source), such that the probability

µ(Xt = a1, . . . , Xt+k−1 = ak) (1)

of receiving a given string a1 . . . ak is well defined for all positive integers k and independent of t.
The measures (1), for all k and for all possible values of a1, . . . , ak ∈ Ak, completely define the
source and it is thus legitimate to identify the source with its probability measure µ. The Shannon
entropy of a finite-alphabet information source is a measure of the uncertainty associated with the
source’s outputs. If at each time instant there is high uncertainty about what the source’s output
will be, the Shannon entropy of the source is high. If, conversely, there is little uncertainty, maybe
because the source has some regular structures that occur repeatedly, then the Shannon entropy is
low. Here is the formal definition.

Definition 2.1 (Shannon entropy of an information source). Let X = {X1, X2, . . .} be a stationary
random process with finite alphabet A and measure µ. The k-th order entropy of X is

Hk(µ) = H(Xk
1 ) = −

∑
xk1∈Ak

µ(xk1) log2 µ(xk1). (2)

The k-th order conditional entropy of X is

hk(µ) = Hk(µ)−Hk−1(µ) = −
∑
xk1∈Ak

µ(xk1) log2 µ(xk|xk−11 ). (3)

The entropy rate or process entropy of X is

h(µ) = H({Xk}) = lim
k→∞

Hk(µ)

k
= lim
k→∞

hk(µ). (4)

In the above definitions, the convention 0 log2 0 = 0 is used. For the proof that the limits in
Equation (4) exist and are equal, we refer the reader to any textbook treating process entropy.

The entropy Hk represents the average uncertainty on output blocks of length k, while the
conditional entropy hk gives a measure of the average uncertainty on a single output, once we know
the most recent k − 1 outputs. Finally, the entropy rate gives an average uncertainty on a single
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output, in the limit when the probability structure on longer and longer sequences is taken into
account. It is thus clear why Shannon entropies are measures of departure from randomness. More
random means less predictable, hence higher uncertainty and higher entropy. Conversely, a less
random probability structure means higher levels of predictability and less uncertainty, thus lower
entropy.

When the measure of the source is not analytically known, it must be inferred from the observed
frequencies of the source’s outputs. The straightforward and most natural way to estimate the
measures of finite strings is to count the relative number of their occurrences in a long enough output
sequence, supposed to be representative of the source’s measure (which, in the limit for the length
of the sequence going to infinity, is true almost surely). Suppose we have a long sample sequence
xn1 generated by the information source. The empirical non-overlapping k-block distribution, with
k � n, is defined by

qk(ak1 |xn1 ) =
|{i ∈ {0, 1, . . . ,m− 1} : xik+kik+1 = ak1}|

m
,

where m = bnk c. With this empirical measure, the entropy of the source can in principle be
estimated by

Ĥnaive
k = −

∑
ak1∈Ak

qk(ak1 |xn1 ) log2 qk(ak1 |xn1 ).

However, when the sample xn1 is not long enough with respect to the length of the blocks k, this
estimator is strongly biased and it systematically underestimates the value of the entropy. Better
estimators have been proposed in the literature, that partially correct this bias. For all the entropy
estimates Ĥk in this paper we use an estimator proposed by Grassberger (see Appendix A for the
definition of the estimator and [7] for a detailed discussion on the entropy estimation problem and
the formal derivation of the estimator (22)).

Throughout this paper we estimate entropies by using the empirical distributions of finite strings
in symbolic samples. In particular, we are concerned with the estimation of the entropies Hk and
hk, with k = 1, 2, . . . , log2 n, where n is the length of the series. For values of k greater than log2 n
the statistics provided by the series is too poor and the entropies Hk are underestimated. For
the sake of uniformity in presenting the results, we actually choose a few values for the order k,
typically 2, 3, 6, 10.

As we shall see in Section 4 (Table 3), there will be cases where the different symbols of
the alphabet appear in the series with significantly different frequencies. Since what we want to
measure are the correlations among consecutive symbols, we want to filter out the difference in the
frequencies of single symbols. Put another way, we want to measure the degree of randomness of
the series, given that the symbols of the alphabet appear in the series with the observed frequencies.
To this aim, the entropies we shall calculate are

H̃k =
Ĥk

Ĥ1

and h̃k =
ĥk

Ĥ1

. (5)

Since the Shannon entropy deals with finite-alphabet information sources, a symbolisation of
the returns is needed before being able to perform any analysis of entropy estimation. To be precise,
we must say that of course return values are already discrete, since prices move on a discrete grid.
However, what we intend to study by means of the Shannon entropy is the degree of randomness in
the time sequence of few coarsely identified behaviours of the price. Indeed, we shall be interested
only in symbolisations into 2 or 3 symbols, each representing a notable behaviour, such as “the
price goes up”, “the price is stationary”, “the price goes down”.

2.2 Modelling high frequency data

Intraday return series generally show significant departure from perfect randomness and it is a
stylised fact (see, for example, [8]) that intraday returns possess some significant correlation, at
least at the first lag. Two sources of this correlation are price discreteness and the bid-ask bounce
in transaction prices, which shows most clearly at higher frequencies. The discrete and bouncing
prices are responsible for a negative autocorrelation at the first lag.
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A possible model to theoretically explain this stylised fact is the following. Market (logarithmic)
prices pt are supposed to differ from the latent efficient prices p∗t by pricing errors ut, so that it
holds

pt = p∗t + ut. (6)

The market returns
rt = r∗t + ut − ut−1 (7)

are therefore the sum of two terms. The first is represented by the rational returns r∗t , which
are the rational response to fundamental information and are assumed to be white noise from the

theory of efficient markets. Let σ2 indicate their variance, that is, assume that r∗t
i.i.d.∼ (0, σ2).

The second component is ut − ut−1. Imposing different structures on ut, many structural models
for the microstructure effects can be recovered. In the simplest case, {ut} is an i.i.d. noise process
independent of the price process. Let η2 indicate the variance of random variables ut. The observed
returns process is then MA(1) with E[rt] = 0 and autocovariance function given by

E[rtrt−τ ] =

 σ2 + 2η2 for τ = 0
−η2 for τ = 1
0 for τ ≥ 2

.

If the pricing errors ut are assumed to follow instead an AR(1) process, then the returns process is
ARMA(1, 1), with a more complex autocorrelation structure.

Some empirical high frequency data indeed show a typical MA(1) structure in the autocorrela-
tion of returns, although others do not. In many cases, returns exhibit significant autocorrelation
also at lags greater than 1 (see Figure 4). A typical picture is one where the autocorrelation
function shows an alternating sign, decreasing in absolute size as the lag gets larger (see the top
right and bottom left panels of Figure 4; see also [9]). In [9], the authors propose a simple model
to capture this alternating-sign higher order dependence, which resembles an AR(1) model and
is slightly more complicated. Motivated by this similarity and by the fact that the procedure in
Section 4.3 identifies the AR(1) model as the best ARMA(p, q) model for some return series, we
regard the AR(1) model as a good compromise between effectiveness and simplicity.

For these two simple return models (the AR(1) and the MA(1)), we develop in Section 2.3 an
analytical approach to determine the theoretical values of their Shannon entropies.

2.3 The entropy of the processes AR(1) and MA(1)

In order to talk about the Shannon entropy of the processes AR(1) and MA(1), whose phase space is
continuous, we need some kind of discretisation. Among the infinitely many possible discretisations,
we choose the simplest one which is not trivial. If {Xt}t is an AR(1) or an MA(1) process, we
define the binary symbolisation

st = B(Xt) =

{
0 if Xt < 0
1 if Xt > 0

. (8)

The symbolisation (8) is almost always defined, since the case Xt = 0 has obviously measure zero.
In probabilistic terms, there would not be any difference between the given definition and one where
the equality to zero is assigned to either symbol 0 or 1. The symbolisation (8) thus defines a binary
process {st}t, which will be the object we shall be studying throughout this section. This finite-
state process has a measure µ inherited from and depending on the original process Xt. When we

want to specify to which process we are referring to, we shall use the notations H
AR(1)
k , H

MA(1)
k ,

h
AR(1)
k , h

MA(1)
k , hAR(1), hMA(1).

To calculate the Shannon entropies (2), (3) and (4) of the discretised AR(1) and MA(1) pro-
cesses, we exploit some properties of symmetry that they possess. We formalise these properties
by proving a number of results, whose statements we report in the text of this section. Their
proofs, together with a more technical part about a geometric characterisation of the entropies of
the AR(1) process, are reported in Appendix B. We start with a result about the parity of the
entropies as functions of the autoregressive parameter φ and the moving average parameter θ.

Proposition 2.1. The entropy Hk is an even function of the parameter φ or θ, for all k = 1, 2, . . ..
Moreover, also hk, for all k = 1, 2, . . ., and h are even functions. In formulas, it holds
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(i) H
AR(1)
k (φ) = H

AR(1)
k (−φ),

(ii) H
MA(1)
k (θ) = H

MA(1)
k (−θ),

(iii) h
AR(1)
k (φ) = h

AR(1)
k (−φ),

(iv) h
MA(1)
k (θ) = h

MA(1)
k (−θ),

for all k = 1, 2, . . ., and

(v) hAR(1)(φ) = hAR(1)(−φ),

(vi) hMA(1)(θ) = hMA(1)(−θ).

Proposition 2.1 tells us that it suffices to calculate the entropies of the AR(1) and the MA(1)
processes only for φ ≥ 0 and for θ ≥ 0. We now state a result which derives from the symmetry of
the normal distribution.

Proposition 2.2. Let µ be the measure of an AR(1) or an MA(1) process discretised as in (8). Let
sk1 ∈ {0, 1}k be a binary string of length k and s̄k1 its complementary string defined by s̄i = 1− si,
for each i = 1, . . . , k. Then it holds µ(s) = µ(s̄).

Finally, the last property that we need is the time-reversibility of stationary Gaussian linear
models, which is the content of the next theorem. We first give the formal definition of time-
reversibility.

Definition 2.2. A stationary process is time-reversible if, for every n and every t1, . . . , tn, the
vectors {Xt1 , . . . , Xtn} and {Xtn , . . . , Xt1} have the same joint probability distribution.

Theorem 2.3. Stationary ARMA processes built from a Gaussian white noise are time-reversible.

For the proof see [10]. What we are interested in is the following specification to the AR(1) and
MA(1) cases.

Corollary 2.4. Let µ be the measure of an AR(1) or an MA(1) process discretised as in (8). Then
for every binary string s1 . . . sk ∈ {0, 1}k it holds µ(s1 . . . sk) = µ(sk . . . s1).

At least for the AR(1) process, the characterisation given in Section B.1 of the appendix is very
general. Though it can be exploited to calculate the entropies through the calculation of the solid
angles for k = 2, 3, there seem to exist no general formula for calculating the solid angles in Rk
determined by k hyperplanes, for k ≥ 4. We now find the entropies Hk, for k = 1, 2, 3, both for
the AR(1) and the MA(1) processes. Thanks to Proposition 2.1, we can restrict our attention to
values of the autoregressive parameter φ ≥ 0 and the moving average parameter θ ≥ 0.

k = 1 When k = 1 we must find the measures µ(0) and µ(1). Since the random variables of
the process (either the AR(1) or the MA(1)) have a symmetrical distribution we simply have µ(0) =
µ(1) = 1

2 . Therefore, for the 1st order entropy we have H1 = −µ(0) log2 µ(0)− µ(1) log2 µ(1) = 1.

k = 2 We deal with the case k = 2 by proving a general result, which is very useful also for
the case k = 3. To establish some notation, if a = al1 and b = bm1 are two finite binary strings, let
us denote by a ·i b the cylinder set defined by {Sl1 = al1} ∩ {Sl+i+ml+i+1 = bm1 }. We prove the following
two propositions for the processes AR(1) and MA(1).

Proposition 2.5. Let µ be the measure of the discretised AR(1) process. Then it holds

µ(0 ·i 0) =
1

2π
arccos(−φi+1), (9)

µ(0 ·i 1) =
1

2π
arccos(φi+1), (10)

for i ≥ 0.

Proposition 2.6. Let µ be the measure of the discretised MA(1) process. Then it holds

µ(00) =
1

2π
arccos

(
− θ

1 + θ2

)
, (11)

µ(01) =
1

2π
arccos

( θ

1 + θ2

)
, (12)
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and
µ(s1 ·i s2) = µ(s1)µ(s2), (13)

for i ≥ 1.

Note that these results suffice for calculating the entropies H2, since we just take i = 0 in
Proposition 2.5 and, furthermore, by Proposition 2.2, for both processes AR(1) and MA(1) we
have µ(10) = µ(01) and µ(11) = µ(00).

For the AR(1) process we thus have

H
AR(1)
2 (µ) = −2µ(00) log2 µ(00)− 2µ(01) log2 µ(01),

where µ(00) = 1
2π arccos(−φ) and µ(01) = 1

2π arccos(φ).
For the MA(1) process we have

H
MA(1)
2 (µ) = −2µ(00) log2 µ(00)− 2µ(01) log2 µ(01),

with µ(00) and µ(01) given by Equations (11) and (12).

k = 3 We could find the quantities µ(s1s2s3), with si ∈ {0, 1} for i = 1, 2, 3, by using the
formula to calculate the solid angles in R3 cut by the hyperplanes of which we have the equations.
However, it is much simpler and much more instructive to exploit the symmetry properties affirmed
by Proposition 2.2 and Corollary 2.4.

Initially, we let µ indicate the measure of either process, AR(1) or MA(1). By Proposition 2.2
we have µ(100) = µ(011), µ(101) = µ(010), µ(110) = µ(001), µ(111) = µ(000). Furthermore, by
Corollary 2.4 we also have µ(001) = µ(100). The symmetries thus reduce the number of unknown
quantities from 23 = 8 to three. Now note that we have the following three independent relations:

µ(000) + µ(001) = µ(00),

µ(010) + µ(011) = µ(01), (14)

µ(000) + µ(010) = µ(0 · 0).

Since µ(00), µ(01), µ(0 · 0) are determined for the AR(1) and MA(1) processes in propositions 2.5
and 2.6, we can solve the system (14).

For the AR(1) process we finally have

H
AR(1)
3 (µ) = −2µ(000) log2 µ(000)− 4µ(001) log2 µ(001)− 2µ(010) log2 µ(010),

where µ(000) = 1
2π arccos(−φ) − 1

4π arccos(φ2), µ(001) = 1
4π arccos(φ2), µ(010) = 1

2π arccos(φ) −
1
4π arccos(φ2).

For the MA(1) process we have

H
MA(1)
3 (µ) = −2µ(000) log2 µ(000)− 4µ(001) log2 µ(001)− 2µ(010) log2 µ(010),

where µ(000) = 1
2π arccos(− θ

1+θ2 )− 1
8 , µ(001) = 1

8 , µ(010) = 1
2π arccos( θ

1+θ2 )− 1
8 .

In Figure 1 we graph the theoretical entropies H1, H2

2 , H3

3 and the conditional entropies h2 =
H2 −H1, h3 = H3 −H2 as calculated above, for positive values of the autoregressive parameter φ
and the moving average parameter θ. It is interesting to note that in the AR(1) case the conditional
entropies h2 and h3 go to 0 as φ approaches 1, while in the MA(1) process they converge to values
of about 0.918 and 0.907, respectively.

3 Data

3.1 The ETF dataset

For our study we take high frequency historical data of 55 Exchange Traded Funds traded at the
New York Stock Exchange.
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Figure 1: Theoretical Shannon entropies H1,
H2
2 , H3

3 , together with conditional entropies h2 = H2−H1,
h3 = H3 − H2, of the AR(1) (left) and MA(1) (right) processes, as functions of the autoregressive
parameter 0 ≤ φ < 1 and of the moving average parameter 0 ≤ θ < 1, respectively.

An Exchange Traded Fund (ETF) is an investment whose performance is based on an index or
other underlying assets. The goal of an ETF is to mimic its corresponding index and to yield the
same return on investment. Inverse and leveraged ETFs aim at providing a return on investment
which is the opposite or a multiple than the performance of the index. There also exist inverse
leveraged ETFs.

In Table 1 we present the list of the ETFs studied, along with the asset tracked by each one.
The ETFs studied include market ETFs, country ETFs, commodity ETFs and industry ETFs.

The Select Sector SPDRs are ETFs that divide the S&P 500 into nine sectors.
The data used in this study cover a period of about forty months, from the 13th July 2006

to the 1st December 2009. We use closing prices at the sampling frequency of 1 minute, and a
resampling of the same data at a 5-minute frequency. In the former case we have the advantage
of using the greatest possible amount of price data that is available to us, but this goes to the
detriment of the regularity of the price series, since the 1-minute series present a number of missing
observations depending on the level of liquidity. In the latter case, instead, we use less information
but the series are more regular. So, the choice of the frequency to work with is a tradeoff between
amount of information and regularity of the data. From the point of view of information theory,
the best is of course to use as much data as possible, and this is what we shall predominantly do
in the analyses. In order to assess to what extent results depend on the chosen frequency or on the
regularity of the series, in some cases we shall perform the analyses on the 5-minute data as well.
In Table 2 we report the number of available price observations for the 55 ETFs. The number of
days in the data sample is 854 for the vast majority of the ETFs, with six exceptions: 853 for EWU
and RTH, 851 for EWW and MDY, 850 for RKH, 849 for EFA.

3.2 Data cleaning

We now outline the steps of the data cleaning procedure and establish some terminology. We then
detail on the single steps in Appendix C.

Starting from 1-minute closing prices, we first remove outliers (see Section C.1) and then cal-
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ticker name ETF providera asset tracked lev./inv.
DIA DIAMONDS Trust Series 1 St. Str. Gl. Adv. Dow Jones Industrial Average Index
DXD ProShares UltraShort Dow30 ProShares Dow Jones Industrial Average Index -2x
EEM iShares MSCI Emerging Markets

Index Fund
iShares MSCI Emerging Markets Index

EFA iShares MSCI EAFE Index iShares MSCI EAFE Index
EWA iShares MSCI Australia Index iShares MSCI Australia Index
EWG iShares MSCI Germany Index iShares MSCI Germany Index
EWH iShares MSCI Hong Kong Index iShares MSCI Hong Kong Index
EWJ iShares MSCI Japan Index iShares MSCI Japan Index
EWM iShares MSCI Malaysia Index iShares MSCI Malaysia Index
EWS iShares MSCI Singapore Index iShares MSCI Singapore Index
EWT iShares MSCI Taiwan Index iShares MSCI Taiwan Index
EWU iShares MSCI United Kingdom In-

dex
iShares MSCI United Kingdom Index

EWW iShares MSCI Mexico Investable
Market Index

iShares MSCI Mexico Investable Market In-
dex

EWY iShares MSCI South Korea Index iShares MSCI South Korea Index
EWZ iShares MSCI Brazil Index iShares MSCI Brazil Index
FXI iShares FTSE China 25 Index iShares FTSE China 25 Index
GDX Market Vectors Gold Miners Van Eck AMEX Gold Miners Index
GLD SPDR Gold Shares St. Str. Gl. Mkts. Gold Bullion
IBB iShares Nasdaq Biotechnology In-

dex
iShares NASDAQ Biotechnology Index

ICF iShares Cohen & Steers Realty Ma-
jors Index

iShares Cohen & Steers Realty Majors Index

IJH iShares S&P MidCap 400 Index iShares S&P MidCap 400 Index
IJR iShares S&P SmallCap 600 Index iShares S&P SmallCap 600 Index
IVE iShares S&P 500 Value Index iShares S&P 500 Value Index
IVV iShares S&P 500 Index iShares S&P 500 Index
IVW iShares S&P 500 Growth Index iShares S&P 500 Growth Index
IWD iShares Russell 1000 Value Index iShares Russell 1000 Value Index
IWF iShares Russell 1000 Growth Index iShares Russell 1000 Growth Index
IWM iShares Russell 2000 Index iShares Russell 2000 Index
IWN iShares Russell 2000 Value Index iShares Russell 2000 Value Index
IWO iShares Russell 2000 Growth Index iShares Russell 2000 Growth Index
IYR iShares Dow Jones U.S. Real Estate

Index
iShares Dow Jones U.S. Real Estate Index

MDY SPDR S&P MidCap 400 St. Str. Gl. Adv. S&P MidCap 400 Index
MZZ ProShares UltraShort MidCap400 ProShares S&P MidCap 400 Index -2x
PHO PowerShares Water Resources PowerShares NASDAQ OMX US Water Index
QID ProShares UltraShort QQQ ProShares NASDAQ-100 Index -2x
QLD ProShares Ultra QQQ ProShares NASDAQ-100 Index 2x
QQQQ PowerShares QQQ PowerShares NASDAQ-100 Index
RKH Market Vectors Bank and Broker-

age
Van Eck Market Vectors US Listed Bank and

Brokerage 25 Index
RTH Market Vectors Retail Van Eck Market Vectors US Listed Retail 25

Index
SDS ProShares UltraShort S&P500 ProShares S&P 500 Index -2x
SLV iShares Silver Trust iShares price of Silver
SPY SPDR S&P 500 St. Str. Gl. Adv. S&P 500 Index
SSO ProShares Ultra S&P500 ProShares S&P 500 Index 2x
TIP iShares Barclays TIPS Bond iShares Barclays U.S. Treasury Inflation Pro-

tected Securities Index (Series-L)
USO United States Oil United States

Commodity
Funds LLP

price of West Texas Intermediate
light, sweet crude oil

VWO Vanguard MSCI Emerging Markets Vanguard MSCI Emerging Markets Index
XHB SPDR S&P Home Builders St. Str. Gl. Adv. S&P Homebuilders Select Industry

Index
XLB Materials Select Sector SPDR St. Str. Gl. Adv. Materials Select Sector Index
XLE Energy Select Sector SPDR St. Str. Gl. Adv. Energy Select Sector Index
XLF Financial Select Sector SPDR St. Str. Gl. Adv. Financial Select Sector Index
XLI Industrial Select Sector SPDR St. Str. Gl. Adv. Industrial Select Sector Index
XLK Technology Select Sector SPDR St. Str. Gl. Adv. Technology Select Sector Index
XLP Consumer Staples Select Sector

SPDR
St. Str. Gl. Adv. Consumer Staples Select Sector Index

XLU Utilities Select Sector SPDR St. Str. Gl. Adv. Utilities Select Sector Index
XLV Health Care Select Sector SPDR St. Str. Gl. Adv. Health Care Select Sector Index
XLY Consumer Discretionary Select Sec-

tor SPDR
St. Str. Gl. Adv. Consumer Discretionary Select Sector

Index

Table 1: List of ETFs, with provider, tracked asset and possible leverage or inverse feature. A “2x”
leveraged ETF is one which seeks to provide 2 times the daily performance of the tracked index, with
“-2x” standing for 2 times the inverse of the daily performance. aSt. Str. Gl. Adv. = State Street
Global Advisors, St. Str. Gl. Mkts. = State Street Global Markets.
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ETF 1-minute observations 5-minute observations
DIA 328243 (98.81%) 65497 (99.60%)
DXD 276498 (83.23%) 63160 (96.05%)
EEM 329574 (99.21%) 65414 (99.48%)
EFA 327608 (99.20%) 65035 (99.48%)
EWA 250225 (75.32%) 64266 (97.73%)
EWG 192693 (58.00%) 61246 (93.14%)
EWH 273999 (82.48%) 64911 (98.71%)
EWJ 307276 (92.50%) 65401 (99.46%)
EWM 213888 (64.38%) 61752 (93.91%)
EWS 251315 (75.65%) 64113 (97.50%)
EWT 296362 (89.21%) 65143 (99.06%)
EWU 125763 (37.90%) 53109 (80.86%)
EWW 309977 (93.64%) 64921 (99.08%)
EWY 288868 (86.95%) 64922 (98.73%)
EWZ 328035 (98.74%) 65389 (99.44%)
FXI 317549 (95.59%) 65258 (99.24%)
GDX 280744 (84.51%) 64605 (98.25%)
GLD 325293 (97.92%) 65483 (99.58%)
IBB 218702 (65.83%) 62490 (95.03%)
ICF 278878 (83.95%) 64651 (98.32%)
IJH 208636 (62.80%) 62956 (95.74%)
IJR 277711 (83.60%) 65016 (98.87%)
IVE 224241 (67.50%) 63684 (96.85%)
IVV 302419 (91.03%) 65330 (99.35%)
IVW 239155 (71.99%) 64142 (97.54%)
IWD 293429 (88.33%) 65285 (99.28%)
IWF 300553 (90.47%) 65310 (99.32%)
IWM 330785 (99.57%) 65508 (99.62%)
IWN 291552 (87.76%) 65127 (99.04%)
IWO 290830 (87.55%) 65111 (99.02%)
IYR 313139 (94.26%) 65114 (99.02%)
MDY 321856 (97.23%) 65087 (99.33%)
MZZ 172022 (51.78%) 58381 (88.78%)
PHO 164836 (49.62%) 59896 (91.09%)
QID 324741 (97.75%) 65335 (99.36%)
QLD 299218 (90.07%) 64862 (98.64%)
QQQQ 330694 (99.54%) 65483 (99.58%)
RKH 246159 (74.45%) 61953 (94.66%)
RTH 283523 (85.45%) 64630 (98.40%)
SDS 302133 (90.95%) 64599 (98.24%)
SLV 251230 (75.62%) 64052 (97.41%)
SPY 330781 (99.57%) 65502 (99.61%)
SSO 255237 (76.83%) 61252 (93.15%)
TIP 190454 (57.33%) 61374 (93.33%)
USO 312469 (94.06%) 65243 (99.22%)
XHB 255791 (77.00%) 63412 (96.43%)
XLB 306421 (92.24%) 65040 (98.91%)
XLE 330192 (99.39%) 65404 (99.46%)
XLF 325164 (97.88%) 65276 (99.27%)
XLI 287595 (86.57%) 64975 (98.81%)
XLK 282942 (85.17%) 65095 (98.99%)
XLP 253028 (76.17%) 64589 (98.22%)
XLU 298217 (89.77%) 65011 (98.86%)
XLV 265267 (79.85%) 64688 (98.37%)
XLY 276167 (83.13%) 64726 (98.43%)

Table 2: Number of observations in the price series at frequencies of 1 minute and 5 minutes, both in
absolute and relative terms.
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culate logarithmic returns

Rt = ln
pt
pt−1

.

We then search for possible stock splits (see Section C.2), in order to remove the huge returns in
correspondence of them. Throughout this paper, we will refer to returns cleaned for possible splits,
but not yet processed in any other way, as raw returns. Then, the procedure of filtering out the
daily seasonalities, by the removal of the intraday pattern as explained in Section C.3, leads to
what we refer to as the deseasonalised returns R̃t. Finally, we normalise the deseasonalised returns
by the volatility (see Section C.4), thus obtaining the standardised returns rt.

4 Binary alphabet

4.1 Binary discretisation of returns

The simplest symbolisation of price returns is the one which distinguishes only the two cases of
positive and negative return, corresponding to the two behaviours of price moving up and moving
down, respectively. Stationarity of price can not be included in either of the two behaviours as long
as the symbolisation is defined in a symmetrical way. This point highlights the fact that returns
are distributed on a discrete set of values. If they were instead distributed on a continuous set of
values, taken according to an absolutely continuous distribution, the probability of taking a precise
value would be zero, thus negligible in practical cases.

If {rt}t is the time series of non-zero returns, we define the 2-symbol sequence {st}t

st =

{
0 if rt < 0
1 if rt > 0

. (15)

In Table 3 we report the number of the two symbols ‘0’ and ‘1’ in the ETF return series symbolised
according to symbolisation (15). Ten ETFs exhibit a difference in the number of the two symbols,
which is statistically significant at the 1% significance level when a null model is assumed in which
at each time instants prices have the same probability of moving up and moving down. Under such
assumptions, the number of either upward and downward movements of the price has a binomial
distribution.

The simplest null hypothesis to check consists in the returns being independent, that is, in-
distinguishable from strong white noise. For such a model, the Shannon entropy of the pro-
cess symbolised according to (15) equals one, since all the strings sk1 have the same probability

µ(sk1) =
∏k
i=1 µ(si) = 1

2k
and the uncertainty is maximum. We stress that the assumption of inde-

pendence is not realistic, since intraday returns are known to possess some features of correlation,
mainly due to microstructure effects. However, this first analysis allows to measure to what degree
the ETF series of symbolised non-zero returns depart from complete randomness. To put it another
way, it provides an average quantification of how much the sign of the returns is predictable.

We test this hypothesis by comparing the entropy of the ETF return series and the entropy of
a white noise process with independent Gaussian innovations. The former is of course the entropy
of a single realisation (the time series), while the latter is the entropy estimated on a Monte Carlo
simulation of 1000 realisations, each of which having the same length of the ETF time series to be
compared with. Indicating with ĥk the estimators of the rescaled entropies h̃k of Equation (5), we
check whether it holds or not that

ĥETF
k ∈ [ĥWN,0.5%

k , ĥWN,99.5%
k ], (16)

where ĥWN,x%
k denotes the x-th percentile of the white noise Monte Carlo simulation. It turns out

that the efficiency hypothesis of the ETF return series being indistinguishable from white noise is
rejected for the great majority of the ETFs, as expected. There are however few cases for which
this basic test fails to reject the efficiency hypothesis. We note that there is some dependence of
the results on the order k of the considered entropies. For k = 2, property (16) does not hold for
ETFs IYR, XHB, XLB; for k = 3 it is violated by ETFs MZZ, RKH, XLB; for k = 6 it does not
hold only for RKH; for k = 10 exceptions to (16) are EWZ, IBB, IYR, MZZ, XLE. In Figure 2

we show the order 10 entropies ĥETF
10 with confidence bands of 99%. Looking at the top picture,
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ETF negative 1-min r positive 1-min ret negative 5-min ret positive 5-min ret
DIA 147229 (49.84%) 148163 (50.16%) 31193 (49.79%) 31457 (50.21%)
DXD 128403 (49.99%) 128454 (50.01%) 30530 (50.06%) 30462 (49.94%)
EEM 143965 (49.61%) 146212 (50.39%) 30645 (49.29%) 31525 (50.71%)
EFA 136687 (49.75%) 138083 (50.25%) 29936 (49.60%) 30419 (50.40%)
EWA 91641 (49.91%) 91962 (50.09%) 26932 (49.59%) 27376 (50.41%)
EWG 68745 (49.61%) 69819 (50.39%) 25099 (49.16%) 25956 (50.84%)
EWH 88689 (49.97%) 88792 (50.03%) 25504 (49.79%) 25720 (50.21%)
EWJ 89201 (50.07%) 88943 (49.93%) 23583 (49.86%) 23715 (50.14%)
EWM 59347 (49.76%) 59918 (50.24%) 21354 (49.43%) 21845 (50.57%)
EWS 73803 (49.92%) 74028 (50.08%) 23376 (49.60%) 23749 (50.40%)
EWT 89682 (49.97%) 89796 (50.03%) 24732 (49.77%) 24965 (50.23%)
EWU 46786 (49.93%) 46915 (50.07%) 22403 (49.88%) 22510 (50.12%)
EWW 127767 (50.07%) 127398 (49.93%) 29984 (49.98%) 30006 (50.02%)
EWY 117983 (49.87%) 118594 (50.13%) 29416 (49.57%) 29928 (50.43%)
EWZ 146076 (49.69%) 147908 (50.31%) 30861 (49.44%) 31562 (50.56%)
FXI 142538 (49.78%) 143791 (50.22%) 30939 (49.46%) 31609 (50.54%)
GDX 125416 (50.05%) 125179 (49.95%) 30850 (50.13%) 30687 (49.87%)
GLD 143987 (49.75%) 145424 (50.25%) 30773 (49.69%) 31152 (50.31%)
IBB 96749 (50.08%) 96446 (49.92%) 29466 (49.79%) 29713 (50.21%)
ICF 126453 (49.96%) 126646 (50.04%) 30910 (49.97%) 30949 (50.03%)
IJH 95337 (49.74%) 96324 (50.26%) 30047 (49.65%) 30465 (50.35%)
IJR 121864 (49.85%) 122588 (50.15%) 30438 (49.60%) 30928 (50.40%)
IVE 98649 (49.99%) 98680 (50.01%) 29731 (49.89%) 29867 (50.11%)
IVV 137548 (49.92%) 138016 (50.08%) 31272 (49.84%) 31478 (50.16%)
IVW 102972 (49.83%) 103664 (50.17%) 29584 (49.80%) 29821 (50.20%)
IWD 127387 (50.00%) 127382 (50.00%) 30500 (49.90%) 30623 (50.10%)
IWF 123566 (49.78%) 124655 (50.22%) 29797 (49.70%) 30158 (50.30%)
IWM 145131 (49.79%) 146334 (50.21%) 30908 (49.69%) 31291 (50.31%)
IWN 129162 (49.88%) 129777 (50.12%) 30716 (49.61%) 31193 (50.39%)
IWO 128803 (49.74%) 130171 (50.26%) 30909 (49.86%) 31079 (50.14%)
IYR 137814 (50.03%) 137646 (49.97%) 30887 (49.92%) 30990 (50.08%)
MDY 147600 (49.77%) 148983 (50.23%) 31168 (49.48%) 31819 (50.52%)
MZZ 81551 (50.11%) 81179 (49.89%) 28481 (50.35%) 28080 (49.65%)
PHO 67273 (49.72%) 68019 (50.28%) 26724 (49.47%) 27297 (50.53%)
QID 150071 (50.09%) 149533 (49.91%) 31609 (50.10%) 31487 (49.90%)
QLD 139639 (49.63%) 141716 (50.37%) 31519 (49.94%) 31598 (50.06%)
QQQQ 140048 (49.81%) 141141 (50.19%) 30368 (49.87%) 30523 (50.13%)
RKH 115708 (50.23%) 114637 (49.77%) 30159 (50.33%) 29769 (49.67%)
RTH 94231 (49.88%) 94683 (50.12%) 26214 (50.28%) 25921 (49.72%)
SDS 140510 (49.96%) 140740 (50.04%) 31313 (50.07%) 31230 (49.93%)
SLV 110158 (49.61%) 111891 (50.39%) 29885 (49.43%) 30569 (50.57%)
SPY 150017 (49.89%) 150698 (50.11%) 31376 (49.78%) 31649 (50.22%)
SSO 118571 (49.85%) 119300 (50.15%) 29536 (49.85%) 29718 (50.15%)
TIP 81407 (49.36%) 83517 (50.64%) 27780 (49.26%) 28612 (50.74%)
USO 139722 (49.91%) 140246 (50.09%) 30851 (49.60%) 31346 (50.40%)
XHB 102953 (50.25%) 101927 (49.75%) 29155 (50.59%) 28475 (49.41%)
XLB 121761 (49.79%) 122788 (50.21%) 29421 (49.67%) 29815 (50.33%)
XLE 146881 (49.66%) 148876 (50.34%) 30955 (49.48%) 31607 (50.52%)
XLF 124317 (50.21%) 123291 (49.79%) 28938 (50.25%) 28646 (49.75%)
XLI 108042 (50.02%) 107957 (49.98%) 28508 (49.95%) 28566 (50.05%)
XLK 103627 (49.87%) 104160 (50.13%) 27995 (49.81%) 28208 (50.19%)
XLP 89120 (49.97%) 89211 (50.03%) 26559 (49.62%) 26961 (50.38%)
XLU 111554 (49.92%) 111901 (50.08%) 28330 (49.80%) 28553 (50.20%)
XLV 96419 (49.91%) 96754 (50.09%) 27511 (49.65%) 27897 (50.35%)
XLY 102484 (50.03%) 102359 (49.97%) 28201 (49.83%) 28391 (50.17%)

Table 3: Number of symbols ‘0’ and ‘1’ in the ETF return series symbolised according to (15). Bold
values indicate return series where statistically significant asymmetry is found in the number of the
two symbols (at 99% confidence level).
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we see that there is a number of ETFs quite close to the efficiency level of 1, although just five of
them are not statistically distinguishable from perfectly efficient white noise. There is however a
remarkable number of ETFs which are very far from the condition of efficiency. In what follows
we shall analyse to what extent this is attributable to microstructure effects that can be modelled
and consequently how much of this inefficiency remains after filtering out the predictability due to
microstructural dependence.

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

● ●
● ● ● ●

● ●
●

● ● ● ● ● ●

●

● ●
●

●

●

●

●

● ●

●

●
● ● ●

●
●

●

●

●
●

●

0.
92

0.
94

0.
96

0.
98

1.
00

en
tr

op
y

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

● ●
● ● ● ●

● ●
●

● ● ● ● ● ●

●

● ●
●

●

●

●

●

● ●

●

●
● ● ●

●
●

●

●

●
●

●

D
IA

D
X

D
E

E
M

E
FA

E
W

A
E

W
G

E
W

H
E

W
J

E
W

M
E

W
S

E
W

T
E

W
U

E
W

W
E

W
Y

E
W

Z
F

X
I

G
D

X
G

LD IB
B

IC
F

IJ
H

IJ
R

IV
E

IV
V

IV
W

IW
D

IW
F

IW
M

IW
N

IW
O

IY
R

M
D

Y
M

Z
Z

P
H

O
Q

ID
Q

LD
Q

Q
Q

Q
R

K
H

R
T

H
S

D
S

S
LV

S
P

Y
S

S
O

T
IP

U
S

O
X

H
B

X
LB

X
LE

X
LF X
LI

X
LK

X
LP

X
LU X
LV

X
LY

●
●

●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

● ● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

0.
98

0
0.

98
5

0.
99

0
0.

99
5

1.
00

0

en
tr

op
y

●
●

●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

● ● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

D
IA

D
X

D
E

E
M

E
FA

E
W

A
E

W
G

E
W

H
E

W
J

E
W

M
E

W
S

E
W

T
E

W
U

E
W

W
E

W
Y

E
W

Z
F

X
I

G
D

X
G

LD IB
B

IC
F

IJ
H

IJ
R

IV
E

IV
V

IV
W

IW
D

IW
F

IW
M

IW
N

IW
O

IY
R

M
D

Y
M

Z
Z

P
H

O
Q

ID
Q

LD
Q

Q
Q

Q
R

K
H

R
T

H
S

D
S

S
LV

S
P

Y
S

S
O

T
IP

U
S

O
X

H
B

X
LB

X
LE

X
LF X
LI

X
LK

X
LP

X
LU X
LV

X
LY

Figure 2: Estimated ĥETF
10 values (circles) of the 55 ETFs, with 99% confidence bands obtained from

Monte Carlo simulations of a white noise process of the same length of the ETFs 1-minute (top) and
5-minute (bottom) return series.

By repeating the basic test (16) with the 5-minute return series (bottom graph in Figure 2),
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we see how a lower sampling frequency makes the return series more efficient. Of course this is
expected, since many inefficiencies must be imputable to microstructure effects, which are greater
at higher frequencies. However, we still see that there are a number of ETFs (namely, EWJ, EWM,
EWS, EWT, EWU, TIP) that, compared with others, maintain a large degree of inefficiency. It is
also notable that in two cases (PHO and RTH) a relatively low entropy in the 1-minute return series
corresponds to a relatively high entropy in the 5-minute return series. In these two cases it appears
that the sole change in the frequency of the observations removes almost all the inefficiency. This
contrasts with other cases of comparable low entropy for the 1-minute return series, such as EWU,
which exhibit the same feature of having a relatively low entropy in the 5-minute return series as
well. We point out that this should be considered as evidence of the fact that equally inefficient
series may have different causes at the origins of their inefficiencies.

4.2 Empirical analysis of return series as AR(1) or MA(1) processes

As argued in Section 2.2, return time series have been modelled as an AR(1) or an MA(1) process.
For these two simple models, we worked out in Section 2.3 the analytical calculation of the entropies
H2, H3, h2, h3. In this section, we take the ETFs whose non-zero return series are indeed well
described by an AR(1) or an MA(1) process and we provide a quantification of their inefficiency as
the degree to which the entropy measured on the empirical series differs from the theoretical one.

More precisely, our procedure is the following. We first estimate the best ARMA(p, q) model
for each one of the non-zero return series (see Section 4.3 for the details of the estimate procedure
and the results on all the ETF series). Then, for those series that have estimated parameters p
and q such that p + q ≤ 1—that is, for the series whose best ARMA estimate is an AR(1), an
MA(1) or just a white noise process—we can easily calculate the theoretical values hth2 and hth3 of
the entropies h2 and h3. They just equal 1 in the case of the white noise process, while for the
AR(1) and the MA(1) processes can be obtained by applying the formulas derived in Section 2.3.
Finally, for each of these series we compute the inefficiency scores I2 and I3 defined by

Ik =
hthk − ĥETF

k

σk
, k = 2, 3, (17)

where ĥETF
k is the conditional entropy of order k measured on the binarised return series and σk is

the standard deviation of the estimator ĥk on Monte Carlo realisations of the estimated process with
the same length as the ETF’s return series. The scores Ik measure how much the empirical series
depart from being a pure AR(1), MA(1) or white noise process. Making the basic assumption
that a perfectly efficient ETF should perfectly follow one of these processes (the linear ARMA
dependencies being due only to microstructure features), the scores Ik indeed provide a measure of
the amount of inefficiency present in the empirical return series.

In Figure 3 we show the comparison between the entropy h̃3 of the ETF return series and the
theoretical value of h3—given by the formulas obtained in Section 2.3—of the processes AR(1),
MA(1) or white noise, which best fit the return series. We notice that, as can be expected, the
theoretical entropy values are always higher than the return series entropy, meaning that the
return series are less efficient than the corresponding AR(1), MA(1) or white noise processes.
The difference between the two values provides us with a quantification of the inefficiency of the
return series against their benchmark.

In Table 4 we report the inefficiency rankings as determined by the inefficiency scores (17). As
the 17 ETFs treated here are a subset of the 55 ETFs for which we determine in Table 6 other
rankings, according to a different score of inefficiency, we report in parentheses this latter ranking
for comparison purposes. We notice that, although the two approaches differ to a certain degree
for the most inefficient ETFs (top and central rankings), they give quite stable results for the most
efficient ones (bottom rankings).

4.3 Empirical analysis of return series as ARMA(p, q) processes

In Section 2.2 we showed how a simple model for the efficient and the observed price implies
that returns follow an MA(1) process. As already anticipated, the same model can explain more
complex autocorrelation structures, by changing the structure of the pricing error component ut in
Equations (6) and (7). We now change perspective and adopt an approach which is data-driven. In
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Figure 3: The entropy h̃3 of the non-zero 1-minute return series (red circles) and the theoretical values
of the h3 entropy of the corresponding best fitting AR(1), MA(1) or white noise models (blue circles),
for the 17 ETFs well described by one of these models.

ETF I2 rank I3 rank
IWM 81.035 1 (9) 65.330 1 (8)
IWO 43.994 2 (4) 38.037 2 (9)
MDY 41.642 4 (12) 30.622 3 (12)
EWA 43.527 3 (1) 29.653 4 (1)
PHO 40.688 5 (10) 26.298 5 (11)
IWN 27.514 8 (8) 20.956 6 (6)
GLD 27.258 9 (5) 19.355 7 (4)
XLV 28.054 7 (7) 19.274 8 (7)
SLV 28.914 6 (14) 19.192 9 (14)
IVE 23.009 11 (6) 17.939 10 (5)
EWY 25.015 10 (2) 17.012 11 (2)
EEM 18.109 13 (11) 13.342 12 (10)
EFA 19.589 12 (3) 13.131 13 (3)
FXI 11.726 14 (13) 7.517 14 (13)
XLB 2.133 17 (16) 2.285 15 (16)
RKH 5.917 15 (15) 2.144 16 (15)
MZZ 2.716 16 (17) 0.360 17 (17)

Table 4: Inefficiency scores Ik, for k = 2, 3, and corresponding rankings of the 17 ETFs well described
by AR(1), MA(1) or white noise model (first means most inefficient). Rankings in parentheses refer
to relative positions in Table 6.

this section we make no a priori assumption and start from the empirical autocorrelation functions
of the ETF data, which show different scenarios.

In Figure 4 we show the sample autocorrelation of the series made up of non-zero 1-minute
returns. At the top left we see a case (the ETF SLV) where significant autocorrelation is present
at the lag 1 and almost at no other lag, which is the typical structure of a MA(1) process. At the
top right the ETF EWA shows a situation where the autocorrelation is significant at the first lag,
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which is the dominant part, but also at lags 2 and 3, with an alternating sign and a decreasing
absolute value which are typical of an AR(1) process with negative parameter. The ETF EWM at
the bottom left of the figure has some features which recall those of EWA, such as the alternating
sign and the decreasing absolute value, yet the situation is more complicated. The autocorrelation
function is in fact statistically significant for many lags (from 1 to 11). Furthermore, since the
decay does not look exponential, one single autoregressive parameter should not suffice to describe
the dynamics of returns. Finally, at the bottom right we report a case (the ETF SPY) where
some negative autocorrelation is significant at many lags, but there is no clear structure in the
autocorrelation function. The four scenarios depicted here do not cover all the behaviours of the
autocorrelation function of the 55 ETFs. However they provide a picture of how different the
autocorrelation functions of different assets can be.
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Figure 4: Autocorrelation functions of non-zero 1-minute returns for the ETFs SLV, EWA, EWM,
SPY. Dotted lines indicate significance levels given by ±1.96√

L
, where L is the length of the series.

For these reasons, we do not assume any a priori model and instead we look for the best linear
ARMA(p, q) model that describes the data. In selecting the best model to fit our data we use the
Bayesian Information Criterion (BIC), to strongly penalise complex models with a large number of
parameters.

In Table 5 we report, for every ETF, the AR and MA orders p and q, such that the series of non-
zero 1-minute returns is best fitted with an ARMA(p, q) model, where best means that the model is
the one that minimises the BIC. As we can see, the return series of the ETFs whose autocorrelations
are represented in Figure 4 are best fitted with different models: SLV with an MA(1) model, EWA
with an AR(1) model, EWM with an ARMA(3, 2) model, SPY with an ARMA(2, 4) model. There
are 13 out of the 55 series that are best fitted either with an AR(1) model or an MA(1) model,
plus other 4 that are best fitted with a simple white noise process. We stress that for these 17
cases we know what the corresponding entropies H2, H3, h2, h3 of the binary symbolisation should
be, since for a white noise process they equal 1 and for the AR(1) and the MA(1) models they
are given by the analytical results obtained in Section 2.3. However, we now want to perform
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ETF p q ETF p q ETF p q ETF p q ETF p q
DIA 0 4 EWU 2 1 IVE 0 1 PHO 1 0 USO 3 2
DXD 0 4 EWW 1 2 IVV 1 3 QID 2 2 XHB 2 0
EEM 1 0 EWY 1 0 IVW 2 1 QLD 2 4 XLB 0 0
EFA 1 0 EWZ 2 1 IWD 1 3 QQQQ 0 4 XLE 0 2
EWA 1 0 FXI 1 0 IWF 2 2 RKH 0 0 XLF 1 1
EWG 2 1 GDX 1 2 IWM 0 0 RTH 3 1 XLI 2 2
EWH 1 2 GLD 1 0 IWN 1 0 SDS 1 3 XLK 2 2
EWJ 3 2 IBB 0 2 IWO 1 0 SLV 0 1 XLP 2 1
EWM 3 2 ICF 0 3 IYR 0 2 SPY 2 4 XLU 0 2
EWS 3 2 IJH 0 4 MDY 0 0 SSO 1 1 XLV 1 0
EWT 3 2 IJR 5 1 MZZ 0 1 TIP 1 1 XLY 0 2

Table 5: AR and MA orders p and q resulting from the minimisation of the BIC among all models
ARMA(p, q) with p+ q ≤ 8.

a hypothesis test to assess whether there are further dependencies other than the linear ARMA
structure. If all the amount of predictability of the series is due to their linear ARMA structure,
once it is filtered out there would remain no other dependence and the series of residuals should not
be distinguishable from white noise. Figure 5 shows how the ARMA residuals no longer contain
the significant autocorrelation detected in returns. In order to measure how much inefficiency is
there in the return series that is not due to the ARMA structure, we analyse the residuals of the
ARMA estimates of the series, symbolise them according to (15) and then compare the entropy
of the symbolised series with the values obtained by a Monte Carlo simulation of a white noise
process. Before showing the results of this test, we first show in Figure 6 the comparison between
the entropy h̃2, defined by Equations (5), of the return series and of their ARMA residuals. We
stress that the same qualitative picture that we are about to describe is valid also for the entropies
h̃k, with k 6= 2. It is interesting to note how different the behaviour of the various ETFs is. Some
ETFs already have a high entropy in the return series, so that taking the ARMA residuals does not
lead to a noticeable increase in the entropy value. Others, that have a relatively low entropy, show
a significant increase in the value of the entropy when ARMA residuals are considered in place
of returns. However, there are cases where the inefficiency of the return series vanishes almost
completely when taking the ARMA residuals, such as for PHO, SLV, TIP. For these ETFs it seems
that a large part of the apparent inefficiency is embodied and explained by the linear dependence
structure of ARMA models. For many other cases, instead, the ARMA residuals continue to contain
some (nonlinear) inefficiencies.

We now go back to the hypothesis test we mentioned earlier, to see whether the residuals of
ARMA estimates are distinguishable from white noise. Analogously to what we did in Section 4.1,
we check the condition

ĥresk ∈ [ĥWN,0.5%
k , ĥWN,99.5%

k ], (18)

where ĥresk denotes the estimated entropy of the series of ARMA residuals. It turns out that even
considering the ARMA residuals of return series we reject the hypothesis of efficiency for the large
majority of the ETFs. The cases where the test does not reject the efficiency hypothesis are the
following. For k = 2, GDX, MZZ, XHB, XLB; for k = 3, IBB, MZZ, XHB, XLB; for k = 6, IBB,
XHB, XLE; for k = 10, EWZ, FXI, GDX, IBB, ICF, IYR, XHB, XLE, XLY. Referring to the
results found in Section 4.1, we note that the cases for which the efficiency was rejected already
analysing the entropy of the return series are cases where it is also rejected after filtering out the
linear part, as one would expect. There are however a few exceptions (IYR for k = 2, RKH for
k = 3, 6, MZZ for k = 10).

We argue that the predictability that remains in a series after removing the amount due to
the linear component, that is, after taking the residuals of ARMA estimates, constitutes nonlinear
inefficiency proper to that asset. It is interesting to quantify these inefficiencies and rank the ETFs
according to their measures. We perform this by measuring how faraway the entropy of the residuals
is from the value 1 of pure white noise. In particular, for each ETF we define the following measure
of inefficiency:

Iresk =
1− ĥresk
σWN
k

, (19)

where σWN
k is the standard deviation of the estimator ĥk on a white noise process of the same length
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Figure 5: Autocorrelation of the series of non-zero 1-minute returns (top) and of their ARMA(p, q)
residuals (bottom) for the ETFs SLV (left) and EWM (right). The values of (p, q) are (0, 1) for SLV
and (3, 2) for EWM.

as the ETF’s return series. A perfectly efficient series has values of Ik equal to 0. The farther from
0 the value of Ik, the greater the inefficiency. Results are reported in Table 6, for k = 2, 3, 6, 10.
Note that varying k the ranking positions are quite stable for the most inefficient ETFs (those in
the first nine positions). Many other ETFs display different degrees of variability, ranging from
differences across the four rankings of at most one position to differences of eleven places.

We do not know what the reasons of the inefficiencies and the mechanisms generating them are.
They may have origin in technical details of how the trading of that particular asset is regulated
by the rules of the market, or in the particular strategies adopted by market makers, or also in
microstructure details (such as the relative tick size) that may have different impact on different
assets. Inefficiencies may also have a more fundamental origin, that is, they may be due to the
economics of the asset and of other financial assets related to it.

Investigating the relationship between entropy and the relative tick size we find interesting
results. Note that for our ETF data looking at the relative tick size (that is, the ratio between
the minimum possible price variation and the price) is equivalent to looking at the price, since the
absolute tick size is equal for all the 55 ETFs. It clearly emerges from the scatter plots in Figure 7
that the five most inefficient ETFs are those with the lowest price. A possible interpretation of this
lies in the fact that an asset’s price with a large relative tick size is subject to more predictable price
changes. If we think of the rational price moving on a continuous scale, a change in the observed
price means that the rational price has passed a tick level. Now, for an asset with a low price (or,
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ETF Ires
2 rank Ires

3 rank Ires
6 rank Ires

10 rank
EWJ 4933.980 1 2807.921 1 1177.880 1 318.380 1
EWM 1505.712 3 1132.796 2 510.979 2 147.319 2
EWS 1495.015 4 1105.510 3 445.117 3 119.970 3
EWT 1911.672 2 1053.470 4 427.720 4 110.355 4
RTH 1307.800 5 790.725 5 328.179 5 94.070 5
EWH 737.441 6 546.053 6 228.858 6 70.411 6
EWA 417.549 7 292.831 7 118.729 7 36.094 7
IWF 271.103 9 207.461 9 83.385 8 23.151 8
EWG 371.408 8 212.230 8 81.883 9 23.147 9
IWD 214.192 13 166.222 11 69.487 10 20.591 10
EWU 208.818 15 152.508 14 55.773 14 16.896 11
IVW 256.876 10 155.098 13 56.317 13 16.794 12
XLP 232.995 11 172.684 10 66.368 11 16.750 13
EWY 213.702 14 156.279 12 57.306 12 15.309 14
TIP 187.414 16 108.947 16 48.645 16 13.820 15
QQQQ 98.620 27 81.404 22 39.632 20 13.484 16
XLF 214.455 12 122.775 15 48.263 17 13.475 17
DIA 156.796 18 104.936 17 49.220 15 13.401 18
IVV 113.026 20 79.714 23 42.456 19 13.142 19
SPY 95.455 28 75.835 25 45.118 18 12.925 20
USO 106.876 23 70.114 26 34.931 24 11.419 21
GLD 106.747 24 81.771 21 34.481 25 10.763 22
IVE 100.316 26 76.238 24 35.123 23 10.693 23
IWM 81.035 31 65.330 29 30.048 27 10.258 24
EFA 186.516 17 104.336 18 38.174 21 9.839 25
XLK 113.568 19 89.810 19 36.301 22 9.646 26
SDS 52.276 37 47.967 35 29.521 28 8.911 27
IJR 113.007 21 63.456 30 28.002 29 8.881 28
EWW 102.933 25 85.422 20 33.454 26 8.665 29
XLU 67.310 33 48.481 34 26.354 32 7.975 30
DXD 52.030 38 48.874 33 24.541 34 7.344 31
IWO 107.853 22 62.741 31 25.647 33 7.327 32
XLV 95.166 29 68.339 28 27.939 30 7.320 33
IWN 93.928 30 68.919 27 27.043 31 7.275 34
XLI 66.079 34 51.481 32 21.970 35 7.262 35
QLD 23.058 43 23.942 43 15.057 40 7.062 36
SSO 21.837 44 23.412 44 16.504 38 6.430 37
IJH 57.385 36 43.514 37 18.616 36 6.090 38
SLV 28.499 42 19.818 45 10.301 44 5.525 39
QID 38.927 40 32.219 39 17.209 37 5.203 40
PHO 67.431 32 40.896 38 16.414 39 5.196 41
MDY 42.881 39 28.769 40 14.460 42 4.976 42
EEM 60.268 35 45.020 36 14.625 41 4.530 43
MZZ -1.888 54 0.130 54 3.503 50 3.358 44
XLB 2.133 52 2.285 52 5.464 47 2.800 45
RKH 4.666 49 3.995 51 2.763 52 2.543 46
XHB -2.395 55 0.067 55 -0.129 55 2.320 47
XLY 12.893 46 11.997 47 10.748 43 1.943 48
IYR 2.885 51 8.558 48 4.722 48 1.715 49
FXI 36.978 41 26.709 41 9.662 46 1.558 50
ICF 11.986 47 26.368 42 10.106 45 1.364 51
GDX 1.047 53 4.637 49 3.174 51 0.614 52
IBB 4.424 50 1.568 53 1.220 54 -0.372 53
EWZ 17.015 45 14.064 46 4.359 49 -0.747 54
XLE 4.929 48 4.279 50 1.440 53 -1.457 55

Table 6: Inefficiency scores Iresk , for k = 2, 3, 6, 10, and corresponding inefficiency rankings of the 55
ETFs (first means most inefficient).
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Figure 6: The entropy h̃2 of the non-zero 1-minute return series (red circles) and of the corresponding
series of ARMA(p, q) residuals, where p and q are those of Table 5 (blue circles), for the 55 ETFs.

equivalently, with a large relative tick size) it would be much more difficult to cross another tick
level in the same direction than it is for an asset with a large price (that is, with a small relative tick
size). Thus, most probably the observed price either moves backward or remains constant. Recall
that, in the symbolisation we are considering, the stationarity of observed price (corresponding to
a zero return) is ignored and simply discarded. With this considerations in mind, it is reasonable
to expect the price of an asset with a large relative tick size to show some oscillating behaviour
producing a more predictable symbolic sequence.

Another consideration on the rankings of Table 6 is one which concentrates on the ETFs which
track a country index, in particular those from EWA to EWZ in Table 1. We notice that the most
inefficient ETFs are those relative to the Asian countries (such as Japan, Malaysia, Singapore,
Taiwan, Hong Kong) and to Australia. The ETFs tracking the indices of Germany and United
Kingdom, though quite inefficient as well, are not in the very first places, lying behind the group
of Asian countries. Finally, ETFs relative to Mexican and Brazilian indices are much behind in the
inefficiency rankings, with the latter being among the most efficient ETFs. An exception to this
classification is the ETF tracking the index of South Korea, which is not ranked in the group of
ETFs of the other Asian countries. Apart from this exception, it can be argued that the levels of
detected inefficiency follow the time distances from the New York time. In Figure 8 we show the
relationship between inefficiency and opening time overlap of the NYSE with the country markets,
for the mentioned country ETFs. The markets of the Asian countries of Japan, Malaysia, Singapore,
Taiwan, Hong Kong, as well as the Australian market, are closed when the corresponding ETFs
are being traded at the New York Stock Exchange. Therefore these assets are traded while the
tracked index has no dynamics. There is instead some time overlap in the opening times of the New
York Stock Exchange and of European markets, while there is great overlap of the former with the
markets of Mexico and Brazil. The trading dynamics of the ETFs on these last two countries can
therefore rely on a simultaneous evolution of the corresponding indices.

We remark that, if the two mechanisms that we propose as possible explanations to what we
observe in the inefficiency rankings are legitimate, it may well be that the two things are related.
It may be that those ETFs that track indices of markets that are closed during the ETFs’ trading
time are deliberately given a low price, since their dynamics is only coarsely determined. However,
we could not find any founded indication in this respect.
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Figure 7: Scatter plots in log-log scale showing the relation between inefficiency (scores Ires2 , Ires3 , Ires6 ,
Ires10 ) and median price of 51 ETFs (the four ETFs with a detected split/merge are omitted). The
graphed scores I ′k = Iresk + 5 are shifted versions of the inefficiency scores Iresk , in order to be positive
for the logarithmic plot.

5 Ternary alphabet

5.1 Ternary discretisation of returns

As we point out in Section 4, a symmetrical binary discretisation of returns that takes into account
all the information does not exist. The most natural one is defined by 15, but it ignores all the
zero returns, which correspond to intervals of price stationarity. This waste of information is larger
as one moves to higher frequencies, since the probability of observing a price change in a fixed
interval decreases with the decreasing of the interval length. In our data, at frequencies of 1 and
5 minutes the amount of zero returns is huge. In Section 4 we showed how much information on
market efficiency can be extracted even ignoring the zero returns. In this section we instead use all
the returns.

The idea of ternary-alphabet discretisations of returns is that a symbol represents a stability
basin, encoding all returns in a neighbourhood of zero. Negative and positive returns lying outside
of this basin are encoded with the two other symbols. In the papers [3] and [2], the three-symbol
discretisation of returns is performed according to the following definition,

st =

 0 if rt < −b
1 if − b ≤ rt ≤ b
2 if rt > b

, (20)
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Figure 8: Relationship between inefficiency and opening time overlap of the NYSE with the country
markets, for the country ETFs from EWA to EWZ in Table 1. The graphed score I ′10 = Ires10 + 5 is
a shifted version of the inefficiency score Ires10 , in order to be positive for the logarithmic plot. The
opening time overlap on the x axis is the time when both the NYSE and the country market are
simultaneously open, divided by the NYSE opening time (6.5 hours).

with a threshold b = 0.0025. In [4], high frequency exchange rates differences are discretised in
a similar fashion with a threshold equal to three pips (i.e. b = 0.0003). We argue that there are
numerous problems in fixing an absolute threshold in these discretisations. The main objection is
that a fixed symbolisation scheme does not take into account the heteroskedasticity of the series.
Time series of returns are known to display periods of different volatility, that is, periods with
different average absolute size. We believe that, in such contexts, a ternary discretisation of returns
should possess a character of variability, in order to consistently adapt to the volatility dynamics.
The risk in not doing so is that the memory properties of the volatility are encoded in the symbolised
series and spurious dependencies are introduced.

There are also other reasons that make fixed-threshold ternary symbolisations inadequate. First
of all, different assets have different distributions of returns (or rates differences in the case of cur-
rency exchanges), so that a fixed neighbourhood of zero includes portions of the return distributions
which are different across the assets. This introduces discrepancies in treating the time series that
can potentially affect the results of the analyses. Secondly, the distribution of returns also varies
as the sampling frequency varies, so that choosing a fixed symbolisation scheme for different fre-
quencies (as in [4]) appears inappropriate. Finally, the three-symbol discretisation can be applied
not only to the raw returns, but also to returns filtered for the intraday pattern as defined by (
28) or to standardised returns as defined by (30). These latter two series, as well as other possible
series obtained by processing the returns in some other way, range on different scales and there-
fore the ternary symbolisations with fixed thresholds are not the proper way to deal with their
discretisation.

Concerning the three-symbol discretisations of time series, we propose a more flexible approach,
which is also rather general. We define the thresholds for the symbolisation to be the two tertiles
of the distribution of values taken by the time series. More formally, if {r1, . . . , rN} is the time
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series, we define its tertile-symbolised series by

st =

 0 if rt < ϑ1
1 if ϑ1 ≤ rt ≤ ϑ2
2 if rt > ϑ2

, (21)

where ϑ1 and ϑ2 denote the two tertiles of the empirical distribution of the time series {rt}.

5.2 The impact of intraday patterns and volatility on market efficiency
measures

As already pointed out, a three-symbol discretisation of returns, with one symbol encoding returns
in a stability basin around zero, embeds to some degree the intraday pattern and the volatility
into the symbolic series. Thus, when these components are not properly filtered out, the symbolic
series will possess a certain amount of predictability due to the memory and regularity properties
of these factors. We now proceed with a quantitative study in this respect.

The whitening procedure that we apply to the series of logarithmic returns Rt starts with
removing the intraday pattern, getting the deseasonalised returns R̃t, and continues with removing
the volatility, getting the standardised returns rt. We further treat the standardised returns to
remove any ARMA component that may be due to microstructure factors, thus getting also a
series of ARMA residuals εt. We symbolise all these series with tertile thresholds as in (21) and
estimate the Shannon entropy of the symbolic series to measure their degree of randomness. By
doing so, we can assess to what degree the intraday pattern, the volatility and the microstructure
contribute to create regularities in the return time series.

We show in Figure 9 the values of the Shannon entropy h̃8 for the 1-minute and 5-minute series
of raw returns Rt, deseasonalised returns R̃t, standardised returns rt and ARMA(p̂, q̂) residuals of
standardised returns, where p̂ and q̂ are the ones corresponding to the minimum BIC value, among
all the models ARMA(p, q) with p+ q ≤ 5. Similar features to those discussed below also hold for
results obtained with the entropies h̃k, with k ≤ 10 and k 6= 8.

For five 1-minute series (ETFs EWH, EWJ, EWM, EWS, EWT) it happens that the proportion
of zero returns is so large that the two tertile thresholds ϑ1 and ϑ2 are equal to zero. The corre-
sponding symbolic series thus have an unbalanced number of the three symbols. In order to avoid
comparing series with balanced distributions of symbols with series with unbalanced distributions,
we ignore the results on the latter. We instead report results for all 5-minute series, since at this
frequency the tertiles of the return distributions never happen to equal zero.

Concerning the results reported in Figure 9, we notice that in the vast majority of cases the
symbolised series of the raw returns are the most predictable, as is expected since they still carry
all the regularities of the intraday pattern and the correlation due to the volatility and the mi-
crostructure. However, there are cases (DIA, ICF, RTH for the 1-minute series; EWM, RTH for
the 5-minute series) in which removing the intraday pattern from the raw returns leads to series
of lower entropy. This may seem to be not possible, but note that the tertile values ϑ1 and ϑ2
defining the symbolisation of the series change in an unpredictable manner when passing from the
raw return series Rt to the deseasonalised R̃t.

The most noteworthy results of the entropy estimates reported in the two graphs of Figure 9,
however, are those regarding the standardisation of the returns by the volatility. In almost all the
cases, it can be seen that the passage from the deseasonalised returns to the standardised ones is
responsible for the largest increase in the entropy. Averaging across all the ETFs, a percentage of
around 18% of the entropy increase obtained with the three whitening procedures is attributable to
the removal of the intraday pattern, while about 62% is due to the standardisation for the volatility
and 20% is the entropy gain given by the removal of correlations due to microstructure effects. This
means that the removal of the volatility from the return series increases their randomness more
than the other two procedures taken alone. Put another way, the volatility gives the return series
a huge amount of predictability and it does so much more, on average, than the daily seasonality
and the microstructure effects. This result should be regarded as a convincing demonstration of
the fact that, when studying the randomness of a three-symbol discretised time series, the volatility
must be filtered out. Omitting this operation would give results that tell more on the predictable
character of the volatility than on, for example, market efficiency.
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Figure 9: The entropy h̃8 of the 1-minute (top) and 5-minute (bottom) series of raw returns (red
circles), deseasonalised returns (light green circles), standardised returns (dark green circles), ARMA
residuals (blue circles), for the ETFs. Results for the ETFs EWH, EWJ, EWM, EWS, EWT are
considered for the 5-minute series only.

The last refinement that we do on standardised return series is the removal of dependence
structures due to market microstructure effects. As we did in Section 4 when dealing with two-
symbol discretisations, we perform it by taking the residuals of the ARMA(p, q) model that best
describes the series of the standardised returns rt. This last procedure has the general effect of
removing some remaining predictability, further contributing to move return series towards perfect
efficiency. We note however that this is not always the case: the entropy of the ARMA residuals
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is lower than that of standardised returns for the 1-minute series of IYR, MZZ, QLD, RKH, XLY
and for the 5-minute series of EWY, GDX, ICF, IJH, IVE, IWM, QLD, XLI, XLU. We think that
this counterintuitive behaviour might be caused by the large amount of zero returns present in the
data, in correspondence of which some spurious randomness is introduced by taking the ARMA
residuals.

Overall, the results shown in Figure 9 clearly indicate that much of the apparent inefficiency
(that is, the predictability of the raw return series) is due to three factors: the daily seasonality,
the volatility and the microstructure effects. For example, note in the 1-minute picture of Figure
9 how four of the most apparently inefficient ETFs (namely, EFA, IWF, IYR, RKH) see their
predictability almost vanish after their series are filtered for these three factors.

We remark that, although the daily seasonality and the microstructure effects are characteristic
of high frequency time series, the memory properties of the volatility play a major role also in
low-frequency (for example, daily) data. Therefore, we conclude that studies on measuring relative
efficiency as randomness of symbolised return series should carefully deal with the issue of removing
the volatility, for failing to do so would heavily affect the results, in fact invalidating them.

Our three-step procedure aims at removing from the return series all the predictability that is
imputable to factors having their own dynamics that can be modelled. What remains in the filtered
series that separates them from being purely random is what we assess as the true inefficiency of
the assets. It may be due to other features of the market that we do not take into account or to
more fundamental aspects.

6 Conclusions

In this paper we study how relative market efficiency can be measured from high frequency data,
filtering out all the known sources of regularity, such as the intraday pattern, the persistence of
volatility and the microstructure effects. To this aim we employ the Shannon entropy as tool to
measure the randomness degree of binary and ternary symbolised time series of 55 ETFs.

With an analytical study of the entropy of the AR(1) and MA(1) processes, we develop an
original theoretical approach to discount microstructure effects from the measuring of efficiency
of return time series which exhibit simple autocorrelation structures. A very interesting topic for
future work is the extension of the analytical results found in this paper to higher entropy orders
and to more complex ARMA processes.

A more empirical approach, in which we choose the ARMA(p, q) process that best describes
each time series, allows us to filter out the linear microstructure effects for all the ETFs and to
measure residual regularities. Results show that in some cases a large part of the regularities is
explained by the linear dependence structure, while in other cases the ARMA residuals still contain
some (nonlinear) regularities. By rigorously testing the ARMA residuals for efficiency, we reject
the hypothesis of efficiency for the large majority of the ETFs. We also rank the ETFs according
to an inefficiency score and find that the rankings are not very sensitive to the choice of the entropy
order.

We find a strong relationship between low entropy and high relative tick size. This is explained
by noting that an asset’s price with a large relative tick size is subject to more predictable changes.
We also notice that the inefficiency scores for the country ETFs can be related to the opening
time overlap between the country markets and the NYSE, where the ETFs are exchanged. We
hypothesise that those ETFs that track indices of markets that are closed during the ETFs’ trading
time are deliberately given a low price, since their dynamics cannot rely on a simultaneous evolution
of the corresponding indices.

With the 3-symbol discretisation, we find that the removal of the volatility is responsible for
the largest amount of regularity in the return series. This effect amounts to the 62% of the total
entropy gain and thus it is larger, on average, than the combined effect of the intraday (18%) and
microstructure (20%) regularity. This result convincingly demonstrates that, when studying the
randomness of a three-symbol discretised time series, the volatility must be filtered out. Omitting
this operation would give results that tell more on the predictable character of the volatility than
on, for example, market efficiency.
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A Entropy estimation

Let us suppose to have N points randomly distributed into M boxes according to probabilities
p1, . . . , pM . The simplest way we can estimate the entropy H = −

∑M
i=1 pi log pi is by replacing the

pi’s with the observed frequencies ni
N , i = 1, . . . ,M , where ni represents the number of points in

box i. Unfortunately, the estimator

Ĥnaive = −
M∑
i=1

ni
N

log
ni
N

is strongly biased, meaning that by employing it we would make a large systematic error in the
entropy estimates. A much more accurate estimator is the one derived by Grassberger in [7] and
defined by

ĤG = −
M∑
i=1

ni
N

log
eGni

N
, (22)

where the terms Gn are defined by G2n+1 = G2n = −γ − log 2 + 2
1 + 2

3 + 2
5 + . . . + 2

2n−1 , with

γ = 0.577215 . . . representing Euler’s constant. For the bias ∆ĤG = E[ĤG]−H of this estimator,
it holds

0 < −∆ĤG < 0, 1407 . . .× M

N
.

In order to make it clear how the notations used in this section relate to the ones used in
the rest of the paper, we remark that we use Grassberger’s estimator to estimate the entropies of
order k of sources with binary or ternary alphabet, so that we typically have M = 2k or M = 3k.
The number N and the ni’s represent respectively the number of non-overlapping k-blocks in the
observed symbolic sequence and the number of occurrences of each one of the symbolic strings of
length k.

B Details on the Shannon entropy of the processes AR(1)
and MA(1)

B.1 A geometric characterisation of the Shannon entropies H
AR(1)
k

In this section we give a general characterisation of the Shannon entropies H
AR(1)
k , for all k =

1, 2, . . ., in terms of the entropy of some partition of the unit sphere Sk−1 = {x ∈ Rk | ||x|| = 1}.
In principle, the same path can be followed to obtain an analogous general characterisation for the

entropies H
MA(1)
k . However, this does not seem to be feasible, since for the process MA(1) the

general formulas for the conditional distributions of Xk, given X1, X2, . . . , Xk−1, are not as simple
as the ones for the process AR(1), which is Markov.

Let sk1 ∈ {0, 1}k be one of the 2k binary strings of length k. According to the symbolisation (8),
it corresponds to the event {X1 ∈ I1, . . . , Xk ∈ Ik}, where Ii = (−∞, 0) if si = 0 and Ii = (0,∞)
if si = 1. For the process AR(1) we have

X1 ∼ N
(

0, σ2

1−φ2

)
X2 ∼ N (φX1, σ

2)
...

Xk ∼ N (φXk−1, σ
2)

and therefore

µ(sk1) =

∫
I1

1√
2π σ√

1−φ2

e
− 1

2

(
X1
σ√

1−φ2

)2∫
I2

1√
2πσ

e−
1
2 (X2−φX1

σ )
2

. . .

. . .

∫
Ik

1√
2πσ

e
− 1

2

(
Xk−φXk−1

σ

)2

dXk . . . dX2 dX1. (23)
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Let us now consider the normalising linear transformation
Y1 = 1

σ√
1−φ2

X1

Y2 = X2−φX1

σ
...

Yk = Xk−φXk−1

σ

, (24)

described in matrix form by Y = AφX, with

Aφ =
1

σ



√
1− φ2 0 0 . . . 0 0
−φ 1 0 . . . 0 0
0 −φ 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . −φ 1


.

The random variables Yt are N (0, 1) and Equation (23) can be written

µ(sk1) =

∫
I′

1

(2π)
k
2

e−
1
2 (Y 2

1 +Y 2
2 +...+Y 2

k ) dY1 . . . dYk, (25)

where I ′ = Aφ(I1 × I2 × . . . × Ik). The integral in Equation (25) is equal to the fraction of k-
dimensional solid angle determined by the cone I ′, or, equivalently, to the fraction of hypersphere
λ(I′∩Sk−1)
λ(Sk−1)

, being λ the Lebesgue measure.

The 2k solid angles of the form I ′, corresponding to the strings of k binary symbols, are those
that result from sectioning the k-dimensional Euclidean space with the hyperplanes π1, π2, π3, . . . ,
πk of equations

φk−1√
1− φ2

x1 = 0

φk−1√
1− φ2

x1 + φk−2x2 = 0

φk−1√
1− φ2

x1 + φk−2x2 + φk−3x3 = 0

...

φk−1√
1− φ2

x1 + φk−2x2 + φk−3x3 + . . .+ φxk−1 + xk = 0.

The problem of calculating the measures µ(sk1) in Equation (2) has thus been translated into a purely
geometric problem: calculating the solid angles in Rk cut by the hyperplanes πi, i = 1, . . . , k. The
entropy of Equation (2) is thus nothing else than the entropy of the partition of Sk−1 determined
by the hyperplanes πi.

B.2 Proofs of the propositions of Section 2.3

Proof of Proposition 2.1. First note that, if {εt}t is a Gaussian white noise, then also {ε′t}t =
{(−1)tεt}t is a Gaussian white noise and it is indeed the same process as {εt}t since a Gaussian
random variable εt has the same distribution as its opposite −εt. The AR(1) process defined by
X ′t = −φX ′t−1 + ε′t has the MA(∞) form

X ′t =

∞∑
i=0

(−φ)iε′t−i =

∞∑
i=0

(−1)iφi(−1)t−iεt−i =

∞∑
i=0

(−1)tφiεt−i.

Thus we have X ′t = (−1)tXt, for all t. This relation between the two continuous-state processes
{X ′t} and {Xt} translates into an analogous one for the binary processes S′ = {s′t}t and S = {st}t
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defined by discretisation as in (8). This means that a single realisation of the process {Xt}t (or,
equivalently, of the process {εt}t) produces two binary sequences s and s′ for which it holds st = s′t
for even t and st = −s′t for odd t. We therefore have a bijective correspondence between realisations
of {st} and of {s′t} which also preserves the measure, that is, it holds

µS(stkt1 ) = µS′(s
tk′
t1 ), for all k and all t1 ≤ . . . ≤ tk. (26)

The following diagram provides a picture of the process isomorphism:

{Xt}
′

−−−−→ {X ′t}

B

y B

y
{st}

′

−−−−→ {s′t}

.

From Equation (26) it follows that H
AR(1)
k (φ) = H

AR(1)
k (−φ), which means that (i) is proved.

Equality (ii) is proved in the very same way as for (i), by noting that the MA(1) process defined
by X ′t = ε′t − θε′t−1, with ε′t = (−1)tεt for all t, is isomorphic to that defined by Xt = εt − θεt−1.

Finally, (iii) and (v) follow immediately from (i), while (iv) and (vi) follow immediately from
(ii).

Proof of Proposition 2.2. If {εt}t is a Gaussian white noise process defining the process {Xt}t
(either AR(1) or MA(1)), the white noise ε̄ = {−εt}t defines the process X̄ = {−Xt}t. This is
actually isomorphic to the process X itself, since the random variables εt have the same distributions
as their opposites. The processes S and S̄, discretised versions of the processes X and X̄, are
therefore isomorphic and the thesis follows.

Proof of Proposition 2.5. The quantities µ(0 ·i 0) and µ(0 ·i 1) are the probabilities of the events
{X1 < 0} ∩ {Xi+2 < 0} and {X1 < 0} ∩ {Xi+2 > 0}, respectively. Recall that Xi+2|X1 ∼
N
(
φi+1X1,

1−φ2(i+1)

1−φ2 σ2
)
. Thus, proceeding as in Section B.1, we are left with calculating the

measures of the subsets of S1 cut by the lines in R2 given by equations x1 = 0 and φi+1√
1−φ2(i+1)

x1 +

x2 = 0. Equalities (9) and (10) follow immediately.

Proof of Proposition 2.6. Just as in Proposition 2.5, µ(00) and µ(01) are the probabilities of the
events {X1 < 0} ∩ {X2 < 0} and {X1 < 0} ∩ {X2 > 0}, respectively. Since the conditional

distribution of X2|X1 is N ( θ
1+θ2X1, (

1+θ2+θ4

1+θ2 σ2)), we have that µ(00) and µ(01) are the relative

measures of the subsets of S1 cut by the lines of equations x1 = 0 and θ√
1+θ2+θ4

x1 + x2 = 0.

Expressions (11) and (12) follow straightforwardly.
Finally, equality (13) is easily proved by noting that the conditional distribution of a random

variable Xt, given Xt−i with i ≥ 2, is the same as its unconditional distribution because Xt and
Xt−i (i ≥ 2) are independent.

C Data cleaning

C.1 Outliers

In order to detect and remove outliers, that may be present in high frequency data for example
because of errors of transmission, we use the algorithm proposed in [11]. Though it was originally
developed for tick-by-tick prices, we apply it to 1-minute data by setting the parameters suitably.
The algorithm is designed to identify and remove the price records which are too distant from
a mean value calculated in their neighbourhood. To be precise, a price pi in the price series is
removed if

|pi − p̄i(k)| ≥ c si(k) + γ, (27)

where p̄i(k) and si(k) are respectively the δ-trimmed1 sample mean and sample standard deviation
of the k price records closest to time i, c is a constant amplifying the standard deviation and γ is

1The δ/2 lowest and the δ/2 highest observations are discarded.
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a parameter that allows to avoid cases of zero variance (e.g., when there are k equal consecutive
prices).

We take k = 20, δ = 10%, c = 5, γ = 0.05. Results of this outlier detection procedure lead to
the removal of a number of 1-minute observations ranging from 9 to 310 across the 55 ETFs. Their
distribution with respect to the time of the day shows that these observations occur for the great
majority at the very beginning and at the very end of the trading day, suggesting that the algorithm
spuriously identifies as outliers some genuine observations where high variability is physiological.
However, the number of 1-minute observations detected as outliers is so limited (about one every
three days in the worst case) that even spurious removal has negligible impact on the results.

C.2 Stock splits

Price data made available by data providers are generally adjusted for stock splits2 To detect
possible unadjusted splits, we check the condition

|r| > 0.2

in the return series. This procedure would detect, for example, a 3-for-2 split or a 4-for-5 merge.
In our data we find four unadjusted splits, which we pointwise remove from the return series.

C.3 Intraday volatility pattern

As is well known, the volatility of intraday returns has a periodic behaviour. It is higher near the
opening and the closing of the market, showing a typical U-shaped profile every day. Moreover,
events like the release of news always at the same time, or the opening of another market, contribute
to create a specific intraday pattern that is the basic volatility structure of each day. We filter out
the intraday volatility pattern from the return series by using the following simple model with
intraday volatility factors. If Rd,t is the raw return of day d and intraday time t, we define the
rescaled return

R̃d,t =
Rd,t
ζt

, (28)

where

ζt =
1

Ndays

∑
d′

|Rd′,t|
sd′

, (29)

where Ndays is the number of days in the sample and sd′ is the standard deviation of absolute
intraday returns of day d′.

In this paper, we refer to the rescaled returns R̃ defined by Equation (28) as deseasonalised
returns.

As an example, we report in Figure 10 the intraday volatility profile of the DIA 1-minute return
series.

C.4 Heteroskedasticity

Deseasonalised return series, as defined by Equations (28) and (29), possess no residual intraday
volatility structure, but they are still heteroskedastic, since different days can have different levels
of volatility. In order to remove this heteroskedasticity, we estimate the time series of local volatility
σt and define the standardised returns by

rt =
R̃t
σt
. (30)

As a proxy of the local volatility, we use the realised absolute variation (see [12, 13]). Let the
logarithmic price p(t) be generated by a process

dp(t) = µ(t) dt+ σ(t) dW (t), (31)

2A (forward or reverse) stock split is a change decided by the company both in the number of its shares and in the
price of the single share, such that the market capitalisation remains constant. A stock split is said to be m-for-n if m
new shares are emitted for every n old ones, with a price adjustment from p to n

m
p. If m > n it is called a forward stock

split, while if m < n we have a reverse stock split (or stock merge).
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Figure 10: Intraday volatility profile of 1-minute returns of the DIA ETF.

where µ(t) is a finite variation process, σ(t) a càdlàg volatility process and W (t) a standard Brow-
nian motion. Divide the interval [0, t] into subintervals of the same length δ and denote by ri the
return at time i, p(iδ)− p((i− 1)δ). Then the following probability limit holds:

p− lim
δ↘0

δ
1
2

bt/δc∑
i=1

|ri| = µ1

∫ t

0

σ(s) ds,

where µ1 = E(|u|) =
√

2
π ' 0.797885, u ∼ N (0, 1).

Our estimator of local volatility is based on these quantity and is defined by the exponentially
weighted moving average

σ̂abs,t = µ−11 α
∑
i>0

(1− α)i−1|rt−i|, (32)

where α is the parameter of the exponential average to be specified. We take α = 0.05 for the
1-minute data and α = 0.25 for the 5-minute data, corresponding to a half-life time of nearly 14
minutes.

Filtering out the heteroskedasticity by means of Equation (30), with the volatility estimated by
Equation (32), considerably reduces the excess kurtosis of the returns distribution for all the ETFs,
thus proving to be an effective method. For instance, for the FXI ETF the excess kurtosis of 1-
minute returns equals 11.87 before removing the heteroskedasticity and 0.88 after doing it. Figure
11 shows the histograms of FXI intraday 1-minute returns, the intraday pattern being already
removed, before and after the removal of heteroskedasticity by means of Equation (30). As can be
seen in the figures, there is a spike at 0 representing the great number of zero returns, due to the
discreteness of price.
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Figure 11: Histograms of 1-minute returns of the FXI ETF, before (left) and after (right) removing
the heteroskedasticity. The intraday pattern has already been filtered out in both series.
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